WorldWideScience

Sample records for alpha-proteobacterium sinorhizobium meliloti

  1. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Jänicke Sebastian

    2010-04-01

    Full Text Available Abstract Background Small untranslated RNAs (sRNAs are widespread regulators of gene expression in bacteria. This study reports on a comprehensive screen for sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti applying deep sequencing of cDNAs and microarray hybridizations. Results A total of 1,125 sRNA candidates that were classified as trans-encoded sRNAs (173, cis-encoded antisense sRNAs (117, mRNA leader transcripts (379, and sense sRNAs overlapping coding regions (456 were identified in a size range of 50 to 348 nucleotides. Among these were transcripts corresponding to 82 previously reported sRNA candidates. Enrichment for RNAs with primary 5'-ends prior to sequencing of cDNAs suggested transcriptional start sites corresponding to 466 predicted sRNA regions. The consensus σ70 promoter motif CTTGAC-N17-CTATAT was found upstream of 101 sRNA candidates. Expression patterns derived from microarray hybridizations provided further information on conditions of expression of a number of sRNA candidates. Furthermore, GenBank, EMBL, DDBJ, PDB, and Rfam databases were searched for homologs of the sRNA candidates identified in this study. Searching Rfam family models with over 1,000 sRNA candidates, re-discovered only those sequences from S. meliloti already known and stored in Rfam, whereas BLAST searches suggested a number of homologs in related alpha-proteobacteria. Conclusions The screening data suggests that in S. meliloti about 3% of the genes encode trans-encoded sRNAs and about 2% antisense transcripts. Thus, this first comprehensive screen for sRNAs applying deep sequencing in an alpha-proteobacterium shows that sRNAs also occur in high number in this group of bacteria.

  2. Denitrification in Sinorhizobium meliloti.

    Science.gov (United States)

    Torres, María J; Rubia, María I; Bedmar, Eulogio J; Delgado, María J

    2011-12-01

    Denitrification is the complete reduction of nitrate or nitrite to N2, via the intermediates nitric oxide (NO) and nitrous oxide (N2O), and is coupled to energy conservation and growth under O2-limiting conditions. In Bradyrhizobium japonicum, this process occurs through the action of the napEDABC, nirK, norCBQD and nosRZDFYLX gene products. DNA sequences showing homology with nap, nirK, nor and nos genes have been found in the genome of the symbiotic plasmid pSymA of Sinorhizobium meliloti strain 1021. Whole-genome transcriptomic analyses have demonstrated that S. meliloti denitrification genes are induced under micro-oxic conditions. Furthermore, S. meliloti has also been shown to possess denitrifying activities in both free-living and symbiotic forms. Despite possessing and expressing the complete set of denitrification genes, S. meliloti is considered a partial denitrifier since it does not grow under anaerobic conditions with nitrate or nitrite as terminal electron acceptors. In the present paper, we show that, under micro-oxic conditions, S. meliloti is able to grow by using nitrate or nitrite as respiratory substrates, which indicates that, in contrast with anaerobic denitrifiers, O2 is necessary for denitrification by S. meliloti. Current knowledge of the regulation of S. meliloti denitrification genes is also included.

  3. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sinorhizobium meliloti strain RMBPC-2... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN...

  4. Sulfite oxidation in Sinorhizobium meliloti.

    Science.gov (United States)

    Wilson, Jeremy J; Kappler, Ulrike

    2009-12-01

    Sulfite-oxidizing enzymes (SOEs) are crucial for the metabolism of many cells and are particularly important in bacteria oxidizing inorganic or organic sulfur compounds. However, little is known about SOE diversity and metabolic roles. Sinorhizobium meliloti contains four candidate genes encoding SOEs of three different types, and in this work we have investigated the role of SOEs in S. meliloti and their possible link to the metabolism of the organosulfonate taurine. Low level SOE activity (approximately 1.4 U/mg) was present under all conditions tested while growth on taurine and thiosulfate induced high activities (5.5-8.8 U/mg) although S. meliloti cannot metabolize thiosulfate. Protein purification showed that although expression of two candidate genes matched SOE activity patterns, only a single group 2 SOE, SorT (SMc04049), is responsible for this activity. SorT is a heme-free, periplasmic homodimer (78 kDa) that has low homology to other bacterial SOEs. SorT has an apparent k(cat) of 343 s(-1) and high affinities for both sulfite (K(Mapp_pH8) 15.5 microM) and ferricyanide (K(Mapp_pH8) 3.44 microM), but not cytochrome c, suggesting a need for a high redox potential natural electron acceptor. K(Mapp_sulfite) was nearly invariant with pH which is in contrast to all other well characterized SOEs. SorT is part of an operon (SMc04049-04047) also containing a gene for a cytochrome c and an azurin, and these might be the natural electron acceptors for the enzyme. Phylogenetic analysis of SorT-related SOEs and enzymes of taurine degradation indicate that there is no link between the two processes.

  5. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.

    Science.gov (United States)

    Becker, Anke; Bergès, Hélène; Krol, Elizaveta; Bruand, Claude; Rüberg, Silvia; Capela, Delphine; Lauber, Emmanuelle; Meilhoc, Eliane; Ampe, Frédéric; de Bruijn, Frans J; Fourment, Joëlle; Francez-Charlot, Anne; Kahn, Daniel; Küster, Helge; Liebe, Carine; Pühler, Alfred; Weidner, Stefan; Batut, Jacques

    2004-03-01

    Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.

  6. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.

    Science.gov (United States)

    Becker, Anke; Rüberg, Silvia; Baumgarth, Birgit; Bertram-Drogatz, Peter Alexander; Quester, Ingmar; Pühler, Alfred

    2002-05-01

    Sinorhizobium meliloti (Rhizobium meliloti) 2011 has the ability to produce the two acidic exopolysaccharides succinoglycan (EPS I) and galactoglucan (EPS II). EPS I is a branched heteropolysaccharide composed of octasaccharide repeating units, whereas EPS II is a linear heteropolysaccharide consisting of disaccharide subunits. The exo-exs and exp gene clusters are involved in the biosynthesis of EPSI and EPSII, respectively. EPSI and EPSII biosynthesis genes are differentially expressed resulting in a complex regulation of EPS production in S. meliloti. The phosphate concentration was identified as an important factor affecting the expression of exp genes.

  7. Diversity of field isolates of sinorhizobium meliloti nodulating alfalfa

    Science.gov (United States)

    Most alfalfa seed is treated with a rhizobial inoculant consisting of one or more strains of Sinorhizobium meliloti before planting to enhance nodulation of seedlings. However, little is known about the persistence of inoculated strains later in the season. There is also a paucity of information on ...

  8. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.

    Science.gov (United States)

    Santos, R; Hérouart, D; Sigaud, S; Touati, D; Puppo, A

    2001-01-01

    Reactive oxygen species are produced as an early event in plant defense response against avirulent pathogens. We show here that alfalfa responds to infection with Sinorhizobium meliloti by production of superoxide and hydrogen peroxide. This similarity in the early response to infection by pathogenic and symbiotic bacteria addresses the question of which mechanism rhizobia use to counteract the plant defense response.

  9. Control of hydroxyproline catabolism in Sinorhizobium meliloti.

    Science.gov (United States)

    White, Catharine E; Gavina, Jennilee M A; Morton, Richard; Britz-McKibbin, Philip; Finan, Turlough M

    2012-09-01

    Hydroxyproline (Hyp) in decaying organic matter is a rich source of carbon and nitrogen for microorganisms. A bacterial pathway for Hyp catabolism is known; however, genes and function relationships are not established. In the pathway, trans-4-hydroxy-L-proline (4-L-Hyp) is epimerized to cis-4-hydroxy-D-proline (4-D-Hyp), and then, in three enzymatic reactions, the D-isomer is converted via Δ-pyrroline-4-hydroxy-2-carboxylate (HPC) and α-ketoglutarate semialdehyde (KGSA) to α-ketoglutarate (KG). Here a transcriptional analysis of cells growing on 4-L-Hyp, and the regulation and functions of genes from a Hyp catabolism locus of the legume endosymbiont Sinorhizobium meliloti are reported. Fourteen hydroxyproline catabolism genes (hyp), in five transcripts hypR, hypD, hypH, hypST and hypMNPQO(RE)XYZ, were negatively regulated by hypR. hypRE was shown to encode 4-hydroxyproline 2-epimerase and a hypRE mutant grew with 4-D-Hyp but not 4-L-Hyp. hypO, hypD and hypH are predicted to encode 4-D-Hyp oxidase, HPC deaminase and α-KGSA dehydrogenase respectively. The functions for hypS, hypT, hypX, hypY and hypZ remain to be determined. The data suggest 4-Hyp is converted to the tricarboxylic acid cycle intermediate α-ketoglutarate via the pathway established biochemically for Pseudomonas. This report describes the first molecular characterization of a Hyp catabolism locus.

  10. Transcriptome-Based Identification of the Sinorhizobium meliloti NodD1 Regulon

    OpenAIRE

    Capela, Delphine; Carrere, Sébastien; Batut, Jacques

    2005-01-01

    The NodD1 regulon of Sinorhizobium meliloti was determined through the analysis of the S. meliloti transcriptome in response to the plant flavone luteolin and the overexpression of nodD1. Nine new genes regulated by both NodD1 and luteolin were identified, demonstrating that NodD1 controls few functions behind nodulation in S. meliloti.

  11. Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon.

    Science.gov (United States)

    Capela, Delphine; Carrere, Sébastien; Batut, Jacques

    2005-08-01

    The NodD1 regulon of Sinorhizobium meliloti was determined through the analysis of the S. meliloti transcriptome in response to the plant flavone luteolin and the overexpression of nodD1. Nine new genes regulated by both NodD1 and luteolin were identified, demonstrating that NodD1 controls few functions behind nodulation in S. meliloti.

  12. Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions.

    Science.gov (United States)

    Donnarumma, Francesca; Bazzicalupo, Marco; Blažinkov, Mihaela; Mengoni, Alessio; Sikora, Sanjia; Babić, Katarina Huić

    2014-09-01

    Sinorhizobium meliloti is a nitrogen-fixing rhizobium symbiont of legumes, widespread in many temperate environments the high genetic diversity of which enables it to thrive as a symbiont of host legumes and free-living in soil. Soil type, together with geographic differences and host plant genotype, seem to be prominent factors in shaping rhizobial genetic diversity. While a large body of research supports the idea that the genetic structure of free-living microbial taxa exhibits a clear biogeographic pattern, few investigations have been performed on the biogeographic pattern of S. meliloti genotypes in a restricted geographic range. In the present study, a collection of 128 S. meliloti isolates from three different regions in Croatia was investigated to analyze the relationship between genetic diversity, geographic distribution, soil features and isolate phenotypes by using amplified fragment length polymorphism (AFLP) as a genome-wide scanning method. Results obtained led to the conclusion that the genotypes of isolates cluster according to the region of origin and that the differentiation of S. meliloti populations can be mainly ascribed to geographic isolation following an isolation-by-distance model, with a strong distance-decay relationship of genetic similarity with distance, in which local soil conditions are not the major component influencing the isolate phenotypes or their genomic differentiation.

  13. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis.

    Science.gov (United States)

    Wells, Derek H; Long, Sharon R

    2002-03-01

    Sinorhizobium meliloti and host legumes enter into a nitrogen-fixing, symbiotic relationship triggered by an exchange of signals between bacteria and plant. S. meliloti produces Nod factor, which elicits the formation of nodules on plant roots, and succinoglycan, an exopolysaccharide that allows for bacterial invasion and colonization of the host. The biosynthesis of these molecules is well defined, but the specific regulation of these compounds is not completely understood. Bacteria control complex regulatory networks by the production of ppGpp, the effector molecule of the stringent response, which induces physiological change in response to adverse growth conditions and can also control bacterial development and virulence. Through detailed analysis of an S. meliloti mutant incapable of producing ppGpp, we show that the stringent response is required for nodule formation and regulates the production of succinoglycan. Although it remains unknown whether these phenotypes are connected, we have isolated suppressor strains that restore both defects and potentially identify key downstream regulatory genes. These results indicate that the S. meliloti stringent response has roles in both succinoglycan production and nodule formation and, more importantly, that control of bacterial physiology in response to the plant and surrounding environment is critical to the establishment of a successful symbiosis.

  14. Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens

    Energy Technology Data Exchange (ETDEWEB)

    Reuhs, B.L.; Geller, D.P.; Kim, J.S.; Fox, J.E.; Kolli, V.S.K. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Pueppke, S.G. [Univ. of Missouri, Columbia, MO (United States). Dept. of Plant Pathology

    1998-12-01

    Lipopolysaccharides (LPS) and capsular polysaccharides (K antigens) may influence the interaction of rhizobia with their specific hosts; therefore, the authors conducted a comparative analysis of Sinorhizobium fredii and Sinorhizobium meliloti, which are genetically related, yet symbiotically distinct, nitrogen-fixing microsymbionts of legumes. They found that both species typically produce strain-specific K antigens that consist of 3-deoxy-D-manno-2-octulosonic acid (Kdo), or other 1-carboxy-2-keto-3-deoxy sugars (such as sialic acid), and hexoses. The K antigens of each strain are distinguished by glycosyl composition, anomeric configuration, acetylation, and molecular weight distribution. One consistent difference between the K antigens of S. fredii and those of S. meliloti is the presence of N-acetyl groups in the polysaccharides of the latter. In contrast to the K antigens, the LPS of Sinorhizobium spp. are major common antigens. Rough (R) LPS is the predominant form of LPS produced by cultured cells, and some strains release almost no detectable smooth (S) LPS upon extraction. Sinorhizobium spp. are delineated into two major RLPS core serogroups, which do not correspond to species. The O antigens of the SLPS, when present, have similar degrees of polymerization and appear to be structurally conserved throughout the genus. Interestingly, one strain was found to be distinct from all others: S. fredii HH303 produces a unique K antigen, which contains galacturonic acid and rhamnose, and the RLPS did not fall into either of the RLPS core serogroups. The results of this study indicate that the conserved S- and RLPS of Sinorhizobium spp. lack the structural information necessary to influence host specificity, whereas the variable K antigens may affect strain-cultivar interactions.

  15. PCR Analysis of "expR" Gene Regulating Biosynthesis of Exopolysaccharides in "Sinorhizobium Meliloti"

    Science.gov (United States)

    Sorroche, Fernando G.; Giordano, Walter

    2012-01-01

    Exopolysaccharide (EPS) production by the rhizobacterium "Sinorhizobium meliloti" is essential for root nodule formation on its legume host (alfalfa), and for establishment of a nitrogen-fixing symbiosis between the two partners. Production of EPS II (galactoglucan) by certain "S. meliloti" strains results in a mucoid colony…

  16. PCR Analysis of "expR" Gene Regulating Biosynthesis of Exopolysaccharides in "Sinorhizobium Meliloti"

    Science.gov (United States)

    Sorroche, Fernando G.; Giordano, Walter

    2012-01-01

    Exopolysaccharide (EPS) production by the rhizobacterium "Sinorhizobium meliloti" is essential for root nodule formation on its legume host (alfalfa), and for establishment of a nitrogen-fixing symbiosis between the two partners. Production of EPS II (galactoglucan) by certain "S. meliloti" strains results in a mucoid colony phenotype. Other…

  17. Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays.

    Science.gov (United States)

    Davalos, Marcela; Fourment, Joëlle; Lucas, Antoine; Bergès, Hélène; Kahn, Daniel

    2004-12-01

    Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.

  18. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.

    Science.gov (United States)

    Meier, Veronika M; Muschler, Paul; Scharf, Birgit E

    2007-03-01

    The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV, and McpX contain the small-ligand-binding domain Cache. In addition, McpU possesses the ligand-binding domain TarH. By probing gene expression with lacZ fusions, we have identified mcpU and mcpX as being highly expressed. Deletion of any one of the receptor genes caused impairments in the chemotactic response toward most organic acids, amino acids, and sugars in a swarm plate assay. The data imply that chemoreceptor proteins in S. meliloti can sense more than one class of carbon source and suggest that many or all receptors work as an ensemble. Tactic responses were virtually eliminated for a strain lacking all nine receptor genes. Capillary assays revealed three important sensors for the strong attractant proline: McpU, McpX, and McpY. Receptor deletions variously affected free-swimming speed and attractant-induced chemokinesis. Noticeably, cells lacking mcpU were swimming 9% slower than the wild-type control. We infer that McpU inhibits the kinase activity of CheA in the absence of an attractant. Cells lacking one of the two soluble receptors were impaired in chemokinetic proficiency by more than 50%. We propose that the internal sensors, IcpA and the PAS domain containing McpY, monitor the metabolic state of S. meliloti.

  19. Autoregulation of Sinorhizobium meliloti exoR gene expression.

    Science.gov (United States)

    Lu, Hai-Yang; Cheng, Hai-Ping

    2010-07-01

    The successful nitrogen-fixing symbiosis between the gram-negative soil bacterium Sinorhizobium meliloti and its leguminous plant host alfalfa (Medicago sativa) requires the bacterial exopolysaccharide succinoglycan. Succinoglycan and flagellum production, along with the ability to metabolize more than 20 different carbon sources and control the expression of a large number of S. meliloti genes, is regulated by the ExoR-ExoS/ChvI signalling pathway. The ExoR protein interacts with and suppresses the sensing activities of ExoS, the membrane-bound sensor of the ExoS/ChvI two-component regulatory system. Here we show that exoR expression is clearly upregulated in the absence of any functional ExoR protein. This upregulation was suppressed by the presence of the wild-type ExoR protein but not by a mutated ExoR protein lacking signal peptide. The levels of exoR expression could be directly modified in real time by changing the levels of total ExoR protein. The expression of exoR was also upregulated by the constitutively active sensor mutation exoS96, and blocked by two single mutations, exoS* and exoS(supA), in the ExoS sensing domain. Presence of the wild-type ExoS protein further elevated the levels of exoR expression in the absence of functional ExoR protein, and reversed the effects of exoS96, exoS* and exoS(supA) mutations. Altogether, these data suggest that ExoR protein autoregulates exoR expression through the ExoS/ChvI system, allowing S. meliloti cells to maintain the levels of exoR expression based on the amount of total ExoR protein.

  20. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Kelly Lynn Hagberg

    2016-11-01

    Full Text Available Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the Nitrogen Stress Response (NSR and Phosphate Stress Response (PSR have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.

  1. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Science.gov (United States)

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika; Kahn, Michael L.

    2016-01-01

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation. PMID:27965651

  2. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility

    OpenAIRE

    Amaya-Gomez, CV; Hirsch, AM; Soto, MJ

    2015-01-01

    Background Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration)...

  3. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis

    OpenAIRE

    Penterman, Jon; Abo, Ryan P.; De Nisco, Nicole J.; Markus F F Arnold; Longhi, Renato; ZANDA, Matteo; Walker, Graham C.

    2014-01-01

    Sinorhizobium meliloti and its legume hosts establish a symbiosis in which bacterial fixed nitrogen is exchanged for plant carbon compounds. We study this symbiosis because it is agriculturally and ecologically important and to identify mechanisms used in host–microbe interactions. S. meliloti is internalized in specialized host nodule cells that then use small, cysteine-rich peptides to drive their differentiation into polyploid cells that fix nitrogen. We found that a representative host pe...

  4. The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis.

    Science.gov (United States)

    Beck, Sebastian; Marlow, Victoria L; Woodall, Katy; Doerrler, William T; James, Euan K; Ferguson, Gail P

    2008-04-01

    Sinorhizobium meliloti is a beneficial legume symbiont, closely related to Brucella species, which are chronic mammalian pathogens. We discovered that the S. meliloti MsbA2 protein is essential to ensure the symbiotic interaction with the host plant, alfalfa. S. meliloti invades plant cells via plant-derived structures known as infection threads. However, in the absence of MsbA2, S. meliloti remains trapped within abnormally thickened infection threads and induces a heightened plant defence response, characterized by a substantial thickening of the nodule endodermis layer and the accumulation of polyphenolic compounds. The S. meliloti MsbA2 protein is homologous to the Escherichia coli lipopolysaccharide/phospholipid trafficking protein MsbA. However, MsbA2 was not essential for the membrane transport of either lipopolysaccharide or phospholipids in S. meliloti. We determined that the msbA2 gene is transcribed in free-living S. meliloti and that in the absence of MsbA2 the polysaccharide content of S. meliloti is altered. Consequently, we propose a model whereby the altered polysaccharide content of the S. meliloti msbA2 mutant could be responsible for its symbiotic defect by inducing an inappropriate host response.

  5. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.

    Science.gov (United States)

    Molina-Sánchez, María Dolores; López-Contreras, José Antonio; Toro, Nicolás; Fernández-López, Manuel

    2015-01-01

    The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti has been widely studied due to its ability to improve crop yields through direct interactions with leguminous plants. S. meliloti AK21 is a wild type strain that forms nodules on Medicago plants in saline and drought conditions in the Aral Sea Region. The aim of this work was to establish the genetic similarities and differences between S. meliloti AK21 and the reference strain S. meliloti 1021. Comparative genome hybridization with the model reference strain S. meliloti 1021 yielded 365 variable genes, grouped into 11 regions in the three main replicons in S. meliloti AK21. The most extensive regions of variability were found in the symbiotic plasmid pSymA, which also contained the largest number of orthologous and polymorphic sequences identified by suppression subtractive hybridization. This procedure identified a large number of divergent sequences and others without homology in the databases, the further investigation of which could provide new insight into the alternative metabolic pathways present in S. meliloti AK21. We identified a plasmid replication module from the repABC replicon family, together with plasmid mobilization-related genes (traG and a VirB9-like protein), which suggest that this indigenous isolate harbors an accessory plasmid. Furthermore, the transcriptomic profiles reflected differences in gene content and regulation between S. meliloti AK21 and S. meliloti 1021 (ExpR and PhoB regulons), but provided evidence for an as yet unknown, alternative mechanism involving activation of the cbb3 terminal oxidase. Finally, phenotypic microarrays characterization revealed a greater versatility of substrate use and chemical degradation than for S. meliloti 1021.

  6. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation

    OpenAIRE

    Benyamina, S.M.; Baldacci-Cresp, F.; Couturier, J; Chibani, K.; J. Hopkins; Bekki, A.; Lajudie de, Philippe; Rouhier, N.; Jacquot, J P; Alloing, G; A Puppo; Frendo, P

    2013-01-01

    Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S.meliloti growth or symbiotic capacities. In...

  7. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.

    Science.gov (United States)

    Schneiker-Bekel, Susanne; Wibberg, Daniel; Bekel, Thomas; Blom, Jochen; Linke, Burkhard; Neuweger, Heiko; Stiens, Michael; Vorhölter, Frank-Jörg; Weidner, Stefan; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2011-08-20

    Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements

  8. [Sinorhizobium meliloti strains screening for efficient bactarization of Melilotus albus Medik].

    Science.gov (United States)

    Patyka, V P; Ovsiienko, O L; Kalinichenko, A V

    2014-01-01

    The data presents about analytical selection of root nodule bacteria of Melilotus to obtain bacterial fertilizer under sweet clover, presowing inoculation of it seeds and form a legume-rhizobial effective symbiosis. From natural melilot population a number of new strains had been allocated, inoculation of them was contributed to an increase of height. biomass Melilotus albus Medik., and nitrogenase activity in comparison to the influence of the existing production strains. The identification of most effective strains Sinorhizobium meliloti had been determined.

  9. Three way interactions between Thymus vulgaris, Medicago truncatula and Sinorhizobium meliloti

    OpenAIRE

    Grøndahl, Eva; Ehlers, Bodil Kirstine

    2012-01-01

    Thymus vulgaris is a dominating component of the Mediterranean garrigue vegetation. It produces aromatic oil, containing monoterpenes, which affects the performance (growth, survival) of other plants, and microorganisms. Annual plant species of the genus Medicago are commonly found in Mediterranean thyme communities; in fact they often grow very close to thyme plants (within 1 square meter). Medicago has a symbiosis with the nitrogen fixing bacteria Sinorhizobium meliloti – which is essential...

  10. Biodegradable plastics from Sinorhizobium meliloti as plastics compatible with the environment and human health

    Directory of Open Access Journals (Sweden)

    Mehrdad Hashemi Beidokhti

    2016-03-01

    Full Text Available Introduction: Polyhydroxyalkanoates (PHAs are natural polyesters and biodegradable plastics that are stored as intracellular inclusion bodies by a great variety of bacteria. The aim of this study was to extract polyhydroxyalkanoate from native Sinorhizobium meliloti in Iran. Materials and methods: Sinorhizobium meliloti isolates were collected from roots of alfalfa plants and were identified by Gram staining, biochemical experiments and amplification of 1500 bp fragment of 16Sr DNA gene. PHA granules were detected by microscopic examination. PHA production was evaluated in nutrient deficient medium and its amount was determined by conversion of PHA into crotonic acid by sulphuric acid treatment. The effect of various temperatures, agitation rate and carbon source (sucrose, mannitol, and maltose were evaluated on dry cell weight and polyhydroxybutyrate (PHB production. Results: The maximum amount of polymer production (43.10% was seen in basal mineral medium at 29°C, pH~7 and 215 revolutions per minute (rpm. The results of this research showed that the S5 isolate was capable to produce maximum poly3- hydroxybutyrate. The produced polymer was analyzed for its purity by GC- mass (gas chromatography- mass spectroscopy and confirmed to be PHB compared with the standard polymer. Discussion and conclusion: Native strains of Sinorhizobium can be used in the production of biodegradable plastics and the results of present study showed that S. meliloti S5 was capable to produce maximum PHB at 29°C, agitation rate of 215 rpm, and pH~7. 

  11. Evidences of autoregulation of hfq expression in Sinorhizobium meliloti strain 2011.

    Science.gov (United States)

    Sobrero, Patricio; Valverde, Claudio

    2011-09-01

    Riboregulation comprises gene expression regulatory mechanisms that rely upon the activity of small non-coding RNAs (sRNAs) and in most cases RNA binding proteins. In γ-proteobacteria, the Sm-like protein Hfq is a key player in riboregulatory processes, because it promotes sRNA-mRNA interactions and influences mRNA polyadenylation or translation. In the α-proteobacterium Sinorhizobium meliloti, the large number of detected small RNA transcripts and the pleiotropic effects of hfq mutations lead to the hypothesis that riboregulatory mechanisms are important in this soil microorganism to adjust gene expression both in free-living conditions and as a nitrogen-fixing endosymbiont within legume root nodules. In this study, homology modeling of S. meliloti Hfq protein and cross-complementation experiments of S. meliloti and Escherichia coli mutants indicates that hfq ( Sm ) encodes an RNA chaperone that can be functionally exchanged by its homolog from E. coli. A transcriptional and translational analysis of S. meliloti hfq expression by means of lacZ reporter fusions strongly suggests that the S. meliloti Hfq protein autocontrols its expression at the translational level, a phenomenon that was evident in the natural host S. meliloti as well as in the heterologous host E. coli.

  12. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction.

    Directory of Open Access Journals (Sweden)

    Hansheng Zhao

    Full Text Available BACKGROUND: Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS: Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112 of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS: As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.

  13. An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation.

    Science.gov (United States)

    Patankar, Arati V; González, Juan E

    2009-02-01

    The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.

  14. Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.

    Science.gov (United States)

    De Nisco, Nicole J; Abo, Ryan P; Wu, C Max; Penterman, Jon; Walker, Graham C

    2014-03-04

    In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.

  15. Draft genome sequence of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis.

    Science.gov (United States)

    Wibberg, Daniel; Blom, Jochen; Rückert, Christian; Winkler, Anika; Albersmeier, Andreas; Pühler, Alfred; Schlüter, Andreas; Scharf, Birgit E

    2013-12-01

    Sinorhizobium meliloti of the order Rhizobiales is a symbiotic nitrogen-fixing bacterium nodulating plants of the genera Medicago, Trigonella and Melilotus and hence is of great agricultural importance. In its free-living state it is motile and capable of modulating its movement patterns in response to chemical attractants. Here, the draft genome consisting of a circular chromosome, the megaplasmids pSymA and pSymB and three accessory plasmids of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis, is reported.

  16. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant

    OpenAIRE

    Jones, Kathryn M.; Sharopova, Natalya; Lohar, Dasharath P.; Zhang, Jennifer Q.; Kathryn A VandenBosch; Walker, Graham C.

    2008-01-01

    Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcrip...

  17. Ectoine-Induced Proteins in Sinorhizobium meliloti Include an Ectoine ABC-Type Transporter Involved in Osmoprotection and Ectoine Catabolism

    OpenAIRE

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-01-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to th...

  18. Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM.

    Science.gov (United States)

    Wang, Xiaomi; Teng, Ying; Luo, Yongming; Dick, Richard P

    2016-02-01

    A rhizobial strain, Sinorhizobium meliloti NM, could use 3,3',4,4'-tetrachloro-biphenyl (PCB 77) as the sole carbon and energy source for growth in mineral salt medium. The degradation efficiency of PCB 77 by strain NM and the bacterial growth increased with a decrease in PCB 77 concentration (5-0.25mgL(-1)). The addition of secondary carbon sources, phenolic acids and one surfactant influenced PCB 77 degradation, rhizobial growth and biofilm formation. The highest degradation efficiency was observed in the presence of caffeic acid. Benzoate and chloride ions were detected as the PCB 77 metabolites. The up-regulation of benzoate metabolism-related gene expression was also observed using quantitative reverse transcription-polymerase chain reaction. This report is the first to demonstrate Sinorhizobium using coplanar tetrachlorobiphenyl as a sole carbon and energy source, indicating the potential wide benefit to the field of rhizobia-assisted bioremediation.

  19. A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320.

    Science.gov (United States)

    Dong, Huina; Li, Sha; Fang, Huan; Xia, Miaomiao; Zheng, Ping; Zhang, Dawei; Sun, Jibin

    2016-10-01

    Vitamin B12 (Cobalamin, VB12) has several physiological functions and is widely used in pharmaceutical and food industries. A new unicellular species was extracted from China farmland, and the strain could produce VB12 which was identified by HPLC and HPLC-MS/MS. 16S rDNA analysis reveals this strain belongs to the species Sinorhizobium meliloti and we named it S. meliloti 320. Its whole genome information indicates that this strain has a complete VB12 synthetic pathway, which paves the way for further metabolic engineering studies. The optimal carbon and nitrogen sources are sucrose and corn steep liquor (CSL) plus peptone. The optimal combination of sucrose and CSL was obtained by response surface methodology as they are the most suitable carbon and nitrogen sources, respectively. This strain could produce 140 ± 4.2 mg L(-1) vitamin B12 after incubating for 7 days in the optimal medium.

  20. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.

    Science.gov (United States)

    Lang, Claus; Long, Sharon R

    2015-08-01

    The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.

  1. Identification of new genes in Sinorhizobium meliloti using the Genome Sequencer FLX system

    Directory of Open Access Journals (Sweden)

    Jensen Roderick V

    2008-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is an agriculturally important model symbiont. There is an ongoing need to update and improve its genome annotation. In this study, we used a high-throughput pyrosequencing approach to sequence the transcriptome of S. meliloti, and search for new bacterial genes missed in the previous genome annotation. This is the first report of sequencing a bacterial transcriptome using the pyrosequencing technology. Results Our pilot sequencing run generated 19,005 reads with an average length of 136 nucleotides per read. From these data, we identified 20 new genes. These new gene transcripts were confirmed by RT-PCR and their possible functions were analyzed. Conclusion Our results indicate that high-throughput sequence analysis of bacterial transcriptomes is feasible and next-generation sequencing technologies will greatly facilitate the discovery of new genes and improve genome annotation.

  2. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.

    Science.gov (United States)

    Sorroche, Fernando G; Spesia, Mariana B; Zorreguieta, Angeles; Giordano, Walter

    2012-06-01

    Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.

  3. Diverse Flavonoids Stimulate NodD1 Binding to nod Gene Promoters in Sinorhizobium meliloti

    OpenAIRE

    Peck, Melicent C.; Fisher, Robert F.; Long, Sharon R.

    2006-01-01

    NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation (nod) genes in the soil bacterium Sinorhizobium meliloti. Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, w...

  4. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020.

    Science.gov (United States)

    Li, Zhefei; Lu, Mingmei; Wei, Gehong

    2013-09-01

    The main aim of this work was to study molecular characterization of a DNA fragment conferring resistance to Cu(II) in Sinorhizobium meliloti CCNWSX0020. The strain CCNWSX0020, resistant to 1.4 mmol l(-1) Cu(II) in tryptone-yeast extract medium was isolated from Medicago lupulina growing in mine tailings of Fengxian County, China. The availability of the complete genome sequence of S. meliloti CCNWSX0020 provides an opportunity for investigating genes that play significant roles in Cu(II) resistance. A copper resistance gene, with a length of 1,445 bp, encoding 481 amino acids, designated omp, was identified by cDNA-amplified fragment length polymorphism from S. meliloti CCNWSX0020. The expression of omp gene strongly increased in the presence of Cu(II). The omp-defective mutants display sensitivities to Cu(II) compared with their wild types. The Cu(II)-sensitive phenotype of the mutant was complemented by a 1.5-kb DNA fragment containing omp gene. BLAST analysis revealed that this gene encoded a hypothetical outer membrane protein with 75 % similarity to outer membrane efflux protein in Rhizobium leguminosarum bv. viciae 3841. These studies suggested that the omp product was involved in the Cu(II) tolerance of S. meliloti CCNWSX0020.

  5. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    Science.gov (United States)

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  6. Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes.

    Science.gov (United States)

    Simsek, Senay; Wood, Karl; Reuhs, Bradley L

    2013-05-01

    Sinorhizobium meliloti NRG247 has a Fix(+) phenotype on Medicago truncatula A20 and is Fix(-) on M. truncatula A17, and the phenotype is reversed with S. meliloti NRG185. As the succinoglycan was shown to impact host specificity, an analysis of the succinoglycan oligosaccharides produced by each strain was conducted. The symbiotically active succinoglycan trimeric oligosaccharides (STOs) from the two S. meliloti strains were compared by chromatography and mass spectrometry, and the analysis of the S. meliloti NRG247 oligosaccharides showed that this strain produces an abundance of STO trimer 1 (T1), containing no succinate (i.e., three nonsuccinylated repeats), yet the low-molecular-weight pool contained no nonsuccinylated monomers (potential repeats). This showed that STO T1 is likely to be the active signal on M. truncatula A20 and that the biosynthesis of the STOs is not a random polymerization of the monomer population. The results also suggest that the fully succinylated STO T7 is required for the infection of M. truncatula A17.

  7. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti.

    Science.gov (United States)

    van Noorden, Giel E; Kerim, Tursun; Goffard, Nicolas; Wiblin, Robert; Pellerone, Flavia I; Rolfe, Barry G; Mathesius, Ulrike

    2007-06-01

    We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.

  8. Exogenous Camp upregulates the expression of glnII and glnK-amtB genes in Sinorhizobium meliloti 1021

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhexian; MAO Xianjun; SU Wei; LI Jian; BECKER Anke; WANG Yiping

    2006-01-01

    The existence of multiple adenylate cyclase encoding genes implies the importance of Camp in Sinorhizobium meliloti 1021. In this study, as a pioneer step of understanding Camp roles, microarray analysis on S. Meliloti was carried out for the function of exogenous Camp. To our surprise, the result showed that the transcriptions of glnII and glnK genes were significantly upshifted in the presence of exogenous Camp in S. Meliloti. This phenomenon is further confirmed in S. Meliloti that the expression of either glnII or glnK promoter-lacZ translational fusion is higher in the presence of exogenous Camp.Therefore, for the first time, we have identified genes from S. Meliloti whose expression is activated by Camp. The potential physiological role of upregulation of glnII and glnK by Camp is discussed.

  9. Expression of the Sinorhizobium meliloti C4-dicarboxylate transport gene during symbiosis with the Medicago host plant

    NARCIS (Netherlands)

    Boesten, B.

    1999-01-01

    During symbiosis between Sinorhizobium meliloti and the Medicago host plant, the energy required to fix atmospheric nitrogen, is derived from the plant photosynthate. Current evidence indicates that C 4 -dicarboxylates (dCA) are the major and probably only source of carbon provided to the

  10. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    Science.gov (United States)

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  11. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.

    Directory of Open Access Journals (Sweden)

    Francesco Pini

    2015-05-01

    Full Text Available In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our

  12. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.

    Science.gov (United States)

    Pini, Francesco; De Nisco, Nicole J; Ferri, Lorenzo; Penterman, Jon; Fioravanti, Antonella; Brilli, Matteo; Mengoni, Alessio; Bazzicalupo, Marco; Viollier, Patrick H; Walker, Graham C; Biondi, Emanuele G

    2015-05-01

    In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable

  13. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti

    Science.gov (United States)

    Ferri, Lorenzo; Penterman, Jon; Fioravanti, Antonella; Brilli, Matteo; Mengoni, Alessio; Bazzicalupo, Marco; Viollier, Patrick H.; Walker, Graham C.; Biondi, Emanuele G.

    2015-01-01

    In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable

  14. The study of salt and drought tolerance of Sinorhizobium meliloti isolated from Kerman province

    Directory of Open Access Journals (Sweden)

    mahboobeh abolhasani zeraatkar

    2009-06-01

    Full Text Available Salinity and drought stress can significantly affect plant growth in arid and semi-arid regions. Legume - rhizobium symbiotic relationships can also be influenced by these limiting factors. It is well known that the host plant inoculation by native strains with high efficiency has a positive effect on plant yield and biological nitrogen fixation process. The main aim of this investigation was to evaluate the salinity and drought tolerance of 49 isolates of Sinorhizobium meliloti collected from Kerman province in southern Iran. Salinity and drought tolerance of all isolates were examined in liquid TY media containing 0, 100, 200, 300, 400, 500, 600 and 650 mM NaCl and 0, 203, 298, 373, 438, 496, 548 and 573 g/L of Polyethylene glycol (PEG-6000, respectively. This experiment was carried out using a factorial arrangement in completely randomized design whith three replicants. The results showed that salinity and drought tolerance among isolates was significantly different. All isolates were grouped in three clusters: sensitive, semi-sensitive and tolerant based on their growth rate in TY media containing different concentrations of NaCl and PEG-6000. The results also showed that all tolerant isolates excreted more exopolysacharides compared to the sensitive and semi-sensitive ones. Based on salinity and drought experiments, two isolates of Sinorhizobium meliloti i.e.S27K and S36K were selected as superior in this expriment.

  15. The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.

    Science.gov (United States)

    Crook, Matthew B; Draper, Alicia L; Guillory, R Jordan; Griffitts, Joel S

    2013-08-01

    The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti harbors a gene, SMc02396, which encodes a predicted outer membrane porin that is conserved in many symbiotic and pathogenic bacteria in the order Rhizobiales. Here, this gene (renamed ropA1) is shown to be required for infection by two commonly utilized transducing bacteriophages (ΦM12 and N3). Mapping of S. meliloti mutations conferring resistance to ΦM12, N3, or both phages simultaneously revealed diverse mutations mapping within the ropA1 open reading frame. Subsequent tests determined that RopA1, lipopolysaccharide, or both are required for infection by all of a larger collection of Sinorhizobium-specific phages. Failed attempts to disrupt or delete ropA1 suggest that this gene is essential for viability. Phylogenetic analysis reveals that ropA1 homologs in many Rhizobiales species are often found as two genetically linked copies and that the intraspecies duplicates are always more closely related to each other than to homologs in other species, suggesting multiple independent duplication events.

  16. Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight

    Directory of Open Access Journals (Sweden)

    Hajeewaka C. Mendis

    2016-06-01

    Full Text Available The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that cannot succinylate succinoglycan are also unable to form infection threads, despite the fact that they make large quantities of succinoglycan. Succinoglycan produced by exoH mutants is refractory to cleavage by the glycanases encoded by exoK and exsH, and thus succinoglycan produced by exoH mutants is made only in the high-molecular-weight (HMW form. One interpretation of the symbiotic defect of exoH mutants is that the low-molecular-weight (LMW form of succinoglycan is required for infection thread formation. However, our data demonstrate that production of the HMW form of succinoglycan by S. meliloti 1021 is sufficient for invasion of the host M. truncatula and that the LMW form is not required. Here, we show that S. meliloti strains deficient in the exoK- and exsH-encoded glycanases invade M. truncatula and form a productive symbiosis, although they do this with somewhat less efficiency than the wild type. We have also characterized the polysaccharides produced by these double glycanase mutants and determined that they consist of only HMW succinoglycan and no detectable LMW succinoglycan. This demonstrates that LMW succinoglycan is not required for host invasion. These results suggest succinoglycan function is not dependent upon the presence of a small, readily diffusible form.

  17. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.

    Science.gov (United States)

    Penterman, Jon; Abo, Ryan P; De Nisco, Nicole J; Arnold, Markus F F; Longhi, Renato; Zanda, Matteo; Walker, Graham C

    2014-03-04

    The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.

  18. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Dufour Virginie

    2011-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.

  19. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.

    Directory of Open Access Journals (Sweden)

    Patricio Sobrero

    Full Text Available Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.

  20. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    Science.gov (United States)

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  1. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong, E-mail: weigehong@nwsuaf.edu.cn

    2013-10-15

    Highlights: • EPS produced by Sinorhizobium meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. • We focused on the EPS, which is divided into three main parts. • LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. • Proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding. -- Abstract: The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4 mM Cu{sup 2+}. Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu{sup 2+}. EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding.

  2. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Moreira Leonilde M

    2010-06-01

    Full Text Available Abstract Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.

  3. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

    Science.gov (United States)

    Liu, Tao; Tian, Chang Fu; Chen, Wen Xin

    2015-01-01

    Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.

  4. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis, ActR (pH stress and microaerobic adaption, SupA (potassium stress, chaperonin GroEL2 (viability and potentially symbiosis, and ExoP (succinoglycan synthesis and secretion. These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.

  5. Complementation analyses of Sinorhizobium meliloti nifA mutant with different originated nifA genes

    Institute of Scientific and Technical Information of China (English)

    YAO Zhenhua; R(U)VERG Silvia; WANG Yiping; ZOU Huasong; TIAN Zhexian; DAI Xiaomi; BECKER Anke; LI Jian; YAN Haiqin; XIAO Yan; ZHU Jiabi; YU Guanqiao

    2006-01-01

    A previous work inferred that the nifA gene of Enterobacter cloacae did not restore the symbiotic phenotype of Sinorhizobium meliloti nifA mutant. In the present study, two nifA genes of Bradyrhizobium japonicum and Mesorhizobium huakuii also did not restore the symbiotic phenotype of S.meliloti nifA mutant. In whole genomic microarray experiments, 238 genes were found to be differentially expressed after S. meliloti nifA had been constitutively expressed in its nifA mutant. In contrast,only 20, 7 and 9 genes changed their transcriptional levels when expressing B. japonium, M. huakuii and Enterobacter cloacae nifA genes in Sm nifA mutant,separately. These genes were classified into several functional groups including house keeping, energy and central intermediary metabolism, transport systems and symbiosis. Interestingly, the genes that of nifH operons showed high expression levels in the presence of either B. japonium or M. huakuii NifA,which was confirmed by subsequent lacZ fusion experiments.

  6. Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype.

    Science.gov (United States)

    diCenzo, George C; Zamani, Maryam; Cowie, Alison; Finan, Turlough M

    2015-12-01

    In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The S. meliloti auxotroph displayed reduced symbiotic capability with alfalfa (Medicago sativa) due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover (Melilotus alba) that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the S. meliloti proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that L-proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.

  7. Identification and characterization of two gcvA genes in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    QI MingSheng; LUO Li; CHENG HaiPing; ZHU JiaBi; YU GuanQiao

    2009-01-01

    GcvA is a member of the LysR family of transcriptional regulators that mediates the expression of the glycine cleavage (GCV) operon (gcvTHP) in response to glycine in Escherichia coil In our previous work, 90 putative regulator genes of the LysR family in Sinorhizobium meliloti were mutagenized to determine their phenotype. In the present study, we found that the S. mefiloti genome had two gcvA genes, gcvA1 and gcvA2. Both gcvA1 and gcvA2were required for full activation of the gcvTHPoperon in the presence of exogenous glycine. The gcvA1-mediated activation of gcvTHP operon was gly-cine-inducible, while gcvA2-mediated activation was not. We speculate that the regulatory mechanism for gcvTHP expression in S. meliloti differed from E. coiL Evolutionary analysis showed that GcvA were distributed in many genera of Proteobacteria and the distances between GcvA1 and GcvA2 in S. meliloti and GcvA in E. coil were large, which may explain the different regulatory mechanisms for gcvTHP expression. These findings could provide new clues to the role of the LysR gene family.

  8. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.

    Science.gov (United States)

    Benyamina, Sofiane M; Baldacci-Cresp, Fabien; Couturier, Jérémy; Chibani, Kamel; Hopkins, Julie; Bekki, Abdelkader; de Lajudie, Philippe; Rouhier, Nicolas; Jacquot, Jean-Pierre; Alloing, Geneviève; Puppo, Alain; Frendo, Pierre

    2013-03-01

    Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.

  9. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.

    Science.gov (United States)

    Nogales, Joaquina; Bernabéu-Roda, Lydia; Cuéllar, Virginia; Soto, María J

    2012-04-01

    Swarming is a mode of translocation dependent on flagellar activity that allows bacteria to move rapidly across surfaces. In several bacteria, swarming is a phenotype regulated by quorum sensing. It has been reported that the swarming ability of the soil bacterium Sinorhizobium meliloti Rm2011 requires a functional ExpR/Sin quorum-sensing system. However, our previous published results demonstrate that strains Rm1021 and Rm2011, both known to have a disrupted copy of expR, are able to swarm on semisolid minimal medium. In order to clarify these contradictory results, the role played by the LuxR-type regulator ExpR has been reexamined. Results obtained in this work revealed that S. meliloti can move over semisolid surfaces using at least two different types of motility. One type is flagellum-independent surface spreading or sliding, which is positively influenced by a functional expR gene mainly through the production of exopolysaccharide II (EPS II). To a lesser extent, EPS II-deficient strains can also slide on surfaces by a mechanism that is at least dependent on the siderophore rhizobactin 1021. The second type of surface translocation shown by S. meliloti is swarming, which is greatly dependent on flagella and rhizobactin 1021 but does not require ExpR. We have extended our study to demonstrate that the production of normal amounts of succinoglycan (EPS I) does not play a relevant role in surface translocation but that its overproduction facilitates both swarming and sliding motilities.

  10. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    Science.gov (United States)

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX(PR) and McpX34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX(PR) with dissociation constants (Kd ) in the nanomolar range for choline and glycine betaine, micromolar Kd for stachydrine and trigonelline and a Kd in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding.

  11. Mixed Nodule Infection in Sinorhizobium meliloti-Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior.

    Science.gov (United States)

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti-Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti-M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis.

  12. nifH Promoter Activity Is Regulated by DNA Supercoiling in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Yan-Jie LIU; Biao HU; Jia-Bi ZHU; Shan-Jiong SHEN; Guan-Qiao YU

    2005-01-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoilingdependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  13. [Root Nodule Bacteria Sinorhizobium meliloti: Tolerance to Salinity and Bacterial Genetic Determinants].

    Science.gov (United States)

    Roumiantseva, M L; Muntyan, V S

    2015-01-01

    The theoretical and experimental data on salt tolerance of root nodule bacteria Sinorhizobium meliloti (Ensifer meliloti), an alfalfa symbiont, and on genetic determination of this feature are reviewed. Extensive data on the genes affecting adaptation of proteobacteria are provided, as well as on the groups of genes with activity depending on the osmolarity of the medium. Structural and functional polymorphism of the bet genes involved in betaine synthesis and transport in S. meliloti is discussed. The phenotypic and. genotypic polymorphism in 282 environmental rhizobial strains isolated from the centers of alfalfa diversity affected by aridity and salinity is discussed. The isolates from the Aral Sea area and northern Caucasus were shown to possess the betC gene represented by two types of alleles: the dominant A-type allele found in Rm 1021 and the less common divergent E-type allele, which was revealed in regions at the frequencies at the frequencies of 0.35 and 0.48, respectively. In the isolates with the salt-tolerant phenotype, which were isolated from root nodules and subsequently formed less effective symbioses with alfalfa, the frequency of E-type alleles was 2.5 times higher. Analysis of the nucleotide and amino acid sequences of the E-type allele of the betC gene revealed that establishment of this allele in the population was a result of positive selection. It is concluded that diversification of the functionally diverse bet genes occurring in S. meliloti affects the salt tolerance and symbiotic effectivity of rhizobia.

  14. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti.

    Science.gov (United States)

    Peck, Melicent C; Fisher, Robert F; Long, Sharon R

    2006-08-01

    NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation (nod) genes in the soil bacterium Sinorhizobium meliloti. Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, we expressed nodD genes from different species of rhizobia in a strain of S. meliloti lacking endogenous NodD activity. We observed that nod gene expression was initiated in response to distinct sets of flavonoid inducers depending on the source of NodD. To better understand the effects of flavonoids on NodD, we assayed the DNA binding activity of S. meliloti NodD1 treated with the flavonoid inducer luteolin. In the presence of luteolin, NodD1 exhibited increased binding to nod gene promoters compared to binding in the absence of luteolin. Surprisingly, although they do not stimulate nod gene expression in S. meliloti, the flavonoids naringenin, eriodictyol, and daidzein also stimulated an increase in the DNA binding affinity of NodD1 to nod gene promoters. In vivo competition assays demonstrate that noninducing flavonoids act as competitive inhibitors of luteolin, suggesting that both inducing and noninducing flavonoids are able to directly bind to NodD1 and mediate conformational changes at nod gene promoters but that only luteolin is capable of promoting the downstream changes necessary for nod gene induction.

  15. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Directory of Open Access Journals (Sweden)

    Jiménez-Zurdo José I

    2010-03-01

    Full Text Available Abstract Background The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs, and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. Results Two independent S. meliloti mutants, 2011-3.4 and 1021Δhfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δhfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64% elicited by the 1021Δhfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently

  16. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis.

    Science.gov (United States)

    León-Barrios, Milagros; Pérez-Yépez, Juan; Dorta, Paola; Garrido, Ana; Jiménez, Concepción

    2017-02-02

    Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.

  17. Study of Acid Tolerance of Sinorhizobium meliloti%苜蓿中华根瘤菌(Sinorhizobium meliloti)的耐酸性研究

    Institute of Scientific and Technical Information of China (English)

    张学军; 张磊; 张琴; 石杰; 曹良元; 代先祝; 魏世清; 李艳宾; 苏海锋

    2008-01-01

    用来自酸性土壤上紫花苜蓿根瘤中分离得到的3株能在pH=4.8的YMA固体培养基上正常生长的根瘤菌进行回接试验和生长曲线测定,结果证明,菌株91532耐酸能力高于其余菌珠,并高于国内外已报道过的苜蓿根瘤菌.91532经16SrRNA分析和扫描电子显微镜分析,鉴定为苜蓿中华根瘤菌(Sinorhizobium meliloti).pH=4.0的质子通量试验中,与酸敏感菌株相比,91532细胞膜具有较强的阻挡质子能力,细胞具有较高的存活率,耐酸能力具有遗传稳定性.

  18. An Orphan LuxR Homolog of Sinorhizobium meliloti Affects Stress Adaptation and Competition for Nodulation▿ †

    OpenAIRE

    Patankar, Arati V.; González, Juan E.

    2008-01-01

    The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the L...

  19. Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

    Science.gov (United States)

    Yurgel, Svetlana N; Mortimer, Michael W; Rice, Jennifer T; Humann, Jodi L; Kahn, Michael L

    2013-03-01

    Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.

  20. Transcriptome analysis of Sinorhizobium meliloti nodule bacteria in nifA mutant background

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhexian; WANG Yiping; ZOU Huasong; LI Jian; ZHANG Yuantao; LIU Ying; YU Guanqiao; ZHU Jiabi; R(U)BERG Silvia; BECKER Anke

    2006-01-01

    Gene expression profiles of a Sinorhizobium meliloti 1021 nifA mutant and wild type nodule bacteria were compared using whole genome microarrays. The results revealed a large scale alteration of gene expression (601 genes) in the nifA minus background. The loss of NifA altered the expression of many functional groups of genes (macromolecular metabolism, TCA cycle and respiration,nodulation and nitrogen fixation) and may lead to quite different life stages of the nodule bacteria.Upregulation of fixK and its associated genes was observed in the nifA mutant nodule bacteria. Additional quantitative real-time PCR experiments revealed that the transcript levels of fixLJ were significantly upshifted in the nifA mutant nodule bacteria.Putative NifA binding sites were predicted by a statistical method in the upstream sequences of 13 differentially regulated genes from the nifA- transcriptome.

  1. Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti.

    Science.gov (United States)

    Gao, Mengsheng; Nguyen, Hahn; Salas González, Isai; Teplitski, Max

    2016-11-01

    The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix(-) phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.

  2. Alteration of enod40 expression modifies medicago truncatula root nodule development induced by sinorhizobium meliloti

    Science.gov (United States)

    Charon, C; Sousa, C; Crespi, M; Kondorosi, A

    1999-01-01

    Molecular mechanisms involved in the control of root nodule organogenesis in the plant host are poorly understood. One of the nodulin genes associated with the earliest phases of this developmental program is enod40. We show here that transgenic Medicago truncatula plants overexpressing enod40 exhibit accelerated nodulation induced by Sinorhizobium meliloti. This resulted from increased initiation of primordia, which was accompanied by a proliferation response of the region close to the root tip and enhanced root length. The root cortex of the enod40-transformed plants showed increased sensitivity to nodulation signals. T(1) and T(2) descendants of two transgenic lines with reduced amounts of enod40 transcripts (probably from cosuppression) formed only a few and modified nodulelike structures. Our results suggest that induction of enod40 is a limiting step in primordium formation, and its function is required for appropriate nodule development. PMID:10521525

  3. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene.

    Science.gov (United States)

    Pawlik, Anna; Wójcik, Magdalena; Rułka, Karol; Motyl-Gorzel, Karolina; Osińska-Jaroszuk, Monika; Wielbo, Jerzy; Marek-Kozaczuk, Monika; Skorupska, Anna; Rogalski, Jerzy; Janusz, Grzegorz

    2016-11-01

    The soil native bacterial strains were screened for laccase activity. Bacterial strain L3.8 with high laccase activity was identified as Sinorhizobium meliloti. The crude intracellular L3.8 enzyme extract was able to oxidize typical diagnostic substrates of plant and fungal laccases. Laccase L3.8 was purified 81-fold with a yield of 19.5%. The molecular mass of the purified bacterial laccase was found to be 70.0kDa and its pI was 4.77. UV-vis spectrum showed that L3.8 protein is a multicopper oxidase. The carbohydrate content of the purified enzyme was estimated at 3.2%. Moreover, the laccase active fraction was characterized in terms of kinetics, temperature, and pH optima as well as the effect of various chemical compounds on the laccase activity, and antioxidant properties, which indicated that the L3.8 laccase had unique properties that might be important in biotechnological applications. The lacc gene encoding S. meliloti laccase was cloned and characterized. The full-length sequence of 1950bp encoded a protein of 649 aa preceded by a signal peptide consisting of 26aa. Laccase L3.8 shared significant structural features characteristic of other laccases, including the conserved regions of four histidine-rich copper-binding sites. Potential biotechnological importance of a newly identified laccase is discussed.

  4. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti.

    Science.gov (United States)

    Patel, Sarju J; Padilla-Benavides, Teresita; Collins, Jessica M; Argüello, José M

    2014-06-01

    Copper is an important element in host-microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu(+)-ATPases drive cytoplasmic Cu(+) efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu(+)-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu(+)-ATPases present in the symbiotic organism Sinorhizobium meliloti. Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living S. meliloti mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu(+), oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu(+) quota and its expression is controlled by Cu(+) levels. CopA1b is also regulated by Cu(+) concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome c oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu(+)-ATPase that does not contribute to Cu(+) tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu(+)-ATPases, operating under distinct regulation, transport Cu(+) to different target proteins.

  5. Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.

    Science.gov (United States)

    Pérez, Juana; Jiménez-Zurdo, José I; Martínez-Abarca, Francisco; Millán, Vicenta; Shimkets, Lawrence J; Muñoz-Dorado, José

    2014-07-01

    Myxococcus xanthus is a social bacterium that preys on prokaryotic and eukaryotic microorganisms. Co-culture of M. xanthus with reference laboratory strains and field isolates of the legume symbiont Sinorhizobium meliloti revealed two different predatory patterns that resemble frontal and wolf-pack attacks. Use of mutants impaired in the two types of M. xanthus surface motility (A or adventurous and S or social motility) and a csgA mutant, which is unable to form macroscopic travelling waves known as ripples, has demonstrated that both motility systems but not rippling are required for efficient predation. To avoid frontal attack and reduce killing rates, rhizobial cells require a functional expR gene. ExpR regulates expression of genes involved in a variety of functions. The use of S. meliloti mutants impaired in several of these functions revealed that the exopolysaccharide galactoglucan (EPS II) is the major determinant of the M. xanthus predatory pattern. The data also suggest that this biopolymer confers an ecological advantage to rhizobial survival in soil, which may have broad environmental implications.

  6. Crystallization and preliminary crystallographic studies of the recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Sergio [Departamento de Química Física, Bioquímica y Química Inorgánica, Área de Bioquímica y Biología Molecular, Edificio CITE I, Universidad de Almería (Spain); González-Ramírez, Luis Antonio [Laboratorio de Estudios Cristalográficos-IACT, CSIC-UGRA, P. T. Ciencias de la Salud, Granada 18100 (Spain); Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier [Departamento de Química Física, Bioquímica y Química Inorgánica, Área de Bioquímica y Biología Molecular, Edificio CITE I, Universidad de Almería (Spain); Gavira, Jose A.; García-Ruíz, Juan Manuel, E-mail: jmgruiz@ugr.es [Laboratorio de Estudios Cristalográficos-IACT, CSIC-UGRA, P. T. Ciencias de la Salud, Granada 18100 (Spain); Departamento de Química Física, Bioquímica y Química Inorgánica, Área de Bioquímica y Biología Molecular, Edificio CITE I, Universidad de Almería (Spain)

    2006-12-01

    The dihydropyrimidinase from S. meliloti CECT4114, with activity towards both hydantoin and dihydrouracil substrates, was crystallized, and diffraction data were collected to 1.85 Å resolution. Dihydropyrimidinases are involved in the reductive pathway of pyrimidine degradation, catalysing the hydrolysis of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamoyl β-amino acids. This enzyme has often been referred to as hydantoinase owing to its industrial application in the production of optically pure amino acids starting from racemic mixtures of 5-monosubstituted hydantoins. Recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114 (SmelDhp) has been expressed, purified and crystallized. Crystallization was performed using the counter-diffusion method with capillaries of 0.3 mm inner diameter. Crystals of SmelDhp suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to ensure mass transport controlled by diffusion. X-ray data were collected to a resolution of 1.85 Å. The crystal belongs to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 124.89, b = 126.28, c = 196.10 Å and two molecules in the asymmetric unit. A molecular-replacement solution has been determined and refinement is in progress.

  7. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface.

    Science.gov (United States)

    Dilanji, Gabriel E; Teplitski, Max; Hagen, Stephen J

    2014-06-07

    Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively 'surfing' on those forces.

  8. [Influence of salt stress on the genetically polymorphic system of Sinorhizobium meliloti-Medicago truncatula].

    Science.gov (United States)

    Kurchak, O N; Provorov, N A; Onishchuk, O P; Vorobyov, N I; Roumiantseva, M L; Simarov, B V

    2014-07-01

    The impacts of salt stress (75 mM NaC1) on the ecological efficiency of the genetically polymorphic Sinorhizobium meliloti-Medicago truncatula system were studied. Its impact on a symbiotic system results in an increase of the partners' variability for symbiotic traits and of the symbiosis integrity as indicated by: a) the specificity of the partners' interactions--the nonadditive inputs of their genotypes into the variation of symbiotic parameters; and b) the correlative links between these parameters. The structure of the nodDI locus and the content correlates to the efficiency of the symbiosis between S. meliloti and M. truncatula genotypes under stress conditions more sufficiently than in the absence of stress. Correlations between the symbiotic efficiency of rhizobia strains and their growth rate outside symbiosis are expressed under stress conditions, not in the absence of stress. Under salt stress symbiotic effectiveness was decreased for M. truncatula line F83005.5, which was salt sensitive for mineral nutrition. The inhibition of symbiotic activity for this line is linked with decreased nodule formation, whereas for Jemalong 6 and DZA315.16 lines it is associated with repressed N2-fixation. It was demonstrated for the first time that salt stress impairs the M. truncatula habitus (the mass : height ratio increased 2- to 6-fold), which in the salt-resistant cultivar Jemalong 6 is normalized as the result of rhizobia inoculation.

  9. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.

    Science.gov (United States)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong

    2013-10-15

    The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.

  10. rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer.

    Science.gov (United States)

    Pistorio, Mariano; Torres Tejerizo, Gonzalo A; Del Papa, María Florencia; Giusti, María de los Angeles; Lozano, Mauricio; Lagares, Antonio

    2013-08-01

    We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.

  11. Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti.

    Science.gov (United States)

    Galardini, Marco; Pini, Francesco; Bazzicalupo, Marco; Biondi, Emanuele G; Mengoni, Alessio

    2013-01-01

    Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved "DNA backbones" were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.

  12. Spatiotemporal choreography of chromosome and megaplasmids in the Sinorhizobium meliloti cell cycle.

    Science.gov (United States)

    Frage, Benjamin; Döhlemann, Johannes; Robledo, Marta; Lucena, Daniella; Sobetzko, Patrick; Graumann, Peter L; Becker, Anke

    2016-06-01

    A considerable share of bacterial species maintains multipartite genomes. Precise coordination of genome replication and segregation with cell growth and division is vital for proliferation of these bacteria. The α-proteobacterium Sinorhizobium meliloti possesses a tripartite genome composed of one chromosome and the megaplasmids pSymA and pSymB. Here, we investigated the spatiotemporal pattern of segregation of these S. meliloti replicons at single cell level. Duplication of chromosomal and megaplasmid origins of replication occurred spatially and temporally separated, and only once per cell cycle. Tracking of FROS (fluorescent repressor operator system)-labelled origins revealed a strict temporal order of segregation events commencing with the chromosome followed by pSymA and then by pSymB. The repA2B2C2 region derived from pSymA was sufficient to confer the spatiotemporal behaviour of this megaplasmid to a small plasmid. Altering activity of the ubiquitous prokaryotic replication initiator DnaA, either positively or negatively, resulted in an increase in replication initiation events or G1 arrest of the chromosome only. This suggests that interference with DnaA activity does not affect replication initiation control of the megaplasmids.

  13. The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Rodriguez-Llorente Ignacio

    2009-06-01

    Full Text Available Abstract Background Rhizobium-Legume symbiosis is an attractive biological process that has been studied for decades because of its importance in agriculture. However, this system has undergone extensive study and although many of the major factors underpinning the process have been discovered using traditional methods, much remains to be discovered. Results Here we present an analysis of the 'Symbiosis Interactome' using novel computational methods in order to address the complex dynamic interactions between proteins involved in the symbiosis of the model bacteria Sinorhizobium meliloti with its plant hosts. Our study constitutes the first large-scale analysis attempting to reconstruct this complex biological process, and to identify novel proteins involved in establishing symbiosis. We identified 263 novel proteins potentially associated with the Symbiosis Interactome. The topology of the Symbiosis Interactome was used to guide experimental techniques attempting to validate novel proteins involved in different stages of symbiosis. The contribution of a set of novel proteins was tested analyzing the symbiotic properties of several S. meliloti mutants. We found mutants with altered symbiotic phenotypes suggesting novel proteins that provide key complementary roles for symbiosis. Conclusion Our 'systems-based model' represents a novel framework for studying host-microbe interactions, provides a theoretical basis for further experimental validations, and can also be applied to the study of other complex processes such as diseases.

  14. Role of oxyR from Sinorhizobium meliloti in Regulating the Expression of Catalases

    Institute of Scientific and Technical Information of China (English)

    Li LUO; Ming-Sheng QI; Shi-Yi YAO; Hai-Ping CHENG; Jia-Bi ZHU; Guan-Qiao YU

    2005-01-01

    The process of symbiotic nitrogen fixation results in the generation of reactive oxygen species such as the superoxide anion (O2-) and hydrogen peroxide (H2O2). The response of rhizobia to these toxic oxygen species is an important factor in nodulation and nitrogen fixation. In Sinorhizobium meliloti, one oxyR homologue and three catalase genes, katA, katB, and katC were detected by sequence analysis. This oxyR gene is located next to and divergently from katA on the chromosome. To investigate the possible roles of oxyR in regulating the expression of catalases at the transcriptional level in S. meliloti, an insertion mutant of this gene was constructed. The mutant was more sensitive and less adaptive to H2O2 than the wild type strain, and total catalase/peroxidase activity was reduced approximately fourfold with the OxyR mutation relative to controls. The activities of KatA and KatB and the expression of katA::lacZ and katB::lacZ promoter fusions were increased in the mutant strain compared with the parental strain grown in the absence of H2O2,indicating that katA and katB are repressed by OxyR. However, when exposed to H2O2, katA expression was also increased in both S. meliloti and Escherichia coli. When exposed to H2O2, OxyR is converted from a reduced to an oxidized form in E. coli. We concluded that the reduced form of OxyR functions as a repressor of katA and katB expression. Thus, in the presence of H2O2, reduced OxyR is converted to the oxidized form of OxyR that then results in increased katA expression. We further showed that oxyR expression is autoregulated via negative feedback.

  15. Systematic insertion mutagenesis of GntR family transcriptional regulator genes in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    GntR-type transcriptional regulators regulate the most diverse biological processes in bacteria. Although GntR-type transcriptional regulators consist of the second largest family of transcriptional regulators in Sinorhizobium meliloti, little is known about their functions. In this study, we investigated 54 putative genes encoding GntR family of transcriptional regulators in S. meliloti Rm1021. Secondary structure analysis of the C-terminal domain of these putative transcriptional regulators indicated that thirty-seven were members of the FadR subfamily, ten of the HutC subfamily and five of the MocR subfamily. The remaining two did not fall into any specific subfamily category, and may form two new subfamilies. The 54 gntR genes were mutagenized by plasmid insertion mutagenesis to investigate their roles. We found that, of the 54 mutants, only the gtrA1 and gtrB1 mutants had slower growth rates and cell maximal yields on both rich medium and minimal medium, and lower cell motility on swarming plate than wild type Rm1021. All mutants, with the exception of gtrA1 and gtrB1, can establish effective symbioses with alfalfa. Plants inoculated with gtrA1 and gtrB1 mutants grew shorter than those inoculated with wild type, and formed relatively smaller, round and light pink nodules, which were mainly located on lateral roots. And there was an abnormal increase in the number of nodules induced by both mutants. These results suggested that the gtrA1 and gtrB1 mutants were symbiotically deficient. Our work presents a global overview of GntR-like transcriptional regulators involved in symbiosis in S.meliloti, and provides new insight into the functions of GntR-like transcriptional regulators.

  16. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.

    Science.gov (United States)

    Webb, Benjamin A; Hildreth, Sherry; Helm, Richard F; Scharf, Birgit E

    2014-06-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.

  17. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021.

    Science.gov (United States)

    Hernández, Victor M; Girard, Lourdes; Hernández-Lucas, Ismael; Vázquez, Alejandra; Ortíz-Ortíz, Catalina; Díaz, Rafael; Dunn, Michael F

    2015-08-01

    L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine.

  18. Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti.

    Science.gov (United States)

    Summers, M L; Elkins, J G; Elliott, B A; McDermott, T R

    1998-11-01

    Sinorhizobium meliloti 104A14 was mutated with transposon Tn5B22, which creates lacZ transcriptional fusions when inserted in the correct orientation relative to the promoter. This promoter reporter allowed us to identify six phosphate stress inducible (psi) genes in S. meliloti that are up-regulated in response to inorganic phosphate (Pi) starvation. The transposon and flanking DNA were cloned from each psi::Tn5B22 reporter mutant and the junction DNA sequenced. High identity/similarity of the inferred peptides with those in major data bases allowed identification of the following genes: dnaK, expC, pssB, ackA, vipC, and prkA. The prkA homolog was also found to be up-regulated in response to carbon starvation and when nitrate replaced ammonium as the nitrogen source. Through allele replacement techniques, PhoB- mutants were generated for the expC, ackA, vipC, and pssB reporter strains. Loss of a functional PhoB resulted in the absence of Pi-sensitive induction in all four genes. These experiments suggest the Pho regulon in S. meliloti includes genes that presumably are not directly linked to Pi acquisition or assimilation. The psi strains were tested for their symbiotic properties under growth conditions that were Pi-limiting or Pi-nonlimiting for the host plant. All were Nod+ and Fix+ except the reporter strain of dnaK transcription, which was less effective than the wild-type strain under both P treatments, indicating DnaK is required for optimum symbiotic function.

  19. Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation.

    Science.gov (United States)

    Heinz, Elke B; Streit, Wolfgang R

    2003-02-01

    Most Sinorhizobium meliloti strains lack several key genes involved in microbial biotin biosynthesis, and it is assumed that this may be a special adaptation which allows the microbe to down-regulate metabolic activities in the absence of a host plant. To further explore this hypothesis, we employed two different strategies. (i) Searches of the S. meliloti genome database in combination with the construction of nine different gusA reporter fusions identified three genes involved in a biotin starvation response in this microbe. A gene coding for a protein-methyl carboxyl transferase (pcm) exhibited 13.6-fold-higher transcription under biotin-limiting conditions than cells grown in the presence of 40 nM biotin. Consistent with this observation, biotin-limiting conditions resulted in a significantly decreased survival of pcm mutant cells compared to parental cells or cells grown in the presence of 40 nM biotin. Further studies indicated that the autoinducer synthase gene, sinI, was transcribed at a 4.5-fold-higher level in early stationary phase in biotin-starved cells than in biotin-supplemented cells. Lastly, we observed that open reading frame smc02283, which codes for a putative copper resistance protein (CopC), was 21-fold down-regulated in response to biotin starvation. (ii) In a second approach, proteome analysis identified 10 proteins which were significantly down-regulated under the biotin-limiting conditions. Among the proteins identified by using matrix-assisted laser desorption ionization-time of flight mass spectrometry were the pi subunit of the RNA polymerase and the 50S ribosomal protein L7/L12 (L8) subunit, indicating that biotin-limiting conditions generally affect transcription and translation in S. meliloti.

  20. Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.

    Science.gov (United States)

    Kobayashi, Hajime; De Nisco, Nicole J; Chien, Peter; Simmons, Lyle A; Walker, Graham C

    2009-08-01

    ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.

  1. Effect of Microgravity on Sinorhizobium meliloti: Initial Results from the SyNRGE Experiment

    Science.gov (United States)

    Roberts, Michael S.; Stutte, Gary W.

    2011-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIe) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species of the legume family, was innoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early events associated with infection and nodulation in Petri Dish Fixation Units (PDFUs). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiment one was designed to determine if S. meliloti infect M. truncatula and initiate physiological changes associated with nodule formation. Roots of five-day-old M. truncatula cultivar Jemalong A17 (Enodll::gus) were innoculated 24 hr before launch with either S. meliloti strain 1021 or strain ABS7 and integrated into BRIC-PDFU hardware placed in a 4 C Cold Bag for launch on Atlantis. Innoculated plants and uninoculated controls were maintained in the dark at ambient temperature in the middeck of STS-135 for 11 days before fixation in RNA/ate/M by crew activation of the PDFU. Experiment two was designed to determine if microgravity altered the process of bacterial infection and host plant nodule formation. Seeds of two M. truncatula cultivar Jemalong A17 lines, the Enodll::gus used in experiment 1, and SUNN, a super-nodulating mutant of A17, were germinated on orbit for 11 days in the middeck cabin and returned to Earth alive inside of BRIC-PDFU's at 4 C S. meliloti strains 1021 and ABS7 were cultivated separately in broth culture on orbit and also returned to Earth alive. After landing, flight- and ground-grown plants and bacteria were transferred from BRIC-PDFU's into Nunc(TradeMark) 4-well plates for reciprocity crosses. Rates of plant growth and nodule development on Buffered Nodulation Medium (lacking nitrogen) were measured for 14 days. Bacteria cultivated in microgravity in the

  2. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates.

    Science.gov (United States)

    Webb, Benjamin A; Helm, Richard F; Scharf, Birgit E

    2016-03-01

    Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.

  3. Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms.

    Science.gov (United States)

    Wehmeier, Silvia; Arnold, Markus F F; Marlow, Victoria L; Aouida, Mustapha; Myka, Kamila K; Fletcher, Vivien; Benincasa, Monica; Scocchi, Marco; Ramotar, Dindial; Ferguson, Gail P

    2010-09-01

    BacA proteins play key roles in the chronic intracellular infections of Sinorhizobium meliloti, Brucella abortus and Mycobacterium tuberculosis within their respective hosts. S. meliloti, B. abortus and M. tuberculosis BacA-deficient mutants have increased resistance to the thiazole-modified peptide bleomycin. BacA has been previously hypothesized, but not experimentally verified, to be involved in bleomycin uptake. In this paper, we show that a BacA-dependent mechanism is the major route of bleomycin internalization in S. meliloti. We also determined that the B. abortus and S. meliloti BacA proteins are functional homologues and that the B. abortus BacA protein is involved in the uptake of both bleomycin and proline-rich peptides. Our findings also provide evidence that there is a second, BacA-independent minor mechanism for bleomycin internalization in S. meliloti. We determined that the BacA-dependent and -independent mechanisms of bleomycin uptake are energy-dependent, consistent with both mechanisms of bleomycin uptake involving transport systems.

  4. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti.

    Science.gov (United States)

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-02-17

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria.

  5. Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae.

    Science.gov (United States)

    Epstein, Brendan; Branca, Antoine; Mudge, Joann; Bharti, Arvind K; Briskine, Roman; Farmer, Andrew D; Sugawara, Masayuki; Young, Nevin D; Sadowsky, Michael J; Tiffin, Peter

    2012-01-01

    The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5-2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome - with mean diversity (θ(π)) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.

  6. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.

    Science.gov (United States)

    Kohler, Petra R A; Choong, Ee-Leng; Rossbach, Silvia

    2011-10-01

    Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.

  7. Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant.

    Science.gov (United States)

    Wells, Derek H; Long, Sharon R

    2003-09-01

    The nitrogen-fixing symbiosis between Sinorhizobium meliloti and Medicago sativa requires complex physiological adaptation by both partners. One method by which bacteria coordinately control physiological adaptation is the stringent response, which is triggered by the presence of the nucleotide guanosine tetraphosphate (ppGpp). ppGpp, produced by the RelA enzyme, is thought to bind to and alter the ability of RNA polymerase (RNAP) to initiate and elongate transcription and affect the affinity of the core enzyme for various sigma factors. An S. meliloti relA mutant which cannot produce ppGpp was previously shown to be defective in the ability to form nodules. This mutant also overproduces a symbiotically necessary exopolysaccharide called succinoglycan. The work presented here encompasses the analysis of suppressor mutants, isolated from host plants, that suppress the symbiotic defects of the relA mutant. All suppressor mutations are extragenic and map to either rpoB or rpoC, which encode the beta and beta' subunits of RNAP. Phenotypic, structural, and gene expression analyses reveal that suppressor mutants can be divided into two classes; one is specific in its effect on stringent response-regulated genes and shares striking similarity with suppressor mutants of Escherichia coli strains that lack ppGpp, and another reduces transcription of all genes tested in comparison to that in the relA parent strain. Our findings indicate that the ability to successfully establish symbiosis is tightly coupled with the bacteria's ability to undergo global physiological adjustment via the stringent response.

  8. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain.

    Science.gov (United States)

    Sanz-Sáez, Álvaro; Erice, Gorka; Aguirreolea, Jone; Muñoz, Fernando; Sánchez-Díaz, Manuel; Irigoyen, Juan José

    2012-05-15

    Elevated CO(2) may decrease alfalfa forage quality and in vitro digestibility through a drop in crude protein and an enhancement of fibre content. The aim of the present study was to analyse the effect of elevated CO(2), elevated temperature and Sinorhizobium meliloti strains (102F78, 102F34 and 1032 GMI) on alfalfa yield, forage quality and in vitro dry matter digestibility. This objective is in line with the selection of S. meliloti strains in order to maintain high forage yield and quality under future climate conditions. Plants inoculated with the 102F34 strain showed more DM production than those inoculated with 1032GMI; however, these strains did not show significant differences with 102F78 plants. Neutral or acid detergent fibres were not enhanced in plants inoculated with the 102F34 strain under elevated CO(2) or temperature and hence, in vitro dry matter digestibility was unaffected. Crude protein content, an indicator of forage quality, was negatively related to shoot yield. Plants inoculated with 102F78 showed a similar shoot yield to those inoculated with 102F34, but had higher crude protein content at elevated CO(2) and temperature. Under these climate change conditions, 102F78 inoculated plants produced higher quality forage. However, the higher digestibility of plants inoculated with the 102F34 strain under any CO(2) or temperature conditions makes them more suitable for growing under climate change conditions. In general, elevated CO(2) in combination with high temperature (Climate Change scenario) reduced IVDMD and CP content and enhanced fibre content, which means that animal production will be negatively affected.

  9. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Galardini, Marco [University of Florence; Mengoni, Alessio [University of Florence; Brilli, Matteo [Universite de Lyon, France; Pini, Francesco [University of Florence; Fioravanti, Antonella [University of Florence; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Mocali, Stefano [Agrobiol & Pedol Ctr ABP, Agr Res Council, I-50121 Florence, Italy; Bazzicalupo, Marco [University of Florence; Biondi, Emanuele [University of Florence

    2011-01-01

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.

  10. The effect of phosphate deficiency on quorum sensing signaling pathway of Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Najmeh Pakdaman

    2015-02-01

    Full Text Available   Introduction : Phosphorus is one of the most essential macroelements for bacterial cells. Since phosphate (PO4-3 limitation is frequently encountered in soils, bacteria developed some mechanisms in response to this sever condition. Phosphate transporter (PstS and proteins involved in quorum sensing (QS signaling pathway are affected by mediating PhoB, response regulator, following phosphate starvation. QS system of Sinorhizobium meliloti composed of at least three genes of sinI (autoinducer synthase, sinR and expR (autoinducer activated receptor which involved in its free living and symbiotic functions .   Materials and method s: The optical density (OD600 of different S. meliloti transformed strains carrying pLK004 (a pstS promoter-egfp fusion, pLK64 (a sinI promoter-egfp fusion, pLK65 (a sinR promoter-egfp fusion, pLK66 (an expR promoter-egfp fusion and control (promoterless-egfp fusion plasmids were read under different phosphate concentrations of 0.1 (phosphate deficiency, 0.5 and 2 mM (sufficient phosphate at several time points of 16, 24 and 40h. The promoter activity of different genes of pstS, sinI, sinR and expR were measured as emitted fluorescence per bacterial cell density (OD600 under different phosphate concentrations .   Results : By reducing phosphate concentration in the medium, the growth rate of transformed bacteria decreased, especially at 40h. The promoter activity of pstS, sinI and sinR, but not expR, genes was activated following phosphate starvation .   Discussion and conclusion : S. meliloti can upregulate PstS to partly compensate phosphate deficiency in the environment. The gene of sinR is also activated in a PhoB dependent manner as phosphate starvation is encountered. SinR is the activator of sinI, so the upregulation of QS pathway under phosphate deficiency may be facilitate free living and symbiotic bacterial functions .

  11. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Parthasarathy, Nalini [Department of Inorganic, Analytic and Applied Chemistry, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, 1211 Geneva 4 (Switzerland); Dedieu, Karine; Toescher, Denis [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-08-15

    The role of bacterially derived compounds in Cd(II) complexation and uptake by bacterium Sinorhizobium meliloti wild type (WT) and genetically modified ExoY-mutant, deficient in exopolysaccharide production, was explored combining chemical speciation measurements and assays with living bacteria. Obtained results demonstrated that WT- and ExoY-strains excreted siderophores in comparable amounts, while WT-strain produced much higher amount of exopolysaccharides and less exoproteins. An evaluation of Cd(II) distribution in bacterial suspensions under short term exposure conditions, showed that most of the Cd is bound to bacterial surface envelope, including Cd bound to the cell wall and to the attached extracellular polymeric substances. However, the amount of Cd bound to the dissolved extracellular compounds increases at high Cd(II) concentrations. The implications of these findings to more general understanding of the Cd(II) fate and cycling in the environment is discussed. - Bacterial excreted extracellular compounds play minor role in Cd(II) sequestration relative to bacteria.

  12. Genetic analysis of signal integration by the Sinorhizobium meliloti sensor kinase FeuQ.

    Science.gov (United States)

    VanYperen, Ryan D; Orton, Taylor S; Griffitts, Joel S

    2015-02-01

    Two-component signalling systems allow bacteria to recognize and respond to diverse environmental stimuli. Auxiliary proteins can provide an additional layer of control to these systems. The Sinorhizobium meliloti FeuPQ two-component system is required for symbiotic development and is negatively regulated by the auxiliary small periplasmic protein FeuN. This study explores the mechanistic basis of this regulation. We provide evidence that FeuN directly interacts with the sensor kinase FeuQ. Isolation and characterization of an extensive set of FeuN-insensitive and FeuN-mimicking variants of FeuQ reveal specific FeuQ residues (periplasmic and intracellular) that control the transmission of FeuN-specific signalling information. Similar analysis of the FeuN protein highlights short patches of compatibly charged residues on each protein that probably engage one another, giving rise to the downstream effects on target gene expression. The accumulated evidence suggests that the periplasmic interaction between FeuN and FeuQ introduces an intracellular conformational change in FeuQ, resulting in an increase in its ability to remove phosphate from its cognate response regulator FeuP. These observations underline the complex manner in which membrane-spanning sensor kinases interface with the extracytoplasmic environment and convert that information to changes in intracellular processes.

  13. Functional difference between Sinorhizobium meliloti NifA and Enterobacter cloacae NifA

    Institute of Scientific and Technical Information of China (English)

    YANG; Chengtao; YU; Guanqiao; SHEN; Shanjiong(San; Chiun

    2004-01-01

    The nifA gene is an important regulatory gene and its product, NifA protein, regulates the expression of many nif genes involved in the nitrogen fixation process. We introduced multiple copies of the constitutively expressed Sinorhizobium meliloti (Sm) or Enterobacter cloacae (Ec) nifA gene into both the nifA mutant strain SmY and the wild-type strain Sm1021. Root nodules produced by SmY containing a constitutively expressed Sm nifA gene were capable of fixing nitrogen, while nodules produced by SmY containing the Ec nifA gene remained unable to fix nitrogen, as is the case for SmY itself. However, transfer of an additional Sm nifA gene into Sm1021 improved the nitrogen-fixing efficiency of root nodules to a greater extent than that observed upon transfer of the Ec nifA gene into Sm1021. Comparative analysis of amino acid sequences between Sm NifA and Ec NifA showed that the N-terminal domain was the least similar, but this domain is indispensable for complementation of the Fix? phenotype of SmY by Sm NifA. We conclude that more than one domain is involved in determining functional differences between Sm NifA and Ec NifA.

  14. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.

    Science.gov (United States)

    Charoenpanich, Pornsri; Soto, Maria J; Becker, Anke; McIntosh, Matthew

    2015-04-01

    Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.

  15. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome.

    Science.gov (United States)

    diCenzo, George C; Finan, Turlough M

    2015-08-01

    Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.

  16. Characteristics of the LrhA subfamily of transcriptional regulators from Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Mingsheng Qi; Li Luo; Haiping Cheng; Jiabi Zhu; Guanqiao Yu

    2008-01-01

    In our previous work, we identified 94 putative genes encoding LysR-type transcriptional regulators from Sinorhizobium meliloti. All of these putative lysR genes were mutagenized using plasmid insertions to determine their phenotypes. Six LysR-type regulators, encoded by mutants SMa1979, SMb20715, SMc00820, SMc04163, SMc03975,and SMc04315, showed similar amino acid sequences (30%)and shared the conserved DNA-binding domain with LrhA,HexA, or DgdR. Phenotype analysis of these gene mutants indicated that the regulators control the swimming behaviors of the bacteria, production of quorum-sensing signals, and secretion of extracellular proteins. These characteristics are very similar to those of LrhA, HexA, and DgdR.Thus, we refer to this group as the LrhA subfamily. Sequence analysis showed that a great number of homologous genes of the LrhA subfamily were distributed in the α,β, and γsubdivisions of proteobacteria, and a few in actinobacteria. These findings could provide new clues to the roles of the LysR gene family.

  17. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.

    Science.gov (United States)

    Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas

    2013-04-01

    Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.

  18. The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti.

    Science.gov (United States)

    Meilhoc, Eliane; Cam, Yvan; Skapski, Agnès; Bruand, Claude

    2010-06-01

    Nitric oxide (NO) is crucial in animal- and plant-pathogen interactions, during which it participates in host defense response and resistance. Indications for the presence of NO during the symbiotic interaction between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti have been reported but the role of NO in symbiosis is far from being elucidated. Our objective was to understand the role or roles played by NO in symbiosis. As a first step toward this goal, we analyzed the bacterial response to NO in culture, using a transcriptomic approach. We identified approximately 100 bacterial genes whose expression is upregulated in the presence of NO. Surprisingly, most of these genes are regulated by the two-component system FixLJ, known to control the majority of rhizobial genes expressed in planta in mature nodules, or the NO-dedicated regulator NnrR. Among the genes responding to NO is hmp, encoding a putative flavohemoglobin. We report that an hmp mutant displays a higher sensitivity toward NO in culture and leads to a reduced nitrogen fixation efficiency in planta. Because flavohemoglobins are known to detoxify NO in numerous bacterial species, this result is the first indication of the importance of the bacterial NO response in symbiosis.

  19. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

    Science.gov (United States)

    McIntosh, Matthew; Meyer, Stefan; Becker, Anke

    2009-12-01

    The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N-acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free-living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR-type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate-limiting conditions. This indicates that this response ensures quorum sensing in phosphate-restricted growth.

  20. Local and systemic proteomic changes in medicago truncatula at an early phase of Sinorhizobium meliloti infection.

    Science.gov (United States)

    Molesini, Barbara; Cecconi, Daniela; Pii, Youry; Pandolfini, Tiziana

    2014-02-07

    A symbiotic association with N-fixing bacteria facilitates the growth of leguminous plants under nitrogen-limiting conditions. The establishment of the symbiosis requires signal exchange between the host and the bacterium, which leads to the formation of root nodules, inside which bacteria are hosted. The formation of nodules is controlled through local and systemic mechanisms, which involves root-shoot communication. Our study was aimed at investigating the proteomic changes occurring in shoots and concomitantly in roots of Medicago truncatula at an early stage of Sinorhizobium meliloti infection. The principal systemic effects consisted in alteration of chloroplast proteins, induction of proteins responsive to biotic stress, and changes in proteins involved in hormonal signaling and metabolism. The most relevant local effect was the induction of proteins involved in the utilization of photosynthates and C-consuming processes (such as sucrose synthase and fructose-bisphosphate aldolase). In addition, some redox enzymes such as peroxiredoxin and ascorbate peroxidase showed an altered abundance. The analysis of local and systemic proteome changes suggests the occurrence of a stress response in the shoots and the precocious alteration of energy metabolism in roots and shoots. Furthermore, our data indicate the possibility that ABA and ethylene participate in the communicative network between root and shoot in the control of rhizobial infection.

  1. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    Science.gov (United States)

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.

  2. Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response.

    Science.gov (United States)

    Wais, Rebecca J; Wells, Derek H; Long, Sharon R

    2002-12-01

    In the Rhizobium-legume symbiosis, compatible partners recognize each other through an exchange of signals. Plant inducers act together with bacterial transcriptional activators, the NodD proteins, to regulate the expression of bacterial biosynthetic nodulation (nod) genes. These genes direct the synthesis of a lipochito-oligosaccharide signal called Nod factor (NF). NFs elicit an early host response, root hair calcium spiking, that is initiated in root hair cells within 15 min of NF or live Rhizobium inoculation. We used calcium spiking as an assay to compare two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011, derived from the same field isolate. We found that the two strains show a kinetic difference in the calcium spiking assay: Rm1021 elicits calcium spiking in host root hairs as rapidly as purified NF, whereas Rm2011 shows a significant delay. This difference can be overcome by raising expression levels of either the NodD transcriptional activators or GroEL, a molecular chaperone that affects expression of the biosynthetic nod genes. We further demonstrate that the delay in triggering calcium spiking exhibited by Rm2011 is correlated with a reduced amount of nod gene expression compared with Rm1021. Therefore, calcium spiking is a useful tool in detecting subtle differences in bacterial gene expression that affect the early stages of the Rhizobium-legume symbiosis.

  3. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.

    Science.gov (United States)

    Griffitts, Joel S; Carlyon, Rebecca E; Erickson, Jacob H; Moulton, Jason L; Barnett, Melanie J; Toman, Carol J; Long, Sharon R

    2008-07-01

    screen for novel symbiotic mutants of the nitrogen-fixing legume symbiont Sinorhizobium meliloti uncovered a crucial role for the putative response regulator FeuP in the symbiotic infection process. Transcriptome analysis shows that FeuP controls the transcription of at least 16 genes, including ndvA, which encodes an ATP-dependent exporter of cyclic beta glucans. Loss of feuP function gives rise to traits associated with cyclic beta glucan biosynthetic defects, including poor growth and motility under hypoosmotic conditions, and the inability to invade plant tissue during the early stages of symbiotic infection. Analysis of cyclic glucans indicates that the feuP mutant is able to synthesize intracellular cyclic beta glucans, but is unable to export them. Cyclic beta glucan export can be restored to feuP mutant cells by constitutive expression of ndvA; likewise, the symbiotic phenotype of a feuP mutant is rescued by ectopic ndvA expression. We further show that the linked sensor kinase gene, feuQ, is also important for modulating ndvA transcription, and that signalling through the FeuP/FeuQ pathway is responsive to extracellular osmotic conditions, with low osmolarity stimulating ndvA expression.

  4. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules.

    Science.gov (United States)

    Baudouin, Emmanuel; Pieuchot, Laurent; Engler, Gilbert; Pauly, Nicolas; Puppo, Alain

    2006-09-01

    Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.

  5. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011.

    Science.gov (United States)

    Viguier, Caroline; O Cuív, Páraic; Clarke, Paul; O'Connell, Michael

    2005-05-15

    The genes encoding the biosynthesis and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti, are negatively regulated by iron. Mutagenesis of rirA, the rhizobial iron regulator, resulted in abolition of the iron responsive regulation of the biosynthesis and transport genes. Bioassay analysis revealed that the siderophore is produced in the presence of iron in a rirA mutant. RNA analysis and GFP fusions supported the conclusion that RirA is the mediator of iron-responsive transcriptional repression of the two transcripts encoding the biosynthesis and transport genes. RirA in S. meliloti appears to fulfil the role often observed for Fur in other bacterial species. The regulator was found to mediate the iron-responsive expression of two additional genes, smc02726 and dppA1, repressing the former while activating the latter. The rirA mutant nodulated the host plant Medicago sativa (alfalfa) and fixed nitrogen as effectively as the wild type.

  6. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis.

    Science.gov (United States)

    Lu, Dawei; Tang, Guirong; Wang, Dong; Luo, Li

    2013-10-01

    Glutathione, a key antioxidant in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. This tripeptide can be synthesized by both γ-glutamyl cysteine synthetase (GshA) and glutathione synthetase (GshB) in Escherichia coli and S. meliloti. Genetic evidence has indicated that the null mutant of S. meliloti gshA or gshB1 does not establish efficient symbiosis on alfalfa. However, the transcriptional regulation of gshA and gshB has not been well understood. Here, S. meliloti LsrB, a member of LysR family transcriptional factors, was found to positively regulate glutathione biosynthesis by activating the transcription of gshA and gshB1 under both free-living and symbiotic conditions. The decrease in glutathione production in the lsrB in-frame deletion mutant (lsrB1-2) was determined by using quadrupole time-of-flight liquid chromatography-mass spectrometry. The expression of gshA and gshB1 was correspondingly reduced in the mutant under free-living and symbiotic conditions by analyses of real-time quantitative reverse transcription-polymerase chain reaction and promoter-GUS fusions. Interestingly, LsrB positively regulated the transcription of oxyR, which encodes another member of LysR family regulators and responds to oxidative stresses in S. meliloti. The oxyR null mutant produced less glutathione, in which the transcription of gshA was consistently down-regulated. These findings demonstrate that glutathione biosynthesis is positively regulated by both LsrB and OxyR in S. meliloti.

  7. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    Science.gov (United States)

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  8. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein.

    Science.gov (United States)

    Yurgel, Svetlana N; Rice, Jennifer; Domreis, Elizabeth; Lynch, Joseph; Sa, Na; Qamar, Zeeshan; Rajamani, Sathish; Gao, Mengsheng; Roje, Sanja; Bauer, Wolfgang D

    2014-05-01

    Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.

  9. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti.

    Science.gov (United States)

    Gonzalez-Rizzo, Silvina; Crespi, Martin; Frugier, Florian

    2006-10-01

    Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.

  10. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Daligault Hajnalka

    2011-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB, AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains. Conclusions In conclusions, the extended comparative genomics approach revealed a

  11. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings.

    Science.gov (United States)

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Wei, Gehong

    2012-03-01

    Sinorhizobium meliloti CCNWSX0020 was isolated from Medicago lupulina plants growing in lead-zinc mine tailings, which can establish a symbiotic relationship with Medicago species. Also, the genome of this bacterium contains a number of protein-coding sequences related to metal tolerance. We anticipate that the genomic sequence provides valuable information to explore environmental bioremediation.

  12. Ca. Liberibacter asiaticus genes orthologous with pSymA-borne genes of Sinorhizobium meliloti: suggested roles in eukaryotic host interactions

    Science.gov (United States)

    ‘Ca. Liberibacter asiaticus,’ is a psyllid-vectored, obligate phytopathogen associated with citrus huanglongbing disease. Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mb...

  13. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interation

    Science.gov (United States)

    A nitrogen-fixing alfalfa-nodulating microsymbiont, Sinorhizobium meliloti, has a genome consisting of a 3.5 Mbp circular chromosome and two megaplasmids totaling 3.0 Mbp, one a 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes including nif, nod and others involved in plant interaction. Predict...

  14. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgars have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain

    Science.gov (United States)

    Common bean and Medicago rhizobia isolated from five locations on the island of Lanzarote, the Canary Islands, by partial analysis of 10 chromosomal genes were shown to exhibit close similarity to Sinorhizobium meliloti. Several bean isolates from Lanzarote, mainland Spain and Tunisia nodulated Leu...

  15. A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Khatira Anwari

    Full Text Available Mitochondria are organelles derived from an intracellular alpha-proteobacterium. The biogenesis of mitochondria relies on the assembly of beta-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an alpha-proteobacterium, and the BAM (beta-barrel assembly machinery complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A approximately 150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.

  16. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti.

    Science.gov (United States)

    Sheftic, Sarah R; Garcia, Preston P; White, Emma; Robinson, Victoria L; Gage, Daniel J; Alexandrescu, Andrei T

    2012-09-04

    Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.

  17. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti.

    Science.gov (United States)

    Krol, Elizaveta; Klaner, Christina; Gnau, Petra; Kaever, Volkhard; Essen, Lars-Oliver; Becker, Anke

    2016-10-01

    To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.

  18. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Directory of Open Access Journals (Sweden)

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  19. The study of salinity and drought tolerance of Sinorhizobium meliloti isolated from province of Kerman in vivo condition

    Directory of Open Access Journals (Sweden)

    mahboobe abolhasani zeraatkar

    2009-06-01

    Full Text Available It is well known that the host plant inoculation by native strains with high efficiency has a positive effect on plant yield and biological nitrogen fixation process. The main aim of this investigation was to based on salinity and drought experiments, four isolates of Sinorhizobium meliloti (S27K and S36K tolerant isolates, S109K semi-sensitive isolate, S56K sensitive isolate were selected for plant inoculation which was under drought stress in greenhouse condition. This experiment was carried out by using a factorial model in completely randomized design. Results showed that inoculation of alfalfa plants with high salinity and drought tolerant of Sinorhizobium meliloti bacteria could increased biological nitrogen fixation process (symbiotic efficiency, percent crude protein and yield of alfalfa under salinity and drought conditions significantly. There were not any significant differences between S27K and S36K isolates and positive control (no nitrogen limitation. Symbiotic efficiency increased 3.4 times higher than alfalfa plants were inoculated by sensitive isolates S56K when alfalfa plants were inoculated by S27K and S36K isolates.

  20. A glutamine-amidotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Boistard Pierre

    2001-05-01

    Full Text Available Abstract Background Nitrogen fixation gene expression in Sinorhizobium meliloti, the alfalfa symbiont, depends on a cascade of regulation that involves both positive and negative control. On top of the cascade, the two-component regulatory system FixLJ is activated under the microoxic conditions of the nodule. In addition, activity of the FixLJ system is inhibited by a specific anti-kinase protein, FixT. The physiological significance of this negative regulation by FixT was so far unknown. Results We have isolated by random Tn5 mutagenesis a S. meliloti mutant strain that escapes repression by FixT. Complementation test and DNA analysis revealed that inactivation of an asparagine synthetase-like gene was responsible for the phenotype of the mutant. This gene, that was named asnO, encodes a protein homologous to glutamine-dependent asparagine synthetases. The asnO gene did not appear to affect asparagine biosynthesis and may instead serve a regulatory function in S. meliloti. We provide evidence that asnO is active during symbiosis . Conclusions Isolation of the asnO mutant argues for the existence of a physiological regulation associated with fixT and makes it unlikely that fixT serves a mere homeostatic function in S. meliloti. Our data suggest that asnO might control activity of the FixT protein, in a way that remains to be elucidated. A proposed role for asnO might be to couple nitrogen fixation gene expression in S. meliloti to the nitrogen needs of the cells.

  1. ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti.

    Science.gov (United States)

    Zatakia, Hardik M; Nelson, Cassandra E; Syed, Umair J; Scharf, Birgit E

    2014-04-01

    Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.

  2. The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up with New Questions and Answers.

    Science.gov (United States)

    Lagares, Antonio; Sanjuán, Juan; Pistorio, Mariano

    2014-10-01

    Rhizobia are Gram-negative Alpha- and Betaproteobacteria living in the underground which have the ability to associate with legumes for the establishment of nitrogen-fixing symbioses. Sinorhizobium meliloti in particular-the symbiont of Medicago, Melilotus, and Trigonella spp.-has for the past decades served as a model organism for investigating, at the molecular level, the biology, biochemistry, and genetics of a free-living and symbiotic soil bacterium of agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, and several other draft genomic sequences are also available. The vast amount of plasmid DNA that S. meliloti frequently bears (up to 45% of its total genome), the conjugative ability of some of those plasmids, and the extent of the plasmid diversity has provided researchers with an extraordinary system to investigate functional and structural plasmid molecular biology within the evolutionary context surrounding a plant-associated model bacterium. Current evidence indicates that the plasmid mobilome in S. meliloti is composed of replicons varying greatly in size and having diverse conjugative systems and properties along with different evolutionary stabilities and biological roles. While plasmids carrying symbiotic functions (pSyms) are known to have high structural stability (approaching that of chromosomes), the remaining plasmid mobilome (referred to as the non-pSym, functionally cryptic, or accessory compartment) has been shown to possess remarkable diversity and to be highly active in conjugation. In light of the modern genomic and current biochemical data on the plasmids of S. meliloti, the current article revises their main structural components, their transfer and regulatory mechanisms, and their potential as vehicles in shaping the evolution of the rhizobial genome.

  3. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.

    Science.gov (United States)

    Jones, Kathryn M; Sharopova, Natalya; Lohar, Dasharath P; Zhang, Jennifer Q; VandenBosch, Kathryn A; Walker, Graham C

    2008-01-15

    Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcriptional responses of this host plant to wild-type and succinoglycan-deficient S. meliloti at the early time point of 3 days postinoculation. This report describes an early divergence in global plant gene expression responses caused by a rhizobial defect in succinoglycan production, rather than in Nod factor production. The microarray data show that M. truncatula inoculated with wild-type, succinoglycan-producing S. meliloti more strongly express genes encoding translation components, protein degradation machinery, and some nodulins than plants inoculated with succinoglycan-deficient bacteria. This finding is consistent with wild-type-inoculated plants having received a signal, distinct from the well characterized Nod factor, to alter their metabolic activity and prepare for invasion. In contrast, M. truncatula inoculated with succinoglycan-deficient S. meliloti more strongly express an unexpectedly large number of genes in two categories: plant defense responses and unknown functions. One model consistent with our results is that appropriate symbiotically active exopolysaccharides act as signals to plant hosts to initiate infection thread formation and that, in the absence of this signal, plants terminate the infection process, perhaps via a defense response.

  4. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    Directory of Open Access Journals (Sweden)

    Udupa Sripada M

    2010-01-01

    Full Text Available Abstract Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.. In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM, water stress (-1.5 MPa, high temperature (40°C and low pH (3.5, respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline. The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P Conclusion High degree of phenotypic and genotypic diversity is present in S

  5. Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein.

    Science.gov (United States)

    Arnold, M F F; Haag, A F; Capewell, S; Boshoff, H I; James, E K; McDonald, R; Mair, I; Mitchell, A M; Kerscher, B; Mitchell, T J; Mergaert, P; Barry, C E; Scocchi, M; Zanda, M; Campopiano, D J; Ferguson, G P

    2013-01-01

    The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.

  6. The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.

    Science.gov (United States)

    Wang, Dong; Xue, Haiying; Wang, Yiwen; Yin, Ruochun; Xie, Fang; Luo, Li

    2013-12-01

    Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.

  7. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula.

    Science.gov (United States)

    Tellström, Verena; Usadel, Björn; Thimm, Oliver; Stitt, Mark; Küster, Helge; Niehaus, Karsten

    2007-02-01

    In the establishment of symbiosis between Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures that the LPS is able to suppress an elicitor-induced oxidative burst. To investigate the effect of S. meliloti LPS on defense-associated gene expression, a microarray experiment was performed. For evaluation of the M. truncatula microarray datasets, the software tool MapMan, which was initially developed for the visualization of Arabidopsis (Arabidopsis thaliana) datasets, was adapted by assigning Medicago genes to the ontology originally created for Arabidopsis. This allowed functional visualization of gene expression of M. truncatula suspension-cultured cells treated with invertase as an elicitor. A gene expression pattern characteristic of a defense response was observed. Concomitant treatment of M. truncatula suspension-cultured cells with invertase and S. meliloti LPS leads to a lower level of induction of defense-associated genes compared to induction rates in cells treated with invertase alone. This suppression of defense-associated transcriptional rearrangement affects genes induced as well as repressed by elicitation and acts on transcripts connected to virtually all kinds of cellular processes. This indicates that LPS of the symbiont not only suppresses fast defense responses as the oxidative burst, but also exerts long-term influences, including transcriptional adjustment to pathogen attack. These data indicate a role for LPS during infection of the plant by its symbiotic partner.

  8. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    Science.gov (United States)

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  9. Variation of Microbial Rhizosphere Communities in Response to Crop Species, Soil Origin, and Inoculation with Sinorhizobium meliloti L33.

    Science.gov (United States)

    Miethling, R; Wieland, G; Backhaus, H; Tebbe, C C

    2000-07-01

    A greenhouse study with soil-plant microcosms was conducted in order to compare the effect of crop species, soil origin, and a bacterial inoculant on the establishment of microbial communities colonizing plant roots. Two crop species, alfalfa (Medicago sativa) and rye (Secale cereale), were grown separately in two soils collected from agricultural fields at different locations and with differing histories of leguminous crop rotation. A subset of microcosms was inoculated at 10(6) cfu g(-1) soil with the luciferase marker gene-tagged Sinorhizobium meliloti strain L33, a symbiotic partner of M. sativa. Microbial consortia were collected from the rhizospheres of alfalfa after 10 weeks of incubation and from rye after 11 weeks. S. meliloti L33 populations were one to two orders of magnitude higher in the rhizospheres of alfalfa than of rye. In soil with previous alfalfa cultivation, 80% of the alfalfa nodules were colonized by indigenous bacteria, while in the other soil alfalfa was colonized almost exclusively (>90%) with S. meliloti L33. Three community-level targeting approaches were used to characterize the variation of the extracted microbial rhizosphere consortia: (1) Community level physiological profiles (CLPP), (2) fatty acid methyl ester analysis (FAME), and (3) diversity of PCR amplified 16S rRNA target sequences from directly extracted ribosomes, determined by temperature gradient gel electrophoresis (TGGE). All approaches identified the crop species as the major determinant of microbial community characteristics. Consistently, the influence of soil was of minor importance, while a modification of the alfalfa-associated microbial community structure after inoculation with S. meliloti L33 was only consistently observed by using TGGE.

  10. The Sinorhizobium meliloti sensor histidine kinase CbrA contributes to free-living cell cycle regulation.

    Science.gov (United States)

    Sadowski, Craig S; Wilson, Daniel; Schallies, Karla B; Walker, Graham; Gibson, Katherine E

    2013-08-01

    Sinorhizobium meliloti is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the S. meliloti two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis. Phylogenetic analysis of CbrA has highlighted its evolutionary relatedness to the Caulobacter crescentus sensor histidine kinases PleC and DivJ, which are involved in CtrA-dependent cell cycle regulation through the shared response regulator DivK. We therefore became interested in testing whether CbrA plays a role in regulating S. meliloti cell cycle processes. We find the loss of cbrA results in filamentous cell growth accompanied by cells that contain an aberrant genome complement, indicating CbrA plays a role in regulating cell division and possibly DNA segregation. S. meliloti DivK localizes to the old cell pole during distinct phases of the cell cycle in a phosphorylation-dependent manner. Loss of cbrA results in a significantly decreased rate of DivK polar localization when compared with the wild-type, suggesting CbrA helps regulate cell cycle processes by modulating DivK phosphorylation status as a kinase. Consistent with a presumptive decrease in DivK phosphorylation and activity, we also find the steady-state level of CtrA increased in cbrA mutants. Our data therefore demonstrate that CbrA contributes to free-living cell cycle regulation, which in light of its requirement for symbiosis, points to the potential importance of cell cycle regulation for establishing an effective host interaction.

  11. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.

    Science.gov (United States)

    Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R; Robinson, Jayne B; Rolfe, Barry G; Bauer, Wolfgang D

    2005-12-01

    Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.

  12. Sinorhizobium meliloti Functionally Replaces 3-Oxoacyl-Acyl Carrier Protein Reductase (FabG) by Overexpressing NodG During Fatty Acid Synthesis.

    Science.gov (United States)

    Mao, Ya-Hui; Li, Feng; Ma, Jin-Cheng; Hu, Zhe; Wang, Hai-Hong

    2016-06-01

    In Sinorhizobium meliloti, the nodG gene is located in the nodFEG operon of the symbiotic plasmid. Although strong sequence similarity (53% amino acid identities) between S. meliloti NodG and Escherichia coli FabG was reported in 1992, it has not been determined whether S. meliloti NodG plays a role in fatty acid synthesis. We report that expression of S. meliloti NodG restores the growth of the E. coli fabG temperature-sensitive mutant CL104 under nonpermissive conditions. Using in vitro assays, we demonstrated that NodG is able to catalyze the reduction of the 3-oxoacyl-ACP intermediates in E. coli fatty acid synthetic reaction. Moreover, although deletion of the S. meliloti nodG gene does not cause any growth defects, upon overexpression of nodG from a plasmid, the S. meliloti fabG gene encoding the canonical 3-oxoacyl-ACP reductase (OAR) can be disrupted without any effects on growth or fatty acid composition. This indicates that S. meliloti nodG encodes an OAR and can play a role in fatty acid synthesis when expressed at sufficiently high levels. Thus, a bacterium can simultaneously possess two or more OARs that can play a role in fatty acid synthesis. Our data also showed that, although SmnodG increases alfalfa nodulation efficiency, it is not essential for alfalfa nodulation.

  13. Dual Control of Sinorhizobium meliloti RpoE2 Sigma Factor Activity by Two PhyR-Type Two-Component Response Regulators▿ †

    OpenAIRE

    Bastiat, Bénédicte; Sauviac, Laurent; Bruand, Claude

    2010-01-01

    RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We show...

  14. Sinorhizobium meliloti nifA gene exerts a pleiotropic effect on nodulation through the enhanced plant defense response

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sinorhizobium meliloti nifA gene is required for the expression of a bunch of nif and fix genes. Here, we report its pleiotropic effects on the nodule formation. Compared with wild type strain, nifA mutant significantly reduced nodule suppression rate in split-root system. The plants inoculated with mutant strain produced lower amount of daidzein and less necrotic cells on their roots. In addition, the defense genes failed to be evoked by nifA mutant at the early nodulation stage. These findings indicated that host defense response was one of the mechanisms mediated by nifA gene to regulate nodule formation during symbiosis. Even though nifA mutant could increase the number of nodules in host plant, it synthesized lower Nod factors than wild type. This suggested that nifA gene mediated multiple and diverse instances in nodulation formation.

  15. A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation.

    Science.gov (United States)

    Castro-Sowinski, Susana; Matan, Ofra; Bonafede, Paula; Okon, Yaacov

    2007-08-01

    A miniTn5-induced mutant of a melanin-producing strain of Sinorhizobium meliloti (CE52G) that does not produce melanin was mapped to a gene identified as a probable thioredoxin gene. It was proved that the thiol-reducing activity of the mutant was affected. Addition to the growth medium of substrates that induce the production of melanin (L-tyrosine, guaiacol, orcinol) increased the thioredoxin-like (trxL) mRNA level in the wild-type strain. The mutant strain was affected in the response to paraquat-induced oxidative stress, symbiotic nitrogen fixation, and both laccase and tyrosinase activities. The importance of thioredoxin in melanin production in bacteria, through the regulation of laccase or tyrosinase activities, or both, by the redox state of structural or catalytic SH groups, is discussed.

  16. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle.

    Science.gov (United States)

    Woo, H-H; Hirsch, A M; Hawes, M C

    2004-07-01

    Most infections of plant roots are initiated in the region of elongation; the mechanism for this tissue-specific localization pattern is unknown. In alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter, the cell cycle in roots is completed in 48 h instead of 24 h, and border cell number is decreased by more than 99%. These plants were found to exhibit increased root-tip infection by a fungal pathogen and reduced nodule formation by a bacterial symbiont. Thus, the frequency of infection in the region of elongation by Nectria haematocca was unaffected, but infection of the root tip was increased by more than 90%; early stages of Sinorhizobium meliloti infection and nodule morphology were normal, but the frequency of nodulation was fourfold lower than in wild-type roots.

  17. Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection.

    Science.gov (United States)

    Shen, Chenjia; Yue, Runqing; Bai, Youhuang; Feng, Rong; Sun, Tao; Wang, Xiaofei; Yang, Yanjun; Tie, Shuanggui; Wang, Huizhong

    2015-10-01

    Auxin transport plays a pivotal role in the interaction between legume species and nitrogen-fixing bacteria to form symbioses. Auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) and efflux/conditional P-glycoprotein (PGP/ABCB) are three major protein families participating in auxin polar transport. We used the latest Medicago truncatula genome sequence to characterize and analyze the M. truncatula LAX (MtLAX), M. truncatula PIN (MtPIN) and M. truncatula ABCB (MtABCB) families. Transient expression experiments indicated that three representative auxin transporters (MtLAX3, MtPIN7 and MtABCB1) showed cell plasma membrane localizations. The expression of most MtLAX, MtPIN and MtABCB genes was up-regulated in the roots and was down-regulated in the shoots by Sinorhizobium meliloti infection in the wild type (WT). However, the expression of these genes was down-regulated in both the roots and shoots of an infection-resistant mutant, dmi3. The different expression patterns between the WT and the mutant roots indicated that auxin relocation may be involved in rhizobial infection responses. Furthermore, IAA contents were significantly up-regulated in the shoots and down-regulated in the roots after Sinorhizobium meliloti infection in the WT. Inoculation of roots with rhizobia may reduce the auxin loading from shoots to roots by inhibiting the expression of most auxin transporter genes. However, the rate of change of gene expression and IAA contents in the dmi3 mutant were obviously lower than in the WT. The identification and expression analysis of auxin transporter genes helps us to understand the roles of auxin in the regulation of nodule formation in M. truncatula.

  18. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    Science.gov (United States)

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product.

  19. Sinorhizobium meliloti Controls Nitric Oxide-Mediated Post-Translational Modification of a Medicago truncatula Nodule Protein.

    Science.gov (United States)

    Blanquet, Pauline; Silva, Liliana; Catrice, Olivier; Bruand, Claude; Carvalho, Helena; Meilhoc, Eliane

    2015-12-01

    Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.

  20. Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2007-12-01

    Full Text Available Abstract Background Small untranslated RNAs (sRNAs seem to be far more abundant than previously believed. The number of sRNAs confirmed in E. coli through various approaches is above 70, with several hundred more sRNA candidate genes under biological validation. Although the total number of sRNAs in any one species is still unclear, their importance in cellular processes has been established. However, unlike protein genes, no simple feature enables the prediction of the location of the corresponding sequences in genomes. Several approaches, of variable usefulness, to identify genomic sequences encoding sRNA have been described in recent years. Results We used a combination of in silico comparative genomics and microarray-based transcriptional profiling. This approach to screening identified ~60 intergenic regions conserved between Sinorhizobium meliloti and related members of the alpha-proteobacteria sub-group 2. Of these, 14 appear to correspond to novel non-coding sRNAs and three are putative peptide-coding or 5' UTR RNAs (ORF smaller than 100 aa. The expression of each of these new small RNA genes was confirmed by Northern blot hybridization. Conclusion Small non coding RNA (sra genes can be found in the intergenic regions of alpha-proteobacteria genomes. Some of these sra genes are only present in S. meliloti, sometimes in genomic islands; homologues of others are present in related genomes including those of the pathogens Brucella and Agrobacterium.

  1. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis.

    Science.gov (United States)

    Tang, Guirong; Wang, Ying; Luo, Li

    2014-09-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.

  2. Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Sergio [Department of Cellular and Molecular Interactions, Vrije Universiteit Brussel, 1050 Brussels (Belgium); Ultrastructure Laboratory, Vrije Universiteit Brussel, 1050 Brussels (Belgium); González-Ramírez, Luis Antonio [Laboratorio de Estudios Cristalográficos, IACT (CSIC-U. Granada), P. T. Ciencias de la Salud, Granada 18100 (Spain); Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier [Departamento de Química Física, Bioquímica y Química Inorgánica, Área de Bioquímica y Biología Molecular, Edf. CITE I, Universidad de Almería (Spain); Gavira, Jose Antonio, E-mail: jgavira@ugr.es; García-Ruiz, Juan Ma. [Laboratorio de Estudios Cristalográficos, IACT (CSIC-U. Granada), P. T. Ciencias de la Salud, Granada 18100 (Spain); Department of Cellular and Molecular Interactions, Vrije Universiteit Brussel, 1050 Brussels (Belgium)

    2008-01-01

    Crystals of an active-site mutated hydantoin racemase from S. meliloti have been obtained in the presence and absence of d,l-5-isopropyl-hydantoin and characterized by X-ray diffraction. A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate d,l-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 Å for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 Å and a = b = 85.69, c = 154.38 Å, crystal volumes per protein weight (V{sub M}) of 1.94 and 1.98 Å{sup 3} Da{sup −1} and solvent contents of 36.7 and 37.9%, respectively.

  3. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.

    Science.gov (United States)

    Yurgel, Svetlana N; Rice, Jennifer; Kahn, Michael L

    2012-03-01

    To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.

  4. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti.

    Science.gov (United States)

    Pucciariello, Chiara; Innocenti, Gilles; Van de Velde, Willem; Lambert, Annie; Hopkins, Julie; Clément, Mathilde; Ponchet, Michel; Pauly, Nicolas; Goormachtig, Sofie; Holsters, Marcelle; Puppo, Alain; Frendo, Pierre

    2009-11-01

    Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.

  5. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti.

    Science.gov (United States)

    Orozco-Mosqueda, Maria del Carmen; Macías-Rodríguez, Lourdes I; Santoyo, Gustavo; Farías-Rodríguez, Rodolfo; Valencia-Cantero, Eduardo

    2013-11-01

    Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.

  6. Screening of Highly Effective Sinorhizobium meliloti Strains for 'Vector' Alfalfa and Testing of Its Competitive Nodulation Ability in the Field

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhao-Hai; CHEN Wen-Xin; HU Yue-Gao; SUI Xin-Hua; CHEN Dan-Ming

    2007-01-01

    Seventeen Sinorhizobium meliloti strains from seven provinces in China were used to screen highly effective strains for alfalfa cultivar in a greenhouse study and their symbiotic relationship and competitive ability were studied in the field.CCBAU30138 was the most effective strain,as evidenced by increase in dry weights.A field experiment showed that the inoculation of alfalfa with CCBAU30138 resulted in increases of 11.9%and 19.6%of dry matter production and crude protein production,respectively,in forage of monocultured plants.The total dry matter yields of alfalfa and tall fescue in binary culture were increased by 16.3%by inoculation of alfalfa with this strain.These results showed that S.Meliloti strain CCBAU30138 was an effective inoculant both in the greenhouse and in the field.The analysis of randomly amplified polymorphic DNA(RAPD)by polymerase chain reaction(PCR)from nodule extracts showed that the strain CCBAU30138 had high competitiveness in the field.It occupied 47.5%of nodules in alfalfa monoculture and 44.4% of nodules in alfalfa-tall fescue binary culture after 20 weeks of growth.In conclusion,a simple system to select highly effective and competitive symbiotic strains specific to alfalfa was established.Using this system.A strain suitable for the alfalfa cultivar'Vector’grown in Wuqiao County of Hebei Province was obtained.

  7. Regulation of polyhydroxybutyrate accumulation in Sinorhizobium meliloti by the trans-encoded small RNA MmgR.

    Science.gov (United States)

    Lagares, Antonio; Ceizel Borella, Germán; Linne, Uwe; Becker, Anke; Valverde, Claudio

    2017-02-06

    Riboregulation has a major role in the fine-tuning of multiple bacterial processes. Among the RNA players, trans-encoded untranslated small RNAs (sRNAs) regulate complex metabolic networks by tuning expression from multiple target genes in response to numerous signals. In Sinorhizobium meliloti, over 400 sRNAs are expressed under different stimuli. The sRNA MmgR-standing for Makes more granules Regulator-has been of particular interest to us since its sequence and structure are highly conserved among the α-proteobacteria, and its expression is regulated by the amount and quality of the bacterium's available nitrogen source. In this work, we explored the biological role of MmgR in S. meliloti 2011 by characterizing the effect of a deletion of the internal conserved core of mmgR (mmgR(Δ33-51)). This mutation resulted in higher amounts of polyhydroxybutyrate (PHB) distributed into more intracellular granules than are found in the wild-type strain. This phenotype was expressed upon cessation of balanced growth owing to a nitrogen depletion in the presence of surplus carbon (i. e., at a carbon:nitrogen molar ratio greater than 10). The normal PHB accumulation was complemented with a wild-type mmgR copy, but not with unrelated sRNA genes. Furthermore, the expression of mmgR limited PHB accumulation in the wild-type, regardless of the magnitude of the C surplus. Quantitative proteomic profiling and qRT-PCR revealed that the absence of MmgR results in a posttranscriptional overexpression of both PHB-phasin proteins (PhaP1, PhaP2). All together, our results indicate that the widely conserved α-proteobacterial MmgR sRNA fine-tunes the regulation of PHB storage in S. meliloti IMPORTANCE: High-throughput RNA sequencing has recently uncovered an overwhelming number of trans-encoded small RNAs (sRNAs) in diverse prokaryotes. In the nitrogen-fixing α-proteobacterial symbiont of alfalfa root nodules Sinorhizobium meliloti, only four out of hundreds of identified sRNA genes

  8. Crystallization, Preliminary X-ray Diffraction and Structure Solution of MosA, a Dihydrodipicolinate Synthase from Sinorhizobium Meliloti L5-30

    Energy Technology Data Exchange (ETDEWEB)

    Leduc,Y.; Phenix, C.; Puttick, J.; Nienaber, K.; Palmer, D.; Delbaere, L.

    2006-01-01

    The structure of MosA, a dihydrodipicolinate synthase and reported methyltransferase from Sinorhizobium meliloti, has been solved using molecular replacement with Escherichia coli dihydrodipicolinate synthase as the model. A crystal grown in the presence of pyruvate diffracted X-rays to 2.3 Angstroms resolution using synchrotron radiation and belonged to the orthorhombic space group C2221, with unit-cell parameters a = 69.14, b = 138.87, c = 124.13 Angstroms.

  9. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula

    OpenAIRE

    Marta Marchetti; Delphine Capela; Renaud Poincloux; Nacer Benmeradi; Marie-Christine Auriac; Aurélie Le Ru; Isabelle Maridonneau-Parini; Jacques Batut; Catherine Masson-Boivin

    2013-01-01

    Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as...

  10. Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti.

    Science.gov (United States)

    Milunovic, Branislava; diCenzo, George C; Morton, Richard A; Finan, Turlough M

    2014-02-01

    Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.

  11. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    Science.gov (United States)

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  12. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene.

    Science.gov (United States)

    Yu, Qinli; Cai, Hanlin; Zhang, Yanfeng; He, Yongzhi; Chen, Lincai; Merritt, Justin; Zhang, Shan; Dong, Zhiyang

    2017-01-01

    Ectoine has osmoprotective effects on Sinorhizobium meliloti that differ from its effects in other bacteria. Ectoine does not accumulate in S. meliloti cells; instead, it is degraded. The products of the ehuABCD-eutABCDE operon were previously discovered to be responsible for the uptake and catabolism of ectoine in S. meliloti However, the mechanism by which ectoine is involved in the regulation of the ehuABCD-eutABCDE operon remains unclear. The ehuR gene, which is upstream of and oriented in the same direction as the ehuABCD-eutABCDE operon, encodes a member of the MocR/GntR family of transcriptional regulators. Quantitative reverse transcription-PCR and promoter-lacZ reporter fusion experiments revealed that EhuR represses transcription of the ehuABCD-eutABCDE operon, but this repression is inhibited in the presence of ectoine. Electrophoretic mobility shift assays and DNase I footprinting assays revealed that EhuR bound specifically to the DNA regions overlapping the -35 region of the ehuA promoter and the +1 region of the ehuR promoter. Surface plasmon resonance assays further demonstrated direct interactions between EhuR and the two promoters, although EhuR was found to have higher affinity for the ehuA promoter than for the ehuR promoter. In vitro, DNA binding by EhuR could be directly inhibited by a degradation product of ectoine. Our work demonstrates that EhuR is an important negative transcriptional regulator involved in the regulation of ectoine uptake and catabolism and is likely regulated by one or more end products of ectoine catabolism.

  13. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis.

    Science.gov (United States)

    Keating, David H

    2007-03-01

    Sinorhizobium meliloti is a gram-negative soil bacterium found either in free-living form or as a nitrogen-fixing endosymbiont of leguminous plants such as Medicago sativa (alfalfa). S. meliloti synthesizes an unusual sulfate-modified form of lipopolysaccharide (LPS). A recent study reported the identification of a gene, lpsS, which encodes an LPS sulfotransferase activity in S. meliloti. Mutants bearing a disrupted version of lpsS exhibit an altered symbiosis, in that they elicit more nodules than wild type. However, under free-living conditions, the lpsS mutant displayed no change in LPS sulfation. These data suggest that the expression of lpsS is differentially regulated, such that it is transcriptionally repressed during free-living conditions but upregulated during symbiosis. Here, I show that the expression of lpsS is upregulated in strains that constitutively express the symbiotic regulator SyrA. SyrA is a small protein that lacks an apparent DNA binding domain and is predicted to be located in the cytoplasmic membrane yet is sufficient to upregulate lpsS transcription. Furthermore, SyrA can mediate the transcriptional upregulation of exo genes involved in the biosynthesis of the symbiotic exopolysaccharide succinoglycan. The SyrA-mediated transcriptional upregulation of lpsS and exo transcription is blocked in mutants harboring a mutation in chvI, which encodes the response regulator of a conserved two-component system. Thus, SyrA likely acts indirectly to promote transcriptional upregulation of lpsS and exo genes through a mechanism that requires the ExoS/ChvI two-component system.

  14. Phylogenetic distribution and evolutionary pattern of an α-proteobacterial small RNA gene that controls polyhydroxybutyrate accumulation in Sinorhizobium meliloti.

    Science.gov (United States)

    Lagares, Antonio; Roux, Indra; Valverde, Claudio

    2016-06-01

    It has become clear that sRNAs play relevant regulatory functions in bacteria. However, a comprehensive understanding of their biological roles considering evolutionary aspects has not been achieved for most of them. Thus, we have characterized the evolutionary and phylogenetic aspects of the Sinorhizobium meliloti mmgR gene encoding the small RNA MmgR, which has been recently reported to be involved in the regulation of polyhydroxybutyrate accumulation in this bacterium. We constructed a covariance model from a multiple sequence and structure alignment of mmgR close homologs that allowed us to extend the search and to detect further remote homologs of the sRNA gene. From our results, mmgR seemed to evolve from a common ancestor of the α-proteobacteria that diverged from the order of Rickettsiales. We have found mmgR homologs in most current species of α-proteobacteria, with a few exceptions in which genomic reduction events or gene rearrangements seem to explain its absence. Furthermore, a strong microsyntenic relationship was found between a large set of mmgR homologs and homologs of a gene encoding a putative N-formyl glutamate amidohydrolase (NFGAH) that allowed us to trace back the evolutionary path of this group of mmgR orthologs. Among them, structure and sequence traits have been completely conserved throughout evolution, namely a Rho-independent terminator and a 10-mer (5'-UUUCCUCCCU-3') that is predicted to remain in a single-stranded region of the sRNA. We thus propose the definition of the new family of α-proteobacterial sRNAs αr8, as well as the subfamily αr8s1 which encompass S. meliloti mmgR orthologs physically linked with the downstream open reading frame encoding a putative NFGAH. So far, mmgR is the trans-encoded small RNA with the widest phylogenetic distribution of well recognized orthologs among α-proteobacteria. Expression of the expected MmgR transcript in rhizobiales other than S. meliloti (Sinorhizobium fredii, Rhizobium

  15. Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies.

    Directory of Open Access Journals (Sweden)

    Mengsheng Gao

    Full Text Available BACKGROUND: Quorum sensing (QS in Sinorhizobium meliloti involves at least half a dozen different N-acyl homoserine lactone (AHL signals. These signals are produced by SinI, the sole AHL synthase in S. meliloti Rm8530. The sinI gene is regulated by two LuxR-type transcriptional regulators, SinR and ExpR. Mutations in sinI, sinR and expR abolish the production of exopolysaccharide II (EPS II. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated a new type of coordinated surface spreading of Rm8530 that can be categorized as swarming. Motility assays on semi-solid surfaces revealed that both flagella and EPS II are required for this type of motility. The production of EPS II depends on AHLs produced by SinI. Of these AHLs, only C(16:1- and 3-oxo-C(16:1-homoserine lactones (HSLs stimulated swarming in an ExpR-dependent manner. These two AHLs induced the strongest response in the wggR reporter fusions. WggR is a positive regulator of the EPS II biosynthesis gene expression. The levels of the wggR activation correlated with the extent of swarming. Furthermore, swarming of S. meliloti required the presence of the high molecular weight (HMW fraction of EPS II. Within swarming colonies, a recombinase-based RIVET reporter in the wggR gene was resolved in 30% of the cells, indicating an enhanced regulation of EPS II production in the subpopulation of cells, which was sufficient to support swarming of the entire colony. CONCLUSIONS/SIGNIFICANCE: Swarming behavior of S. meliloti Rm8530 on semi-solid surfaces is found to be dependent on the functional QS regulatory cascades. Even though multiple AHL signals are produced by the bacterium, only two AHLs species, C(16:1- and 3-oxo-C(16:1-HSLs, affected swarming by up-regulating the expression of wggR. While EPS II is produced by Rm8530 as high and low molecular weight fractions, only the HMW EPS II facilitated initial stages of swarming, thus, suggesting a function for this polymer.

  16. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    Science.gov (United States)

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  17. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    Science.gov (United States)

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  18. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.

    Science.gov (United States)

    Gao, Mengsheng; Tang, Ming; Guerich, Lois; Salas-Gonzalez, Isai; Teplitski, Max

    2015-02-01

    In Sinorhizobium meliloti, the timing of quorum sensing (QS)-dependent gene expression is controlled at multiple levels. RNA binding protein Hfq contributes to the regulation of QS signal production, and this regulation is exerted both in the manner that involves the acyl homoserine lactone receptor ExpR, and via expR-independent mechanisms. In the expR+ strain of S. meliloti, deletion of hfq resulted in the hyper-accumulation of QS signals at low population densities, increased diversity of the QS signals in mid-to-late exponential phase and then led to a sharp decrease in QS signal accumulation in stationary phase. Quantitative polymerase chain reaction revealed that the accumulation of expR and sinI (but not sinR) mRNA was increased in the late exponential phase in an hfq-dependent manner. A translational, but not transcriptional, expR-uidA reporter was controlled by hfq, while both transcriptional and translational sinI-uidA reporters were regulated in the hfq-dependent manner. In co-immunoprecipation experiments, expR mRNA was bound to and then released from Hfq, similar to the positive controls (small regulatory RNA SmrC9, SmrC15, SmrC16 and SmrC45). Neither sinI nor sinR transcripts were detected in the pool of RNA heat-released from Hfq-RNA complexes. Therefore, post-transcriptional regulator Hfq controls the production and perception of QS signals, and at higher population densities this control is mediated directly via interactions with expR.

  19. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula.

    Science.gov (United States)

    Dupuy, Pierre; Gourion, Benjamin; Sauviac, Laurent; Bruand, Claude

    2016-11-23

    The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double strand breaks (DSB). In particular, the reactive oxygen (ROS) and nitrogen (RNS) species produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSB. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, a S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis, or that DSB are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.

  20. Evidence that the exoH gene of Sinorhizobium meliloti does not appear to influence symbiotic effectiveness with Medicago truncatula 'Jemalong A17'.

    Science.gov (United States)

    Zribi, Kais; Mhadhbi, Haythem; Badri, Yazid; Aouani, Mohamed Elarbi; van Berkum, Peter

    2010-12-01

    The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M. truncatula 'Jemalong A17', respectively. Using a multilocus sequence typing method, both strains were shown to have chromosomes identical with S. meliloti Rm1021 and RCR2011. The 2260-bp segments of DNA stretching from the 3' end of exoI through open reading frames of hypothetical proteins SM_b20952 and SM_b20953 through exoH into the 5' end of exoK in strains TII7 and Rm1021 differed by a single nucleotide at base 127 of the hypothetical protein SM_b20953. However, the derived amino acid sequences of the exoH genes of effective TII7, ineffective A5, and strain Rm1021 were shown to be identical with each other. Therefore, it would seem unlikely that the gene product of exoH is directly involved with the low efficiency of a symbiosis of strain Rm1021 with M. truncatula 'Jemalong A17'. Complementation or complete genome sequence analyses involving strains TII7 and A5 might be useful approaches to investigate the molecular bases for the differential symbiotic response with M. truncatula 'Jemalong A17'.

  1. The induction of Sinorhizobium meliloti C4-dicarboxylate transport system(Dct)is regulated by oxygen concentration

    Institute of Scientific and Technical Information of China (English)

    WEN Jin; NAN Beiyan; Fergal O'Gara; WANG Yiping

    2005-01-01

    The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5α strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system occurred only at a certain depth under the surface of M63- 0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.

  2. Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula.

    Science.gov (United States)

    Monahan-Giovanelli, Hannah; Pinedo, Catalina Arango; Gage, Daniel J

    2006-02-01

    During the course of the development of nitrogen-fixing root nodules induced by Sinorhizobium meliloti on the model plant Medicago truncatula, tubules called infection threads are cooperatively constructed to deliver the bacterial symbiont from the root surface to cells in the interior of the root and developing nodule. Three-dimensional reconstructions of infection threads inside M. truncatula nodules showed that the threads formed relatively simple, tree-like networks. Some characteristics of thread networks, such as branch length, branch density, and branch surface-to-volume ratios, were remarkably constant across nodules in different stages of development. The overall direction of growth of the networks changed as nodules developed. In 5-d-old nodules, the overall growth of the network was directed inward toward the root. However, well-defined regions of these young networks displayed an outward growth bias, indicating that they were likely in the process of repolarizing their direction of development in response to the formation of the outward-growing nodule meristem. In 10- and 30-d-old nodules, the branches of the network grew outward toward the meristem and away from the roots on which the nodules developed.

  3. Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity.

    Science.gov (United States)

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2014-06-01

    Legumes are classified as salt-sensitive crops with their productivity particularly affected by salinity. Abcisic acid (ABA) plays an important role in the response to environmental stresses as signal molecule which led us to study its role in the response of nitrogen fixation and antioxidant metabolism in root nodules of Medicago sativa under salt stress conditions. Adult plants inoculated with Sinorhizobium meliloti were treated with 1 μM and 10 μM ABA two days before 200 mM salt addition. Exogenous ABA together with the salt treatment provoked a strong induction of the ABA content in the nodular tissue which alleviated the inhibition induced by salinity in the plant growth and nitrogen fixation. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were induced by ABA pre-treatments under salt stress conditions which together with the reduction of the lipid peroxidation, suggest a role for ABA as signal molecule in the activation of the nodular antioxidant metabolism. Interaction between ABA and polyamines (PAs), described as anti-stress molecules, was studied being detected an induction of the common polyamines spermidine (Spd) and spermine (Spm) levels by ABA under salt stress conditions. In conclusion, ABA pre-treatment improved the nitrogen fixation capacity under salt stress conditions by the induction of the nodular antioxidant defenses which may be mediated by the common PAs Spd and Spm that seems to be involved in the anti-stress response induced by ABA.

  4. Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis.

    Science.gov (United States)

    Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

    2012-04-24

    Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.

  5. The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules.

    Science.gov (United States)

    Santos, Mário R; Marques, Andreia T; Becker, Jörg D; Moreira, Leonilde M

    2014-04-01

    The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

  6. Three way interactions between Thymus vulgaris, Medicago truncatula and Sinorhizobium meliloti

    DEFF Research Database (Denmark)

    Grøndahl, Eva; Ehlers, Bodil Kirstine

    2012-01-01

    shows patterns of adaptation to its thyme neighbor, and 2) if any adaptive response was dependent on the rhizobium, and whether the rhizobium was either "experienced" or "naive" with respect to thyme monoterpenes. Using a G*G*E design, the fitness of 13 genotypes of Medicago truncatula was tested....... Of these genotypes, 7 were ”experienced”, and 6 were ”naive” to thyme. All genotypes were grown on soil either amended with thyme monoterpene or not. In addition, each plant received a rhizobium treatment, which was either: no rhizobium, a mix of thyme experienced Sinorhizobium genotypes, or a mix of thyme naive...... Sinorhizobium. The experiment was carried out as a fully factorial design. As a fitness parameter, number of offspring (pods) were counted after harvest. The results showed a large effect of Medicago genotype on plant fitness. Thyme naive rhizobium overall had a more positive effect on plant fitness than thyme...

  7. Crystallization, preliminary X-ray diffraction and structure solution of MosA, a dihydrodipicolinate synthase from Sinorhizobium meliloti L5-30

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, Yvonne A. [Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 (Canada); Phenix, Christopher P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Puttick, Jennifer; Nienaber, Kurt [Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 (Canada); Palmer, David R. J. [Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 (Canada); Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Delbaere, Louis T. J., E-mail: louis.delbaere@usask.ca [Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 (Canada)

    2006-01-01

    MosA from S. meliloti L5-30 has been crystallized in solution with pyruvate and the 2.3 Å resolution structure has been solved by molecular replacement using E. coli dihydrodipicolinate synthase as the model. The structure of MosA, a dihydrodipicolinate synthase and reported methyltransferase from Sinorhizobium meliloti, has been solved using molecular replacement with Escherichia coli dihydrodipicolinate synthase as the model. A crystal grown in the presence of pyruvate diffracted X-rays to 2.3 Å resolution using synchrotron radiation and belonged to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 69.14, b = 138.87, c = 124.13 Å.

  8. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).

    Science.gov (United States)

    Mendis, Hajeewaka C; Queiroux, Clothilde; Brewer, Tess E; Davis, Olivia M; Washburn, Brian K; Jones, Kathryn M

    2013-09-01

    The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.

  9. Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids

    Energy Technology Data Exchange (ETDEWEB)

    Reuhs, B.L.; Stephens, S.B.; Geller, D.P.; Kim, J.S.; Glenn, J.; Przytycki, J.; Ojanen-Reuhs, T.

    1999-11-01

    In two published reports using monoclonal antibodies (MAbs) generated against whole cells, Olsen et al. showed that strain-specific antigens on the surface of cultured cells of Sinorhyzobium meliloti were diminished or absent in the endophytic cells (bacteroids) recovered from alfalfa nodules, whereas two common antigens were not affected by bacterial differentiation. The nature of the antigens, however, were not determined in those studies. For this report, the epitopes for five of the anti-S. meliloti MAbs were identified by polyacrylamide gel electrophoresis-immunoblot analyses of the polysaccharides extracted from S. meliloti and Sinorhizobium fridii. This showed that the strain-specific MAbs recognized K antigens, whereas the strain-cross-reactive MAbs recognized the lipopolysaccharide (LPS) core. The MAbs were then used in the analysis of the LPS and K antigens extracted from S. meliloti bacteroids, which had been recovered from the root nodules of alfalfa, and the results supported the findings of Olsen et al. The size range of the K antigens from bacteroids of S. meliloti NRG247 on polyacrylamide gels was altered, and the epitope was greatly diminished in abundance compared to those from the cultured cells, and no K antigens were detected in the S. meliloti NRG185 bacteroid extract. In contrast to the K antigens, the LPS core appeared to be similar in both cultured cells and bacteroids, although a higher proportion of the LPS fractionated into the organic phase during the phenol-water extraction of the bacteroid polysaccharides. Importantly, immunoblot analysis with an anti-LPS MAb showed that smooth LPS production was modified in the bacteroids.

  10. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators.

    Science.gov (United States)

    Nogales, Joaquina; Blanca-Ordóñez, Helena; Olivares, José; Sanjuán, Juan

    2013-03-01

    Conjugal transfer of Sinorhizobium meliloti and Rhizobium etli symbiotic plasmids are repressed by the transcriptional regulator RctA. Here we report on new key players in the signal transduction cascade towards S. meliloti pSym conjugation. We have identified S. meliloti pSymA gene SMa0974 as an orthologue of the R. etli rctB gene which is required to antagonize repression by RctA. In S. meliloti two additional genes, rctR and rctC participate in control of rctB expression. rctR (SMa0955) encodes a protein of the GntR family of transcriptional regulators involved in repression of rctB. A rctR mutant promotes pSymA conjugal transfer and displays increased transcription of tra, virB and rctB genes even in presence of wild-type rctA gene. Among genes repressed by RctR, rctC (SMa0961) encodes a response regulator required to activate rctB transcription and therefore for derepression of plasmid conjugative functions. We conclude that in both R. etli and S. meliloti pSym conjugal transfer is derepressed via rctB, however the regulatory cascades to achieve activation of rctB are probably different. Upstream of rctB, the S. meliloti pSym conjugal transfer is regulated through the concerted action of genes representing one- (rctR) and two-component (rctC) signal transduction systems in response to yet unidentified signals.

  11. Analysis of the downstream region of nodD3 P1 promoter by deletion and complementation tests in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    陈迪; 刘彦杰; 朱家璧; 沈善炯; 俞冠翘

    2003-01-01

    In Sinorhizobium meliloti, the nodD3 gene is transcriptionally controlled by two promoters, P1 and P2. Under P1, there is a 660 bp sequence including a small open reading frame, ORF2, followed by the nodD3 coding region. Genetic analysis using the different deletions on the 3′ends of P1 downstream sequence showed that the downstream sequence +1-+125nt is essential for P1 expression. Complementation, mutations and nodulation tests demonstrated that the ORF2 auto-represses P1 expression, while the P1 downstream sequence +1-+125nt counteracts it.

  12. Estabilización y sobrevivencia de suspensiones de Sinorhizobium meliloti, efecto de la concentración de exopolisacáridos

    OpenAIRE

    Lorda,Graciela Susana; Pastor, María Delia; Balatti, Antonio Pedro

    2001-01-01

    p.185-190 En este trabajo se estudió la obtención de suspensiones de Sinorhizobium meliloti considerando el efecto de la aeración de los cultivos sobre la formación de exopolisacáridos celulares y su relación con la estabilización de las cepas en estudio. Se utilizaron dos cepas caracterizadas como Lq 51 y Lq 22 que fueron aisladas en nuestro laboratorio. Las experiencias de obtención de los cultivos fue realizada en la escala de frascos agitados bajo distintas condiciones de aeración (175...

  13. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Marta Marchetti

    Full Text Available Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.

  14. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.

    Science.gov (United States)

    Marchetti, Marta; Capela, Delphine; Poincloux, Renaud; Benmeradi, Nacer; Auriac, Marie-Christine; Le Ru, Aurélie; Maridonneau-Parini, Isabelle; Batut, Jacques; Masson-Boivin, Catherine

    2013-01-01

    Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.

  15. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.

    Science.gov (United States)

    Baumgardt, Kathrin; Šmídová, Klára; Rahn, Helen; Lochnit, Günter; Robledo, Marta; Evguenieva-Hackenberg, Elena

    2016-05-03

    Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti.

  16. Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011

    Directory of Open Access Journals (Sweden)

    Becker Anke

    2008-09-01

    Full Text Available Abstract Background Small non-coding RNAs (sRNAs have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs of the symbiotic α-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011. Results Our first sRNA candidate compilation was based mainly on the output of the sRNAPredictHT algorithm. A thorough manual sequence analysis of the curated list rendered an initial set of 18 IgRs of interest, from which 14 candidates were detected in strain 2011 by Northern blot and/or microarray analysis. Interestingly, the intracellular transcript levels varied in response to various stress conditions. We developed an alternative computational method to more sensitively predict sRNA-encoding genes and score these predicted genes based on several features to allow identification of the strongest candidates. With this novel strategy, we predicted 60 chromosomal independent transcriptional units that, according to our annotation, represent strong candidates for sRNA-encoding genes, including most of the sRNAs experimentally verified in this work and in two other contemporary studies. Additionally, we predicted numerous candidate sRNA genes encoded in megaplasmids pSymA and pSymB. A significant proportion of the chromosomal- and megaplasmid-borne putative sRNA genes were validated by microarray analysis in strain 2011. Conclusion Our data extend the number of experimentally detected S. meliloti sRNAs and significantly expand the list of putative sRNA-encoding IgRs in this and closely related α-proteobacteria. In addition, we have

  17. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.

    Science.gov (United States)

    Baumgardt, Kathrin; Charoenpanich, Pornsri; McIntosh, Matthew; Schikora, Adam; Stein, Elke; Thalmann, Sebastian; Kogel, Karl-Heinz; Klug, Gabriele; Becker, Anke; Evguenieva-Hackenberg, Elena

    2014-04-01

    Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.

  18. Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti.

    Science.gov (United States)

    Vriezen, Jan A C; de Bruijn, Frans J; Nüsslein, Klaus

    2013-09-01

    The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor.

  19. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain.

    Science.gov (United States)

    Bianco, Carmen; Defez, Roberto

    2009-01-01

    The abiotic stress resistance of wild-type Sinorhizobium meliloti 1021 was compared with that of RD64, a derivative of the 1021 strain harbouring an additional pathway for the synthesis of indole-3-acetic acid (IAA), expressed in both free-living bacteria and bacteroids. It is shown here that the IAA-overproducing RD64 strain accumulated a higher level of trehalose as its endogenous osmolyte and showed an increased tolerance to several stress conditions (55 degrees C, 4 degrees C, UV-irradiation, 0.5 M NaCl, and pH 3). Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed re-modulation of phytohormones, with a higher IAA content in nodules and roots and a decreased IAA level in shoots as compared with plants nodulated by the wild-type strain 1021 (Mt-1021). The response of nodulated M. truncatula plants to salt stress, when 0.3 M NaCl was applied, was analysed. For Mt-RD64 plants higher internal proline contents, almost unchanged hydrogen peroxide levels, and enhanced activity of antioxidant enzymes (superoxide dismutase, total peroxidase, glutathione reductase, and ascorbate peroxidase) were found compared with Mt-1021 plants. These results were positively correlated with reduced symptoms of senescence, lower expression of ethylene signalling genes, lower reduction of shoot dry weight, and better nitrogen-fixing capacity observed for these plants. Upon re-watering, after 0.3 M NaCl treatment, Mt-1021 plants almost die whereas Mt-RD64 plants showed visual signs of recovery. Finally, the shoot dry weight of Mt-RD64 plants treated with 0.15 M NaCl was not statistically different from that of Mt-1021 plants grown under non-stressed conditions.

  20. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin.

    Science.gov (United States)

    Peck, Melicent C; Fisher, Robert F; Bliss, Robert; Long, Sharon R

    2013-08-01

    NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.

  1. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.

    Science.gov (United States)

    Torres-Quesada, Omar; Reinkensmeier, Jan; Schlüter, Jan-Philip; Robledo, Marta; Peregrina, Alexandra; Giegerich, Robert; Toro, Nicolás; Becker, Anke; Jiménez-Zurdo, Jose I

    2014-01-01

    The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.

  2. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming

    Directory of Open Access Journals (Sweden)

    Olivares José

    2010-03-01

    Full Text Available Abstract Background Swarming is a multicellular phenomenom characterized by the coordinated and rapid movement of bacteria across semisolid surfaces. In Sinorhizobium meliloti this type of motility has been described in a fadD mutant. To gain insights into the mechanisms underlying the process of swarming in rhizobia, we compared the transcriptome of a S. meliloti fadD mutant grown under swarming inducing conditions (semisolid medium to those of cells grown under non-swarming conditions (broth and solid medium. Results More than a thousand genes were identified as differentially expressed in response to growth on agar surfaces including genes for several metabolic activities, iron uptake, chemotaxis, motility and stress-related genes. Under swarming-specific conditions, the most remarkable response was the up-regulation of iron-related genes. We demonstrate that the pSymA plasmid and specifically genes required for the biosynthesis of the siderophore rhizobactin 1021 are essential for swarming of a S. meliloti wild-type strain but not in a fadD mutant. Moreover, high iron conditions inhibit swarming of the wild-type strain but not in mutants lacking either the iron limitation response regulator RirA or FadD. Conclusions The present work represents the first transcriptomic study of rhizobium growth on surfaces including swarming inducing conditions. The results have revealed major changes in the physiology of S. meliloti cells grown on a surface relative to liquid cultures. Moreover, analysis of genes responding to swarming inducing conditions led to the demonstration that iron and genes involved in rhizobactin 1021 synthesis play a role in the surface motility shown by S. meliloti which can be circumvented in a fadD mutant. This work opens a way to the identification of new traits and regulatory networks involved in swarming by rhizobia.

  3. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection.

    Directory of Open Access Journals (Sweden)

    Chenjia Shen

    Full Text Available BACKGROUND: Auxin/indoleacetic acid (Aux/IAA genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. PRINCIPAL FINDINGS: Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. CONCLUSION: The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.

  4. Effect of salinity on some growth indices and total protein content of alfalfa genotypes inoculated with Sinorhizobium meliloti strains under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    A. Fazaeli

    2012-06-01

    Full Text Available This greenhouse experiment was carried out to evaluate the effects of salinity and bacterial inoculation on some growth indices and total protein content of alfalfa (Medicago sativa using a factorial completely randomized design with three replications. The effect of three salinity levels (0, 6 and 12 dS/m induced by a mixture of NaCl, CaCl2 and MgCl2 salts on growth indices and protein content of three alfalfa genotypes (Hamadani, Gharahyonjeh and Gharghalogh at three levels of inoculation with Sinorhizobium meliloti bacteria (no inoculation, inoculation with salinity-tolerant strain and inoculation with salinity-sensitive strain was investigated. After the isolation and purification of alfalfa-symbiotic-bacteria from alfalfa fields in Tehran province, two isolates of S. meliloti, one salinity-resistant and the other one salinity-sensitive, which are effective in symbiosis with alfalfa, were selected. Analysis of the results showed that by increasing the salinity level, the shoot and root dry weight, number of active nodules, and nitrogen (N concentration were decreased significantly (P<0.01. Inoculation with salinity-resistant strain of S. meliloti caused significant increase in shoot and root dry weight, number of active nodules, and N concentration of plants. Moreover, under saline conditions, the salinity-resistant S. meliloti strain increased significantly most alfalfa growth-indices and yield compared to control (without inoculation and inoculation with salinity-sensitive bacteria. There was no significant difference among alfalfa genotypes in yield and other growth indices under saline conditions. In general, the R59 isolate seems to be the best isolate of S. meliloti for greenhouse-grown alfalfa in saline conditions.

  5. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH

    Directory of Open Access Journals (Sweden)

    Pühler Alfred

    2009-02-01

    Full Text Available Abstract Background The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. Results The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i permanently and strong, (ii permanently and intermediate, (iii permanently and progressive, and (iv transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i permanently, (ii permanently and progressive, (iii transiently, and (iv ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exo

  6. 冻融法转化苜蓿中华根瘤菌%Freeze thaw transform plasmid into Sinorhizobium meliloti 1021

    Institute of Scientific and Technical Information of China (English)

    薛海英; 汪滢; 尹若春

    2012-01-01

    The transformation for Sinorhizobium meliloti 1021 was limited to triparental-conjugational and electric-shock methods. Plasmid containing GUS and spectinomycin-resistance gene was used in our experiment. After transformation, resistant clones on the plate were identified by PCR with GUS primers. This report firstly described a freeze-thaw mediated transformation of 5. meliloti 1021. The result showed that the transformation efficiency was 2. 2 10 / g. Compared with the traditional methods, the freeze-thaw mediated transformation is a simple, faster, shorter time and lower cost method to transform Sinorhizobium meliloti.%对于苜蓿中华根瘤菌转化方法的研究仅限于三亲杂交法和电激转化,本实验首次将冻融法用于转化苜蓿中华根瘤菌.将携带GUS片段并且含有壮观霉素抗性的质粒用冻融法转移至野生型苜蓿中华根瘤菌菌株,得到的抗性克隆用GUS引物进行PCR扩增鉴定.经过计算,冻融法的转化率为2.2×105/μg.与传统方法比较,冻融法操作简单,转化过程快速,转化率较高,所需时间较短,转化成本低,是适合用于苜蓿中华根瘤菌的转化方法.

  7. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Tahar eGhnaya

    2015-10-01

    Full Text Available Besides their role in nitrogen supply to the host plants by the process of symbiotic N fixation, the association between legumes and Rhizobium could be interesting also for the rehabilitation of metal contaminated soils by phytoextraction. A major limitation is however the metal sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site in phytoextraction of Cd by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 or 100 mg Cd kg-1 soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S.meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition as compared to non-inoculated plants. Moreover, nodulation enhanced both Cd absorption by the roots and Cd transloaction to the shoots. The amelioration of plant biomass concomitantly with the increase in Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. Hence, in the presence of 50 mg Cd kg-1 in the soil, the quantities of Cd extracted in the shoots were 58 and 178 µg plant-1 in non-inoculated and inoculated plants, respectively. Thus we suggest that this association M. sativa-S. meliloti is an efficient biological system to extract Cd.

  8. A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots.

    Science.gov (United States)

    Soto, María José; Fernández-Pascual, Mercedes; Sanjuan, Juan; Olivares, José

    2002-01-01

    Swarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.

  9. Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators.

    Science.gov (United States)

    Bastiat, Bénédicte; Sauviac, Laurent; Bruand, Claude

    2010-04-01

    RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We showed that RpoE2 activity is negatively controlled by two paralogous anti-sigma factors, RsiA1 (SMc01505) and RsiA2 (SMc04884), and that RpoE2 activation by stress requires two redundant paralogous PhyR-type response regulators, RsiB1 (SMc01504) and RsiB2 (SMc00794). RsiB1 and RsiB2 do not act at the level of rpoE2 transcription but instead interact with the anti-sigma factors, and we therefore propose that they act as anti-anti-sigma factors to relieve RpoE2 inhibition in response to stress. This model closely resembles a recently proposed model of activation of RpoE2-like sigma factors in Methylobacterium extorquens and Bradyrhizobium japonicum, but the existence of two pairs of anti- and anti-anti-sigma factors in S. meliloti adds an unexpected level of complexity, which may allow the regulatory system to integrate multiple stimuli.

  10. Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin.

    Science.gov (United States)

    Sanjuán-Pinilla, Julio M; Muñoz, Socorro; Nogales, Joaquina; Olivares, José; Sanjuán, Juan

    2002-07-01

    The role of leucine biosynthesis by Sinorhizobium meliloti in the establishment of nitrogen-fixing symbiosis with alfalfa ( Medicago sativa) was investigated. The leuA gene from S. meliloti, encoding alpha-isopropylmalate synthase, which catalyses the first specific step in the leucine biosynthetic pathway, was characterized. S. melilotiLeuA(-) mutants were Leu auxotrophs and lacked alpha-isopropylmalate synthase activity. In addition, leuA auxotrophs were unable to nodulate alfalfa. Alfalfa roots did not seem to secrete enough leucine to support growth of leucine auxotrophs in the rhizosphere. Thus, this growth limitation probably imposes the inability to initiate symbiosis. However, in addition to the leucine auxotrophy, leuA strains were impaired in activation of nodulation genes by the transcriptional activator NodD1 in response to the plant flavone luteolin. By contrast, nod gene activation by NodD3, which does not involve plant-derived inducers, was unaffected. Our results suggest that a leucine-related metabolic intermediate may be involved in activation of nodulation genes by NodD1 and luteolin. This kind of control could be of relevance as a way to link bacterial physiological status to the response to plant signals and initiation of symbiosis.

  11. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.

    Science.gov (United States)

    Pinedo, Catalina Arango; Bringhurst, Ryan M; Gage, Daniel J

    2008-04-01

    Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIA(Man)-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of alpha- and beta-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIA(Man)) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.

  12. Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti.

    Science.gov (United States)

    Eda, Shima; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2011-05-01

    The contributions of multicomponent-type multidrug efflux pumps to antimicrobial resistance and nodulation ability in Sinorhizobium meliloti were comprehensively analyzed. Computational searches identified genes in the S. meliloti strain 1021 genome encoding 1 pump from the ATP-binding cassette family, 3 pumps from the major facilitator superfamily, and 10 pumps from the resistance-nodulation-cell division family, and subsequently, these genes were deleted either individually or simultaneously. Antimicrobial susceptibility tests demonstrated that deletion of the smeAB pump genes resulted in increased susceptibility to a range of antibiotics, dyes, detergents, and plant-derived compounds and, further, that specific deletion of the smeCD or smeEF genes in a ΔsmeAB background caused a further increase in susceptibility to certain antibiotics. Competitive nodulation experiments revealed that the smeAB mutant was defective in competing with the wild-type strain for nodulation. The introduction of a plasmid carrying smeAB into the smeAB mutant restored antimicrobial resistance and nodulation competitiveness. These findings suggest that the SmeAB pump, which is a major multidrug efflux system of S. meliloti, plays an important role in nodulation competitiveness by mediating resistance toward antimicrobial compounds produced by the host plant.

  13. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    Science.gov (United States)

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg−1 soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg−1 in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant−1 in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils. PMID:26528320

  14. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    Science.gov (United States)

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  15. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation

    Directory of Open Access Journals (Sweden)

    Debora Fabiola Veliz Vallejos

    2014-10-01

    Full Text Available N-acyl homoserine lactones (AHLs act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4. However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa and Trifolium repens (white clover showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation

  16. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection.

    Science.gov (United States)

    Yang, Yanjun; Yue, Runqing; Sun, Tao; Zhang, Lei; Chen, Wei; Zeng, Houqing; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    Auxin plays a pivotal role in the regulation of plant growth and development by controlling the expression of auxin response genes rapidly. As one of the major auxin early response gene families, Gretchen Hagen 3 (GH3) genes are involved in auxin homeostasis by conjugating excess auxins to amino acids. However, how GH3 genes function in environmental stresses and rhizobial infection responses in Medicago truncatula are largely unknown. Here, based on the latest updated M. truncatula genome, a comprehensive identification and expression profiling analysis of MtGH3 genes were performed. Our data showed that most of MtGH3 genes were expressed in tissue-specific manner and were responsive to environmental stress-related hormones. To understand the possible roles of MtGH3 genes involved in symbiosis establishment between M. truncatula and symbiotic bacteria, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of MtGH3 genes during the early phase of Sinorhizobium meliloti infection. The expression levels of most MtGH3 genes were upregulated in shoots and downregulated in roots by S. meliloti infection. The differences in expression responses to S. meliloti infection between roots and shoots were in agreement with the results of free indoleacetic acid (IAA) content measurements. The identification and expression analysis of MtGH3 genes at the early phase of S. meliloti infection may help us to understand the role of GH3-mediated IAA homeostasis in the regulation of nodule formation in model legumes M. truncatula.

  17. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Menck Carlos FM

    2007-03-01

    Full Text Available Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA, endonuclease III (nth, O6-methylguanine-DNA methyltransferase (ada gene, photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular

  18. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants

    Directory of Open Access Journals (Sweden)

    Soto María

    2009-01-01

    Full Text Available Abstract Background Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. Results The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. Conclusion tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation

  19. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif, nodulation and host specificity (nod. A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10 with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational

  20. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    Science.gov (United States)

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  1. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R; Plascencia-Villa, Germán; José-Yacamán, Miguel; Gardea-Torresdey, Jorge L

    2012-11-30

    Cerium oxide (CeO(2)) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used in a variety of instruments and consumer goods. These NPs are of great concern because of potential toxicity towards human health and the environment. The present work aimed to assess the toxic effects of 10nm CeO(2) and ZnO NPs towards the nitrogen fixing bacterium Sinorhizobium meliloti. Toxicological parameters evaluated included UV/Vis measurement of minimum inhibitory concentration, disk diffusion tests, and dynamic growth. Ultra high-resolution scanning transmission electron microscopy (STEM) and infrared spectroscopy (FTIR) were utilized to determine the spatial distribution of NPs and macromolecule changes in bacterial cells, respectively. Results indicate that ZnO NPs were more toxic than CeO(2) NPs in terms of inhibition of dynamic growth and viable cells counts. STEM images revealed that CeO(2) and ZnO NPs were found on bacterial cell surfaces and ZnO NPs were internalized into the periplasmic space of the cells. FTIR spectra showed changes in protein and polysaccharide structures of extra cellular polymeric substances present in bacterial cell walls treated with both NPs. The growth data showed that CeO(2) NPs have a bacteriostatic effect, whereas ZnO NPs is bactericidal to S. meliloti. Overall, ZnO NPs were found to be more toxic than CeO(2) NPs.

  2. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti.

    Directory of Open Access Journals (Sweden)

    Omar Torres-Quesada

    Full Text Available The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2 have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5'-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.

  3. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains

    Directory of Open Access Journals (Sweden)

    Landry Christian R

    2005-11-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa (Medicago sativa. This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region. Results From 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function. Conclusion The obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti.

  4. Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis.

    Science.gov (United States)

    Medeot, Daniela B; Romina Rivero, María; Cendoya, Eugenia; Contreras-Moreira, Bruno; Rossi, Fernando A; Fischer, Sonia E; Becker, Anke; Jofré, Edgardo

    2016-03-01

    In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.

  5. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti.

    Science.gov (United States)

    Pini, Francesco; Frage, Benjamin; Ferri, Lorenzo; De Nisco, Nicole J; Mohapatra, Saswat S; Taddei, Lucilla; Fioravanti, Antonella; Dewitte, Frederique; Galardini, Marco; Brilli, Matteo; Villeret, Vincent; Bazzicalupo, Marco; Mengoni, Alessio; Walker, Graham C; Becker, Anke; Biondi, Emanuele G

    2013-10-01

    Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.

  6. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria.

    Science.gov (United States)

    Giusti, María de los Ángeles; Pistorio, Mariano; Lozano, Mauricio J; Tejerizo, Gonzalo A Torres; Salas, María Eugenia; Martini, María Carla; López, José Luis; Draghi, Walter O; Del Papa, María Florencia; Pérez-Mendoza, Daniel; Sanjuán, Juan; Lagares, Antonio

    2012-05-01

    Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own

  7. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Pühler Alfred

    2010-10-01

    Full Text Available Abstract Background Environmental pH stress constitutes a limiting factor for S. meliloti survival and development. The response to acidic pH stress in S. meliloti is versatile and characterized by the differential expression of genes associated with various cellular functions. The purpose of this study was to gain detailed insight into the participation of sigma factors in the complex stress response system of S. meliloti 1021 using pH stress as an effector. Results In vitro assessment of S meliloti wild type and sigma factor mutants provided first evidence that the sigma factor RpoH1 plays a major role in the pH stress response. Differential expression of genes related to rhizobactin biosynthesis was observed in microarray analyses performed with the rpoH1 mutant at pH 7.0. The involvement of the sigma factor RpoH1 in the regulation of S. meliloti genes upon pH stress was analyzed by comparing time-course experiments of the wild type and the rpoH1 mutant. Three classes of S. meliloti genes could be identified, which were transcriptionally regulated in an RpoH1-independent, an RpoH1-dependent or in a complex manner. The first class of S. meliloti genes, regulated in an RpoH1-independent manner, comprises the group of the exopolysaccharide I biosynthesis genes and also the group of genes involved in motility and flagellar biosynthesis. The second class of S. meliloti genes, regulated in an RpoH1-dependent manner, is composed of genes known from heat shock studies, like ibpA, grpE and groEL5, as well as genes involved in translation like tufA and rplC. Finally, the third class of S. meliloti genes was regulated in a complex manner, which indicates that besides sigma factor RpoH1, further regulation takes place. This was found to be the case for the genes dctA, ndvA and smc01505. Conclusions Clustering of time-course microarray data of S. meliloti wild type and sigma factor rpoH1 mutant allowed for the identification of gene clusters, each with a

  8. Sinorhizobium meliloti应译为"草木樨中华根瘤菌"%The Correct Chinese Translation of Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    陈文峰

    2008-01-01

    在国内众多文献中均将Sinorhizobium meliloti误译为"苜蓿中华根瘤菌",它的种加词meliloti是来自豆科植物草木樨属(Melilotus),经拉丁化后而形成的,因此应译为"草木樨中华根瘤菌"才为正确.与它亲缘关系十分接近的另一种根瘤菌-Sinorhizobium medicae,种加词medicae来自豆科植物苜蓿属(Medicago),因此Sinorhizobium medicae才应真正地译为"苜蓿中华根瘤菌".

  9. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.

    Science.gov (United States)

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2014-03-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  10. The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain.

    Science.gov (United States)

    diCenzo, George; Milunovic, Branislava; Cheng, Jiujun; Finan, Turlough M

    2013-01-01

    Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.

  11. Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Zachertowska Alicja

    2010-03-01

    Full Text Available Abstract Background S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa. Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized. Results The S. meliloti phaZ gene was identified by in silico analysis, the ORF was cloned, and a S. meliloti phaZ mutant was constructed. This mutant exhibited increased PHB accumulation during free-living growth, even when grown under non-PHB-inducing conditions. The phaZ mutant demonstrated no reduction in symbiotic capacity; interestingly, analysis of the bacteroids showed that this mutant also accumulated PHB during symbiosis. This mutant also exhibited a decreased capacity to tolerate long-term carbon starvation, comparable to that of other PHB cycle mutants. In contrast to other PHB cycle mutants, the S. meliloti phaZ mutant did not exhibit any decrease in rhizosphere competitiveness; however, this mutant did exhibit a significant increase in succinoglycan biosynthesis. Conclusions S. meliloti bacteroids retain the capacity to synthesize PHB during symbiosis; interestingly, accumulation does not occur at the expense of symbiotic performance. phaZ mutants are not compromised in their capacity to compete for nodulation in the rhizosphere, perhaps due to increased succinoglycan production resulting from upregulation of the succinoglycan biosynthetic pathway. The reduced survival capacity of free-living cells unable to access their accumulated stores of PHB suggests that PHB is a crucial metabolite under adverse conditions.

  12. Pseudoazurin from Sinorhizobium meliloti as an electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers.

    Science.gov (United States)

    Ferroni, Félix M; Marangon, Jacopo; Neuman, Nicolás I; Cristaldi, Julio C; Brambilla, Silvina M; Guerrero, Sergio A; Rivas, María G; Rizzi, Alberto C; Brondino, Carlos D

    2014-08-01

    Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.

  13. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis.

    Directory of Open Access Journals (Sweden)

    Sandra Bensmihen

    Full Text Available The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs, produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK from Medicago truncatula called Nod factor perception (NFP in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions, we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection.

  14. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

    Science.gov (United States)

    Bastiat, Bénédicte; Sauviac, Laurent; Picheraux, Carole; Rossignol, Michel; Bruand, Claude

    2012-01-01

    Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4) belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i) are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine), ii) display overlapping regulatory activities, iii) govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv) are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

  15. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa.

    Science.gov (United States)

    Yurgel, Svetlana N; Kahn, Michael L

    2008-12-02

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO(2) by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N(2) to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N(2) fixation is that N(2) fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate "excess" ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix(+)) but was not effective (Eff(-)) in substantially increasing plant growth. Fixed (15)N(2) was transported to the shoots, but most fixed (15)N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix(+)Eff(-) symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior.

  16. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines.

    Science.gov (United States)

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Lluch, Carmen; Herrera-Cervera, José A

    2016-11-01

    Brassinosteroids (BRs) are steroid plant hormones that have been shown to be involved in the response to salt stress in cross-talk with other plant growth regulators such as polyamines (PAs). In addition, BRs are involved in the regulation of the nodulation in the rhizobium-legume symbiosis through the alteration of the PAs content in leaves. In this work, we have studied the effect of exogenous 24-epibrassinolide (EBL) in the response to salinity of nitrogen fixation in the symbiosis Medicago truncatula-Sinorhizobium meliloti. Foliar spraying of EBL restored the growth of plants subjected to salt stress and provoked an increment of the nitrogenase activity. In general, PAs levels in leaves and nodules decreased by the salt and EBL treatments, however, the co-treatment with NaCl and EBL augmented the foliar spermine (Spm) concentration. This increment of the Spm levels was followed by a reduction of the membrane oxidative damage and a diminution of the proline accumulation. The effect of BRs on the symbiotic interaction was evaluated by the addition of 0.01, 0.1 and 0.5 μM EBL to the growing solution, which provoked a reduction of the nodule number and an increment of the PAs levels in shoot. In conclusion, foliar treatment with EBL had a protective effect against salt stress in the M. truncatula-S. meliloti symbiosis mediated by an increment of the Spm levels. Treatment of roots with EBL incremented PAs levels in shoot and reduced the nodule number which suggests a cross-talk between PAs and BRs in the nodule suppression and the protection against salt stress.

  17. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation.

    Science.gov (United States)

    Boscari, Alexandre; Van de Sype, Ghislaine; Le Rudulier, Daniel; Mandon, Karine

    2006-08-01

    Sinorhizobium meliloti possesses several betaine transporters to cope with salt stress, and BetS represents a crucial high-affinity glycine and proline betaine uptake system involved in the rapid acquisition of betaines by cells subjected to osmotic upshock. Using a transcriptional lacZ (beta-galactosidase) fusion, we showed that betS is expressed during the establishment of the symbiosis and in mature nitrogen-fixing nodules. However, neither Nod nor Fix phenotypes were impaired in a betS mutant. BetS is functional in isolated bacteroids, and its activity is strongly activated by high osmolarity. In bacteroids from a betS mutant, glycine betaine and proline betaine uptake was reduced by 85 to 65%, indicating that BetS is a major component of the overall betaine uptake activity in bacteroids in response to osmotic stress. Upon betS overexpression (strain UNA349) in free-living cells, glycine betaine transport was 2.3-fold higher than in the wild-type strain. Interestingly, the accumulation of proline betaine, the endogenous betaine synthesized by alfalfa plants, was 41% higher in UNA349 bacteroids from alfalfa plants subjected to 1 week of salinization (0.3 M NaCl) than in wild-type bacteroids. In parallel, a much better maintenance of nitrogen fixation activity was observed in 7-day-salinized plants nodulated with the overexpressing strain than in wild-type nodulated plants. Taken altogether, these results are consistent with the major role of BetS as an emergency system involved in the rapid uptake of betaines in isolated and in planta osmotically stressed bacteroids of S. meliloti.

  18. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

    Directory of Open Access Journals (Sweden)

    Bénédicte Bastiat

    Full Text Available Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4 belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine, ii display overlapping regulatory activities, iii govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

  19. Comparative toxicity assessment of CeO{sub 2} and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Plascencia-Villa, German; Jose-Yacaman, Miguel [Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer First cytotoxicity study of CeO{sub 2} and ZnO nanoparticles to Sinorhizobium meliloti. Black-Right-Pointing-Pointer First report upon the mechanisms of CeO{sub 2} and ZnO NPs toxicity to S. meliloti. Black-Right-Pointing-Pointer ZnO NPs were found to be bactericidal in lower concentration. Black-Right-Pointing-Pointer CeO{sub 2} NPs had bacteriostatic effect on S. meliloti. - Abstract: Cerium oxide (CeO{sub 2}) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used in a variety of instruments and consumer goods. These NPs are of great concern because of potential toxicity towards human health and the environment. The present work aimed to assess the toxic effects of 10 nm CeO{sub 2} and ZnO NPs towards the nitrogen fixing bacterium Sinorhizobium meliloti. Toxicological parameters evaluated included UV/Vis measurement of minimum inhibitory concentration, disk diffusion tests, and dynamic growth. Ultra high-resolution scanning transmission electron microscopy (STEM) and infrared spectroscopy (FTIR) were utilized to determine the spatial distribution of NPs and macromolecule changes in bacterial cells, respectively. Results indicate that ZnO NPs were more toxic than CeO{sub 2} NPs in terms of inhibition of dynamic growth and viable cells counts. STEM images revealed that CeO{sub 2} and ZnO NPs were found on bacterial cell surfaces and ZnO NPs were internalized into the periplasmic space of the cells. FTIR spectra showed changes in protein and polysaccharide structures of extra cellular polymeric substances present in bacterial cell walls treated with both NPs. The growth data showed that CeO{sub 2} NPs have a bacteriostatic effect, whereas ZnO NPs is bactericidal to S. meliloti. Overall, ZnO NPs were found to be more toxic than CeO{sub 2} NPs.

  20. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti.

    Science.gov (United States)

    Goodwin, Reed A; Gage, Daniel J

    2014-05-01

    In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTS(Ntr)). In this PTS(Ntr), the protein HPr is phosphorylated on histidine-22 by the enzyme EI(Ntr) and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EI(Ntr), both proteins were purified and the activity of EI(Ntr) was measured. Experimentally determined kinetic parameters of EI(Ntr) activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EI(Ntr). Binding experiments using the isolated GAF domain of EI(Ntr) (EIGAF) showed that it is the domain responsible for detection of glutamine. EI(Ntr) activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EI(Ntr) phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).

  1. A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa.

    Science.gov (United States)

    Lipuma, Justine; Cinege, Gyöngyi; Bodogai, Monica; Oláh, Boglárka; Kiers, Aurélie; Endre, Gabriella; Dupont, Laurence; Dusha, Ilona

    2014-12-01

    The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti carries a large number of toxin-antitoxin (TA) modules both on the chromosome and megaplasmids. One of them, the vapBC-5 module that belongs to the type II systems was characterized here. It encodes an active toxin vapC-5, and was shown to be controlled negatively by the complex of its own proteins. Different mutants of the vapBC-5 genes exhibited diverse effects on symbiotic efficiency during interaction with the host plant Medicago sativa. The absence of the entire vapBC-5 region had no influence on nodule formation and nitrogen fixation properties. The strain carrying an insertion in the antitoxin gene showed a reduced nitrogen fixation capacity resulting in a lower plant yield. In contrast, when the toxin gene was mutated, the strain developed more efficient symbiosis with the host plant. The nitrogen fixing root nodules had a delayed senescent phenotype and contained elevated level of plant-derived molecules characteristic of later steps of nodule development. The longer bacteroid viability and abundance of active nitrogen fixing zone resulted in increased production of plant material. These data indicate that modification of the toxin/antitoxin production may influence bacteroid metabolism and may have an impact on the adaptation to changing environmental conditions.

  2. A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response.

    Science.gov (United States)

    Sauviac, Laurent; Bruand, Claude

    2014-07-01

    The EcfG-type sigma factor RpoE2 is the regulator of the general stress response in Sinorhizobium meliloti. RpoE2 activity is negatively regulated by two NepR-type anti-sigma factors (RsiA1/A2), themselves under the control of two anti-anti-sigma factors (RsiB1/B2) belonging to the PhyR family of response regulators. The current model of RpoE2 activation suggests that in response to stress, RsiB1/B2 are activated by phosphorylation of an aspartate residue in their receiver domain. Once activated, RsiB1/B2 become able to interact with the anti-sigma factors and release RpoE2, which can then associate with the RNA polymerase to transcribe its target genes. The purpose of this work was to identify and characterize proteins involved in controlling the phosphorylation status of RsiB1/B2. Using in vivo approaches, we show that the putative histidine kinase encoded by the rsiC gene (SMc01507), located downstream from rpoE2, is able to both positively and negatively regulate the general stress response. In addition, our data suggest that the negative action of RsiC results from inhibition of RsiB1/B2 phosphorylation. From these observations, we propose that RsiC is a bifunctional histidine kinase/phosphatase responsible for RsiB1/B2 phosphorylation or dephosphorylation in the presence or absence of stress, respectively. Two proteins were previously proposed to control PhyR phosphorylation in Caulobacter crescentus and Sphingomonas sp. strain FR1. However, these proteins contain a Pfam:HisKA_2 domain of dimerization and histidine phosphotransfer, whereas S. meliloti RsiC harbors a Pfam:HWE_HK domain instead. Therefore, this is the first report of an HWE_HK-containing protein controlling the general stress response in Alphaproteobacteria.

  3. Effects of Copper Stress on Antioxidant Enzymes of Sinorhizobium Meliloti%铜胁迫对苜蓿中华根瘤菌抗氧化酶系的影响

    Institute of Scientific and Technical Information of China (English)

    马占强; 赵龙飞; 王莉; 李哲斐; 韦革宏

    2011-01-01

    探讨铜胁迫对苜蓿中华根瘤菌抗氧化酶系的影响,揭示苜蓿中华根瘤菌对铜的生理抗性机制.以铜抗性菌株Sinorhizobium meliloti CCNWSX0020和铜敏感性S.meliloti CCNWSX 0018为材料,测定其对铜的最小抑制浓度(MIC)和最大耐受浓度(MTC)及不同铜浓度对其抗氧化保护酶活性的变化.结果表明:(1)在YMA固体培养基上,S.meliloti CCNWSX0020和S.melilotiCCNWSX 0018的MIC分别为0.5 mmol·L-1和0.2 mmol·L-1Cu2+,MTC分别为1.8 mmol·L-1和0.8 mmol·L-1Cu2+.(2)Cu2+浓度≤0.4mmol·L-1时,S.meliloti CCNWSX0020菌体内的SOD、CAT和GPX活性变化不显著;S.meliloti CCNWSX 0018菌体内的SOD、CAT和GPX活性显著升高;Cu2+浓度为0.6 mmol·-1和0.8 mmol·L-1时,前者SOD、CAT和GPX活性显著升高,后者保护酶活性开始降低.随着Cu2+浓度升高,S.meliloti CCNWSX0020的GR活性增强,与对照相比,Cu2+浓度为0.8 mmol·L-1时GR活性提高了110.51%;而S.meliloti CCNWSX 0018的GR活性则反之.(3)在Cu2+浓度≤0.8 mmol·L-1胁迫下,抗性菌株S.meliloti CCNWSX0020可通过提高SOD、CAT、GPX、GR的活性以降低Cu2+的毒害效应,为丰富根瘤菌抗铜机制提供了理论基础.%The physiological mechanism of the resistance to heavy metal stress in rhizobium could be explored through the research on its antioxidative activity. Strain S. meliloti CCNWSX0020 exhibited high intrinsic tolerance to copper and therefore was used in this work to study the physiological mechanism of the bacterial responses to copper stress, and compared with copper-sensitive stain S. meliloti CCNWSX 0018. The results showed that the activities of SOD, CAT, GPX and GR in S. meliloti CCNWSX0020 significantly increased in 0.6 mmol· L-1 Cu2+, and their activities reached the maximum levels in 0.8 mmol·L-1 Cu2+. In comparison, the activities of SOD and CAT in S. meliloti CCNWSX 0018 significantly increased in 0.2 mmol ·L-1 Cu2+, and the activity of GPX increased in 0.4 mmol ·L-1 Cu2+, while the

  4. Structural, functional and calorimetric investigation of MosA, a dihydrodipicolinate synthase from Sinorhizobium meliloti l5-30, does not support involvement in rhizopine biosynthesis.

    Science.gov (United States)

    Phenix, Christopher P; Nienaber, Kurt; Tam, Pui Hang; Delbaere, Louis T J; Palmer, David R J

    2008-07-02

    MosA is an enzyme from Sinorhizobium meliloti L5-30, a beneficial soil bacterium that forms a symbiotic relationship with leguminous plants. MosA was proposed to catalyze the conversion of scyllo-inosamine to 3-O-methyl-scyllo-inosamine (compounds known as rhizopines), despite the MosA sequence showing a strong resemblance to dihydrodipicolinate synthase (DHDPS) sequences rather than to methyltransferases. Our laboratory has already shown that MosA is an efficient catalyst of the DHDPS reaction. Here we report the structure of MosA, solved to 1.95 A resolution, which resembles previously reported DHDPS structures. In this structure Lys161 forms a Schiff base adduct with pyruvate, consistent with the DHDPS mechanism. We have synthesized both known rhizopines and investigated their ability to interact with MosA in the presence and absence of methyl donors. No MosA-catalyzed methyltransferase activity is observed in the presence of scyllo-inosamine and S-adenosylmethionine (SAM). 2-Oxobutyrate can form a Schiff base with MosA, acting as a competitive inhibitor of MosA-catalyzed dihydrodipicolinate synthesis. It can be trapped on the enzyme by reaction with sodium borohydride, but does not act as a methyl donor. The presence of rhizopines does not affect the kinetics of dihydrodipicolinate synthesis. Isothermal titration calorimetry (ITC) shows no apparent interaction of MosA with rhizopines and SAM. Similar experiments with pyruvate as titrant demonstrate that the reversible Schiff base formation is largely entropically driven. This is the first use of ITC to study Schiff base formation between an enzyme and its substrate.

  5. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Plascencia-Villa, Germán; Mukherjee, Arnab; Rico, Cyren M; José-Yacamán, Miguel; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-05-15

    ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.

  6. 苜蓿中华根瘤菌(Sinorhizobium meliloti)中两个gcvA基因的鉴定及其特性

    Institute of Scientific and Technical Information of China (English)

    戚铭盛; 罗利; Hai-ping Cheng; 朱家璧; 俞冠翘

    2008-01-01

    GcvA蛋白是LysR转录因子家族成员,在大肠杆菌(Escherichia coli)中,它激活编码裂解甘氨酸酶系(GCV)操纵子(gcvTHP)的表达,这一过程受甘氨酸诱导.在以前的工作中,我们分别突变了苜蓿中华根瘤菌(Sinorhizobium meliloti)中90个LysR家族转录因子,并鉴定了突变株的表型.本研究证明了苜蓿中华根瘤菌基因组中存在2个gcvA基因gcvA1和gcvA2;苜蓿中华根瘤菌gcvTHP操纵子的充分激活需要它们的同时存在.gcvA1对gcvTHP操纵子的激活需要甘氨酸诱导,而gcvA2对gcvTHP操纵子的激活则不需要甘氨酸诱导,推测苜蓿中华根瘤菌中gcvTHP表达的调控机制与大肠杆菌中的不同.进化分析显示,很多原细菌中都存在GcvA蛋白,而苜蓿中华根瘤菌的GcvA1和GcvA2与大肠杆菌的GcvA的亲缘关系很远,这也许可以解释它们gcvTHP表达调控模式的不同.研究结果为LysR基因家族的功能提供了新的线索.

  7. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function.

    Science.gov (United States)

    Yurgel, Svetlana N; Rice, Jennifer; Mulder, Monika; Kahn, Michael L

    2010-05-01

    The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defect. These results suggest a connection between GlnD, symbiotic metabolism, and the NSR, but the nature of this connection is unknown. In many bacteria, GlnD modifies the PII proteins, GlnB and GlnK, as it transduces a measurement of bacterial nitrogen status to a cellular response. We have now constructed and analyzed Rm1021 mutants missing GlnB, GlnK, or both proteins. Rm1021 Delta glnK Delta glnB was much more defective in its NSR than either single mutant, suggesting that GlnB and GlnK overlap in regulating the NSR in free-living Rm1021. The single mutants and the double mutant all formed an effective symbiosis, indicating that symbiotic nitrogen exchange could occur without the need for either GlnB or GlnK. N-terminal truncation of the GlnD protein interfered with PII protein modification in vitro, suggesting either that unmodified PII proteins were responsible for the glnD mutant's ineffective phenotype or that connecting GlnD and appropriate symbiotic behavior does not require the PII proteins.

  8. Alfalfa yield and quality as function of nitrogen fertilization and symbiosis with Sinorhizobium meliloti Produção e qualidade de alfafa em função da adubação nitrogenada e da simbiose com Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Wladecir Salles de Oliveira

    2004-01-01

    Full Text Available The efficiency of the symbiotic process between alfalfa (Medicago sativa L. and Sinorhizobium meliloti can be drastically affected by soil nitrogen. This research evaluates how mineral fertilization affects the contribution of symbiosis to the yield and quality of alfalfa in two experiments under controlled conditions, and a third one in the field. Under controlled conditions, positive effect of nitrogen fertilizer was observed, whereas, in the field, negative effect of the mineral nitrogen (450 kg ha-1 year-1 on the symbiotic process was observed, with reduction of nodulation and nitrogenase activity. However, there was no effect on yield, total nitrogen concentration, crude protein, non-protein nitrogen and digestibility in relation to the treatment without mineral N. The cultivars showed similar performance under different conditions, with 'Crioula Brasileira' and 'Crioula Chilena' showing the highest yield and 'Pioneer-5454' the highest forage nutritive value.A eficiência do processo simbiótico entre a alfafa (Medicago sativa L. e a bactéria Sinorhizobium meliloti pode ser afetada pela presença de nitrogênio no solo. Avaliou-se a contribuição da simbiose em comparação à adubação nitrogenada em componentes da produção de alfafa, em dois experimentos sob condições controladas e um terceiro em campo. Sob condições controladas, verificou-se efeito positivo da adubação nitrogenada sobre as variáveis estudadas, sobre a produção de matéria seca, teor de nitrogênio e proteína. Em campo, verificou-se efeito negativo do N-mineral (450 kg ha-1 ano-1 sobre o processo simbiótico, com redução da nodulação e atividade da enzima nitrogenase, sem efeito sobre a produção de matéria seca, nitrogênio total, proteína bruta, nitrogênio não protéico e digestibilidade. O desempenho dos cultivares estudados foi semelhante nos dois ambientes de estudo, sendo os cultivares Crioula Brasileira e Crioula Chilena os mais produtivos e

  9. Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021.

    Directory of Open Access Journals (Sweden)

    Svetlana N Yurgel

    Full Text Available Transcriptional changes in the nitrogen stress response (NSR of wild type S. meliloti Rm1021, and isogenic strains missing both PII proteins, GlnB and GlnK, or carrying a ΔglnD-sm2 mutation were analyzed using whole-genome microarrays. This approach allowed us to identify a number of new genes involved in the NSR and showed that the response of these bacteria to nitrogen stress overlaps with other stress responses, including induction of the fixK2 transcriptional activator and genes that are part of the phosphate stress response. Our data also show that GlnD and GlnBK proteins may regulate many genes that are not part of the NSR. Analysis of transcriptome profiles of the Rm1021 ΔglnD-sm2 strain allowed us to identify several genes that appear to be regulated by GlnD without the participation of the PII proteins.

  10. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  11. 苜蓿中华根瘤菌与鹰嘴豆中慢生根瘤菌原生质体的融合研究%Study on fusion of protoplasts from Sinorhizobium meliloti and Mesorhizobium ciceri

    Institute of Scientific and Technical Information of China (English)

    韦革宏; 朱铭莪; 郭杰; 陈文新

    2002-01-01

    利用原生质体融合技术,以链霉素和青霉素分别作为苜蓿中华根瘤菌(Sinorhizobium meliloti)102F28和鹰嘴豆中慢生根瘤菌(Mesorhizobium ciceri )USDA3383的抗药性选择标记,成功地获得了102F28和USDA3383的属间融合子.该融合子可分别在双亲寄主植物上结瘤,其在细胞形态、大小和蛋白质电泳图谱上与亲本菌株均有所差异.融合子与102F28的DNA同源性为90.8%,而与USDA3383的DNA同源性为15.2%.

  12. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    Science.gov (United States)

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  13. Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021.

    Science.gov (United States)

    Wang, Chunxia; Sheng, Xiaoyan; Equi, Raymie C; Trainer, Maria A; Charles, Trevor C; Sobral, Bruno W S

    2007-12-01

    Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.

  14. HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo.

    Science.gov (United States)

    Amarelle, Vanesa; Rosconi, Federico; Lázaro-Martínez, Juan Manuel; Buldain, Graciela; Noya, Francisco; O'Brian, Mark R; Fabiano, Elena

    2016-04-01

    Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.

  15. 苜蓿中华根瘤菌nifA基因突变影响多种细胞学过程%Disruption of nifA Gene Influences Multiple Cellular Processes in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    巩子英; 朱家璧; 俞冠翘; 邹华松

    2007-01-01

    Sinorhizobium meliloti nifA is important in fixing nitrogen during symbiosis. A nifA null mutant induces small white invalid nodules in the roots of host plant. The additional phenotypic alterations associated with the disruption of the nifA gene are reported in this study. Under a free-living state, S. meliloti nifA mutant reduces its ability to swarm on a half-solid plate. Interestingly, the AHL (Acylhomoserine lactones) contents in the nifA mutant are lower than that of the wild type during the lag phase,whereas it is reversed in the logarithmic and stationary phases. Quantitative spectrophotometric assays reveal that the total amount of extracellular proteins of the nifA mutant are lower than that of the wild type. In addition, the mutant abolishes its nodulation competitive ability during symbiosis. These findings indicate that NifA plays a regulatory role in multiple cellular processes in S.meliloti.%苜蓿中华根瘤菌nifA基因在共生固氮过程中担负着调控功能,nifA突变株Rm1354在宿主植物的根部诱导白色无效根瘤.本文报道Rm1354在自生状态下的表型变化.nifA的突变导致根瘤菌在半固体培养基上泳动变慢,胞外蛋白含量降低.有趣的是,Rm1354在延宕期间高丝氨酸内酯含量比野生型低,在指数期和静止期却比野生型高.另外,突变株Rm1354的竞争结瘤能力也大大减弱.这些结果揭示了苜蓿中华根瘤菌nifA基因对许多细胞学过程都有调控作用.

  16. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases.

    Science.gov (United States)

    Salzer, Peter; Feddermann, Nadja; Wiemken, Andres; Boller, Thomas; Staehelin, Christian

    2004-08-01

    The Medicago truncatula (Gaertn.) ecotypes Jemalong A17 and R108-1 differ in Sinorhizobium meliloti-induced chitinase gene expression. The pathogen-inducible class IV chitinase gene, Mtchit 4, was strongly induced during nodule formation of the ecotype Jemalong A17 with the S. meliloti wild-type strain 1021. In the ecotype R108-1, the S. meliloti wild types Sm1021 and Sm41 did not induce Mtchit 4 expression. On the other hand, expression of the putative class V chitinase gene, Mtchit 5, was found in roots of M. truncatula cv. R108-1 nodulated with either of the rhizobial strains. Mtchit 5 expression was specific for interactions with rhizobia. It was not induced in response to fungal pathogen attack, and not induced in roots colonized with arbuscular mycorrhizal (AM) fungi. Elevated Mtchit 5 gene expression was first detectable in roots forming nodule primordia. In contrast to Mtchit 4, expression of Mtchit 5 was stimulated by purified Nod factors. Conversely, Mtchit 4 expression was strongly elevated in nodules formed with the K-antigen-deficient mutant PP699. Expression levels of Mtchit 5 were similarly increased in nodules formed with PP699 and its parental wild-type strain Sm41. Phylogenetic analysis of the deduced amino acid sequences of Mtchit 5 (calculated molecular weight = 41,810 Da, isoelectric point pH 7.7) and Mtchit 4 (calculated molecular weight 30,527 Da, isoelectric point pH 4.9) revealed that the putative Mtchit 5 chitinase forms a separate clade within class V chitinases of plants, whereas the Mtchit 4 chitinase clusters with pathogen-induced class IV chitinases from other plants. These findings demonstrate that: (i) Rhizobium-induced chitinase gene expression in M. truncatula occurs in a plant ecotype-specific manner, (ii) Mtchit 5 is a putative chitinase gene that is specifically induced by rhizobia, and (iii) rhizobia-specific and defence-related chitinase genes are differentially influenced by rhizobial Nod factors and K antigens.

  17. 苜蓿中华根瘤菌042BM noeAB基因的转录调控%Transcriptional regulation of noeAB from Sinorhizobium meliloti 042BM

    Institute of Scientific and Technical Information of China (English)

    杜秉海; 王磊; 李小红; 亓苏伟; 杨苏声

    2005-01-01

    对苜蓿中华根瘤菌(Sinorhizobium meliloti)042BM noeAB基因的表达调控进行研究.结果发现,葫芦巴碱不能使noeAB的表达水平提高,证明它们的转录不受nodD2的调控.当nodD3和syrM同时存在时,noeAB的表达水平没有明显的变化,表明它们也不受nodD3-syrM系统的调控.在FY基本培养基上,毛地黄黄酮的诱导使noeAB基因的表达水平提高16倍,而在不添加该诱导物的TY培养基上,noeAB基因的表达水平也能够提高30倍以上,说明noeAB是受nodD1控制的,但除受毛地黄黄酮诱导外,noeAB还可能受到其他因子的调节.

  18. Positional Analysis of a Gene Related to Salt Tolerance in Sinorhizobium meliloti by Transposon Rescue%转座子挽救法对苜蓿中华根瘤菌与耐盐有关基因的定位

    Institute of Scientific and Technical Information of China (English)

    李小红; 杜秉海; 章晓庆; 王磊; 杨苏声

    2004-01-01

    用含Tn5转座子的质粒pRL1063a诱变苜蓿中华根瘤菌(Sinorhizobium meliloti) 042BM,得到盐敏感突变株042BML-2.采用转座子挽救法对Tn5插入位点两边的序列进行克隆与测序,获得了1 179 bp的转座子插入位点侧翼DNA序列.在GenBank中进行序列同源性和基因定位分析,结果表明:转座子插入在一个功能未知的基因内部,此基因长6 270 bp.研究证明:该基因与042BM的耐盐性有关,并定名为rtsC.氨基酸疏水性分析表明,在RtsC蛋白的N端有两个跨膜区,该蛋白与细菌趋化性相关蛋白的功能域有同源性.并对RtsC蛋白在苜蓿中华根瘤菌042BM耐盐性中的作用进行了讨论.

  19. 苜蓿中华根瘤菌matB基因的克隆及其功能的研究%Cloning and Functional Analysis of matB Gene in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    王永宝; 孙杰; 刘君; 陈爱民; 王彦章

    2009-01-01

    通过同源性分析,发现苜蓿中华根瘤菌(Sinorhizobium meliloti)菌株Rm1021中matB基因与三叶草生物型豌豆根瘤菌(Rhizobium leguminosarum by.trifolii)和慢生型大豆根瘤菌(Bradyrhizobium japonicum USDA110)中编码丙二酸单酰辅酶A合成酶(malonyl-CoA synthetase)基因在氨基酸水平上分别达到了75%和67%一致性,具有高度同源性.因此,从Rm1021中克隆出matB基因,并在大肠埃希菌(Escherichia coli)中进行体外诱导表达和纯化.纯化的MalB蛋白具有丙二酸单酰辅酶A合成酶的活性.测定的Km值是710 μmol,Vmax是0.209 μmol/min/mg.

  20. 苜蓿根瘤菌对不同形态磷利用效率的研究%Utilization of different forms of phosphorus by Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    刘卢生; 玉永雄; 郭蕾; 胡艳; 周磊; 王荣

    2015-01-01

    利用大幅下降;根瘤菌很难利用磷酸铝和磷酸铁中的磷。培养液 pH 对植酸钙镁和磷酸钙的有效性影响较大,而对磷酸铝和磷酸铁影响较小。根瘤菌的生长会导致培养液 pH 的降低,促进难溶性磷中磷的释放,提高有效磷含量,但提高程度随磷形态而异。%To study the utilization of different forms of phosphorous by acid-tolerant Sinorhizobium meliloti , rhizobia were cultured under three pH conditions;pH of 4.1,7.0 and 9.0.Solid and liquid culture were used to investigate the growth of rhizobia in different phosphorus media [phosphorus free control (CK),organic phos-phorus with yeast extract (CKYE-P ),inorganic phosphorus with K2 HPO4 (CKP),phytin (TPhy-P ),calcium phos-phate (TCa-P ),aluminum phosphate (TAl-P )and iron phosphate (TFe-P )].The colony morphology,diameter on solid media,absorbance and available phosphorous and pH in liquid medium were measured.Under all pH con-ditions,the rhizobia growth in CK was the poorest.Both the colony diameter of CKYE-P and CKP in solid media and the absorbance in liquid media were significantly higher than that in CK,suggesting that phosphorous was the key factor influencing the growth of rhizobia in this experiment.The colony diameter of rhizobiain thephyt-in treatment (TPhy-P )was largest in all media and pH levels;the aluminum phosphate treatment (TAl-P )and the iron phosphate treatment (TFe-P )produced the smalled colonies.After liquid culturing,the available phosphor-us and rhizobia absorbance of TPhy-P as well as TCa-P in neutral and acid medium were much higher than those in alkaline medium.The available phosphorus and rhizobia absorbance of TAl-P and TFe-P were low in all media. The growth of rhizobia led to decreased pH in all media.When compared to the non-inoculated control,availa-ble phosphorus enhancement in the inoculated treatment was variable.The results shows that alfalfa rhizobia could effectively utilize phosphorous in the form of

  1. La simbiosis fijadora de nitrógeno Sinorhizobium meliloti-alfalfa: aproximaciones ómicas aplicadas a la identificación y caracterización de determinantes genéticos del rizobio asociados a la colonización temprana de la raíz de alfalfa (Medicago sativa)

    OpenAIRE

    Salas, María Eugenia

    2015-01-01

    Sinorhizobium meliloti es una α-proteobacteria capaz de establecer asociaciones simbióticas con plantas de los géneros Medicago, Melilotus y Trigonella. Esta asociación es el resultado de un complejo diálogo molecular entre los simbiontes, que se diferencian a lo largo de la interacción para dar lugar a un nuevo órgano en las raíces de las plantas, el nódulo fijador de nitrógeno. El nicho simbiótico accesible a los rizobios está naturalmente limitado, y resulta ocupado por aquellas cepas que ...

  2. Isolation of Salt-tolerant Sinorhizobium meliloti in Xinjiang and Screening for High-efficient Strains%新疆耐盐苜蓿根瘤菌的分离和高效菌株的筛选

    Institute of Scientific and Technical Information of China (English)

    熊志锐; 张新宇; 王永宝; 徐永生; 耿卫东; 孙杰

    2009-01-01

    [目的]人工接菌苜蓿根瘤菌和筛选高效菌株.[方法]采集新疆14个地州不同生态区、不同类型土样132份,采用苜蓿捕获法分离、纯化获得81个苜蓿根瘤菌菌株.[结果]快速PCR检测鉴定发现,分离得到的根瘤菌菌株均属于苜蓿中华根瘤菌(Sinorhizobium Meliloti).[结论]耐盐实验表明,这些菌株在YMA培养基上的耐盐能力在3.5%~5%NaCl,进一步分析发现土壤中盐含量与苜蓿根瘤菌的耐盐能力没有明显的相关性.对耐5%NaCl的8个根瘤菌菌株的16S rDNA序列进行分析,发现这些其序列同源性很高,相似性达到99.8%.根瘤菌接种实验表明,这8个菌株均能明显增加紫花苜蓿植株地上部分生长,但不同菌株其固氮效率存在显著差异,其中TC-Y菌株共生固氮效率最高.

  3. SUBCLONING AND SEQUENCING OF DNA FRAGMENT RELATED TO SALT TOLERANCE IN SINORHIZOBIUM MELILOTI 042B%苜蓿中华根瘤菌与耐盐有关DNA片段的亚克隆和测序分析

    Institute of Scientific and Technical Information of China (English)

    葛世超; 樊振川; 陈雪松; 杨苏声

    2001-01-01

    将苜蓿中华根瘤菌(Sinorhizobium meliloti)042B与耐盐有关的4kb Cla Ⅰ DNA片段克隆在pML122上,用HindⅢ酶切下其2.4kb DNA片段,回收后与pBBR1-MCS2连接,然后转化大肠杆菌(Escherichia coli)DH5α,筛选到转化子GS2.将残留在pML122上1.6kb Cla Ⅰ-HindⅢDNA片段连同质粒一起回收,让其自连,转化大肠杆菌S17-1,得到转化子GS0.以GS0为供体,042B的盐敏感突变株GZ17为受体,进行二亲本杂交,没有得到接合子.以GS2为供体,GZ17为受体,在辅助质粒pRK2013的协助下,进行三亲本杂交,筛选到接合子GG2,获得2.4kb Hind Ⅲ与耐盐有关的DNA片段.将此片段连接到测序载体pGEM-7Zf(+)上进行测序.测序结果表明,该2.4kb HindⅢDNA片段含有3个开放阅读框(ORF).在此基础上再一次亚克隆,获得1.9kb 与耐盐有关的DNA片段.

  4. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti.

    Science.gov (United States)

    Kobayashi, Hajime; Simmons, Lyle A; Yuan, Daniel S; Broughton, William J; Walker, Graham C

    2008-01-01

    The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.

  5. Identification and Function Reasearch of fabA and fabB of Sinorhizobium meliloti%苜蓿中华根瘤菌fabA和fabB基因功能的鉴定

    Institute of Scientific and Technical Information of China (English)

    胡喆; 马金成; 蒋晶晶; 王海洪

    2013-01-01

    在大肠杆菌(Escherichia coli)脂肪酸合成酶体系中,fabA基因编码有双功能的3-羟基脂酰ACP脱水异构酶,其异构产物能被fabB基因编码的3-酮基脂酰ACP合成酶Ⅰ延伸,合成不饱和脂肪酸,该FabA-FabB途径被认为是缺氧条件下不饱和脂肪酸合成的经典途径.生物信息学分析发现,苜蓿中华根瘤菌(Sinorhizobium meliloti)的SmFabA与EcFabA相似性达到60.6%,具有相同的保守活性位点和两个保守的α螺旋结构;SmFabB与EcFabB相似性达到61.1%,具有相同的Cys-His-His活性中心.用携带SmfabA和SmfabB的质粒载体遗传互补大肠杆菌湿度敏感突变株CY57和CY242,在添加三氯森(TCL)抑制烯脂酰ACP还原酶活性的条件下,转化子能在42℃恢复生长,且放射性薄层层析能检测到转化子中不饱和脂肪酸棕榈油酸(A9C16:1)和十八碳烯酸(△11C18:1)的合成.体外重建脂肪酸合成反应表明,SmFabA能催化羟脂酰ACP的脱水反应且能够使反-2-癸烯酰ACP异构化,SmFabB能催化不同链长的脂酰ACP和丙二酸单酰ACP的聚合反应.另外,未得到SmFabA和SmFabB的突变株,表明SmFabA和SmFabB可能是苜蓿中华根瘤菌脂肪酸合成酶系中必不可少的关键蛋白.上述结果证实了苜蓿中华根瘤菌fabA和fabB两个基因在不饱和脂肪酸合成中的功能.

  6. 苜蓿中华根瘤菌(Sinorhizobium meliloti)LuxR家族转录因子ExpR调节motC操纵子的表达%A LuxR family regulator, ExpR regulates the expression of motC operon from Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    罗利; 刘芳华; 朱家壁; 俞冠翘

    2006-01-01

    目前已知苜蓿中华根瘤菌(S.meliloti)Rm1021 ExpR+突变导致胞外多糖Ⅱ(EPS Ⅱ)的过量表达,而胞外多糖是根瘤菌成功侵染宿主植物形成有效根瘤必需的物质.软琼脂板实验发现ExpR+突变株运动能力有缺陷.但是鞭毛染色实验并没有检测到突变株的鞭毛与野生型有什么不同.通过启动子-lacZ融合子进一步研究突变株中基因表达的差异发现,ExpR以细胞密度依赖的方式调节motC操纵子的表达.由此可见,在苜蓿中华根瘤菌中,ExpR同时参与了胞外多糖Ⅱ的合成和细胞运动能力的调节.

  7. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with LMW RNA group II Sinorhizobium meliloti of Medicago, Melilotus and Trigonella from soils of mainland Spain

    Science.gov (United States)

    Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...

  8. The expression of gene related to salt tolerance from Sinorhizobium meliloti 042BM in Escherichia coli and purification of its fusion protein%苜蓿中华根瘤菌与耐盐有关基因rstA在大肠杆菌中的高效表达及其产物的纯化

    Institute of Scientific and Technical Information of China (English)

    葛世超; 王磊; 李小红; 亓苏伟; 杨苏声

    2005-01-01

    苜蓿中华根瘤菌(Sinorhizobium meliloti)042BM与耐盐有关的1.9kb DNA片段含有两个开放阅读框,采用PCR方法分别将它们扩增,连接到穿梭质粒上,并进行了耐盐功能检测,证明其中的ORF2具有耐盐性,定名为rstA基因.将它分别克隆到表达载体pThio-HisA、B和C上,构建成重组质粒pGSA、pGSB和pGSC,转化大肠杆菌(Escherichia coli)Top10后,经IPTG诱导,pGSA获得高效表达.表达蛋白占菌体总蛋白的36%,但大多数以包涵体形式存在.对表达产物依次进行ProBondTM树脂亲和纯化、饱和硫酸铵盐析,最后得到纯度为95%的融合蛋白.SDS-PAGE显示纯化的蛋白质为分子量43kD的单一蛋白带,经Western blot检测证实了表达结果.

  9. 北方寒地草场土壤中苜蓿根瘤菌分布状况研究%Research on the Distribution of Sinorhizobium meliloti in Northern Cold Grassland Soil

    Institute of Scientific and Technical Information of China (English)

    杨旭升; 马志军; 郭春景

    2011-01-01

    根瘤菌接种效果受到施用地土壤中上著根瘤菌数量地影响。用MPN法对大庆地区不同北方寒地草场多种土壤进行了土著苜蓿根瘤菌数量分布状况研究,结果表明:在非苜蓿种植区,土著苜蓿根瘤菌数量为100~10000个/g,在苜蓿种植区上壤中数量为10~300万个/g。可见,北方寒地草场上壤中土著苜蓿根瘤菌含量较低,根瘤菌接种技术是此类地区发展卣蓿种植业的一项重要技术。%The effect of Rhizobium inoculation applied to the soil is influenced by the number of indigenous rhizohia. MPN method was used to research the number of indigenous Rhizobium meliloti distribution in a variety of cold grassland soil in different regions of Daqing. Results showed that: in the non-alfa-gruwing area, the number of indigenous Rhizobitun meliloti was 100 to 10 000 / g, while in the alfalfa-growing area, the number of was 100.000 to 3 million/g. Ohviously, cold northern grassland soils have low levels of indigenous Rhizobium meliloti and Rhizohium inoculation is an important altalht farminng technology for the development of alfalfa growing for sueh areas.

  10. 利用Tn5-1063转座诱变法分离苜蓿中华根瘤菌042BM noeB基因的研究%Study on Isolation of noeB of Sinorhizobium meliloti 042BMby Tn5-1063 Mutagenesis

    Institute of Scientific and Technical Information of China (English)

    杜秉海; 李小红; 林榕姗; 王磊; 杨苏声

    2004-01-01

    采用三亲本杂交方法将带有Tn5-1063(含luxAB)的质粒pRL1063a导入苜蓿中华根瘤菌(Sinorhizobium meliloti)042BM,进行转座子插入诱变,在含有氯霉素、卡那霉素的TY平板上筛选接合子.通过结瘤试验,从1000个突变株中,筛选到3个结瘤突变株042BMR5、042BMR11和 042BRM29.它们都表现出发光酶活性,表明转座子正向插入到基因组中的某个启动子下游.Southern杂交结果证实,转座子均为单一位点插入.对042BMR5突变株基因组进行反向PCR,扩增位于Tn5-1063两端的侧翼序列.测序结果表明,转座子插入到苜蓿中华根瘤菌的共生质粒pSymA noeB基因内.根据基因组中noeB上游和下游序列扩增出042BM noeB,其与苜蓿中华根瘤菌1021 noeB的同源性为98%,而与NoeB蛋白的氨基酸序列相似性为95%.疏水性分析发现,NoeB是一个跨膜蛋白,在N末端有4个跨膜区,其中包含3个初级螺旋和1个次级螺旋.

  11. Screening for autoinducer synthase gene in Sinorhizobium meliloti and analysis of the autoinducer produced by recombinant expression in Escherichia coli%中华根瘤菌自体诱导物合成酶基因的筛选及其在大肠杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    汪洋; 郑会明; 杨梦华; 钟增涛; 朱军

    2007-01-01

    通过携带有mariner转座子的质粒pJZ290随机插入诱变中华根瘤菌(Sinorhizobium meliloti)建立突变子文库,并从中筛选到自体诱导物(autoinducer,AI)部分缺失突变株YW1.Arbitrary PCR扩增、DNA测序得到YW1基因组DNA中mariner转座子两端侧翼序列,经DNA序列拼接在GenBank上进行同源性分析后获得一个621bp的完整的开放阅读框(ORF),该ORF编码的酶具有206个氨基酸,与草木樨中华根瘤菌(Sinorhizobium medicae)WSM419的LuxI类自体诱导物合成酶(autoinducer synthase)TraI的同源性高达99%.因此,也将该基因命名为traⅠ.将该基因克隆到广宿主范围表达载体pYC12并在大肠杆菌Escherichia coli DH5α中成功表达,C18反相薄层层析(TLC)在阳性重组子培养上清中检测到四种自体诱导物分子,其中的两种正是AI缺失突变株YW1所缺失的AI,这些结果表明该traⅠ基因在苜蓿中华根瘤菌负责合成两种自体诱导物分子,为进一步研究其群体感应系统奠定了理论基础.

  12. Cloning, deletion and functional analysis of noeA from Sinorhizobium meliloti 042BM%苜蓿中华根瘤菌042BM noeA基因的克隆、敲除与功能的初步分析

    Institute of Scientific and Technical Information of China (English)

    杜秉海; 姜巨全; 李小红; 王磊; 杨苏声

    2005-01-01

    通过PCR扩增获得了042BM的noeA基因.该基因与苜蓿中华根瘤菌(Sinorhizobium meliloti)1021noeA的同源性为99%,而其NoeA与1021NoeA的相似性为97%.还发现其NoeA与中慢生根瘤菌(Mesorhizobium sp.)BNC1可能的SAM-依赖性的甲基转移酶相似性为32%,而其303~362氨基酸区域与大肠杆菌(Escherichia coli)的核糖体50S亚基的L11蛋白甲基转移酶(PrmA)的160~220氨基酸区域的相似性达到41%.通过插入卡那盒,敲除noeA,获得突变株042BMA-Km.与苜蓿中华根瘤菌042BM相比,敲除noeA的突变株在普通紫花、保定、宁夏、百发和傲汉苜蓿品种上的结瘤数、根瘤鲜重和植株地上部分的干重都有不同程度的增加,而在秘鲁苜蓿品种上的结瘤数和植株地上部分的干重明显下降,在皇后和美国杂花苜蓿品种上则没有明显的变化.

  13. Growth and Nodulation Competitiveness of Poly-3-hydroxybutyrate Metabolism Mutants of Sinorhizobium meliloti and the Effects of Exogenous Biotin%苜蓿根瘤菌聚羟丁酸代谢突变体的竞争生长和结瘤能力以及外源生物素的影响

    Institute of Scientific and Technical Information of China (English)

    戴美学; 武波; 柏学亮; 张成刚; 马庆生

    2003-01-01

    对苜蓿根瘤菌(Sinorhizobium meliloti)聚羟丁酸(PHB)代谢突变体与野生型菌株之间,以及不同突变体之间的竞争生长和竞争结瘤能力在不同培养条件下进行了测定,并研究了外源生物素对各突变体竞争生长和竞争结瘤能力的影响.结果表明:①phbC突变体菌株与野生型菌株共培养,不论培养基中添加、不添加外源生物素,phbC突变体均表现出生长竞争能力的严重缺陷;竞争结瘤实验也显示,该突变体同野生型菌株竞争结瘤能力大幅下降;说明PHB合成能力的缺陷影响了菌株的竞争生长和竞争结瘤能力.②bdhA突变体与野生型菌株共培养,在不添加外源生物素的情况下,bdhA突变体同野生型菌株竞争生长的能力有明显缺陷,但在添加外源生物素的情况下,其竞争生长能力有明显提高;bdhA::Tn5突变体与phbC::Tn5-233突变体共培养,如培养基中不添加外源生物素,二者间的竞争生长能力无大的差异;但若添加外源生物素,则bdhA突变体的竞争生长能力明显高于phbC突变体;表明外源生物素对bdhA突变体的竞争生长能力有重要作用.

  14. Denitrification by Rhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.

    1996-10-01

    Rhizobium meliloti strains were investigated for their denitrification activity as free-living cells and in nodules on lucerne (Medicago sativa) roots. They were also investigated for presence of nitrous oxide reductase (nos) activity and for genes using a nosZ probe derived from the Pseudomonas stutzeri. To decide whether R. meliloti strains used as inoculants contribute to the total denitrification activity in a lucerne ley, strains with different denitrifying capacities were used in field and laboratory experiments. The nitrate reduction activity of R. meliloti during anaerobic respiration was compared with that of a strain of Pseudomonas aeruginosa. A great diversity in the denitrification activity was found within strains of R. meliloti, and four of thirteen investigated strains showed an obvious denitrification activity. Two denitrifying bacteria were used as references, one strain each of Bradyrhizobium japonicum and P. aeruginosa. All but one of the R. meliloti strains hybridized to the PstI-fragment of the nosZ-gene from P. stutzeri. Two sizes of the hybridizing fragment, 5 and 7 kb, were noticed. Nos activity was only shown in three R. meliloti strains, and these were all characterized by a high denitrification activity. The potential denitrification activity was about 20, 40, and 80 times higher than the actual denitrification activity for lucerne, fallow, and grass, respectively. The potential denitrification activity was almost the same in lucerne and grass planted soils. Compared with the unplanted soil, the presence of lucerne roots in the soil increased the actual denitrification activity, while roots of both plant species, grass and lucerne, increased the potential denitrification activity in the soil. 32 refs, 7 figs, 1 tab

  15. Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58.

    Science.gov (United States)

    Galardini, Marco; Bazzicalupo, Marco; Biondi, Emanuele; Brambilla, Eveline; Brilli, Matteo; Bruce, David; Chain, Patrick; Chen, Amy; Daligault, Hajnalka; Davenport, Karen Walston; Deshpande, Shweta; Detter, John C; Goodwin, Lynne A; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Klenk, Hans-Peter; Kyrpides, Nikos C; Markowitz, Victor; Mavrommatis, Kostas; Mocali, Stefano; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pini, Francesco; Pitluck, Sam; Spini, Giulia; Szeto, Ernest; Teshima, Hazuki; Woyke, Tanja; Mengoni, Alessio

    2013-12-20

    Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively.

  16. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis

    Directory of Open Access Journals (Sweden)

    Estibaliz eLarrainzar

    2014-08-01

    Full Text Available The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume-Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419 or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher N2-fixation rates, which were correlated with a larger nodule biomass, while nodule number was similar in both systems. In terms of plant nodule metabolism, M. truncatula-S. medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-assimilation activities were comparable to those measured in nodules infected with S. meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining of high symbiotic N2-fixation rates, better growth and improved general plant performance.

  17. Two different stable low molecular weight RNA (LMW RNA) profiles within Sinorhizobium meliloti and within Sinorhizobium medicae

    Science.gov (United States)

    LMW RNA profiles of 179 isolates from Medicago, Melilotus and Trigonella species growing in a field site in northern Spain were analysed. Four different LMW RNA profiles designated I through IV were identified. Most of the isolates displayed either LMW RNA profile I or III (37 and 45%, respectively)...

  18. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.

    Directory of Open Access Journals (Sweden)

    Andreas F Haag

    2011-10-01

    Full Text Available Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.

  19. SINORHIZOBIUM MELILOTI ELECTROTRANSPORANT CONTAINING ORTHO-DECHLORINATION GENE SHOWS ENHANCED PCB-DECHLORINATION. (R828770)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. SMb20651 es una proteína acarreadora de acilos de Sinorhizobium meliloti /

    OpenAIRE

    Ramos Vega, Ana Laura sustentante.

    2009-01-01

     tesis que para obtener el grado de Doctor en Ciencias Biomédicas, presenta Ana Laura Ramos Vega ; asesor Isabel María López Lara. 76 páginas : ilustraciones. Doctorado en Ciencias Biomédicas UNAM, Centro de Ciencias Genómicas, 2009

  1. Two plant bacteria, S. meliloti and Ca. Liberibacter asiaticus, share functional znuABC homologues that encode for a high affinity zinc uptake system.

    Directory of Open Access Journals (Sweden)

    Cheryl M Vahling-Armstrong

    Full Text Available The Znu system, encoded for by znuABC, can be found in multiple genera of bacteria and has been shown to be responsible for the import of zinc under low zinc conditions. Although this high-affinity uptake system is known to be important for both growth and/or pathogenesis in bacteria, it has not been functionally characterized in a plant-associated bacterium. A single homologue of this system has been identified in the plant endosymbiont, Sinorhizobium meliloti, while two homologous systems were found in the destructive citrus pathogen, Candidatus Liberibacter asiaticus. To understand the role of these protein homologues, a complementation assay was devised allowing the individual genes that comprise the system to be assayed independently for their ability to reinstate a partially-inactivated Znu system. Results from the assays have demonstrated that although all of the genes from S. meliloti were able to restore activity, only one of the two Ca. Liberibacter asiaticus encoded gene clusters contained genes that were able to functionally complement the system. Additional analysis of the gene clusters reveals that distinct modes of regulation may also exist between the Ca. Liberibacter asiaticus and S. meliloti import systems despite the intracellular-plant niche common to both of these bacteria.

  2. DNA Diversification in Two Sinorhizobium Species▿ †

    OpenAIRE

    Guo, Xianwu; Flores, Margarita; Morales, Lucía; García, Delfino; Bustos, Patricia; González, Víctor; Palacios, Rafael; Dávila, Guillermo

    2007-01-01

    The comparative analysis of genomic characteristics and single-nucleotide polymorphism patterns from large fragments borne on different replicons of Sinorhizobium spp. genomes clearly demonstrate that DNA recombination among closely related bacteria is a major event in the diversification of this genome, especially in pSymA, resulting in mosaic structure.

  3. Recombination within and between species of the alpha proteobacterium Bartonella infecting rodents.

    Science.gov (United States)

    Paziewska, Anna; Harris, Philip D; Zwolińska, Lucyna; Bajer, Anna; Siński, Edward

    2011-01-01

    Bartonella infections from wild mice and voles (Apodemus flavicollis, Mi. oeconomus, Microtus arvalis and Myodes glareolus) were sampled from a forest and old-field habitats of eastern Poland; a complex network of Bartonella isolates, referrable to B. taylorii, B. grahamii, B. birtlesii and B. doshiae, was identified by the sequencing of a gltA fragment, comparable to previous studies of Bartonella diversity in rodents. Nested clade analysis showed that isolates could be assigned to zero- and one-step clades which correlated with host identity and were probably the result of clonal expansion; however, sequencing of other housekeeping genes (rpoB, ribC, ftsZ, groEl) and the 16S RNA gene revealed a more complex situation with clear evidence of numerous recombinant events in which one or both Bartonella parents could be identified. Recombination within gltA was found to have generated two distinct variant clades, one a hybrid between B. taylorii and B. doshiae, the other between B. taylorii and B. grahamii. These recombinant events characterised the differences between the two-step and higher clades within the total nested cladogram, involved all four species of Bartonella identified in this work and appear to have played a dominant role in the evolution of Bartonella diversity. It is clear, therefore, that housekeeping gene phylogenies are not robust indicators of Bartonella diversity, especially when only a single gene (gltA or 16S RNA) is used. Bartonella clades infecting Microtus were most frequently involved in recombination and were most frequently tip clades within the cladogram. The role of Microtus in influencing the frequency of Bartonella recombination remains unknown.

  4. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.

    Directory of Open Access Journals (Sweden)

    Isabel Margaret

    Full Text Available In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean.

  5. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  6. SINORHIZOBIUM MELILOTI ELECTROTRANSPORANT CONTAINING ORTHO-DECHLORINATION GENE SHOWS ENHANCED PCB-DECHLORINATION. (R828770C008)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Cloning and Identification of Adenylate Kinase Gene of Sinorhizobium sp.NP1%中华根瘤菌NP1腺苷酸激酶基因的克隆与功能鉴定

    Institute of Scientific and Technical Information of China (English)

    窦鑫; 邱枫; 许玮; 徐汉卿; 许雷

    2012-01-01

    以中华根瘤菌NP1(Sinorhizobium sp.NP1)为原始菌株,通过同源克隆的方法,获得了579bp的腺苷酸激酶基因(adk)全长序列.该基因编码192个氨基酸,其二级结构和三级结构与Sinorhizobium meliloti 1021 ADK的二级结构和三级结构相似.以表达载体pET21b为原始载体,构建成NPl adk原核表达载体pET21 b-adk,转化E.coli BL21菌株,SDS-PAGE检测表明:adk基因获得高效表达.HPLC测定证实:重组表达菌中ATP含量约为对照的1.3倍.上述结果证明本实验中所克隆的腺苷酸激酶基因具增强ATP合成的功能.

  8. Cloning and Identification of Ammonia Monooxygenase Gene of Sinorhizobium sp. NP1%中华根瘤菌NP1氨单加氧酶基因的克隆与功能鉴定

    Institute of Scientific and Technical Information of China (English)

    刘钰莹; 邱枫; 宋琴; 窦鑫; 许雷

    2010-01-01

    以中华根瘤菌NP1(Sinorhizobium sp.NP1)为原始菌株,通过同源克隆与Tail-PCR方法,获得1 089 bp的氨单加氧酶基因(amo)全长序列.该基因编码362个氨基酸,其二级结构与Sinorhizobium meliloti 1021 AMO的二级结构相似,该蛋白有9个跨膜区段.以自杀穿梭质粒pJQ200SK为原始载体,构建NP1 amo基因敲除质粒pJQ200SK-amo-Tc.采用三亲本杂交的方法将该质粒转入原始菌株NP1中,获得amo基因敲除菌株NP1∷amo.通过本贝洛氏(Berthelot)法对氨氮进行测定,发现NP1∷amo的脱氮效率比原始菌株NP1下降约35%.该结果表明,本实验中所克隆的氨单加氧酶基因为脱氮关键酶基因.

  9. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  10. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Science.gov (United States)

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  11. Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium melilotiexoYFQ operon involved in the biosynthesis of succinoglycan.

    Science.gov (United States)

    Quester, Ingmar; Becker, Anke

    2004-01-01

    Succinoglycan (EPS I), the main acidic exopolysaccharide of Sinorhizobium meliloti, is required for the initiation and elongation of infection threads during nodulation of the host plant alfalfa. The gene products of the exoYFQ operon are involved in the first step of succinoglycan biosynthesis as well as in the polymerisation of subunits to the high-molecular-mass form of this exopolysaccharide. One promoter region that directs transcription of exoX and two promoter regions that drive transcription of exoY were mapped in the exoX-exoY intergenic region. The distal exoY promoter region containing three putative -10 promoter elements was active under standard growth conditions and was subject to ExoR-dependent regulation. Although this promoter region was stimulated in a phoB mutant, no PHO box-like sequences were found, suggesting an indirect regulatory effect of PhoB. The proximal promoter contains a PHO box-like sequence in the putative -35 region and was affected by low and high phosphate concentrations dependent on PhoB. In the case of deleted upstream regions, this promoter was also controlled by ExoR. An additional promoter displaying activity in exoR, mucR and phoB mutants under standard conditions was identified upstream of exoF. The putative -35 promoter element of this promoter is covered by a second PHO box-like sequence.

  12. Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T)

    Energy Technology Data Exchange (ETDEWEB)

    Kappler, Ulrike [University of Queensland, The, Brisbane, Queensland, Australia; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Beatson, Scott [University of Queensland, The, Brisbane, Queensland, Australia; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Berry, Kerrie W. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order Rhizobiales , which is thus far poorly characterized at the genome level. Cultures from this spe- cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model or- ganism for studying the genomic basis of regulatory networks required for the switch between con- sumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, S. novella is of interest for its ability to grow on various inorganic sulfur compounds and several C1- compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second spe- cies in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The cur- rent taxonomic classification of this group is in significant conflict with the 16S rRNA data. The ge- nomic data indicate that the physiological capabilities of the organism might have been underestimat- ed. The 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was se- quenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.

  13. Alfalfa microsymbionts from different ITS and nodC lineages of Ensifer meliloti and Ensifer medicae symbiovar meliloti establish efficient symbiosis with alfalfa in Spanish acid soils.

    Science.gov (United States)

    Ramírez-Bahena, Martha-Helena; Vargas, Margarita; Martín, María; Tejedor, Carmen; Velázquez, Encarna; Peix, Álvaro

    2015-06-01

    Alfalfa (Medicago sativa L.) is an important crop worldwide whose cropping in acid soils is hampered by the poor nodulation and yield commonly attributed to the sensitivity of its endosymbionts to acid pH. In this work, we isolated several acid-tolerant strains from alfalfa nodules in three acid soils in northwestern Spain. After grouping by RAPD fingerprinting, most strains were identified as Ensifer meliloti and only two strains as Ensifer medicae according to their 16S-23S intergenic spacer (ITS) sequences that allowed the differentiation of two groups within each one of these species. The two ITS groups of E. meliloti and the ITS group I of E. medicae have been previously found in Medicago nodules; however, the group II of E. medicae has been only found to date in Prosopis alba nodules. The analysis of the nodC gene showed that all strains isolated in this study belong to the symbiovar meliloti, grouping with the type strains of E. meliloti or E. medicae, but some harboured nodC gene alleles different from those found to date in alfalfa nodules. The strains of E. medicae belong to the symbiovar meliloti which should be also recognised in this species, although they harboured a nodC allele phylogenetically divergent to those from E. meliloti strains. Microcosm experiments showed that inoculation of alfalfa with selected acid-tolerant strains significantly increased yields in acid soils representing a suitable agricultural practice for alfalfa cropping in these soils.

  14. Proteome Analysis of Inhibitory Effect of Gadolinium on Sinorhizobium fredii

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The inhibitory effect of gadolinium on Sinorhizobium fredii USDA 205 was studied on a global scale using two-dimensional gel electrophoresis and MALDI-TOF MS. The results indicated that 22 proteins were significantly affected by 1 mmol·L-1 Gd3+ treatment when compared with an untreated control. Among these proteins, nine were up-regulated and thirteen were down-regulated. The differently expressed proteins were classified into 8 functional categories based on their functions, including transporters, proteins for cellular defence, and proteins involved in metabolism.

  15. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Montaño

    Full Text Available Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.

  16. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules.

    OpenAIRE

    Gardiol, A E; Truchet, G L; Dazzo, F. B.

    1987-01-01

    Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti ba...

  17. 一株能在大豆上结瘤的苜蓿中华根瘤菌%A Sinorhizoboium meliloti Strain That Can Nodulate Soybean Plants

    Institute of Scientific and Technical Information of China (English)

    林榕姗; 杜秉海; 李小红; 王磊; 杨苏声

    2004-01-01

    苜蓿中华根瘤菌(Sinorhizobium meliloti)XJ96077分离自新疆的苜蓿根瘤中,其原宿主为紫花苜蓿(Medicago sativa).交叉结瘤试验发现,它既可在苜蓿上又能在大豆上结瘤固氮.DNA (G+C) mol%分析表明,XJ96077的DNA (G+C) mol%为61.9%,与已报道的根瘤菌属的DNA (G+C) mol%范围(59%~64%)相符.DNA同源性分析表明, XJ96077与苜蓿中华根瘤菌USDA1002T和042BM的同源性分别达到93%和80%,说明XJ96077归属于苜蓿中华根瘤菌.应用绿色荧光蛋白基因标记XJ96077,得到重组菌株XJ96077(G).将其接种普通紫花苜蓿,通过激光共聚焦荧光显微镜可以检测到标记基因的表达.接种北引1号大豆上,同样可以清楚地观察到标记基因在根瘤中的表达,从而确证了XJ96077能同时在苜蓿和大豆上结瘤.通过不同品种大豆的结瘤试验,发现XJ96077对大豆品种的结瘤能力不同.

  18. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis

    Directory of Open Access Journals (Sweden)

    Francisco J. López-Baena

    2016-05-01

    Full Text Available Sinorhizobium (Ensifer fredii (S. fredii is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides, and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.

  19. Genetic regulation of nitrogen fixation in Rhizobium meliloti.

    Science.gov (United States)

    Cebolla, A; Palomares, A J

    1994-12-01

    The soil bacterium Rhizobium meliloti fixes dinitrogen when associated with root nodules formed on its plant host, Medicago sativa (alfalfa). The expression of most of the known genes required for nitrogen fixation (nif and fix genes), including the structural genes for nitrogenase, is induced in response to a decrease in oxygen concentration. Induction of nif and fix gene expression by low oxygen is physiologically relevant because a low-oxygen environment is maintained in root nodules to prevent inactivation of the highly oxygen-sensitive nitrogenase enzyme. The genes responsible for sensing and transducing the low oxygen signal, fixL and fixJ, encode proteins (FixL and FixJ, respectively) that are homologous to a large family of bacterial proteins involved in signal transduction, the two component regulatory system proteins. The two components consist of a sensor protein, to which FixL is homologous, and a response regulator protein, to which FixJ is homologous. The sensor protein respond to an activating signal by autophosphorylating and then transferring the phosphate to its cognate response regulator protein. The phosphorylated response regulator, which is often a transcriptional activator, is then able to activate its target. A cascade model of nif and fix gene regulation in R. meliloti has been proposed, whereby FixL acts as an oxygen sensor as the initial event in the cascade and transmits this information to FixJ. FixJ, which possesses a putative helix-turn-helix DNA-binding motif, then activates transcription of the nifA and fixK genes. The nifA and fixK gene products, are transcriptional activators of at least 14 other nif and fix genes.

  20. A stress-induced small RNA modulates alpha-rhizobial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Marta Robledo

    2015-04-01

    Full Text Available Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions.

  1. Optimization of the Electrotransformation in Sinorhizobium Meliloti%苜蓿中华根瘤菌电转条件的优化

    Institute of Scientific and Technical Information of China (English)

    王北艳; 曹宁; 汤晖

    2008-01-01

    为了研究苜蓿中华根瘤菌电转化的条件,通过对不同的细胞生长周期、复苏缓冲液、电转缓冲液、电场强度和电阻对电转率影响程度来作出变化曲线,以确定电转化的最优条件,从而提高苜蓿中华根瘤菌电转化率.结果表明细胞的对数生长初期、复苏缓冲液Ⅴ、电转缓冲液Ⅳ、23 kv/cm和200Ω适合作为苜蓿中华根瘤菌电转的条件.

  2. Selection of Sinorhizobium meliloti with Acid and Aluminum Tolerance%耐酸耐铝毒苜蓿根瘤菌的筛选

    Institute of Scientific and Technical Information of China (English)

    刘卢生; 江杨; 肖书磊

    2009-01-01

    从紫花苜蓿、天蓝苜蓿和南苜蓿植株上分离获得的22株根瘤菌菌株中筛选出5株耐酸较好的苜蓿根瘤菌菌株,分别为S0710、S0713、L0701、L0702和P0701,这5株菌株在pH值5的酸性条件下仍能正常生长,茼株S0713和P0701甚至能在pH值4的酸性条件下生长.酸性条件下菌株L0701和P0701对AI3+有较好的耐受性.而菌株S0710则对AI3+极为敏感.

  3. SAS solution structures of the apo and Mg2+/BeF3(-)-bound receiver domain of DctD from Sinorhizobium meliloti.

    Science.gov (United States)

    Nixon, B Tracy; Yennawar, Hemant P; Doucleff, Michaeleen; Pelton, Jeffrey G; Wemmer, David E; Krueger, Susan; Kondrashkina, Elena

    2005-10-25

    Two-component signal transduction is the predominant information processing mechanism in prokaryotes and is also present in single-cell eukaryotes and higher plants. A phosphorylation-based switch is commonly used to activate as many as 40 different types of output domains in more than 6000 two-component response regulators that can be identified in the sequence databases. Previous biochemical and crystallographic studies showed that phosphorylation of the two-component receiver domain of DctD causes a switch between alternative dimeric forms, but it was unclear from the crystal lattice of the activated protein precisely which of four possible dimeric configurations is the biologically relevant one [Park, S., et al. (2002) FASEB J. 16, 1964-1966]. Here we report solution structures of the apo and activated DctD receiver domain derived from small angle scattering data. The apo dimer closely resembles that seen in the crystal structure, and the solution data for the activated protein eliminate two of the possible four dimeric conformations seen in the crystal lattice and strongly implicate one as the biologically relevant structure. These results corroborate the previously proposed model for how receiver domains regulate their downstream AAA+ ATPase domains.

  4. Effect of salinity on some growth indices and total protein content of alfalfa genotypes inoculated with Sinorhizobium meliloti strains under greenhouse conditions

    OpenAIRE

    A. Fazaeli; H. Besharati

    2012-01-01

    This greenhouse experiment was carried out to evaluate the effects of salinity and bacterial inoculation on some growth indices and total protein content of alfalfa (Medicago sativa) using a factorial completely randomized design with three replications. The effect of three salinity levels (0, 6 and 12 dS/m) induced by a mixture of NaCl, CaCl2 and MgCl2 salts on growth indices and protein content of three alfalfa genotypes (Hamadani, Gharahyonjeh and Gharghalogh) at three levels of inoculatio...

  5. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    Science.gov (United States)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  6. Structure and Biological Roles of Sinorhizobium fredii HH103 Exopolysaccharide

    Science.gov (United States)

    Acosta-Jurado, Sebastián; Soto, María J.; Margaret, Isabel; Crespo-Rivas, Juan C.; Sanjuan, Juan; Temprano, Francisco; Gil-Serrano, Antonio; Ruiz-Sainz, José E.; Vinardell, José M.

    2014-01-01

    Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum. PMID:25521500

  7. A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.

    OpenAIRE

    Bardin, S.; Dan, S.; Osteras, M.; Finan, T M

    1996-01-01

    The bacterium Rhizobium meliloti forms N2-fixing root nodules on alfalfa plants. The ndvF locus, located on the 1,700-kb pEXO megaplasmid of R. meliloti, is required for nodule invasion and N2 fixation. Here we report that ndvF contains four genes, phoCDET, which encode an ABC-type transport system for the uptake of Pi into the bacteria. The PhoC and PhoD proteins are homologous to the Escherichia coli phosphonate transport proteins PhnC and PhnD. The PhoT and PhoE proteins are homologous to ...

  8. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells.

    OpenAIRE

    Szeto, W W; Nixon, B T; Ronson, C W; Ausubel, F M

    1987-01-01

    We show here that Rhizobium meliloti, the nitrogen-fixing endosymbiont of alfalfa (Medicago sativa), has a regulatory gene that is structurally homologous to previously characterized ntrC genes in enteric bacteria. DNA sequence analysis showed that R. meliloti ntrC is homologous to previously sequenced ntrC genes from Klebsiella pneumoniae and Bradyrhizobium sp. (Parasponia) and that an ntrB-like gene is situated directly upstream from R. meliloti ntrC. Similar to its counterparts in K. pneum...

  9. Mutation and Function of lrp Gene Cloned from Sinorhizobium fredii HN01%费氏中华根瘤菌lrp基因的克隆、突变与功能

    Institute of Scientific and Technical Information of China (English)

    陈钢; 唐美琼; 孙云; 许兢; 武波

    2008-01-01

    通过分子克隆技术,从费氏中华根瘤菌(Sinorhizobium fredii)HN01基因组文库中克降到一个lrp基因.该基因与已报道的苜蓿中华根瘤菌(Sinorhizobium meliloti)1021的lrp基因在核苷酸水平上有89%相似性,在氨基酸水平上有99%相似性.利用自杀质粒pK18mob构建含有lrp基因部分片段的重组质粒,通过三亲本结合后导入原始菌株HN01中,经过同源单交换,获得发生正向插入突变的突变株GXHNLTA和反向插入突变的突变株GXHNLTB.将lrp基因ORF连接到载体pLAFR3上,获得用于互补的质粒pGXHNL100,将该质粒通过三亲本接合导入突变株中,获得互补株GXHNWA、GXHNWB.对野生型菌株、突变株、互补株进一步研究发现,在以脯氨酸、亮氨酸、丝氨酸等氨基酸为唯一碳、氮源的MM培养基中培养时,突变体GXHNLTA、GXHNLTB的生长均滞后于出发菌株HN01.植株试验表明,突变菌株GXHNLTA、GXHNLB比野生菌株HN01开始结瘤的时间提前1 d,在结瘤效率、单株瘤数、瘤重、固氮酶活性方面并无显著差别.

  10. Attenuation of Symbiotic Effectiveness by Rhizobium meliloti SAF22 Related to the Presence of a Cryptic Plasmid

    OpenAIRE

    Velazquez, E.; Mateos, P. F.; Pedrero, P.; Dazzo, F. B.; Martinez-Molina, E.

    1995-01-01

    Several wild-type strains of Rhizobium meliloti isolated from alfalfa nodules exhibited different plasmid profiles, yet did not differ in growth rate in yeast-mannitol medium, utilization of 43 different carbon sources, intrinsic resistance to 14 antibiotics, or detection of 16 enzyme activities. In contrast, three measures of effectiveness in symbiotic nitrogen fixation with alfalfa (shoot length, dry weight, and nitrogen content) indicated that R. meliloti SAF22, whose plasmid profile diffe...

  11. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense from Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Erik Machado-Ferreira

    2012-01-01

    Full Text Available As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCRRFLP strategy is presented to distinguish between these two groups of bacteria.

  12. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil.

    Science.gov (United States)

    Machado-Ferreira, Erik; Piesman, Joseph; Zeidner, Nordin S; Soares, Carlos A G

    2012-12-01

    As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCR-RFLP strategy is presented to distinguish between these two groups of bacteria.

  13. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil

    OpenAIRE

    Erik Machado-Ferreira; Joseph Piesman; Zeidner, Nordin S; Soares, Carlos A.G.

    2012-01-01

    As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de J...

  14. Isolation and characterization of Rhizobium meliloti mutants affected in exopolysaccharide production.

    Science.gov (United States)

    Rodríguez-Navarro, D N; Palomares, A J; Casadesús, J

    1991-06-01

    Rhizobium meliloti mutants affected in the production of exopolysaccharide (EPS) were isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutants were classified into three phenotypic classes: (I) Exo-, rough mutants lacking exopolysaccharide; (II) Exos (for "small") which form tiny, compact colonies and synthesize reduced amounts of EPS; and (III) Exoc (for "constitutive"), hypermucoid mutants which overproduce EPS. Hypermucoid strains showed increased resistance to desiccation. All the mutants were able to nodulate, although a significant decrease in infectivity degree and/or competitiveness was found in rough and compact strains. Two mutants proved to be deficient in nitrogen fixation. Complementation analysis with cloned R. meliloti exo genes could not be applied to the study of these Fix- mutants because introduction of plasmids derived from cosmid vector pLAFR1 caused loss of nodulating ability. However, complementation of calcofluor staining and EPS production was observed. Complementation with certain exo genes also caused a marked increase in motility.

  15. Inhibition of nodule development by multicopy promoters of Rhizobium meliloti nif/fix genes

    Institute of Scientific and Technical Information of China (English)

    吴桐; 朱家璧; 俞冠翘; 沈善炯

    1995-01-01

    Using luc gene as a reporter to study the activation of Rhizobium meliloti nif/fix genes in thedevelopment of symbiosis,the authors observed that nodule development and nitrogen fixation were inhibitedby both multicopy promoters of nifHDK and fixABCX.The phenotype of R.meliloti containing multicopynif/fix promoters appeared exactly like that of nifA mutant.Using lacZ as a reporter,the authors got the same re-sults.By contrast,the rhizobia containing low-copy promoters of nif/fix genes were normal fornodule development and nitrogen fixation.These results substantiate the evidence that the product of nifAgene not only acts as a transcriptional activator of nif/fix genes,but also plays an important role in thedevelopment of root nodules.

  16. Genetic and computational identification of a conserved bacterial metabolic module.

    Directory of Open Access Journals (Sweden)

    Cara C Boutte

    2008-12-01

    Full Text Available We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1 confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2 defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3 identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo

  17. Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Béna, Gilles; Cleyet-Marel, Jean-Claude; Brunel, Brigitte

    2013-10-01

    Understanding functional diversity is one of the main goals of microbial ecology, and definition of new bacterial ecotypes contributes significantly to this objective. Nitrogen-fixing bacteria provide a good system for investigation of ecotypes/biovars/symbiovars, as they present different specific associations with several host plants. This specific symbiosis is reflected both in the nodulation and fixation efficiency and in genetic characters of the bacteria, and several biovars have already been described in the bacterial species Ensifer meliloti. In the present study, the species affiliation of E. meliloti strains trapped from nodules sampled from Medicago rigiduloïdes roots was analyzed using housekeeping recA genes and DNA-DNA hybridization. The genetic diversity of these isolates was also investigated using several symbiotic markers: nodulation (nodA, nodB, nodC) and nitrogen fixation (nifH) genes, as well as the performance of phenotypic tests of nodulation capacity and nitrogen fixation efficiency. These analyses led to the proposal of a new bacterial symbiovar, E. meliloti sv. rigiduloides, that fixed nitrogen efficiently on M. rigiduloïdes, but not on Medicago truncatula. Using phylogenetic reconstructions, including the different described symbiovars, several hypotheses of lateral gene transfer and gene loss are proposed to explain the emergence of symbiovars within this species. The widespread geographical distribution of this symbiovar around the Mediterranean Basin, in contrast to restriction of M. rigiduloïdes to Eastern European countries, suggests that these isolates might also be associated with other plant species. The description of a new symbiovar within E. meliloti confirms the need for accurate bacterial ecological classification, especially for analysis of bacterial populations.

  18. Molecular characterization of Tn5-induced symbiotic (Fix-) mutants of Rhizobium meliloti.

    OpenAIRE

    Zimmerman, J L; Szeto, W W; Ausubel, F M

    1983-01-01

    To investigate the expression of specific symbiotic genes during the development of nitrogen-fixing root nodules, we conducted a systematic analysis of nodule-specific proteins and RNAs produced after the inoculation of alfalfa roots with a series of Rhizobium meliloti mutants generated by site-directed transposon Tn5 mutagenesis. The mutagenized region of the Rhizobium genome covered approximately 10 kilobases and included the region encoding the nitrogenase polypeptides. All mutant strains ...

  19. A Medical Research and Evaluation Facility (MREF) and Studies Supporting the Medical Chemical Defense Program

    Science.gov (United States)

    2005-03-01

    8 2.7 Sinorhizobium meliloti Toxicity Test-New Mexico State University (Las Cruces, N M...problems. NRL continues to analyze chemicals and data will be added as it becomes available. 2.7 Sinorhizobium meliloti Toxicity Test-New Mexico State...University (Las Cruces, NM) This test uses the bacterium Sinorhizobium meliloti , a bacterium that readily reduces a tetrazolium dye. The dye is normally

  20. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics.

    Science.gov (United States)

    Wang, En Tao; Tan, Zhi Yuan; Willems, Anne; Fernández-López, Manuel; Reinhold-Hurek, Barbara; Martínez-Romero, Esperanza

    2002-09-01

    Sinorhizobium morelense sp. nov. is described to designate a group of bacteria isolated from root nodules of Leucaena leucocephala. S. morelense shows 98% 16S rRNA gene sequence similarity to some Sinorhizobium species and to Ensifer adhaerens. This novel species is distinguished from other Sinorhizobium species and from E. adhaerens by DNA-DNA hybridization, 165 rRNA gene restriction fragments and sequence and some distinctive phenotypic features. Strains of this species are highly resistant to some antibiotics, such as carbenicillin (1 mg ml(-1)), kanamycin (500 microg ml(-1)) and erythromycin (300 microg ml(-1)). They do not form nodules, but a nodulating strain, Lc57, is closely related to the novel species. Strain Lc04T (= LMG 21331T = CFN E1007T) is designated as the type strain of this novel species.

  1. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range.

    Science.gov (United States)

    León-Barrios, Milagros; Lorite, María José; Donate-Correa, Javier; Sanjuán, Juan

    2009-09-01

    Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.

  2. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy

    Directory of Open Access Journals (Sweden)

    Emilio eBueno

    2015-05-01

    Full Text Available Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks.

  3. 导入四碳二羧酸转移酶基因对费氏中华根瘤菌共生固氮效率的影响%The Introduction of dctABD Genes into Sinorhizobium fredii and Its Effect on Symbiotic Nitrogen Fixation Efficiency

    Institute of Scientific and Technical Information of China (English)

    李友国; 李杰; 刘墨青; 周岷江; 周俊初

    2000-01-01

    将来自苜蓿中华根瘤菌(Sinorhizobium meliloti)的四碳二羧酸转移酶基因(dctABD)经pIJ2925克隆到广宿主、稳定性质粒pTR102上,获得诱导型表达的重组质粒pHN202.在此基础上再引入来自pDB30所含的发光酶基因(luxAB)作分子标记,以pTR102为基础构建成带有dctABD和luxAB的重组质粒pHN205.经三亲本接合转移,将重组质粒pHN205导入费氏中华根瘤菌(Sinorhizobium fredii)HNO1,GR3和YC4.与出发菌相比较的盆栽试验结果表明:HN01(pHN205)和GR3(pHN205)分别在宁镇一号和川早一号大豆上能显著提高植株地上部分干重(生物量)和总氮量, YC4(pHN205)在黑龙33大豆上能同时显著提高植株地上部分干重(生物量),总氮量和根瘤鲜重.本研究结果表明:导入dctABD基因对共生固氮效率的增效性与受体根瘤菌和大豆品种等因素有关.以luxAB为报告基因进行的转移接合子培养条件下分离单菌落和共生条件下形成根瘤的发光活性检测结果表明:pHN205可在供试费氏中华根瘤菌中稳定遗传.

  4. Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128.

    Science.gov (United States)

    Reeve, Wayne; Ballard, Ross; Drew, Elizabeth; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Huntemann, Marcel; Han, James; Tatiparthi, Reddy; Chen, Amy; Mavrommatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos

    2014-06-15

    Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia. RRI128 nodulates and forms an effective symbiosis with a diverse range of lucerne cultivars (Medicago sativa) and several species of annual medic (M. truncatula, Medicago littoralis and Medicago tornata), but forms an ineffective symbiosis with Medicago polymorpha. Here we describe the features of E. meliloti strain RRI128, together with genome sequence information and annotation. The 6,900,273 bp draft genome is arranged into 156 scaffolds of 157 contigs, contains 6,683 protein-coding genes and 87 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  5. Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Tittabutr, Panlada; Mohammed, Shabaz;

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective......-line SCX fractionation coupled to nanoLC-MS/MS. These techniques would be useful for further comparative analysis of membrane proteins that function in the response to environmental stress....... barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17...

  6. Extra-copy nifA enhances the nodulation efficiency of Sinorhizobium fredii

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Previous investigations have shown that nifA gene is involved in nodulation and symbiotic nitrogen fixation regulation of Rhizobium. We study the role of nifA on nodulation of leguminous plants. We found that Sinorhizobium fredii harboring multi-copy plasmid carrying the constitutively expressed Klebsiella pneumoniae nifA exhibited an increase of noduiation activity and nodulation competitiveness on soybean plants. The Nod-factor secreted by the rhizobia cells containing the multi-copied nifA was assayed,and preliminary results showed that S. fredii containing the multi-copy plasmid carrying nifA produced higher strength of Nod-factor than the rhizobia containing the same plasmid carrying the vector did.

  7. Characterization of Potential Antimicrobial Targets in Bacillus spp. II. Branched-Chain Aminotransferase and Methionine Regeneration in B. cereus and B. anthracis

    Science.gov (United States)

    2002-09-01

    LXyellelafastidiosa XF1 999 (BOAT) Raistonia solanacearum RS05654 (BOAT) Sinorhizobium meliloti Smc02896 (13CA`I) Baci llus haloduruns BAB05875 (BOAT) Ilib Bacillus...tumefaciens pAT 698 (DAAT) Sinorhizobium meliloti SmaOO93 (DAAT) Raistonia solanacearum RS0 1735 (DAAT) Agrobacterium cuenefaciens 04563 (DAAT

  8. NCBI nr-aa BLAST: CBRC-DRER-26-0474 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0474 ref|NP_384172.1| SENSOR HISTIDINE KINASE TRANSMEMBRANE PROTEIN [S...inorhizobium meliloti 1021] emb|CAC41453.1| SENSOR HISTIDINE KINASE TRANSMEMBRANE PROTEIN [Sinorhizobium meliloti] NP_384172.1 1e-159 68% ...

  9. Regulation of symbiotic nitrogen fixation in root nodules of alfalfa (Medicago sativa) infected with Rhizobium meliloti.

    Science.gov (United States)

    Kamberger, W

    1977-10-24

    Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concetrations. Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.

  10. Production of nodulation factors by Rhizobium meliloti: fermentation, purification and characterization of glycolipids.

    Science.gov (United States)

    Kohring, B; Baier, R; Niehaus, K; Pühler, A; Flaschel, E

    1997-12-01

    Lipooligosaccharides, synthesized by soil bacteria of the genera Rhizobium, are known to have multifunctional effects on a wide variety of plants as signal substances in symbiosis initiation, cell response elicitation and growth regulation. These so called nodulation (Nod-) factors represent interesting biotechnological products with respect to fundamental studies of symbiotic interactions as well as for potential applications. Therefore, a batch fermentation process on a scale of 30 l has been developed by means of the Rhizobium meliloti strain R.m. 1021 (pEK327) strongly overexpressing the genes for the synthesis of Nod factors. Induction by the flavone luteolin led to growth associated production of the lipooligosaccharides. Ultrafiltration was used for separating the biomass from the filtrate containing the extracellular Nod factors. Simultaneously, ultrafiltration reduced the amount of lipophilic substances, which would otherwise interfere with processes downstream. The second separation step consisted in adsorption on XAD-2, a nonspecific hydrophobic adsorptive resin. Adsorption of Nod factors was carried out by batch operation of a stirred tank. Desorption was performed by elution with methanol in a fixed bed column. A semi-preparative reversed phase HPLC (Polygoprep 100-30 C18) was chosen as the final purification step. The Nod factors were obtained after evaporation and lyophilization. Thus, about 600 mg of Nod factors were produced from 20 l of fermentation broth. The Nod factors produced by Rhizobium meliloti R.m. 1021 (pEK327) were identified by liquid secondary ion mass spectrometry and by reversed-phase HPLC as fluorescent derivatives of 2-aminobenzamide. The biological activity of the products was demonstrated by means of the root hair deformation (HAD-) assay.

  11. Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid.

    OpenAIRE

    Watson, R J; Chan, Y K; Wheatcroft, R; Yang, A. F.; Han, S. H.

    1988-01-01

    A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained b...

  12. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17.

    Science.gov (United States)

    Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-12-20

    Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  13. 苜蓿根瘤菌(Sinorhizobium meliloti)nodD3P1启动子下游序列的缺失和互补分析

    Institute of Scientific and Technical Information of China (English)

    陈迪; 刘彦杰; 朱家璧; 沈善炯; 俞冠翘

    2002-01-01

    在苜蓿根瘤菌中, nodD3基因的转录由两个彼此分离的启动子P1和P2控制. 在P1下游是一段由660 bp组成的序列, 接着是nodD3的编码区. 由P1下游序列3′末端开始缺失得到的一系列缺失突变体的遗传分析指出, P1下游+1~+125 nt序列对P1的表达是必须的. 互补分析和结瘤试验指出, ORF2自我抑制P1的表达, 而+1~+125 nt序列可对抗ORF2对P1的抑制作用.

  14. Screening of highly-effective Sinorhizobium meliloti strains for Medicago sativa cultivars and their field inoculation%紫花苜蓿-根瘤菌高效共生体筛选及田间作用效果

    Institute of Scientific and Technical Information of China (English)

    曾昭海; 隋新华; 胡跃高; 陈丹明; 陈文新; 郜瑞路

    2004-01-01

    从中国农业大学根瘤菌菌种保藏中心筛选出19株紫花苜蓿根瘤菌,利用河北吴桥的土壤,经温室盆栽试验筛选出适合Vector紫花苜蓿品种的3株高效根瘤菌CCBAU30138,CCBAUN210及CCBAUN96077.并将3株菌进行田间接种效果验证,田间试验结果表明,接种CCBAU30138,CCBAUN210和CCBAUN96077后,全年干草产量分别比对照增加11.9%,10.2%和13.7%,单位面积蛋白质产量比对照增产19.63%,15.63%和13.59%.上述结果说明,通过土壤筛选的高效根瘤菌可以应用到生产中.

  15. 苜蓿根瘤菌乙酰-CoA合成酶的过量表达、纯化及特性%OVER-EXPRESSION,PURIFICATION AND CHARACTERIZATION OF ACETYL-CoA SYNTHETASE FROM SINORHIZOBIUM MELILOTI

    Institute of Scientific and Technical Information of China (English)

    戴美学; 张成刚

    2004-01-01

    PCR扩增了苜蓿根瘤菌乙酰辅酶A合成酶编码基因 (acsA1),克隆到连接-非依赖型载体pET30 LIC;在E.coli BL21(DE3)pLysS中得到了有效表达,表达需IPTG 的诱导,诱导3 h 达到酶活高峰.采用His*Bind 柱层析对ACS进行了纯化,纯化的酶蛋白经SDS-PAGE呈单一浓带,分子量约72 000,具较高的酶活,是无细胞提取液的12.7倍.酶动力学分析显示,Vmax 、Km分别为(413.6±11.7) mmol L-1 和(5.8±0.6) mmol L-1. 图4 表2 参8

  16. 苜蓿中华根瘤菌Rm1021中gtrA基因的克隆、表达及纯化%Cloning, Expression and Purification of gtrA Gene in Sinorhizobium meliloti Rm 1021

    Institute of Scientific and Technical Information of China (English)

    尉爱远; 陈爱民; 杨海燕

    2008-01-01

    对苜蓿中华根瘤菌中GntR家族转录因子基因gtrA进行了表达和纯化,以期进一步研究其功能.以苜蓿根瘤菌Rm1021的基因组为模板,PCR扩增出gtrA基因,并克隆到表达载体PET-28b(+)上.重组质粒经酶切和测序证实正确,然后转化大肠杆菌BL21.'SDS-PAGE显示经IPTG诱导后能得到和理论值大小一致的蛋白条带,通过进一步纯化得到gtrA的表达蛋白.

  17. Sinorhizobium meliloti strains TII7 and A5 by Multilocus Sequence Typing (MLST) have chromsomes identical with Rm1021 and form an effective and ineffective symbiosis with Medicago truncatula line Jemalong A17, respectively

    Science.gov (United States)

    The strains TII7 and A5 formed an effective and ineffective symbiosis with Medicago truncatula Jemalong A17, respectively. Both were shown to have identical chromsomes with strains Rm1021 and RCR2011 using a Multilocus Sequence Typing method. The 2260 bp segments of DNA stretching from the 3’ end ...

  18. Comparison of Ribosomal Protein of Alfalfa Rhizobia ( Sinorhizobium meliloti ) under Self-Growing and Symbiotic States%苜蓿根瘤菌自生与共生状态下核糖体蛋白的比较

    Institute of Scientific and Technical Information of China (English)

    谢荣; 刘望夷; 朱家壁; 俞冠翘

    2006-01-01

    苜蓿根瘤菌在与宿主植物建立共生关系的过程中,以自生状态进入宿主植物细胞,经过分化发育转变为共生状态的类菌体(Bacteroid).由于生存环境发生了变化,类菌体在形态、结构和功能方面都产生了很大的改变,其中最为明显的改变是类菌体获得了共生固氮的能力.此时,类菌体中许多与共生相关的基因被激活,蛋白的表达量显著增加.为了探明这种改变是否与合成蛋白质的细胞器-核糖体有关,比较分析了苜蓿根瘤菌在自生和共生状态下核糖体蛋白的表达谱.蛋白质双向电泳结果显示二者之间没有明显的差别,说明类菌体的分化发育过程中核糖体蛋白的形成没有改变.

  19. 苜蓿中华根瘤菌(Sinorhizobium meliloti) nifA基因通过诱导宿主防卫反应调节根瘤的形成

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    苜蓿中华根瘤菌nifA基因是固氮基因的正调节因子,本文研究了nifA基因对根瘤形成的调节作用.在分裂根实验中,nifA突变株对另一侧根的结瘤抑制率比野生型菌下降43.7%,感染突变株植物合成的植保素和形成的坏死细胞的数量也相应减少,与植物防卫反应相关的苯丙氨酸解氨酶基因、查儿酮合成酶基因和几丁质酶基因不能表达.这些结果说明,苜蓿中华根瘤菌nifA基因通过诱导宿主植物的防卫反应对根瘤的形成进行调节.虽然nifA突变株在宿主植物上引发根瘤的数量增加,它合成的结瘤因子的量却比野生型菌株少.因此,可以推测nifA基因介导了多种信号途径对根瘤的形成进行调节.

  20. Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors.

    Science.gov (United States)

    Navarro-Gochicoa, Maria-Teresa; Camut, Sylvie; Niebel, Andreas; Cullimore, Julie V

    2003-03-01

    The model legume Medicago truncatula contains at least six apyrase-like genes, five of which (MtAPY1;1, MtAPY1;2, MtAPY1;3, MtAPY1;4, and MtAPY1;5) are members of a legume-specific family, whereas a single gene (MtAPY2) has closer homologs in Arabidopsis. Phylogenetic analysis has revealed that the proteins encoded by these two plant gene families are more similar to yeast (Saccharomyces cerevisiae) GDA1 and to two proteins encoded by newly described mammalian genes (ENP5 and 6) than they are to mammalian CD39- and CD39-like proteins. Northern analyses and analyses of the frequencies of expressed sequence tags (ESTs) in different cDNA libraries suggest that in roots, leaves, and flowers, the more highly expressed genes are MtAPY1;3/MtAPY2, MtAPY1;3/MtAPY1;5 and MtAPY1;2/MtAPY1;3 respectively. In roots, at least four of the MtAPY1 genes are induced transiently within 3 to 6 h by a stress response that seems to be ethylene independent because it occurs after treatment with an ethylene synthesis inhibitor and also in the skl ethylene-insensitive mutant. This response also occurs in roots of the following symbiotic mutants: dmi1, dmi2, dmi3, nsp, hcl, pdl, lin, and skl. No evidence was obtained for a rapid, transient, and specific induction of the MtAPY genes in roots in response to rhizobia or rhizobial lipochitooligosaccharidic Nod factors. Thus, our data suggest that the apyrase-like genes, which in several legumes have been implicated to play a role in the legume-rhizobia symbiosis (with some members being described as early nodulin genes), are not regulated symbiotically by rhizobia in M. truncatula.

  1. The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages.

    Science.gov (United States)

    Stroupe, M Elizabeth; Brewer, Tess E; Sousa, Duncan R; Jones, Kathryn M

    2014-02-01

    ΦM12 is the first example of a T=19l geometry capsid, encapsulating the recently sequenced genome. Here, we present structures determined by cryo-EM of full and empty capsids. The structure reveals the pattern for assembly of 1140 HK97-like capsid proteins, pointing to interactions at the pseudo 3-fold symmetry axes that hold together the asymmetric unit. The particular smooth surface of the capsid, along with a lack of accessory coat proteins encoded by the genome, suggest that this interface is the primary mechanism for capsid assembly. Two-dimensional averages of the tail, including the neck and baseplate, reveal that ΦM12 has a relatively narrow neck that attaches the tail to the capsid, as well as a three-layer baseplate. When free from DNA, the icosahedral edges expand by about 5nm, while the vertices stay at the same position, forming a similarly smooth, but bowed, T=19l icosahedral capsid.

  2. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pajuelo, Eloisa [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain); Rodriguez-Llorente, Ignacio D. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)], E-mail: irodri@us.es; Dary, Mohammed; Palomares, Antonio J. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)

    2008-07-15

    Recently, the Rhizobium-legume symbiotic interaction has been proposed as an interesting tool in bioremediation. However, little is known about the effect of most common contaminants on this process. The phytotoxic effects of arsenic on nodulation of Medicago sativa have been examined in vitro using the highly arsenic resistant and symbiotically effective Sinorhizobium sp. strain MA11. The bacteria were able to grow on plates containing As concentrations as high as 10 mM. Nevertheless, as little as 25-35 {mu}M arsenite produced a 75% decrease in the total number of nodules, due to a 90% reduction in the number of rhizobial infections, as could be determined using the strain MA11 carrying a lacZ reporter gene. This effect was associated to root hair damage and a shorter infective root zone. However, once nodulation was established nodule development seemed to continue normally, although earlier senescence could be observed in nodules of arsenic-grown plants. - First steps of nodulation of alfalfa, in particular infection thread formation, are more sensitive to As than nitrogen fixation due to plant effects.

  3. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Wayne [Murdoch University, Perth, Australia; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); O' Hara, Graham [Murdoch University, Perth, Australia; Ardley, Julie [Murdoch University, Perth, Australia; Nandesena, Kemanthi [Murdoch University, Perth, Australia; Brau, Lambert [Murdoch University, Perth, Australia; Tiwari, Ravi [Murdoch University, Perth, Australia; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Kiss, Hajnalka [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Gollagher, Margaret [Murdoch University, Perth, Australia; Yates, Ron [Murdoch University, Perth, Australia; Dilworth, Michael [Murdoch University, Perth, Australia; Howieson, John [Murdoch University, Perth, Australia

    2010-01-01

    Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

  4. Characterization of sequences downstream from transcriptional start site of Rhizobium meliloti nifHDK promoter

    Institute of Scientific and Technical Information of China (English)

    高云峰; 吴桐; 朱家璧; 俞冠翘; 沈善炯

    1997-01-01

    In free-living state, the nifHDK promoter P1 of Rhizobium meliloti is induced in response to mi-croaerobiosis and expressed to a high level, while the fixABCX promoter P2 is not. The sequences upstream from both P1 and P2 share extended homology (about 85% ), which are about 160 bp in length, but the sequences downstream of the respective transcriptional start site are different. When the downstream sequence (DS) of P2 was replaced by the corresponding fragment from+ 17 to + 61 of P1, the expression of P2 is greatly increased under free-living condi-tion by lowering the oxygen tension, and the activity of P2 promoter can also be significantly enhanced in E. coli by the NifA protein. The difference between the DS regions of P1 and P2 promoter resulted in different expressions of P1 and P2 promoter under free-living microaerobic condition and in E. coli. The expression of P2 does not depend on the downstream sequences from the promoter element during symbiosis. Primer extension experiments identified the

  5. Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Wood Thomas K

    2011-10-01

    Full Text Available Abstract Background Previously we showed that BdcA controls Escherichia coli biofilm dispersal by binding the ubiquitous bacterial signal cyclic diguanylate (c-di-GMP; upon reducing the concentration of c-di-GMP, the cell shifts to the planktonic state by increasing motility, decreasing aggregation, and decreasing production of biofilm adhesins. Findings Here we report that BdcA also increases biofilm dispersal in other Gram-negative bacteria including Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhizobium meliloti. BdcA binds c-di-GMP in these strains and thereby reduces the effective c-di-GMP concentrations as demonstrated by increases in swimming motility and swarming motility as well as by a reduction in extracellular polysaccharide production. We also develop a method to displace existing biofilms by adding BdcA via conjugation from E. coli in mixed-species biofilms. Conclusion Since BdcA shows the ability to control biofilm dispersal in diverse bacteria, BdcA has the potential to be used as a tool to disperse biofilms for engineering and medical applications.

  6. Ensifer meliloti overexpressing Escherichia coli phytase gene ( appA) improves phosphorus (P) acquisition in maize plants

    Science.gov (United States)

    Sharma, Vikas; Kumar, Ajit; Archana, G.; Kumar, G. Naresh

    2016-10-01

    The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 ( lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti { E. m (pVA1)} increased its phosphatase and phytase activity by ˜9- and ˜50-fold, respectively, compared to the transformants containing empty plasmid as control { E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein { E. m (pVA1)} and { E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both { E. m (pVA1)} and { E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with { E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.

  7. Ensifer meliloti overexpressing Escherichia coli phytase gene (appA) improves phosphorus (P) acquisition in maize plants.

    Science.gov (United States)

    Sharma, Vikas; Kumar, Ajit; Archana, G; Kumar, G Naresh

    2016-10-01

    The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 (lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti {E. m (pVA1)} increased its phosphatase and phytase activity by ∼9- and ∼50-fold, respectively, compared to the transformants containing empty plasmid as control {E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein {E. m (pVA1)} and {E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both {E. m (pVA1)} and {E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with {E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.

  8. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.

    OpenAIRE

    Engelke, T; Jording, D; Kapp, D.; Pühler, A.

    1989-01-01

    Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transpor...

  9. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.

    Science.gov (United States)

    Engelke, T; Jording, D; Kapp, D; Pühler, A

    1989-10-01

    Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).

  10. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean

    Science.gov (United States)

    Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean ro...

  11. A Study of the Effects on the Symbiotic Nitrogen Fixation of Sinorhizobium fredii with the Introduction of dctABD and nifA Genes%导入dctABD和nifA基因对费氏中华根瘤菌共生固氮的影响研究

    Institute of Scientific and Technical Information of China (English)

    李友国; 周俊初

    2002-01-01

    以pTR102为载体构建重组质粒pHN307,其上克隆有来自苜蓿中华根瘤菌(Sinorhizobium meliloti)的四碳二羧酸转移酶基因dctABD、来自肺炎克氏杆菌(Klebsiella pneumoniae) 的nifA基因和来自pDB30所含的发光酶基因luxAB.经三亲本接合转移,将pHN307导入费氏中华根瘤菌(S. fredii)HN01\\,YC4和GR3,并考察了转移接合子中pHN307在传代培养和共生条件下的稳定性.与出发菌相比较的植物盆栽试验结果表明,在与大豆黑农33共生时,导入pHN307后的转移接合子均可显著提高结瘤植株的瘤重、地上部分干重和地上部分总氮量.在与大豆川早一号共生时,转移接合子HN01(pHN307)可显著提高结瘤植株的瘤数和瘤重;GR3(pHN307)可显著提高结瘤植株的瘤数、瘤重、地上部分干重和地上部分总氮量;导入pHN307的YC4却呈现出负作用.本研究表明,导入dctABD可提高固氮效率,而nifA基因主要影响重组菌的结瘤能力,并与受体根瘤菌和大豆品种有关.

  12. Regulatory role of the sequences downstream from nodD3 P1 promoter of Rhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 660 bp region between nodD3 P1 promoter and the following coding region of Rhizobium meliloti has been studied.This region is designated "downstream sequences".It consists of two potential open reading frames,ORF1 and ORF2.Studies on the role of the downstream sequences on the activity of nodD3 P1 with nod D3(P1)-lacZ fusion show that deletion of the sequences containing ORF2 causes the increase of the activity of the fusion; on the contrary,addition of extra copies of ORF2 markedly decreases the activity of the fusion.These results indicate that the product of ORF2 plays a negative role in the expression of nod D3.

  13. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants.

    Science.gov (United States)

    Ichige, A; Walker, G C

    1997-01-01

    The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.

  14. Dicty_cDB: Contig-U11834-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available rospinaceae ... 213 2e-53 AL591688_160( AL591688 |pid:none) Sinorhizobium meliloti ...:none) Clostridium cellulolyticum H10,... 213 2e-53 EF106972_54( EF106972 |pid:none) Uncultured marine Nit

  15. Comparison of the 'Ca Liberibacter asiaticus' genome adapted for an intracellular lifestyle with other members of the rhizobiales

    Science.gov (United States)

    An intracellular plant pathogen ‘Ca. Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, Agrobacterium tumefaciens and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 52 clust...

  16. Conservation of gene order and content in the circular chromosomes of 'Candidatus Liberibacter' asiaticus and other rhizbiales

    Science.gov (United States)

    The intracellular plant pathogen ‘Ca. Liberibacter asiaticus’ is a member of the Rhizobiales, as are the nitrogen fixing Sinorhizobium meliloti and Bradyrhizobium japonicum, the plant pathogen Agrobacterium tumefaciens and the intracellular mammalian pathogen Bartonella henselae. Whole genome compar...

  17. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean.

    Science.gov (United States)

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Monreal, José Antonio; Preston, Gail M; Fones, Helen; Vioque, Blanca; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-07-01

    Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.

  18. The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean.

    Science.gov (United States)

    Vinardell, José-María; Acosta-Jurado, Sebastián; Zehner, Susanne; Göttfert, Michael; Becker, Anke; Baena, Irene; Blom, Jochem; Crespo-Rivas, Juan Carlos; Goesmann, Alexander; Jaenicke, Sebastian; Krol, Elizaveta; McIntosh, Matthew; Margaret, Isabel; Pérez-Montaño, Francisco; Schneiker-Bekel, Susanne; Serranía, Javier; Szczepanowski, Rafael; Buendía, Ana-María; Lloret, Javier; Bonilla, Ildefonso; Pühler, Alfred; Ruiz-Sainz, José-Enrique; Weidner, Stefan

    2015-07-01

    Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.

  19. Stable isotope labelling reveals that NaCl stress decreases the production of Ensifer (Sinorhizobium) arboris lipochitooligosaccharide signalling molecules.

    Science.gov (United States)

    Penttinen, Petri; Räsänen, Leena A; Lortet, Gilles; Lindström, Kristina

    2013-12-01

    Ensifer (Sinorhizobium) arboris is a symbiont of salt-tolerant leguminous trees in the genera Acacia and Prosopis that are utilized in the prevention of soil erosion and desertification and in phytoremediation of salinized soil. Signalling between the plant and the rhizobia is essential for the formation of effective symbiosis that increases the success of reclaiming saline sites. We assessed the effect of salt stress on the growth and the production of lipochitooligosaccharide signalling molecules (LCOs) of S. arboris HAMBI 2361, an LCO-overproducing derivative of the S. arboris type strain HAMBI 1552. The strain tolerated NaCl up to 750 mM. To obtain both qualitative and quantitative information on the LCO production under salt stress, we devised a method where LCOs were differentially labelled by stable isotopes of nitrogen, (14)N and (15)N, and analysed by mass spectrometry. Under control conditions, the strain produced altogether 27 structural LCO variants. In 380 mM NaCl, 13 LCO variants were produced in detectable amounts, and six of these were reliably quantified, ranging from one-tenth to one-third of the non-stressed one.

  20. Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting.

    Science.gov (United States)

    Dourado, Ana Catarina; Alves, Paula I L; Tenreiro, Tania; Ferreira, Eugénio M; Tenreiro, Rogério; Fareleira, Paula; Crespo, M Teresa Barreto

    2009-12-01

    A collection of nodule isolates from Medicago polymorpha obtained from southern and central Portugal was evaluated by M13-PCR fingerprinting and hierarchical cluster analysis. Several genomic clusters were obtained which, by 16S rRNA gene sequencing of selected representatives, were shown to be associated with particular taxonomic groups of rhizobia and other soil bacteria. The method provided a clear separation between rhizobia and co-isolated non-symbiotic soil contaminants. Ten M13-PCR groups were assigned to Sinorhizobium (Ensifer) medicae and included all isolates responsible for the formation of nitrogen-fixing nodules upon re-inoculation of M. polymorpha test-plants. In addition, enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting indicated a high genomic heterogeneity within the major M13- PCR clusters of S. medicae isolates. Based on nucleotide sequence data of an M13-PCR amplicon of ca. 1500 bp, observed only in S. medicae isolates and spanning locus Smed_3707 to Smed_3709 from the pSMED01 plasmid sequence of S. medicae WSM419 genome's sequence, a pair of PCR primers was designed and used for direct PCR amplification of a 1399-bp sequence within this fragment. Additional in silico and in vitro experiments, as well as phylogenetic analysis, confirmed the specificity of this primer combination and therefore the reliability of this approach in the prompt identification of S. medicae isolates and their distinction from other soil bacteria.

  1. Isolation and characterization of a Sinorhizobium fredii mutant that cannot utilize proline as the sole carbon and nitrogen source

    Institute of Scientific and Technical Information of China (English)

    HUANG Sheng; BAI Xueliang; MA Qingsheng; TANG Xianlai; WU Bo

    2004-01-01

    Sinorhizobium fredii strain HN01 can use proline as the sole carbon and nitrogen source. A mutant strain GXHN100 unable to catabolize proline was screened from 6000 Tn5gusA5 random insertional mutants of S.fredii strain HN01. Sequencing analysis showed that an open reading frame, named pmrA (proline metabolic relative), was inserted by the Tn5gusA5. A positive clone, named pGXHN100 which containing 3.3kb foreign DNA fragment of S.fredii strain HN01, was isolated from a partial gene library of S.fredii HN01 by colony in situ hybridization. Sequence analysis showed that pGXHN100 contained the entire pmrA gene. The 3.3kb DNA fragment of pGXHN100 was cloned into a broad-host-range cosmid vector pLAFR3 to form plasmid pGXHN200 which was subsequently introduced into GXHN100 to form a complemented strain GXHN200. Plant test showed that GXHN100 was effective and no obvious changes in nitrogenase activity comparing with parental strain. But GXHN100 nodulated 2 days later on soybean and its nodulation efficiency and competitiveness were decreased. The complemented strain GXHN200 restored the nodulation efficiency and competitiveness of GXHN100 to the wild type.

  2. Effect of Sinorhizobium fredii strain Sneb183 on the biological control of soybean cyst nematode in soybean.

    Science.gov (United States)

    Tian, Feng; Wang, Yuanyuan; Zhu, Xiaofeng; Chen, Lijie; Duan, Yuxi

    2014-11-01

    The soybean cyst nematode (SCN; Heterodera glycines) is a major detriment to soybean production. The endophytic bacterium Sinorhizobium fredii strain Sneb183 is known to inhibit the activity of SCN. In the present study, soybean seedlings were inoculated with Sneb183, to study the penetration juveniles, and their development inside the roots. The number of cysts in the soybean roots was also examined. The induced systemic resistance in soybean was also examined through the split-root system. Our results revealed that the number of juveniles and cysts significantly decreased as a result of Sneb183 inoculation. Sneb183 also prolonged the developmental stage of SCN in the root to 30 days as compared to 27 days in the control. Furthermore, the number of nematodes in each stage was lower in the Sneb183 treated plants than control plants. We also used a split-root system to show that the S. fredii strain Sneb183 induced a systemic resistance to SCN infection in soybean. The repression rate of SCN penetration was 38.75%. Our study showed that Sneb183 can be an effective biocontrol agent for managing SCN infestation in soybean.

  3. NCBI nr-aa BLAST: CBRC-CREM-01-1341 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available m meliloti 1021] sp|P20672|DCTA_RHIME C4-dicarboxylate transport protein gb|AAA26253.1| C4-dicarboxylate car... protein [Sinorhizobium meliloti] gb|AAA26248.1| dctA protein emb|CAC49923.1| C4-

  4. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America.

    Science.gov (United States)

    Haukka, K; Lindström, K; Young, J P

    1998-02-01

    The diversity and phylogeny of nodA and nifH genes were studied by using 52 rhizobial isolates from Acacia senegal, Prosopis chilensis, and related leguminous trees growing in Africa and Latin America. All of the strains had similar host ranges and belonged to the genera Sinorhizobium and Mesorhizobium, as previously determined by 16S rRNA gene sequence analysis. The restriction patterns and a sequence analysis of the nodA and nifH genes divided the strains into the following three distinct groups: sinorhizobia from Africa, sinorhizobia from Latin America, and mesorhizobia from both regions. In a phylogenetic tree also containing previously published sequences, the nodA genes of our rhizobia formed a branch of their own, but within the branch no correlation between symbiotic genes and host trees was apparent. Within the large group of African sinorhizobia, similar symbiotic gene types were found in different chromosomal backgrounds, suggesting that transfer of symbiotic genes has occurred across species boundaries. Most strains had plasmids, and the presence of plasmid-borne nifH was demonstrated by hybridization for some examples. The nodA and nifH genes of Sinorhizobium teranga ORS1009T grouped with the nodA and nifH genes of the other African sinorhizobia, but Sinorhizobium saheli ORS609T had a totally different nodA sequence, although it was closely related based on the 16S rRNA gene and nifH data. This might be because this S. saheli strain was originally isolated from Sesbania sp., which belongs to a different cross-nodulation group than Acacia and Prosopis spp. The factors that appear to have influenced the evolution of rhizobial symbiotic genes vary in importance at different taxonomic levels.

  5. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, E.M.; Long, S.R. (Stanford Univ., CA (United States)); Palcic, M.M.; Hindsgaul, O. (Univ. of Alberta, Edmonton (Canada))

    1994-08-30

    Rhizobium bacteria synthesize N-acylated [beta]-1,4-N-acetylglucosamine lipooligosaccharides, called Nod factors, which act as morphogenic signal molecules to legume roots during development of nitrogen-fixing nodules. The biosynthesis of Nod factors is genetically dependent upon the nodulation (nod) genes, including the common nod genes nodABC. We used the Rhizobium meliloti NodH sulfotransferase to prepare [sup 35]S-labeled oligosaccharides which served as metabolic tracers for Nod enzyme activities. This approach provides a general method for following chitooligosaccharide modifications. We found nodAB-dependent conversion of N-acetylchitotetraose (chitotetraose) monosulfate into hydrophobic compounds which by chromatographic and chemical tests were equivalent to acylated Nod factors. Sequential incubation of labeled intermediates with Escherichia coli containing either NodA or NodB showed that NodB was required before NodA during Nod factor biosynthesis. The acylation activity was sensitive to oligosaccharide chain length, with chitotetraose serving as a better substrate than chitobiose or chitotriose. We constructed a putative Nod factor intermediate, GlcN-[beta]1,4-(GlcNac)[sub 3], by enzymatic synthesis and labeled it by NodH-mediated sulfation to create a specific metabolic probe. Acylation of this oligosaccharide required only NodA. These results confirm previous reports that NodB is an N-deacetylase and suggest that NodA is an N-acyltransferase. 31 refs., 6 figs.

  6. Tolerância ao sal e às altas temperaturas de estirpes de Sinorhizobium provenientes de zonas secas do Alentejo Salt and temperature tolerance of Sinorhizobium strains isolated from dry environments in Alentejo

    Directory of Open Access Journals (Sweden)

    P. Fareleira

    2007-07-01

    Full Text Available O trabalho teve como principal objectivo a obtenção de estirpes de rizóbio adequadas à nodulação de luzernas anuais e adaptadas a sobreviver nas condições ambientais susceptíveis de ocorrer em solos degradados. Dado que as populações de rizóbio apresentam variabilidade considerável no que respeita à tolerância a factores ambientais, os estudos focaram-se na pesquisa e na selecção de estirpes resistentes a condições adversas. Efectuaram-se colheitas de solos em diversas zonas no sul do País, seleccionando-se locais afectados por secura, temperaturas elevadas e, pontualmente, salinidade. A partir destes solos, isolaram-se estirpes de rizóbio, usando como planta hospedeira a luzerna anual Medicago polymorpha. Estudaram-se os efeitos de condições de stresse ambiental, como a salinidade e as altas temperaturas, no crescimento das estirpes isoladas. Dos 41 isolamentos analisados, 11 apresentaram crescimento em meio con-tendo 1,4 M de cloreto de sódio e suplementado com 10% de extracto de terra, e 22 cresceram quando incubadas a 45 ºC em meio sem aditivos. Três estirpes mostraram ter capacidade para crescer sob os efeitos conjuntos da salinidade e da alta temperatura. A análise de extractos etanólicos de estirpes tolerantes à salinidade revelou, na maior parte dos casos, a acumulação, induzida pelo sal, dos solutos compatíveis de Sinorhizobium: o dipéptido N - acetilglutaminilglutamina amida, vários tipos de betaínas, trealose, glutamato e prolina. A observação, por NMR de 31P in vivo, de uma estirpe tolerante ao sal, proveniente de um solo xistoso de baixo teor em fósforo, mostrou a presença de níveis elevados de reservas intracelulares de fosfato inorgânico (polifosfato, sugerindo um bom potencial para utilização em solos onde os riscos de salinização se conjuguem com deficiências em fósforo assimilável.The main objective of this work was to obtain rhizobial strains able to nodulate annual medics and

  7. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.

    OpenAIRE

    Labes, M; Rastogi, V; Watson, R.; Finan, T M

    1993-01-01

    In the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of w...

  8. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters.

    OpenAIRE

    Ledebur, H; Gu, B.; Sojda, J; Nixon, B T

    1990-01-01

    Free-living rhizobia transport external C4-dicarboxylates to use as sole carbon sources, and uptake of these compounds is essential for nitrogen fixation by rhizobial bacteroids. In both Rhizobium leguminosarum and Rhizobium meliloti, the genes dctB and dctD are believed to form an ntrB/ntrC-like two-component system which regulates the synthesis of a C4-dicarboxylate transport protein encoded by dctA. Here we confirm the identity of sigma 54-dependent promoters previously hypothesized for th...

  9. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103

    Science.gov (United States)

    Medina, Carlos; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-01-01

    Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103. PMID:26569401

  10. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil.

    Science.gov (United States)

    Di Gregorio, Simona; Barbafieri, Meri; Lampis, Silvia; Sanangelantoni, Anna Maria; Tassi, Eliana; Vallini, Giovanni

    2006-04-01

    The process of EDTA-assisted lead phytoextraction from the Bovisa (Milan, Italy) brownfield soil was optimized in microcosms vegetated with Brassica juncea. An autochthonous plant growth-promoting rhizobacterium (PGPR), Sinorhizobium sp. Pb002, was isolated from the rhizosphere of B. juncea grown on the Pb-contaminated soil in presence of 2 mM EDTA. The strain was augmented (10(8) CFU g(-1) soil) in vegetated microcosms to stimulate B. juncea biomass production and, hence, its phytoextraction potential. Triton X-100 was also added to microcosms at 5 and 10 times the critical micelle concentration (cmc) to increase the permeability of root barriers to the EDTA-Pb complexes. Triton X-100 amendment determined an increase in Pb concentration within plant tissues. However it contextually exerted a phytotoxic effect. Sinorhizobium sp. Pb002 augmentation was crucial to plant survival in presence of both bioavailable lead and Triton X-100. The combination of the two treatments produced up to 56% increase in the efficiency of lead phytoextraction by B. juncea. The effects of these treatments on the structure of the soil bacterial community were evaluated by 16S rDNA denaturing gradient gel electrophoresis (DGGE).

  11. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D.

    Science.gov (United States)

    Mehry, Askary; Akbar, Mostajeran; Giti, Emtiazi

    2008-06-15

    The potential enhancement of root colonization and nitrogenase activity of wheat cultivars (Baccross and Mahdavi) was studied with application of two Azospirillum brasilense strains (native and Sp7) co-inoculated with two Rhizobium meliloti strains (native and DSMZ 30135). The results indicated that the colonization was different due to the strains and cultivars of wheat were used. Native A. brasilense colonized wheat root better than Sp7 strain. However, Baccross cv. reacted better with native Azospirillum compared to Mahdavi cv. which reacted better with Sp7. When plants inoculated with dual inoculants (SP7 with standard Rhizobium), the colonization of Azospirillum were increased significantly (from 1.67 x 10(5) to 22 x 10(5) cfu g(-1) FW for Baccras cv. and 3.67 x 10(5) to 26 x 10(5) cfu g(-1) FW for Mahdavi cultivar). When the standard Rhizobium as co-inoculants changed to the native Rhizobium, the colonization of Azospirillum was higher when compared to the single inoculants but was almost the same when compared to the standard Rhizobium. When the standard or native strains of Rhizobium used as single inoculation of wheat roots, the number of Rhizobium in the wheat roots were not changed significantly. However, when plants co-inoculated with Rhizobium and Azospirillum, the colonization of Rhizobium was increased. Co-inoculation of standard strain of R. melilot with A. brasilense Sp7 showed that the colonization of Rhizobium were increased from 0.67 x 10(5) to 21 x 10(5) cfu g(-1) FW for Baccross cv. and 0.33 x 10(5) to 18 x 10(5) cfu g(-1) FW for Mahdavi cv. This behavior was the same when inoculation of Rhizobium was happened with the native one. In dual inoculation, the highest nitrogenase activity was measured in combination of the local strains (native A. brasilense with the native R. meliloti) and the lower one belongs to the combination of standard strains (Sp7 with standard R. meliloti). The difference in nirtogenase activity for different cultivars of

  12. Detección de actividad pectolítica en el cultivo de la cepa GR4 de rhyzobíum meliloti

    Directory of Open Access Journals (Sweden)

    P. Martínez M.

    2010-07-01

    Full Text Available Se ensayaron varios métodos para la obtención y purificación parcial de pectinasas a partir de sobrenadante del cultivo de la cepa GR4 de Rhizobium meliloti. Se describe el método con el cual se obtuvo el sobrenadante en el que se logró detectar la presencia de actividad pectolítica. Empleando una muestra comercial de enzimas pécticas (Pectinex, Novo se estudió la estabilidad de la actividad enzimática durante el proceso de purificación parcial establecido; se observó una pérdida gradual de la actividad en función del tiempo de duración del proceso.

  13. An??lisis y caracterizaci??n molecular del material gen??tico adyacente a la regi??n nfe, contenido en el pl??smido cr??ptico pRmeGR4b de Rhizobium meliloti GR4

    OpenAIRE

    Zekri, Sanae

    1997-01-01

    1.- los estudios de competitividad y eficiencia de nodulacion en la cepa rm2011 demuestran que la infectividad y competitividad determinadas por el plasmido prmnt40, en este fondo genetico, no son debidas exclusivamente a los genes nfe. otros genes contenidos en el plasmido prmegr4b, clonados en prmnt40, estan implicados en el proceso. 2.- la cepa gr4 de r. meliloti contiene genes adicionales implicados en la b...

  14. 苜蓿中华根瘤菌烯脂酰ACP还原酶基因fabI1功能研究%The enoyl-ACP reductase gene,fabI1, of Sinorhizobium meliloti is involved in salt tolerance, swarming mobility and nodulation efficiency

    Institute of Scientific and Technical Information of China (English)

    刘影; 朱家璧; 俞冠翘; 邹华松

    2009-01-01

    我们先前的工作表明,苜蓿中华根瘤菌的烯脂酰ACP还原酶基因fabI1在nifA突变根瘤中表达水平降低.本研究构建了fabI1的定点插入突变体.与野生型相比,突变菌株的生长速度变慢,在高浓度NaCl培养基上的生长能力降低.在半固体培养基上,该突变体的涌动能力完全丧失.在共生过程中,突变菌株在宿主植物上延迟结瘤,形成根瘤的能力下降.虽然苜蓿中华根瘤菌中的烯脂酰ACP还原酶基因fabI2的序列与fabI1有66%的一致性,但fabI2不能恢复fabI1突变体的表型,揭示了这两个基因在功能上的差异.

  15. 接种苜蓿中华根瘤菌SD101对提高紫花苜蓿结瘤数和产量的影响%Inoculating Sinorhizobium meliloti SD101 Improving Nodule Number and Yield of Native Alfalfa

    Institute of Scientific and Technical Information of China (English)

    石杰; 高宇; 孙宇峰; 张正海; 刘淑霞; 刘宇峰

    2016-01-01

    为提高紫花苜蓿品种的结瘤率和产量,建立高效紫花苜蓿与苜蓿根瘤菌的共生固氮体系,本研究采用16S rDNA测序方法得知已获得的SD101为苜蓿中华根瘤菌.通过盆栽试验研究了紫花苜蓿品种‘敖汉’和‘龙牧801’在不同处理基质中接种苜蓿中华根瘤菌SD101和保护剂的结瘤和株高情况.通过田间小区试验研究了‘敖汉’和‘龙牧801’在接种苜蓿中华根瘤菌SD101和保护剂后田间的结瘤和产量情况.结果发现,接种了SD101和保护剂的‘敖汉’和‘龙牧801’在不同基质上都有很好的结瘤数和株高,达到了显著水平.尿素处理的结果表明,施用尿素对苜蓿与根瘤菌共生结瘤有一定的抑制作用.使用伽马射线处理土样能够达到彻底灭菌的效果.田间试验中土著根瘤菌在苜蓿生长的过程中起着重要作用,但是使用苜蓿根瘤SD101和保护剂拌种的处理有着更强的竞争性.

  16. Effect of the Introduction of dctABD and nifA Genes on Symbiotic Nitrogen Fixation of Sinorhizobium meliloti%导入detABD和nifA基因对苜蓿中华根瘤菌共生固氮效率的影响

    Institute of Scientific and Technical Information of China (English)

    宫世勇; 孙淑荣; 周俊初

    2006-01-01

    将克隆有四碳二羧酸转移酶基因dctABD、nifA基因和发光酶基因luxAB的重组质粒pHN307经三亲本杂交分别导入苜蓿根瘤菌HNM1、HNM2、HNM4和1021中得到HNM1(pHN307)等4个转移接合子,进一步比较研究了pHN307在自生培养条件下传代的稳定性,并采用本室改进的双层钵无菌砂培盆栽法,分别将4个转移接合子和出发菌接种到苜蓿品种草原1号,公农1号和图牧2号.结果表明,只有用转移接合子HNM4(pHN307)和1021(pHN307)接种到草原1号和图牧2号的植株鲜重和干重明显优于出发菌.

  17. 紫花苜蓿-菌根真菌-根瘤菌对多氯联苯污染土壤的修复作用%Bioremediation of Polychlorinated Biphenyls Contaminated Soil by Medicago sativa L. Inoculated with Glomus caledoniun L. and Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    崔力拓; 李志伟

    2008-01-01

    以紫花苜蓿为材料,运用盆载试验,通过接种根瘤菌、菌根真菌对多氯联苯污染土壤的修复效应进行了研究.结果表明,紫花苜蓿对土壤中多氯联苯浓度降低具有重要作用,重污染土壤中平均降低了24.48%,轻污染土壤平均降低了19.14%;根瘤菌和菌根真菌双接种强化了紫花苜蓿对多氯联苯的修复作用,污染土壤的修复效果与土壤原污染程度有关;紫花苜蓿-菌根真菌-根瘤菌协同修复效果在重污染土壤中强于轻污染土壤;同时紫花苜蓿对土壤中PCBs表现出较强的耐性,因而可以作为PCBs污染土壤的植物修复材料.

  18. 接种高效根瘤菌对紫花苜蓿-禾本科混播组合生产性能的影响%Effect of inoculating highly effective Sinorhizobium meliloti on productivity of gramineous grass/alfalfa mixtures

    Institute of Scientific and Technical Information of China (English)

    曾昭海; 胡跃高; 陈文新; 隋新华; 陈丹明

    2006-01-01

    利用筛选的高效根瘤菌接种紫花苜蓿,分别与高羊茅、无芒雀麦及1年生黑麦草混播.与对照相比,接种高效根瘤菌后,紫花苜蓿-高羊茅混播组合中苜蓿干草增产17.0%,高羊茅增产15.1%,总计增产16.3%;紫花苜蓿-无芒雀麦混播组合中紫花苜蓿增产14.0%,无芒雀麦增产51%,总生物量增产20.5%;紫花苜蓿-1年生黑麦草混播组合中,紫花苜蓿增产7.6%,1年生黑麦草干草产量比对照增产4.8%,总生物量增产6.8%.从LER(Land equivalent ratio)和CR(Competitive ratio)变化看,接种高效根瘤菌有利于提高LER值和禾本科作物的CR值.

  19. 酸性条件下Al3+对苜蓿根瘤菌溶磷和分泌生长素能力的影响%Influences of Al3+ on Phosphate Solubilization and Auxin Secretion Abilities of Sinorhizobium meliloti under Acidic Conditions

    Institute of Scientific and Technical Information of China (English)

    张媚佳; 欧冰雷; 徐苏凌; 方勇; 徐根娣

    2011-01-01

    采用溶磷圈和Salkowski比色法,对酸性条件下铝对耐酸性能极优的两种根瘤菌溶磷和分泌生长素能力的影响进行了研究.结果表明,两种根瘤菌都具有较强的溶磷和分泌生长素的能力,且溶解无机磷的能力更强.在铝毒胁迫下,两菌株均表现出了一定的耐受性,随着铝离子浓度的增加,铝对溶磷和分泌生长素的能力抑制作用增强,相同条件下,菌株S1007较S1002具有更好的溶磷和分泌生长素的性能.%By means of phosphate solubilization ring and Salkowski colorimetry to study the influences of AP3+ on the phosphate solubilization and auxin secretion ability of two acid resistant varieties of rhizobium under acidic conditions. The results showed that the two varieties of rhizobium all have strong ability of phosphate solubilization and auxin secretion, and more apparent ability to dissolve inorganic phosphorus. The two strains all showed certain Al3+ tolerance under stress of Al3+ toxicity; the inhibitory effects of Al3+ on ability of phosphate solubilization and auxin secretion increases with increasing concentration of Al3+. Under the same conditions, strain SI007 showed a stronger ability of phosphate solubilization and auxin secretion in comparison with strain S1002.

  20. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    Science.gov (United States)

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  1. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala.

    Science.gov (United States)

    Li, Yan; Tian, Chang Fu; Chen, Wen Feng; Wang, Lei; Sui, Xin Hua; Chen, Wen Xin

    2013-01-01

    The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata.

  2. Mesorhizobium loti Produces nodPQ-Dependent Sulfated Cell Surface Polysaccharides▿

    OpenAIRE

    Townsend, Guy E.; Forsberg, Lennart S.; Keating, David H.

    2006-01-01

    Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a β-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of s...

  3. Final report for DOE grant FG02-06ER15805

    Energy Technology Data Exchange (ETDEWEB)

    Gage, Daniel

    2012-05-31

    DOE funding was used to investigate the role of the phosphotransferase system (PTS) in the symbiotic, nodulating bacterium Sinorhizobium meliloti. This system is well studied in several bacterial species. However, it's organization and function in S. meliloti is substantially different than in the those other, well-studied bacteria. The S. meliloti PTS, through our DOE-funded work, has become a model for how this important signal transduction system works in the a-proteobacteria. We have found that the PTS is relatively simple, used for only signal transduction and not transport, and is involved in regulation of carbon metabolism in response to carbon availability and nitrogen availability.

  4. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis

    NARCIS (Netherlands)

    Wang, D.; Griffitts, J.; Starker, C.; Fedorova, E.; Limpens, E.H.M.; Ivanov, S.E.; Bisseling, T.; Long, S.

    2010-01-01

    The nitrogen-fixing symbiosis between Sinorhizobium meliloti and its leguminous host plant Medicago truncatula occurs in a specialized root organ called the nodule. Bacteria that are released into plant cells are surrounded by a unique plant membrane compartment termed a symbiosome. We found that in

  5. Phosphate sink containing two-component signaling systems as tunable threshold devices

    DEFF Research Database (Denmark)

    Amin, Munia; Kothamachu, Varun B; Feliu, Elisenda

    2014-01-01

    and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We...

  6. Persistence and diversity of rhizobial bacteria nodulating alfalfa

    Science.gov (United States)

    Most alfalfa seed is treated with an inoculant consisting of several strains of the nitrogen fixing bacterium Sinorhizobium meliloti to enhance nodulation of seedlings. One strategy for increasing alfalfa forage yields, particularly in less fertile sites, is selection and use of highly competitive a...

  7. Analysis of nodule meristem persistence and ENOD40 functioning in Medicago truncatula nodule formation

    NARCIS (Netherlands)

    Wan Xi,

    2007-01-01

    Medicago root nodules are formed as a result of the interaction of the plant with the soil-borne bacterium Sinorhizobium meliloti. Several plant genes are induced during nodule formation and MtENOD40 is one of the earliest genes activated. The precise function as well as the molecule harboring the b

  8. An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula

    NARCIS (Netherlands)

    Schnabel, E.; Kulikova, O.; Penmetsa, R.V.; Bisseling, T.; Cook, D.R.; Frugoli, J.

    2003-01-01

    The sunn mutation of Medicago truncatula is a single-gene mutation that confers a novel supernodulation phenotype in response to inoculation with Sinorhizobium meliloti. We took advantage of the publicly available codominant PCR markers, the high-density genetic map, and a linked cytogenetic map to

  9. ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide

    NARCIS (Netherlands)

    Compaan, B.; Yang, W.C.; Bisseling, T.; Franssen, H.

    2001-01-01

    In situ expression studies show that MsENOD40 is expressed in pericycle cells of alfalfa roots within 3 hr after addition of Sinorhizobium meliloti 1021. This is about 15 hr before cortical cell divisions become apparent. All ENOD40 clones isolated so far share two conserved regions, box 1 and box 2

  10. Application of Multilocus Sequence Typing To Study the Genetic Structure of Megaplasmids in Medicago-Nodulating Rhizobia

    Science.gov (United States)

    A multilocus sequence typing (MLST) analysis was used to examine the relatedness and distribution of genotypic variants of the two large extrachromosomal replicons in Medicago-nodulating rhizobia (Sinorhizobium meliloti and S. medicae). One goal was to develop a strategy for the characterization of...

  11. Influence of Trichoderma reesei and Rhizobium meliloti on Phytoremediation of PAH-contaminated Soil by Alfalfa%多环芳烃污染土壤的微生物-紫花苜蓿联合修复效应

    Institute of Scientific and Technical Information of China (English)

    姚伦芳; 滕应; 刘方; 吴永贵; 李振高; 骆永明

    2014-01-01

    Phytoremediation combined with microbial remediation is a relatively low cost and highly efficient new remediation method for soils moderately contaminated with persistent organic pollutants. Application of new biological resources will promote the further development of this method. In the present study a fungus (Trichoderma reesei FS10-C), a bacterium (Rhizobium meliloti) and alfalfa (Medicago sativaL.) were studied in a pot experiment. There were control pots with inoculation with only inactiveT. reeseiandR.meliloti (CK) and three treatments comprising alfalfa with inactiveT. reeseiandR.meliloti (A), alfalfa inoculated withT. reesei (TA), and alfalfa inoculated withT. reeseiandR. meliloti (TRA). The study was conducted to examine the effects of inoculation withT. reesei andR. melilotion phytoremediation by alfalfof soil contaminated with polycyclic aromatic hydrocarbons (PAHs). The biomass of alfalfa increased by 5.9 and 11.2% in TA and TRA treatments, respectively, after 60 days. The PAH concentrations in A, TA and TRA treatments were significantly (p<0.05) reduced by 17.0, 25.6 and 32.9%, respectively, and only by 5.7% in the control. In addition, inoculation withT. reesei andR. melilotigave higher remove rates of high molecular weight PAHs. The removal efficiencies of 4- and 5(+6)-ring PAHs were18.1 and 24.7%, 21.4 and 28.3%, and 21.3 and 30.1% for A, TA and TRA treatments, respectively. Moreover, the treatments with alfalfa (A, TA, TRA) significantly (p<0.05) increased the soil microbial activity. Compared with the control, soil dehydrogenase activity in A, TA, and TRA treatments increased by 33.2, 34.6 and 32.6%, and the AWCD values and diversity indices were significantly (p<0.05) higher than in the control. The combination of the microorganisms (T. reesei andR. meliloti) with alfalfa therefore stimulated the remediation efficiency of the PAHs by the rhizosphere microflora. This combination might be a promising bioremediation strategy for aged PAH

  12. Acacia senegal and Prosopis chilensis-nodulating rhizobia Sinorhizobium arboris HAMBI 2361 and S. kostiense HAMBI 2362 produce tetra- and pentameric LCOs that are N-methylated, O-6-carbamoylated and partially sulfated.

    Science.gov (United States)

    Nowak, Petri; Soupas, Laura; Thomas-Oates, Jane; Lindström, Kristina

    2004-04-28

    Sinorhizobium arboris and S. kostiense are rhizobia that nodulate the tropical leguminous trees Acacia senegal and Prosopis chilensis. The lipochito-oligosaccharidic signalling molecules (LCOs) of S. arboris HAMBI 2361 and S. kostiense HAMBI 2362 were analyzed by mass spectrometry. The major LCOs produced by the strains were shown to be pentameric, acylated with common fatty acids, N-methylated, O-6-carbamoylated and partially sulfated, as are the LCOs characterized to date for other Acacia-nodulating rhizobia. Besides the major LCOs the two strains produced (i) tetrameric LCOs, (ii) LCOs acylated with fatty acids other than those commonly found, (iii) LCOs with only an acyl substituent and (iv) noncarbamoylated LCOs. Production of LCOs (i) to (iii) are novel among Acacia-nodulating rhizobia. The roles of the different structural characteristics of LCOs in the rhizobium-A. senegal symbiosis are discussed. Specific structural features of the LCOs are proposed to be important in the selection of effective nitrogen-fixing rhizobia by A. senegal.

  13. Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333.

    Science.gov (United States)

    Zhou, Ling-Yan; Zhang, Long-Jiang; Sun, Shi-Lei; Ge, Feng; Mao, Shi-Yun; Ma, Yuan; Liu, Zhong-Hua; Dai, Yi-Jun; Yuan, Sheng

    2014-10-15

    The metabolism of the widely used neonicotinoid insecticide acetamiprid (ACE) has been extensively studied in plants, animals, soils, and microbes. However, hydration of the N-cyanoimine group in ACE to the N-carbamoylimine derivate (IM-1-2) by purified microbes, the enzyme responsible for this biotransformation, and further degradation of IM-1-2 have not been studied. The present study used liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to determine that the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333 transforms ACE to IM-1-2. CGMCC 7333 cells degraded 65.1% of ACE in 96 h, with a half-life of 2.6 days. Escherichia coli Rosetta (DE3) overexpressing the nitrile hydratase (NHase) from CGMCC 7333 and purified NHase converted ACE to IM-1-2 with degradation ratios of 97.1% in 100 min and 93.9% in 120 min, respectively. Interestingly, IM-1-2 was not further degraded by CGMCC 7333, whereas it was spontaneously hydrolyzed at the N-carbamoylimine group to the derivate ACE-NH, which was further converted to the derivative ACE-NH2. Then, ACE-NH2 was cleaved to the major metabolite IM-1-4. IM-1-2 showed significantly lower insecticidal activity than ACE against the aphid Aphis craccivora Koch. The present findings will improve the understanding of the environmental fate of ACE and the corresponding enzymatic mechanisms of degradation.

  14. Action Mode of Sinorhizobium fredii Sneb183 on the Activity of Soybean Cyst Nematode%根瘤菌Sneb183对大豆胞囊线虫二龄幼虫的作用方式研究

    Institute of Scientific and Technical Information of China (English)

    田丰; 陈立杰; 王媛媛; 朱晓峰; 段玉玺

    2014-01-01

    大豆胞囊线虫是大豆生产中的主要病害之一,由于化学防治存在费用高,效果不佳,污染环境和危害人畜安全等方面的诸多问题,生物防治成为了防治大豆胞囊线虫的新方法。本试验利用体外生物测定方法,研究了费氏中华根瘤菌Sinorhizobium frediiSneb183对大豆胞囊线虫二龄幼虫的存活、卵孵化、呼吸作用以及体液渗透的影响。结果表明,根瘤菌Sneb183处理幼虫72 h后,死亡率达86.7%,处理初期,线虫出现活动迟缓等症状,而后表现出整个身体僵直的死亡症状;对卵的孵化抑制率可达59.4%;根瘤菌Sneb183对二龄幼虫呼吸有较强抑制作用,处理24 h后,耗氧量下降93.1%;同时根瘤菌Sneb183发酵液可引起二龄幼虫体液渗漏,处理48 h后电导率增加了62.4%。因此,根瘤菌Sneb183可成为大豆胞囊线虫病生物防治资源中的新成员。%The soybean cyst nematode (SCN,Heterodera glycines) is one of the most important pests in soybean production. Due to high economic and environmental costs associated with chemical control of nematode, endophytic rhizobacteria have been used successfully for the biological control of SCN. This paper measured mortality, egg hatching, oxygen consumption and permeability of body fluids of SCN second-stage juvenile which was treated by fermentation liquor of Sneb183 (Sinorhizobium fredii). When treated to nematode juvenile, Sneb183 resulted in 86.7% of nematode juvenile at 72 h post-treatment. Sneb183 inhibited nematode hatching by 59.4%. At 24 h after treatment, the oxygen consumption rate was decreased by 93.1%, while at 48 h after treatment, the conductivity was increased by 62.4%. The study suggested that Sneb183 could be a new agent for biological control of soybean cyst nematode.

  15. Subcloning and Sequencing of DNA Fragment Related to Salt Tolerance in Sinorhizobium fredii RT19%费氏中华根瘤菌与耐盐有关的DNA片段的亚克隆和测序

    Institute of Scientific and Technical Information of China (English)

    卞学琳; 葛世超; 杨苏声

    2000-01-01

    将费氏中华根瘤菌(Sinorhizobium fredii) RT19与耐盐有关的23kb DNA片段用BamH酶切成大小不同的长度,分别与质粒pML122连接,然后转化大肠杆菌(Escherichia coli) S17-1,筛选出3个转化子。以这些转化子为供体, RT19的盐敏感突变株RC3-3为受体,分别 进行二亲本杂交,筛选到接合子BR2,得到4.4kb与耐盐有关的DNA片段。根据其物理图谱,酶切成6个DNA片段,并分别连接到质粒pUC18进行测序。测序分析表明,该4.4kb DNA片段含有fixO、fixN基因和3个开放阅读框(ORF)。%A 23kb DNA fragment related to salt tolerance was obtained from the gene library of S. fredii strain RT19. In this study, BamH was selected to digest 23kb DNA fragment into different length of DNA fragments. The resulting fragments were ligated with plasmid pML122, then the recombinant plasmids were transformed to competent cells of E. coli S17-1 on selective medium and three transformants TR were obtained. Two-Parental mating experiments were carried out with these transformants as donor and salt sensitive S. fredii strain RC3-3 as recipient, and the transconjugant BR2 was selected on FY plates containing gentamycin and 0.4mol/L NaCl. Thus, a 4.4kb DNA fragment related to salt tolerance was obtained. Based on its physical map, six restriction fragments were subcloned into plasmid pUC18 for DNA sequencing. Subsequently, sequencing and analysis of 4.4kb DNA fragment showed that fixO, fixN genes and three ORFs were obtained.

  16. Functional Characterization of SbmA, a Bacterial Inner Membrane Transporter Required for Importing the Antimicrobial Peptide Bac7(1-35)

    OpenAIRE

    Runti, Giulia; Lopez Ruiz, Maria del Carmen; Stoilova, Tatiana; Hussain, Rohanah; Jennions, Matthew; Choudhury, Hassanul G.; Benincasa, Monica; Gennaro, Renato; Beis, Konstantinos; Scocchi, Marco

    2013-01-01

    SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the prolin...

  17. Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain.

    Science.gov (United States)

    Iglesias, Olga; Rivas, Raúl; García-Fraile, Paula; Abril, Adriana; Mateos, Pedro F; Martinez-Molina, Eustoquio; Velázquez, Encarna

    2007-12-01

    Prosopis is a Mimosaceae legume tree indigenous to South America and not naturalized in Europe. In this work 18 rhizobial strains nodulating Prosopis alba roots were isolated from a soil in North Spain that belong to eight different randomly amplified polymorphic DNA groups phylogenetically related to Sinorhizobium medicae, Sinorhizobium meliloti and Rhizobium giardinii according to their intergenic spacer and 16S rRNA gene sequences. The nodC genes of isolates close to S. medicae and S. meliloti were identical to those of S. medicae USDA 1,037(T) and S. meliloti LMG 6,133(T) and accordingly all these strains were able to nodulate both alfalfa and Prosopis. These nodC genes were phylogenetically divergent from those of the isolates close to R. giardinii that were identical to that of R. giardinii H152(T) and therefore all these strains formed nodules in common beans and Prosopis. The nodC genes of the strains isolated in Spain were phylogenetically divergent from that carried by Mesorhizobium chacoense Pr-5(T) and Sinorhizobium arboris LMG 1,4919(T) nodulating Prosopis in America and Africa, respectively. Therefore, Prosopis is a promiscuous host which can establish symbiosis with strains carrying very divergent nodC genes and this promiscuity may be an important advantage for this legume tree to be used in reforestation.

  18. Analysis of Simple Sequence Repeats in Genomes of Rhizobia

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-mei; HAN Yi-qiang; TANG Hui; SUN Dong-mei; WANG Yan-jie; WANG Wei-dong

    2008-01-01

    Simple sequence repeats (SSRs) or microsatellites, as genetic markers, are ubiquitous in genomes of various organisms. The analysis of SSR in rhizobia genome provides useful information for a variety of applications in population genetics of rhizobia. We analyzed the occurrences, relative abundance, and relative density of SSRs, the most common in Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti genomes se-quenced in the microorganisms tandem repeats database, and SSRs in the three species genomes were compared with each other. The result showed that there were 1 410, 859, and 638 SSRs in B. japonicum, M. loti, and 5. meliloti genomes, respectively. In the genomes of B. japonicum, M. loti, and 5. meliloti, tetranucleotide, pentanucleotide, and hexanucleotide repeats were more abundant and indicated higher mutation rates in these species. The least abundance was mononucleotide repeat. The SSRs type and distribution were similar among these species.

  19. 导入额外拷贝nifA基因对费氏中华根瘤菌HN01NL根圈定殖与竞争结瘤的影响%Influence of Introduced Extra nifA Gene on Rhizosphere Colonization a nd Competition for Nodule Occupancy by Sinorhizobium fredii Strain HN01NL

    Institute of Scientific and Technical Information of China (English)

    李友国; 周俊初

    2000-01-01

    本文研究了导入额外拷贝的肺炎克氏杆菌(Klebsiella pneumoniae) nifA 基因对受体费氏中华根瘤菌(Sinorhizobium fredii) HN01 在大豆根圈的定殖和竞争结瘤的影响 .将 HN01分别与带有标记基因luxAB的参照菌株HN01L和带有nifA基因和标记基因lux AB的重组菌株HN01NL按照1∶1等量比例接种于大豆黑龙33种子表面,在灭菌土和非灭菌土中研究其定殖动态.每一供试菌株在根圈中的比例依次于播种后第3天、第7天、第10天、第12天、第14天、第16天、第21天和第36天进行测定,占瘤率在播种后第40天进行比较测定.盆栽实验结果表明:导入了额外拷贝nifA基因的重组菌HN01NL与受体菌HN01和参照菌HN01L相比较, 在灭菌土和非灭菌土中均表现出显著增强的大豆根圈适应性和竞争能力.%Root colonization by introduced strains of Sinorhizobium fredii was exa m ined to determine if the introduction of extra copy Klebsiella pneumoniae nifA g ene into the recipient strain HN01 could increase its competitiveness for rhizos phere colonization and root nodulation of Glycine max in soil. Seeds of Gl ycine max were inoculated with HN01 and either of the two luxAB marked strains H N01L a nd HN01NL that differ only in carrying extra Kp nifA gene or not . The pair of s trains were inoculated with 1:1 mixtures in sterile and non-sterile soil in pl an t pot experiment system. The representation of strains in the rhizosphere was de termined at 3 d, 7 d, 10 d, 12 d,14 d,16 d,21 d, 36 d after inoculation and nodu le occu pancy was determined at 40 d after sowing. The results indicated that the extra -Kp -nifA-carrying strain HN01NL was significantly more competitive in soybean r hizo sphere than recipient strain HN01 and reference strain HN01L both in sterile and non-sterile soil.

  20. 中华根瘤菌NP1亚硝酸盐还原酶基因的表达和酶学性质研究%Expression of Nitrite Reductase Gene of Sinorhizobium sp.NP1 and the Enzymatic Properties

    Institute of Scientific and Technical Information of China (English)

    袁会兰; 边晨凯; 陈度宇; 张宇; 许雷

    2016-01-01

    [目的]研究中华根瘤菌NP1(Sinorhizobium sp.NP1)中亚硝酸盐还原酶基因(nir)的原核表达情况以及粗酶液的化学性质.[方法]构建该基因的原核表达载体pET32a-nir,然后对重组蛋白质进行SDS-PAGE和Western blotting分析获得NIR酶在原核生物中的表达情况.通过测定粗酶液对亚硝酸盐降解情况研究相关酶学性质.[结果]SDS-PAGE检测结果表明,可溶性融合表达产物约为57 ku,其中亚硝酸盐还原酶大小约40 ku,与酶分子量的预估值一致;Western blotting证实该蛋白可与根据亚硝酸盐还原酶合成的多克隆抗体发生强阳性反应;酶学性质分析表明,亚硝酸盐还原酶活力约为247.15 U/mL,最适pH 6.5,最适反应温度37℃,该酶对NaCl的耐受性为0.3 mol/L.[结论]亚硝酸盐还原酶蛋白重组质粒能在大肠杆菌系统中高效表达,研究其酶学性质为NO2-生物清除提供了技术保障.

  1. Comparison of the 'Ca. Liberibacter asiaticus' genome adapted for an intracellular lifestyle with other members of the Rhizobiales.

    Directory of Open Access Journals (Sweden)

    John S Hartung

    Full Text Available An intracellular plant pathogen 'Candidatus Liberibacter asiaticus,' a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, nitrogen fixing endosymbionts, Agrobacterium tumefaciens, a plant pathogen, and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 50 clusters of conserved orthologous genes found on the chromosomes of all five metabolically diverse species. The intracellular pathogens 'Ca. Liberibacter asiaticus' and Bartonella henselae have genomes drastically reduced in gene content and size as well as a relatively low content of guanine and cytosine. Codon and amino acid preferences that emphasize low guanosine and cytosine usage are globally employed in these genomes, including within regions of microsynteny and within signature sequences of orthologous proteins. The length of orthologous proteins is generally conserved, but not their isoelectric points, consistent with extensive amino acid substitutions to accommodate selection for low GC content. The 'Ca. Liberibacter asiaticus' genome apparently has all of the genes required for DNA replication present in Sinorhizobium meliloti except it has only two, rather than three RNaseH genes. The gene set required for DNA repair has only one rather than ten DNA ligases found in Sinorhizobium meliloti, and the DNA PolI of 'Ca. Liberibacter asiaticus' lacks domains needed for excision repair. Thus the ability of 'Ca. Liberibacter asiaticus' to repair mutations in its genome may be impaired. Both 'Ca. Liberibacter asiaticus and Bartonella henselae lack enzymes needed for the metabolism of purines and pyrimidines, which must therefore be obtained from the host. The 'Ca. Liberibacter asiaticus' genome also has a greatly reduced set of sigma factors used to control transcription, and lacks sigma factors 24, 28 and 38. The 'Ca. Liberibacter asiaticus' genome has all of the hallmarks of a reduced genome of a

  2. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp.

    Science.gov (United States)

    Ampomah, Osei Yaw; Jensen, John Beck

    2014-03-01

    Competitiveness for nodulation is a desirable trait in rhizobia strains used as inoculant. In Sinorhizobium meliloti 1021 mutation in either of the trehalose utilization genes thuA or thuB influences its competitiveness for root colonization and nodule occupancy depending on the interacting host. We have therefore investigated whether mutation in the thuA ortholog in Mesorhizobium loti MAFF303099 also leads to a similar competitive phenotype on its hosts. The results show that M. loti thuA mutant Ml7023 was symbiotically effective and was as competitive as the wild type in colonization and nodule occupancy on Lotus corniculatus and Lotus japonicus. The thuA gene in M. loti was not induced during root colonization or in the infection threads unlike in S. meliloti, despite its induction by trehalose and high osmolarity in in vitro assays.

  3. Polymer-induced phase separation in suspensions of bacteria

    Science.gov (United States)

    Schwarz-Linek, J.; Dorken, G.; Winkler, A.; Wilson, L. G.; Pham, N. T.; French, C. E.; Schilling, T.; Poon, W. C. K.

    2010-03-01

    We study phase separation in suspensions of two unrelated species of rod-like bacteria, Escherichia coli and Sinorhizobium meliloti, induced by the addition of two different anionic polyelectrolytes, sodium polystyrene sulfonate or succinoglycan, the former being synthetic and the latter of natural origin. Comparison with the known behaviour of synthetic colloid-polymer mixtures and with simulations show that "depletion" (or, equivalently, "macromolecular crowding") is the dominant mechanism: exclusion of the non-adsorbing polymer from the region between two neighbouring bacteria creates an unbalanced osmotic force pushing them together. The implications of our results for understanding phenomena such as biofilm formation are discussed.

  4. Effect of bacterial inoculation in some mixtures of grassland legumes and gramineae

    Directory of Open Access Journals (Sweden)

    Claudiu Ghiocel

    2014-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 The paper presents the influence of bacterial inoculation of perennial legumes (alfalfa, bird’s-foot trefoil in pure culture and cultivated in association with perennial gramineae on fodder yield, fodder quality, and atmospheric nitrogen-fixing ability. Results point out an increase of 10-12% of the yield of dry matter in the variants inoculated. Bacterial inoculation with specific bacterial stems (Sinorhizobium meliloti and Mezorhizobium loti has a positive influence on fodder quality too, materialised in the raw protein content and the amount of nitrogen fixed biologically.

  5. Screening and Identification of Alkali-Tolerance Strains%一株耐碱根瘤菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    汤晖; 隋新华; 陈文新

    2006-01-01

    为探讨耐碱微生物的耐碱机制,自CCBAU根瘤菌菌库中筛选得到一株耐受pH11.5的根瘤菌,编号为CCBAU 81024.通过对其生理生化特征的测定、16SrDNA序列分析、DNAG+Cmol%测定以及DNA-DNA杂交,鉴定其为Sinorhizobium meliloti.为进一步的研究根瘤菌的耐碱机制提供了实验材料.

  6. ProMEX – a mass spectral reference database for Plant Proteomics

    Directory of Open Access Journals (Sweden)

    Stefanie eWienkoop

    2012-06-01

    Full Text Available The ProMEX database is one of the main collection of annotated tryptic peptides in plant proteomics. The main objective of the ProMEX Database is to provide experimental MS/MS-based information for cell type-specific or subcellular proteomes in Arabidopsis thaliana, Medicago truncatula, Chlamydomonas reinhardtii, Lotus japonicus, Lotus corniculatus, Phaseolus vulgaris, Lycopersicon esculentum, Solanum tuberosum, Nicotiana tabacum, Glycine max, Zea mays, Bradyrhizobium japonicum and Sinorhizobium meliloti. Direct links at the protein level to the most relevant databases are present in ProMEX. Furthermore, the spectral sequence information are linked to their respective pathways and can be viewed in pathway maps.

  7. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    Science.gov (United States)

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  8. The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils

    Science.gov (United States)

    Lapinskas, E. B.

    2007-04-01

    The distribution and symbiotic efficiency of nodule bacteria Rhizobium leguminosarum_bv. trifolii F., Sinorhizobium meliloti D., Rhizobium galegae L., and Rhizobium leguminosarum bv. viciae F. in Lithuanian soils as dependent on the soil acidity were studied in the long-term field, pot, and laboratory experiments. The critical and optimal pH values controlling the distribution of rhizobia and the symbiotic nitrogen fixation were determined for every bacterial species. The relationship was found between the soil pH and the nitrogen-fixing capacity of rhizobia. A positive effect of liming of acid soils in combination with inoculation of legumes on the efficiency of symbiotic nitrogen fixation was demonstrated.

  9. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments

    Directory of Open Access Journals (Sweden)

    Yanjun eYang

    2015-06-01

    Full Text Available Calmodulin-binding transcription activators (CAMTAs are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.

  10. Present status and development on biological nitrogen fixation research in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This presentation introduces the advances in biological nitrogen fixation research abroad, in particular, describes the great progress and achievements on its research in China as follows: collection of rhizobial resources and establishment of the largest database of Rhizobium in China, correction and development of Rhizobium taxonomy in international; discovery of a couple of nif genes, identification and unification of linkage among the nif gene operons of Klebsiella pneumoniae, finding of regulative mechanism of positive regulation nif gene and its sensitivity to oxygen, temperature; finding of the activity of nodulation gene nodD3 product in Sinorhizobium meliloti which is not controlled by flavonoid produced from its host alfalfa; finding of the association between expression of genes coding the products for carbon utilization and nitrogen metabolism and their regulations; chemical synthesis of nodulation factor of Sinorhizobium meliloti; constructions of engineered nitrogen fixers and utilization in practice based on the research of gene expression and regulation; chemical simulation of the structure and function of nitrogenase and bringing forward the model of nitrogenase active center for the first time in international and synthesis of model compounds which were paid attention by colleagues abroad. Finally, the development of nitrogen fixation research in China in future has been put forward, suggesting that the nif gene regulation and its role in providing crops with nitrogen element, signal transduction and molecular interactions between Rhizobium and legume, coupling between carbon and nitrogen metabolisms, nitrogen fixation and photosynthesis, and functional genomics of nitrogen-fixing nodule symbiosis, etc., would be actively worked on.

  11. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    Science.gov (United States)

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2015-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula- Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula- Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

  12. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  13. LaCl3、IAA及植物体液对荧光标记根瘤菌生长和增殖的影响%The effect of LaCl3,IAA and plant sap on the growth and proliferation of fluorescence marked rhizobia

    Institute of Scientific and Technical Information of China (English)

    张淑卿; 师尚礼; 陈力玉; 苗阳阳; 李剑峰; 霍平慧

    2013-01-01

    以标记根瘤菌及其原始菌株为试验材料,研究LaCl3、IAA及植物体液对荧光标记根瘤菌生长和增殖的影响.分别将荧光标记根瘤菌Sinorhizobium meliloti.12531f、Rhizobium meililoti.GNf及其原始菌株Sinorhizobium meliloti.12531、Rhizobium meliloti.GN5接种于含50 mg/L LaCl3溶液、0.08 mg/L IAA溶液及甘农5号苜蓿植株体液的YMA固体及液体培养基中,于22h及46 h后测定各培养基上的菌落直径或D600nm值,以此判断植物体液对荧光标记根瘤菌及其原菌株生长和增殖的影响.结果表明,标记根瘤菌及其原始菌株在含几种外源物质的培养基上均能正常生长并增殖,且外源物质对各菌株的生长有不同程度的促进作用.培养22h时,R.GNf、S.12531及R.GN5在含几种外源物质的固体培养基上增殖速度较快,R.GN5在不同物质处理下生长速度最快,为对照的233%~250%;苜蓿植株体液较其他3种物质更能促进菌株的生长和增殖.

  14. ارزیابی تحمل باکتری‌های سینوریزوبیوم ملیلوتی (Sinorhizobium meliloti همزیست با ریشه یونجه نسبت به فلزات سنگین، آنتی‌بیوتیک و شوری در استان خراسان رضوی

    Directory of Open Access Journals (Sweden)

    آزاده حداد سبزوار

    2015-09-01

    Full Text Available ریزوبیوم­ ها شناخته‌شده‌ترین گروه از باکتری‌های همزیست با ریشه گیاهان لگومینه هستند که نیتروژن را تثبیت می‌کنند. این باکتری‌ها در خاک با تنش‌های مختلفی که بر رشد، ایجاد همزیستی و توانایی تثبیت نیتروژن تأثیر می‌گذارند، روبه‌رو هستند. این تحقیق با هدف ارزیابی تحمل 23 جدایه سینوریزوبیوم همزیست با ریشه یونجه در شهرستان‌های مشهد و سبزوار نسبت به فلزات سنگین، آنتی‌بیوتیک‌ها و غلظت‌های متفاوت شوری انجام شد. جدایه ها ازنظر مقاومت به آنتی‌بیوتیک‌های پنی‌سیلین، تتراسیکلین، ونکومایسین، نالیدیکسیک اسید و استرپتومایسین با روش انتشار در آگار، مقاومت نسبت به فلزات سنگین شامل مس، کادمیوم، روی، منگنز و همچنین غلظت‌های مختلف کلرید سدیم شامل 0/5، 1، 2، 3 و 4% در محیط جامد مورد آزمایش قرار گرفتند. نتایج نشان داد که 100% جدایه ها نسبت به پنی‌سیلین مقاوم و نسبت به تتراسیکلین حساس بودند. الگوی مقاومت نسبت به ونکومایسین، نالیدیکسیک اسید و استرپتومایسین متفاوت بود. جدایه ها در غلظت‌های 0/5 میلی مول مس، 0/65 میلی مول کادمیوم، 0/125 میلی مول روی و غلظت‌های 1/5 میلی مول منگنز رشد کردند. نتایج ازنظر تحمل غلظت‌های مختلف شوری نشان داد که تمامی جدایه ها در غلظت‌های پایین کلرید سدیم توانایی رشد داشتند و تنها 7 جدایه توانایی رشد در غلظت‌های بالا را دارا بودند.

  15. Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Giel E. van Noorden

    2016-07-01

    Full Text Available The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes.

  16. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    NARCIS (Netherlands)

    Breedveld, M.W.

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rh

  17. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    OpenAIRE

    Breedveld, M W

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rhizobium polys accharides has resulted from a development in two distinct areas, (i) the role of oligo- and polysaccharides in the microbe- plant interaction, and (ii) studies on the physico- chemic...

  18. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    Directory of Open Access Journals (Sweden)

    Ariel J.C. Dauzart

    2016-02-01

    Full Text Available Understanding the outcome of the plant-microbe symbiosis in altered gravity is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula ¬– Sinorhizobium meliloti – Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti, arbuscular mycorrhizal fungi (R. irregularis, or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  19. Homoserine Lactones Influence the Reaction of Plants to Rhizobia

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Kogel

    2013-08-01

    Full Text Available Bacterial quorum sensing molecules not only grant the communication within bacterial communities, but also influence eukaryotic hosts. N-acyl-homoserine lactones (AHLs produced by pathogenic or beneficial bacteria were shown to induce diverse reactions in animals and plants. In plants, the reaction to AHLs depends on the length of the lipid side chain. Here we investigated the impact of two bacteria on Arabidopsis thaliana, which usually enter a close symbiosis with plants from the Fabaceae (legumes family and produce a long-chain AHL (Sinorhizobium meliloti or a short-chain AHL (Rhizobium etli. We demonstrate that, similarly to the reaction to pure AHL molecules, the impact, which the inoculation with rhizosphere bacteria has on plants, depends on the type of the produced AHL. The inoculation with oxo-C14-HSL-producing S. meliloti strains enhanced plant resistance towards pathogenic bacteria, whereas the inoculation with an AttM lactonase-expressing S. meliloti strain did not. Inoculation with the oxo-C8-HSL-producing R. etli had no impact on the resistance, which is in agreement with our previous hypothesis. In addition, plants seem to influence the availability of AHLs in the rhizosphere. Taken together, this report provides new insights in the role of N-acyl-homoserine lactones in the inter-kingdom communication at the root surface.

  20. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Chenjia eShen

    2015-02-01

    Full Text Available Auxin response factors (ARFs bind specifically to auxin response elements (AuxREs in the promoters of down-stream target genes and play roles in plant responses to diverse environmental factors. Using the latest updated Medicago truncatula reference genome sequence, a comprehensive characterization and analysis of 24 MtARF genes were performed. To uncover the basic information and functions of MtARF genes during symbiosis, we analyze the expression patterns of MtARF genes during the early phase of Sinorhizobium meliloti infection. The systematic analysis indicated that MtARF gene expressions were involved in the symbiosis processes. Furthermore, the roles of MtARF-mediated auxin signaling in symbiosis were tested in the infection resistant mutant (dmi3. The expression responses of MtARFs to S. meliloti infection were attenuated in the mutant compared to wild-type A17. In summary, our results shed that the MtARF gene expressions was involved in responses to S. meliloti infection, which may play an essential role in the regulation of nodule formation.

  1. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia.

    Science.gov (United States)

    Ratcliff, William C; Kadam, Supriya V; Denison, Robert Ford

    2008-09-01

    The carbon that rhizobia in root nodules receive from their host powers both N(2) fixation, which mainly benefits the host, and rhizobium reproduction. Rhizobia also store energy in the lipid poly-3-hydroxybutyrate (PHB), which may enhance rhizobium survival when they are carbon limited, either in nodules or in the soil between hosts. There can be a conflict of interest between rhizobia and legumes over the rate of PHB accumulation, due to a metabolic tradeoff between N(2) fixation and PHB accumulation. To quantify the benefits of PHB to carbon-limited rhizobia, populations of genetically uniform rhizobia with high vs. low PHB (confirmed by flow cytometry) were generated by fractionating Sinorhizobium meliloti via density gradient centrifugation, and also by harvesting cells at early vs. late stationary phase. These rhizobia were starved for 165 days. PHB use during starvation was highly predictive of both initial reproduction and long-term population maintenance. Cultured S. meliloti accumulated enough PHB to triple their initial population size when starved, and to persist for c. 150 days before the population fell below its initial value. During the first 21 days of nodule growth, undifferentiated S. meliloti within alfalfa nodules accumulated enough PHB to support significant increases in reproduction and survival during starvation.

  2. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    Science.gov (United States)

    Dauzart, Ariel; Vandenbrink, Joshua; Kiss, John

    2016-02-01

    Understanding the outcome of the plant-microbe symbiosis in altered gravity is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula ¬- Sinorhizobium meliloti - Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  3. Scanning electron microscopy and in vitro cultivation of endophytic bacteria from potato tubers related to Zebra Chip disease

    Science.gov (United States)

    Zebra chip disease (ZCD) drastically reduces the quality and market value of potatoes in North America. The disease is associated with a phloem-limited alpha-proteobacterium, “Candidatus Liberibacter solanacearum”. No effective measure is currently available to control ZCD. It is known that endoph...

  4. Scanning electron microscopy of “Candidatus Liberibacter solanacearum” in infected tomato phloem tissue

    Science.gov (United States)

    “Candidatus Liberibacter solanacearum” is an alpha-proteobacterium associated with potato zebra-chip disease. The bacterium is currently non-cultureable. Very little is known about the bacterial morphology, an important characteristic of a complete bacterial description. In this study, “Ca. L. so...

  5. From Endosymbiont to Host-Controlled Organelle: The Hijacking of Mitochondrial Protein Synthesis and Metabolism

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  6. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  7. Establishment and screen of Cyan Fluorescent Protein labeled strains of alfalfa rhizobia%苜蓿根瘤菌cfp荧光标记株的构建及筛选方法

    Institute of Scientific and Technical Information of China (English)

    张淑卿; 李剑峰; 陈力玉; 师尚礼; 苗阳阳

    2015-01-01

    荧光标记根瘤菌在研究根瘤菌侵染宿主形成结瘤时具有良好的示踪效果.本研究以辅助菌株Escherichia coli pRK2073,受体菌苜蓿中华根瘤菌Sinorhizobium meliloti 12531和苜蓿根瘤菌Rhizobium meliloti GN5,及cfp青色荧光基因供体菌E.coli pMP45179为供试菌株,以三亲本杂交法进行结合转导,并以无氮培养基和TY培养基对标记菌株进行荧光表达及固氮特性的遗传稳定性检测,再对初选菌株以甘农5号紫花苜蓿为宿主进行回接验证,测定了回接植株的生物量,结瘤数和标记菌的占瘤率等指标.结果表明,1)三亲本杂交转导法适用于苜蓿根瘤菌cfp标记菌株的构建,获得大量S.meliloti 12531和R.meliloti GN5的荧光标记株;2)经逐层筛选获得的荧光标记菌中,S.meliloti 12531-cfp6和R.meliloti GNf-cfp5遗传稳定性好,荧光表达量高,结瘤促生能力强;3)与现有抗生素平板分离筛选相比,无氮培养基结合耐药平板筛选能显著提高荧光标记根瘤菌株的甄别筛选效率;4)三亲本杂交法获得的苜蓿根瘤菌荧光标记株个体间差异较大,对标记株固氮及荧光表达能力遗传稳定性的验证和对宿主植物的结瘤促生能力的检测是cfp荧光标记根瘤菌筛选的必要手段.

  8. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K. (UIUC)

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  9. Colorimetric Detection of Some Highly Hydrophobic Flavonoids Using Polydiacetylene Liposomes Containing Pentacosa-10,12-diynoyl Succinoglycan Monomers.

    Directory of Open Access Journals (Sweden)

    Deokgyu Yun

    Full Text Available Flavonoids are a group of plant secondary metabolites including polyphenolic molecules, and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral propertied. In general, flavonoids are detected with various non-colorimetric detection methods such as column liquid chromatography, thin-layer chromatography, and electrochemical analysis. For the first time, we developed a straightforward colorimetric detection system allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA derivatized with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in visible spectrum, we also demonstrate fluorescence changes using our detection system in the presence of those flavonoids. The succinoglycan monomers attached to PCDA molecules may function as an unstructured molecular capturer for some highly hydrophobic flavonoids by hydrophobic interactions, and transmit their molecular interactions as a color change throughout the PCDA liposome.

  10. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  11. 16S rDNA RFLP Analysis of Rhizobia Isolated from Medicago lupulina in Northwestern China%西北地区天蓝苜蓿根瘤菌16S rDNA RFLP分析

    Institute of Scientific and Technical Information of China (English)

    冯春生; 郭军康; 位秀丽; 李香香; 韦革宏

    2008-01-01

    利用RFLP和序列测定方法,对分离自西北地区的67株天蓝苜蓿根瘤菌16S rDNA进行了分析研究.结果表明:所有供试菌株分别归属于中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和土壤杆菌属(Agrobacterium).以CCNWNX0042-2为代表的大部分天蓝苜蓿根瘤菌属于草木樨中华根瘤菌(Sinorhizobium meliloti),其余菌株在分群上表现出了较为明显的地域特征.

  12. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers

    Science.gov (United States)

    Bezryadina, Anna S; Preece, Daryl C; Chen, Joseph C; Chen, Zhigang

    2016-01-01

    Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here we design and demonstrate ‘tug-of-war’ optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such ‘tug-of-war’ tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications. PMID:27818838

  13. Screening and Identification of Alkali-Tolerance Strains%一株耐碱根瘤菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    汤晖; 隋新华; 陈文新

    2006-01-01

    为探讨耐碱微生物的耐碱机制,自CCBAU根瘤菌菌库中筛选得到一株耐受pH 11.5的根瘤菌,编号为CCBAU 81024.通过对其生理生化特征的测定、16SrDNA序列分析、DNA G+Cmol%测定以及DNA-DNA杂交,鉴定其为苜蓿中华根瘤菌(Sinorhizobium meliloti).为进一步研究根瘤菌的耐碱机制提供了试验材料.

  14. Dicty_cDB: Contig-U13420-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 7 2e-58 AL939112_11( AL939112 |pid:none) Streptomyces coelicolor A3(2) com... 179... tab... 92 4e-20 4 ( BM160833 ) EST563356 PyBS Plasmodium yoelii yoelii cDNA clon... 66 4e-20 5 ( AE014831 ) Plasmodi...e bacterium HF10_... 166 4e-51 CP000614_1902( CP000614 |pid:none) Burkholderia vie...tnamiensis G4 c... 162 6e-51 AE017197_777( AE017197 |pid:none) Rickettsia typhi str. Wilmin...:none) Rickettsia peacockii str. Rustic... 170 8e-50 AL591688_1732( AL591688 |pid:none) Sinorhizobium meliloti 1021 co

  15. Dicty_cDB: Contig-U16505-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 12D chromos... 166 2e-54 CP000614_746( CP000614 |pid:none) Burkholderia vietnamiensis G4 ch... 159 3e-54 C...:none) Enterococcus faecium response regu... 121 7e-26 AL939117_51( AL939117 |pid:none) Streptomyces coelicolor A3(2) co...:none) Mus musculus C-terminal binding pr... 87 6e-18 AL591688_2739( AL591688 |pid:none) Sinorhizobium meliloti 1021 co...:none) Streptomyces coelicolor A3(2) co... 157 8e-47 CP001083_3404( CP001083 |pid...3 4 ( FH512937 ) CHO_OF4160xi05f1.ab1 CHO_OF4 Nicotiana tabacum ge... 50 0.30 1 ( AC115599 ) Dictyostelium discoid

  16. Optical disassembly of cellular clusters by tunable tug-of-war tweezers

    CERN Document Server

    Bezryadina, Anna; Chen, Joseph C; Chen, Zhigang

    2016-01-01

    Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here, we design and demonstrate tug-of-war optical tweezers that can facilitate assessment of cell-cell adhesion - a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such tug-of-war tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.

  17. Novel associations between rhizobial populations and legume species within the genera Lathyrus and Oxytropis grown in the temperate region of China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fifty rhizobial isolates of Lathyrus and Oxytropis collected from northern regions of China were studied in their genotypic characterization based upon analyses of ARDRA, 16S-23S IGS PCR-RFLP, TP-RAPD, MLEE, sequences of 16S rDNA gene and housekeeping genes of atpD, recA and glnII. The results demonstrated that most of the Lathyrus rhizobia belonged to Rhizobium and most of the Oxytropis rhizobia belonged to Sinorhizobium. A novel group of Rhizobium sp. I and S. meliloti were identified as the main microsymbionts respectively associated with Lathyrus and Oxytropis species in the collection area, which were new associations between rhizobia and the mentioned hosts. This study also provides new evidence for biogeography of rhizobia.

  18. Novel associations between rhizobial populations and legume species within the genera Lathyrus and Oxytropis grown in the temperate region of China

    Institute of Scientific and Technical Information of China (English)

    SUI XinHua; HAN LiLi; WANG EnTao; JIANG Feng; LIU YiHai; CHEN WenXin

    2009-01-01

    Fifty rhizobial isolates of Lathyrus and Oxytropis collected from northern regions of China were studied in their genotypic characterization based upon analyses of ARDRA, 16S-23S IGS PCR-RFLP, TP-RAPD, MLEE, sequences of 16S rDNA gene and housekeeping genes of atpD, recA and glnll. The results demonstrated that most of the Lathyrus rhizobia belonged to Rhizobium and most of the Oxytropis rhizobia belonged to Sinorhizobium. A novel group of Rhizobium sp. I and S. meliloti were identified as the main microsymbionts respectively associated with Lathyrus and Oxytropis species in the collection area, which were new associations between rhizobia and the mentioned hosts. This study also provides new evidence for biogeography of rhizobia.

  19. Rhizobium strains differ considerably in outer membrane permeability and polymyxin B resistance.

    Science.gov (United States)

    Komaniecka, Iwona; Zamłyńska, Katarzyna; Zan, Radosław; Staszczak, Magdalena; Pawelec, Jarosław; Seta, Irena; Choma, Adam

    2016-01-01

    Six rhizobium (Rhizobium leguminosarum bv. Trifolii TA1, Sinorhizobium meliloti 1021, Mesorhizobium huakuii IFO 15243(T), Ochrobactrum lupini LUP 21(T), Bradyrhizobium japonicum USDA110 and B. elkanii USDA 76) and two Escherichia coli strains (E. coli ATCC 25922 and E. coli HB 101) were compared in respect to polymyxin B and EDTA resistance, as well as bacterial outer membrane (OM) permeability to a fluorescent hydrophobic agent (N-phenyl-1-naphthylamine - NPN). TEM (Transmission Electron Microscopy) and a microbial test demonstrated that all the rhizobia were much more resistant to polymyxin B in comparison with E. coli strains. EDTA and polymyxin B enhance permeability of B. japonicum and O. lupini OM. Other rhizobia incorporated NPN independently of the presence of membrane-deteriorating agents; however, the level of fluorescence (measured as NPN absorption) was strain dependent.

  20. Screening and Decolorization of Malachite Green of a Manganses Peroxidase-Producing Bacteria%产锰过氧化物酶细菌的筛选及其对孔雀石绿脱色的研究

    Institute of Scientific and Technical Information of China (English)

    杨晔; 李国辉; 高剑平; 丁重阳; 顾正华; 张梁; 石贵阳

    2012-01-01

    Six strains with manganses peroxidase-producing capability were screened from the soil samples which were collected in a Wood factory, Wuxi, China. The strain J09 which has the highest yield was identified as Sinorhizobium meliloti. The enzyme activity reached the peak of 607.7 U/L at the third day under the optimized conditions. For the crude enzyme liquid and fermentation medium with initial concentration of 15 mg/L malachite green,the decolorization rate could reach more than 75% and 85% by 3 hours respectively. Under aerobic condition the decolorization rate was higher than that under the anaerobic condition and malachite green has some toxicity to the bacteria.%从无锡某木材厂的腐木及腐殖土的表层土样中筛选分离得到6株产锰过氧化物酶的细菌,其中产酶最优的一株菌J09经鉴定为草木犀中华根瘤菌Sinorhizobium meliloti.在优化的条件下,该菌株发酵72 h锰过氧化物酶产量达到最高值,为607.7 U/L.利用粗酶液和发酵培养液对15 mg/L,的孔雀石绿进行脱色处理3h,脱色率分别达到78.5%和89.8%,好氧条件下的脱色率高于厌氧条件的脱色率,孔雀石绿对该菌具有一定的毒性.

  1. Conservation of gene order and content in the circular chromosomes of 'Candidatus Liberibacter asiaticus' and other Rhizobiales.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available 'Ca. Liberibacter asiaticus,' an insect-vectored, obligate intracellular bacterium associated with citrus-greening disease, also called "HLB," is a member of the Rhizobiales along with nitrogen-fixing microsymbionts Sinorhizobium meliloti and Bradyrhizobium japonicum, plant pathogen Agrobacterium tumefaciens and facultative intracellular mammalian pathogen Bartonella henselae. Comparative analyses of their circular chromosomes identified 514 orthologous genes shared among all five species. Shared among all five species are 50 identical blocks of microsyntenous orthologous genes (MOGs, containing a total of 283 genes. While retaining highly conserved genomic blocks of microsynteny, divergent evolution, horizontal gene transfer and niche specialization have disrupted macrosynteny among the five circular chromosomes compared. Highly conserved microsyntenous gene clusters help define the Rhizobiales, an order previously defined by 16S RNA gene similarity and herein represented by the three families: Bartonellaceae, Bradyrhizobiaceae and Rhizobiaceae. Genes without orthologs in the other four species help define individual species. The circular chromosomes of each of the five Rhizobiales species examined had genes lacking orthologs in the other four species. For example, 63 proteins are encoded by genes of 'Ca. Liberibacter asiaticus' not shared with other members of the Rhizobiales. Of these 63 proteins, 17 have predicted functions related to DNA replication or RNA transcription, and some of these may have roles related to low genomic GC content. An additional 17 proteins have predicted functions relevant to cellular processes, particularly modifications of the cell surface. Seventeen unshared proteins have specific metabolic functions including a pathway to synthesize cholesterol encoded by a seven-gene operon. The remaining 12 proteins encoded by 'Ca. Liberibacter asiaticus' genes not shared with other Rhizobiales are of bacteriophage origin. 'Ca

  2. Optimization of Alfalfa Rhizobium Medium%紫花苜蓿根瘤菌培养基的优化研究

    Institute of Scientific and Technical Information of China (English)

    周冀琼; 邓波; 马晓彤; 张英俊; 周可

    2013-01-01

    The optimum media and formulas of representative strains Sinorhizobium meliloti ACCC17631 and ACCC17676 were confirmed by single factor carbon source and nitrogen source utilization experiment and orthogonal design experiment.Results showed that the optimum carbon source was sucrose,and the optimum nitrogen source was yeast extract and soybean meal.The optimum medium formulas of ACCC17631 (ACCC17676) was (g · L-1):sucrose 20-+-soybean meal (yeast extract) 2.4-+-K2HPO4 0.25+KH2PO4 0.25+-MgSO4 · 7H2O 0.2+NaC1 0.1,and pH 6.8~7.0.%以苜蓿根瘤菌(Sinorhizobium meliloti)ACCC17631和ACCC17676为供试菌株,采用单因素碳氮源利用试验和正交设计试验,确定最佳碳源、氮源及培养基配方.结果表明:2株供试菌株最佳碳源为蔗糖,最佳氮源分别为大豆粉和酵母粉.根瘤菌ACCC17631(ACCC17676)的最佳培养基配方(g·L-1)为:蔗糖20,大豆粉(酵母粉)2.4,K2 HPO4 0.25,KH2PO4 0.25,MgSO4·7H2O 0.2,NaC1 0.1,pH为6.8~7.0.

  3. Role of symbiotic auxotrophy in the Rhizobium-legume symbioses.

    Directory of Open Access Journals (Sweden)

    Jurgen Prell

    Full Text Available Rhizobium leguminosarum bv. viciae mutants unable to transport branched-chain amino acids via the two main amino acid ABC transport complexes AapJQMP and BraDEFGC produce a nitrogen starvation phenotype when inoculated on pea (Pisum sativum plants [1], [2]. Bacteroids in indeterminate pea nodules have reduced abundance and a lower chromosome number. They reduce transcription of pathways for branched-chain amino acid biosynthesis and become dependent on their provision by the host. This has been called "symbiotic auxotrophy".A region important in solute specificity was identified in AapQ and changing P144D in this region reduced branched-chain amino acid transport to a very low rate. Strains carrying P144D were still fully effective for N(2 fixation on peas demonstrating that a low rate of branched amino acid transport in R. leguminosarum bv. viciae supports wild-type rates of nitrogen fixation. The importance of branched-chain amino acid transport was then examined in other legume-Rhizobium symbioses. An aap bra mutant of R. leguminosarum bv. phaseoli also showed nitrogen starvation symptoms when inoculated on French bean (Phaseolus vulgaris, a plant producing determinate nodules. The phenotype is different from that observed on pea and is accompanied by reduced nodule numbers and nitrogen fixation per nodule. However, an aap bra double mutant of Sinorhizobium meliloti 2011 showed no phenotype on alfalfa (Medicago sativa.Symbiotic auxotrophy occurs in both determinate pea and indeterminate bean nodules demonstrating its importance for bacteroid formation and nodule function in legumes with different developmental programmes. However, only small quantities of branched chain amino acids are needed and symbiotic auxotrophy did not occur in the Sinorhizobium meliloti-alfalfa symbiosis under the conditions measured. The contrasting symbiotic phenotypes of aap bra mutants inoculated on different legumes probably reflects altered timing of amino acid

  4. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Fernando A Pagliai

    2014-04-01

    Full Text Available The causal agent of Huanglongbing disease, 'Candidatus Liberibacter asiaticus', is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from 'Ca. L. asiaticus' involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR, and a predicted L,D-transpeptidase (ldtP. In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of 'Ca. Liberibacter asiaticus', using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.

  5. First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group.

    Science.gov (United States)

    Tejerizo, Gonzalo Torres; Del Papa, María Florencia; Draghi, Walter; Lozano, Mauricio; Giusti, María de Los Ángeles; Martini, Carla; Salas, María Eugenia; Salto, Ileana; Wibberg, Daniel; Szczepanowski, Rafael; Weidner, Stefan; Schlüter, Andreas; Lagares, Antonio; Pistorio, Mariano

    2011-08-20

    Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occupying about 32 million hectares over the world. Management of the N₂-fixing symbiosis of this plant to maximize crop production is therefore an important objective. A fundamental constraint to this aim emerges when a moderately low soil pH hampers the establishment of an effective symbiosis with indigenous and/or inoculated rhizobia. Besides the association of alfalfa with Ensifer (Sinorhizobium) meliloti, this legume is able to establish a symbiosis with Ensifer (Sinorhizobium) medicae and with less characterized types of rhizobia, such as the Oregon-like strains, Rhizobium sp. Or191 initially isolated in the USA, and the Rhizobium sp. LPU83 strain, from Argentina. These strains are acid-tolerant, highly competitive for acidic-soil-alfalfa nodulation, but inefficient for biological nitrogen fixation with alfalfa. These features position the Oregon-like rhizobia as strains of potential risk in agricultural soils compared with the efficient symbiont E. meliloti. Moreover, the collected genetic information has revealed that the genomic structure of these rhizobial isolates is complex in terms of sequence similarities shared with other rhizobia. Such a "patched" genetic composition has obviously imposed severe restrictions to the classical taxonomy of these rhizobia. In this work we summarize the accumulated knowledge about the Oregon-like rhizobia and present a phylogenetic analysis based on genome sequence data of Rhizobium sp. LPU83 obtained by a high-throughput sequencing on the Genome Sequencer FLX Titanium platform. The accessibility of the complete genomic sequence will release up more experimental possibilities since this information will then enable biochemical studies as well as proteomics and transcriptomics approaches.

  6. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  7. Efecto de la inoculación con bacterias rizosféricas en dos variedades de trigo. Fase I: condiciones controladas The effect of innoculation with rhizospheric bacteria on two varities of wheat. Phase1: controlled conditions

    Directory of Open Access Journals (Sweden)

    Carlos José Bécquer Granados

    Full Text Available Se llevó a cabo un experimento bajo condiciones controladas para determinar la respuesta de dos variedades de trigo a la inoculación simple y combinada realizada con Sinorhizobium y Azospirillum. Se utilizó una cepa de A. zeae, y dos cepas pertenecientes a S. meliloti. Los materiales y métodos aplicados correspondieron a lo descrito en las metodologías prestablecidas en este campo de estudio. Diseño experimental: completamente aleatorizado, con 20 tratamientos y 4 réplicas. No se utilizó tratamiento fertilizado. Se evaluaron diferentes variables agronómicas, relacionadas con la arquitectura radical y la biomasa aérea. Análisis de varianza bifactorial. En caso de aparecer diferencias, se aplicó análisis de varianza de un factor a la interacción en primera instancia, o a los factores probados. Diferencias entre medias por LSD de Fisher. Se transformaron datos de conteo de dígitos por √x. Se calculó correlación y regresión múltiple entre variables. Se concluye que la inoculación combinada de Sinorhizobium con Azospirillum, así como la inoculación simple con Sinorhizobium, resultaron de alta importancia en las alternativas de inoculación que se realizaron en el experimento. Existió una alta diferenciación entre las dos variedades de trigo en determinadas variables agronómicas, lo que indica una influencia marcada de las características varietales de las plantas. Se observó una fuerte relación estadística entre las variables peso seco aéreo y variables de la raíz para los tratamientos inoculados con A2 y A2+N7, respectivamente.The experiment was carried out under controlled conditions to determine the response of the two wheat varieties to the simple inoculation and the combined inoculation which was carried out with Sinorhizobium, and Azospirillum. A strain of A. zeae and two strains belonging to S. meliloti were used. The materials and methods that were applied corresponded to what was described in the already

  8. The Study on Nodulation of 30 Strains Isolated from Root Nodules of Campylotropis spp.%分离自杭子梢等宿主根瘤的30株菌的结瘤特性的研究

    Institute of Scientific and Technical Information of China (English)

    刘思敏; 韩素贞

    2008-01-01

    对分离自杭子梢、菜豆和决明等宿主根瘤、处于Agrobacterium系统发育分支、DNA-DNA杂交与A.rubi的相似性达到100%的30株土壤杆菌,分属于Agrobacterium、Bradyrhizobium、Mesorhizobium、Rhizobium和Sinorhizobium5个属的12个参比菌株.nodA PCR的结果表明,30株供试菌中扩增不出nodA,即没有结瘤性.以Sinorhizobium meliloti USDA1002T的nodA做探针对所提取的细菌总DNA进行斑点杂交,在65℃~68℃严谨洗膜条件下,该探针只能与同种的根瘤菌进行杂交,不能与其它属的根瘤菌或土壤杆菌杂交,初步推测共同结瘤基因nodA探针只能对种内根瘤菌的结瘤性进行鉴定.

  9. Conservation and Occurrence of Trans-Encoded sRNAs in the Rhizobiales

    Directory of Open Access Journals (Sweden)

    Jan Reinkensmeier

    2011-11-01

    Full Text Available Post-transcriptional regulation by trans-encoded sRNAs, for example via base-pairing with target mRNAs, is a common feature in bacteria and influences various cell processes, e.g., response to stress factors. Several studies based on computational and RNA-seq approaches identified approximately 180 trans-encoded sRNAs in Sinorhizobium meliloti. The initial point of this report is a set of 52 trans-encoded sRNAs derived from the former studies. Sequence homology combined with structural conservation analyses were applied to elucidate the occurrence and distribution of conserved trans-encoded sRNAs in the order of Rhizobiales. This approach resulted in 39 RNA family models (RFMs which showed various taxonomic distribution patterns. Whereas the majority of RFMs was restricted to Sinorhizobium species or the Rhizobiaceae, members of a few RFMs were more widely distributed in the Rhizobiales. Access to this data is provided via the RhizoGATE portal [1,2].

  10. Analysis of Rhizobia Isolated from Melilotus by 16S rDNA-RFLP%草木樨属根瘤菌的16S rDNA-RFLP分析

    Institute of Scientific and Technical Information of China (English)

    李香香; 张美玲; 付芸芸; 赵美玲; 韦革宏

    2008-01-01

    采用16S rDNA-RFLP分析方法对草木樨属根瘤菌进行了遗传多样性及系统分类研究.结果表明,3种限制性内切酶(HaeⅢ、Hinf I、Msp I)对所有供试菌株的酶切图谱类型组合只有2种.类型I的代表菌株CCNWSX0003-1与豌豆根瘤菌(R.leguminosarum)的模式菌株USDA2370的序列相似性达到99.8%,在分类地位上属于根瘤菌属(Rhizobium)分支;类型Ⅱ的代表菌株CCNWGS0006与草木樨中华根瘤菌(Sinorhizobium meliloti)的16S rDNA相似性为100%,属于中华根瘤菌属(Sinorhizobium)分支.

  11. Comparative Analysis of the Symbiotic Efficiency of Medicago truncatula and Medicago sativa under Phosphorus Deficiency

    Directory of Open Access Journals (Sweden)

    Lam-Son Phan Tran

    2013-03-01

    Full Text Available Phosphorus (P-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S. meliloti 2011, Medicago truncatula had a lower symbiotic efficiency than Medicago sativa. However, little is known about how Medicago–Sinorhizobium is affected by P-deficiency at the whole-plant level. The objective of the present study was to compare and characterize the symbiotic efficiency of N2 fixation of M. truncatula and M. sativa grown in sand under P-limitation. Under this condition, M. truncatula exhibited a significantly higher rate of N2 fixation. The specific activity of the nodules was much higher in M. truncatula in comparison to M. sativa, partially as a result of an increase in electron allocation to N2 versus H+. Although the main organic acid, succinate, exhibited a strong tendency to decrease under P-deficiency, the more efficient symbiotic ability observed in M. truncatula coincided with an apparent increase in the content of malate in its nodules. Our results indicate that the higher efficiency of the M. truncatula symbiotic system is related to the ability to increase malate content under limited P-conditions.

  12. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2013-02-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of μg on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU’s). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiments were designed to determine if S. meliloti would infect M. truncatula and initiate biomolecular changes associated with nodule formation and if the μg environment altered the host plant and/or bacteria to induce nodule formation upon return to 1g. Initial analysis results demonstrate that the legumes and bacteria cultivated in μg have potential to develop a symbiotic interaction, but suggest that μg alters their ability to form nodules upon return to 1g. (Research supported by NASA ESMD/ Advance Capabilities Division grant NNX10AR09A)

  13. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes.

    Directory of Open Access Journals (Sweden)

    Smadar Peleg-Grossman

    Full Text Available BACKGROUND: Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when inoculated with pathogenic bacteria. One major defense pathway is mediated by salicylic acid (SA. SA is sensed and transduced to downstream defense components by a redox-regulated protein called NPR1. METHODOLOGY/PRINCIPAL FINDINGS: We used Arabidopsis mutants in SA defense pathway to test the role of NPR1 in symbiotic interactions. Inoculation of Sinorhizobium meliloti or purified NF on Medicago truncatula or nim1/npr1 A. thaliana mutants induced root hair deformation and transcription of early and late nodulins. Application of S. meliloti or NF on M. truncatula or A. thaliana roots also induced a strong oxidative burst that lasted much longer than in plants inoculated with pathogenic or mutualistic bacteria. Transient overexpression of NPR1 in M. truncatula suppressed root hair curling, while inhibition of NPR1 expression by RNAi accelerated curling. CONCLUSIONS/SIGNIFICANCE: We show that, while NPR1 has a positive effect on pathogen resistance, it has a negative effect on symbiotic interactions, by inhibiting root hair deformation and nodulin expression. Our results also show that basic plant responses to Rhizobium inoculation are conserved in legumes and non-legumes.

  14. Involvement of a Gene Encoding Putative Acetate Kinase in Magnetosome Synthesis in Magnetospirillum magneticum AMB-1

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2006-03-01

    Full Text Available A nonmagnetic mutant of Magnetospirillum magneticum AMB-1, designated NMA40, was constructed by mini-Tn5 transposon mutagenesis to identify genes involved in magnetosome synthesis. Transposon delivery was carried out through conjugation between M. magneticum AMB-1 as a recipient and Escherichia coli S17-1 (λ pir carrying pUTmini-Tn5Km1 as a donor strain. NAM40 did not respond to the magnetic fields and completely lacked of magnetosome in the cell. DNA sequence/gen interrupted by transposon (called flanking DNA was isolated by inverse PCR and cloned into pGEM-T Easy. Alignment of the DNA sequence of the flanking DNA allowed the isolation of an open reading frame (ORF2 within an operon consisting of three genes. The amino acid sequence deduced from ORF2 showed homology with acetate kinase from Sinorhizobium meliloti (50% identity and 67% similarity, which function for acetate metabolism. Further analysis revealed that upstream of ORF2 is ORF1, had homology with phosphotransacetylase of S. meliloti (67% identity, 77% similarity, and ORF3 located downstream of ORF2, had homology with hypothetical protein of Thermotoga maritima (30% identity, 60% similarity. ORF2 was subsequently isolated, cloned, and overexpressed in Escherichia coli BL21 (DE3 pLysS as an ORF2-Histag fusion polypeptide.

  15. Auxin and nitric oxide control indeterminate nodule formation

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2007-05-01

    Full Text Available Abstract Background Rhizobia symbionts elicit root nodule formation in leguminous plants. Nodule development requires local accumulation of auxin. Both plants and rhizobia synthesise auxin. We have addressed the effects of bacterial auxin (IAA on nodulation by using Sinorhizobium meliloti and Rhizobium leguminosarum bacteria genetically engineered for increased auxin synthesis. Results IAA-overproducing S. meliloti increased nodulation in Medicago species, whilst the increased auxin synthesis of R. leguminosarum had no effect on nodulation in Phaseolus vulgaris, a legume bearing determinate nodules. Indeterminate legumes (Medicago species bearing IAA-overproducing nodules showed an enhanced lateral root development, a process known to be regulated by both IAA and nitric oxide (NO. Higher NO levels were detected in indeterminate nodules of Medicago plants formed by the IAA-overproducing rhizobia. The specific NO scavenger cPTIO markedly reduced nodulation induced by wild type and IAA-overproducing strains. Conclusion The data hereby presented demonstrate that auxin synthesised by rhizobia and nitric oxide positively affect indeterminate nodule formation and, together with the observation of increased expression of an auxin efflux carrier in roots bearing nodules with higher IAA and NO content, support a model of nodule formation that involves auxin transport regulation and NO synthesis.

  16. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    Science.gov (United States)

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  17. LDSS-P: an advanced algorithm to extract functional short motifs associated with coordinated gene expression

    Science.gov (United States)

    Ichida, Hiroyuki; Long, Sharon R.

    2016-01-01

    Identifying functional elements in promoter sequences is a major goal in computational and experimental genome biology. Here, we describe an algorithm, Local Distribution of Short Sequences for Prokaryotes (LDSS-P), to identify conserved short motifs located at specific positions in the promoters of co-expressed prokaryotic genes. As a test case, we applied this algorithm to a symbiotic nitrogen-fixing bacterium, Sinorhizobium meliloti. The LDSS-P profiles that overlap with the 5′ section of the extracytoplasmic function RNA polymerase sigma factor RpoE2 consensus sequences displayed a sharp peak between -34 and -32 from TSS positions. The corresponding genes overlap significantly with RpoE2 targets identified from previous experiments. We further identified several groups of genes that are co-regulated with characterized marker genes. Our data indicate that in S. meliloti, and possibly in other Rhizobiaceae species, the master cell cycle regulator CtrA may recognize an expanded motif (AACCAT), which is positionally shifted from the previously reported CtrA consensus sequence in Caulobacter crescentus. Bacterial one-hybrid experiments showed that base substitution in the expanded motif either increase or decrease the binding by CtrA. These results show the effectiveness of LDSS-P as a method to delineate functional promoter elements. PMID:27190233

  18. Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume-Rhizobia Symbiosis.

    Science.gov (United States)

    Palmer, Andrew G; Mukherjee, Arijit; Stacy, Danielle M; Lazar, Stephen; Ané, Jean-Michel; Blackwell, Helen E

    2016-11-17

    Density-dependent phenotypic switching in bacteria, the phenomenon of quorum sensing (QS), is instrumental in many pathogenic and mutualistic behaviors. In many Gram-negative bacteria, QS is regulated by N-acylated-l-homoserine lactones (AHLs). Synthetic analogues of these AHLs hold significant promise for regulating QS at the host-symbiont interface. Regulation depends on refined temporal and spatial models of quorums under native conditions. Critical to this is an understanding of how the presence of these signals may affect a prospective host. We screened a library of AHL analogues for their ability to regulate the legume-rhizobia mutualistic symbiosis (nodulation) between Medicago truncatula and Sinorhizobium meliloti. Using an established QS-reporter line of S. meliloti and nodulation assays with wild-type bacteria, we identified compounds capable of increasing either the rate of nodule formation or total nodule number. Most importantly, we identified compounds with activity exclusive to either host or pathogen, underscoring the potential to generate QS modulators selective to bacteria with limited effects on a prospective host.

  19. Diversity and numbers of root-nodule bacteria (rhizobia in Polish soils

    Directory of Open Access Journals (Sweden)

    Stefan Martyniuk

    2011-01-01

    Full Text Available Using a sand pouch-plant infection method, populations of several species of root-nodule bacteria (rhizobia were enumerated in eighty soils collected throughout Poland. Rhizobium leguminosarum bv. viciae (symbionts of pea, faba bean, vetch and R. leguminosarum bv. trifolii (symbionts of clover were detected in 77 and 76 soils, respectively. Most of these soils contained moderate and high numbers of these species of the rhizobia. Symbionts of beans, R. leguminosarum bv. phaseoli, were assessed in 76 soils; of this number 15 soils had no detectable populations of bean rhizobia and in 40 soils high or moderate numbers of these bacteria were found. Bradyrhizobium sp. (Lupinus, root-nodule bacteria of lupine and serradella, were absent in 19 soils, out of 80 tested, and 34 soils were colonised by high or moderate populations of bradyrhizobia. Sinorhizobium meliloti, rhizobia nodulating alfalfa, were sparse in the examined soils; with 56 soil containing no detectable numbers of S. meliloti and only 6 soils harbouring high or moderate populations of this species. The estimated numbers of the rhizobia in the studied soils were also related to some physical and chemical properties of these soils.

  20. Radiolabeling of lipo-chitooligosaccharides using the NodH sulfotransferase: a two-step enzymatic procedure

    Directory of Open Access Journals (Sweden)

    Ranjeva Raoul

    2004-04-01

    Full Text Available Abstract Background The NodH sulfotransferase from Sinorhizobium meliloti has been used to radiolabel lipochitooligosaccharidic (LCO Nod factor signals with 35S from inorganic sulfate in a two-step enzymatic procedure. The first step involved the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS, a sulphate donor, using enzymes contained in a yeast extract, and the second step used the NodH enzyme. However with this established procedure, only a low incorporation of the initial inorganic sulfate into the Nod factors was obtained (about 7% after purification of the labeled compounds. The aim of this work was to optimize the radiolabelling of Nod factors with 35S. Results The limiting step has been shown to be the sulfation of ATP and its subsequent conversion into PAPS (first step, the sulfate donor for the NodH sulfotransferase activity (second step. By the addition of GTP to the reaction mixture and by manipulating the [ATP]/[Mg2+] ratio the yield of PAPS has been increased from 13% to 80%. Using the radiolabeled PAPS we have shown that the efficiency of sulfate transfer to LCOs, by the recombinant S. meliloti NodH sulfotransferase is strongly influenced by the length of the oligosaccharide chain. Variations in the substitutions on the non-reducing sugar, including the structure of the fatty acyl chain, had little effect and Nod factors from the heterologous bacterium Rhizobium tropici could be sulfated by NodH from S. meliloti. Conclusions By characterizing the two steps we have optimized the procedure to radiolabel biologically-important, lipo-chitooligosaccharide (LCO Nod factors to a specific radioactivity of about 800 Ci.mmol-1 with an incorporation of 60% of the initial inorganic sulfate. The two-step sulfation procedure may be used to radiolabel a variety of related LCO molecules.

  1. Effectivenes of inoculation in alfalfa breeding in ecological conditions of the Bjelovar and Bilogora county

    Directory of Open Access Journals (Sweden)

    Darko Uher

    2012-09-01

    Full Text Available Development and basic existence of animal production as well as production of high quality milk depends upon possibility of sufficient production of quality and protein sufficient forage. Forage crop that satisfies these demands is alfalfa which is one of the most important perennial forage crop legumes. The aim of this study was to enhance alfalfa production on acid soil by liming and alfalfa seed inoculation with efficient Sinorhizobium meliloti strains in order to reduce the use of mineral nitrogen fertilization and enable qualitative and cost effective production of forage on the dairy farms. Field trial was established at family farm in the area of Bjelovar and Bilogora county. During two years experimental period statistically significant influence of inoculation and liming on forage and dry matteryield was determined. Significantly the lowest yields were determined on untreated plots without liming material. In all untreated plots, significantly lower yields were determined, but significant differences in yields were also obtained by inoculation with different S. meliloti strains, emphasizing the importance of strains selection used for alfalfa inoculation. In both experimental years total forage yield were ranging from 34 t/ha (untreated plots without liming up to 60 t/ha on plots inoculated with strain 2011 and without liming. Values of total dry matter yield for both experimental years ranged from 6.5 t/ha (untreated plots without liming up to 15,7 t/ha on plots inoculated with strain 2011 without liming. Results of this study showed that application of liming materials for acidity removal had positive effect on alfalfa yields in both experimental years and significantly improved alfalfa production on acid soils. The results of this study clearly showed that inoculation with selected S. meliloti strains may improve alfalfa production on acid soils and may contribute to more efficient forage production for dairy farms under particular

  2. The alternative Medicago truncatula defense proteome of ROS – defective transgenic roots during early microbial infection

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2014-07-01

    Full Text Available ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homologue in plants. Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i infected with pathogenic (Aphanomyces euteiches and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti. While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector, we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi, 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein

  3. Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome.

    Directory of Open Access Journals (Sweden)

    Marco Galardini

    2015-09-01

    Full Text Available Reconstruction of the regulatory network is an important step in understanding how organisms control the expression of gene products and therefore phenotypes. Recent studies have pointed out the importance of regulatory network plasticity in bacterial adaptation and evolution. The evolution of such networks within and outside the species boundary is however still obscure. Sinorhizobium meliloti is an ideal species for such study, having three large replicons, many genomes available and a significant knowledge of its transcription factors (TF. Each replicon has a specific functional and evolutionary mark; which might also emerge from the analysis of their regulatory signatures. Here we have studied the plasticity of the regulatory network within and outside the S. meliloti species, looking for the presence of 41 TFs binding motifs in 51 strains and 5 related rhizobial species. We have detected a preference of several TFs for one of the three replicons, and the function of regulated genes was found to be in accordance with the overall replicon functional signature: house-keeping functions for the chromosome, metabolism for the chromid, symbiosis for the megaplasmid. This therefore suggests a replicon-specific wiring of the regulatory network in the S. meliloti species. At the same time a significant part of the predicted regulatory network is shared between the chromosome and the chromid, thus adding an additional layer by which the chromid integrates itself in the core genome. Furthermore, the regulatory network distance was found to be correlated with both promoter regions and accessory genome evolution inside the species, indicating that both pangenome compartments are involved in the regulatory network evolution. We also observed that genes which are not included in the species regulatory network are more likely to belong to the accessory genome, indicating that regulatory interactions should also be considered to predict gene conservation in

  4. Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome.

    Science.gov (United States)

    Galardini, Marco; Brilli, Matteo; Spini, Giulia; Rossi, Matteo; Roncaglia, Bianca; Bani, Alessia; Chiancianesi, Manuela; Moretto, Marco; Engelen, Kristof; Bacci, Giovanni; Pini, Francesco; Biondi, Emanuele G; Bazzicalupo, Marco; Mengoni, Alessio

    2015-09-01

    Reconstruction of the regulatory network is an important step in understanding how organisms control the expression of gene products and therefore phenotypes. Recent studies have pointed out the importance of regulatory network plasticity in bacterial adaptation and evolution. The evolution of such networks within and outside the species boundary is however still obscure. Sinorhizobium meliloti is an ideal species for such study, having three large replicons, many genomes available and a significant knowledge of its transcription factors (TF). Each replicon has a specific functional and evolutionary mark; which might also emerge from the analysis of their regulatory signatures. Here we have studied the plasticity of the regulatory network within and outside the S. meliloti species, looking for the presence of 41 TFs binding motifs in 51 strains and 5 related rhizobial species. We have detected a preference of several TFs for one of the three replicons, and the function of regulated genes was found to be in accordance with the overall replicon functional signature: house-keeping functions for the chromosome, metabolism for the chromid, symbiosis for the megaplasmid. This therefore suggests a replicon-specific wiring of the regulatory network in the S. meliloti species. At the same time a significant part of the predicted regulatory network is shared between the chromosome and the chromid, thus adding an additional layer by which the chromid integrates itself in the core genome. Furthermore, the regulatory network distance was found to be correlated with both promoter regions and accessory genome evolution inside the species, indicating that both pangenome compartments are involved in the regulatory network evolution. We also observed that genes which are not included in the species regulatory network are more likely to belong to the accessory genome, indicating that regulatory interactions should also be considered to predict gene conservation in bacterial

  5. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    Science.gov (United States)

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  6. FadD is required for utilization of endogenous fatty acids released from membrane lipids.

    Science.gov (United States)

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M

    2011-11-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth.

  7. Membrane lipids analysis of a bacterial strain 17560 isolated from nodule of Alfalfa and cloning and expression of the genes for diacylglyceryl trimethylhomoserine (DGTS) biosynthesis%苜蓿根瘤菌17560细胞膜膜脂组成分析及DGTS合成基因克隆与表达

    Institute of Scientific and Technical Information of China (English)

    刘华伟; 马晓彤; 王旭明; 李秀爱; 邹小琳; 孙建光; 高俊莲

    2013-01-01

    [目的]分析一株分离自黑龙江省的苜蓿根瘤菌在低磷胁迫及正常磷含量条件下细胞膜脂的组成,并从该菌中克隆和鉴定细胞膜无磷脂二酰基甘油三甲基高丝氨酸(DGTS)合成基因.[方法]分别在不同磷含量的Sherwood基本培养基中进行根瘤菌培养,采用Bligh-Dyer方法提取细胞膜脂,以文献报道Sinorhizobium meliloti(苜蓿中华根瘤菌)菌株1021的脂类图谱和磷脂PE、PG、PC标准品作为参照,利用薄层层析方法分析不同磷含量条件下培养菌株的细胞膜脂组成.根据GenBank中已发表的DGTS合成基因btaA和btaB序列设计引物,以产DGTS菌株基因组DNA为模板,扩增btaA和btaB同源基因,并在E coil BL21(DE3)表达.同时检测表达菌株是否合成细胞膜无磷脂DGTS以验证基因功能.对菌株17560进行16S rRNA基因序列分析.[结果]分离自黑龙江省的苜蓿根瘤菌17560与Sinorhizobium meliloti的16S rRNA基因序列相似性高达99.8%,但其细胞膜脂组成明显不同于参比菌株Sinorhizobium meliloti 1021的膜脂组成.在低磷胁迫条件下,该菌株的细胞膜脂主要由OL和DGTS等无磷脂组成,但OL的组成明显不同,该菌株含有3种不同类型的鸟氨酸脂(OLs),而参比菌株Sinorhizobium meliloti 1021只含有一种类型的鸟氨酸脂(OL).在正常磷含量条件下,该菌株的细胞膜脂主要由PE和一种未知的含氨基磷脂组成,PG与PC的含量均较少,而参比菌株Sinorhizobium meliloti 1021的细胞膜脂主要由PE、PG与PC组成.通过PCR扩增从产DGTS菌株17560中获得1913 bpDNA片段,经序列分析发现其中有两个ORF与菌株Sinorhizobium meliloti 1021的btaA 和btaB基因序列相似性均为99%.将该DNA片段克隆于pET-30a(+)得到重组质粒pLH01,转化宿主菌获得表达菌株E.coli BL21(DE3)·pLH01,经IPTG诱导后产生相对分子量约为45 kD和25 kD的蛋白.薄层层析验证重组菌细胞膜脂组成,结果表明,表达菌株E.coli BL21(DE3)

  8. Effect of Microgravity on Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Initial Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2011-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species of the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early events associated with infection and nodulation in Petri Dish Fixation Units (PDFUs). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiment one was designed to determine if S. meliloti infect M. truncatula and initiate physiological changes associated with nodule formation. Roots of five-day-old M. truncatula cultivar Jemalong A17 (Enodll::gus) were inoculated 24 hr before launch with either S. meliloti strain 1021 or strain ABS7 and integrated into BRIC-PDFU hardware placed in a 4 C Cold Bag for launch on Atlantis. Inoculated plants and uninoculated controls were maintained in the dark at ambient temperature in the middeck of STS-135 for 11 days before fixation in RNAlater(tM) by crew activation of the PDFU. Experiment two was designed to determine if microgravity altered the process of bacterial infection and host plant nodule formation. Seeds of two M. truncatula cultivar Jemalong A17 lines, the Enodll::gus used in experiment 1, and SUNN, a super-nodulating mutant of A17, were germinated on orbit for 11 days in the middeck cabin and returned to Earth alive inside of BRIC-PDFU's at 4 C. S. meliloti strains 1021 and ABS7 were cultivated separately in broth culture on orbit and also returned to Earth alive. After landing, flight- and groundgrown plants and bacteria were transferred from BRIC-PDFU's into Nunc(tm) 4-well plates for reciprocity crosses. Rates of plant growth and nodule development on Buffered Nodulation Medium (lacking nitrogen) were measured for 14 days. Preliminary analysis' of Experiment 1 confirms that

  9. Sinorhizobium fredii USDA257 Translocates NopP into Vigna unguiculata Root Nodules

    Science.gov (United States)

    Type III secretion systems (T3SSs), which are found in many Gram-negative bacterial pathogens, inject virulence proteins directly into host cells during infection. T3SSs are also present in some strains of rhizobia, bacteria that form symbiotic associations with legumes and fix nitrogen in speciali...

  10. Efecto de la inoculación con bacterias rizosféricas en dos variedades de trigo. Fase II: invernadero Effect of inoculation with rihizospheric bacteria in two varieties of wheat. Phase II: greenhouse

    Directory of Open Access Journals (Sweden)

    Carlos José Bécquer Granados

    Full Text Available Se llevó a cabo un experimento de invernadero para evaluar la influencia de la inoculación simple y combinada, efectuada con las bacterias rizosféricas Sinorhizobium y Azospirillum, en dos variedades de trigo. Materiales y métodos según lo descrito en las metodologías convencionales para este campo de estudio. El diseño experimental fue completamente aleatorizado, con 4 réplicas y 10 tratamientos. Análisis estadístico varianza bifactorial. Se utilizó tratamiento fertilizado con NH4NO3 (150 ppm/kg suelo. Se evaluó contenido de clorofila foliar, peso seco aéreo, peso seco radical, longitud del tallo y germinación. En caso de aparecer diferencias, se determinaron mediante la prueba de Duncan, y las diferencias entre las variedades con t-Student. Se concluye que la inoculación combinada de la cepaA2 (Sinorhizobium meliloti con la cepaN7 (Azospirillum zeae, fue la de mayor influencia positiva en el contenido de clorofila de las plantas. Por otra parte, existió una alta diferenciación entre las dos variedades de trigo en la longitud del tallo, peso seco aéreo y peso seco radical. Los resultados en peso seco aéreo y peso seco radical, al combinarse los dos factores estudiados, dependieron notablemente de las características varietales de la planta y del efecto significativo de la población autóctona de rizobacterias. La germinación de las plantas no estuvo vinculada a ninguno de los factores aplicados en el experimento.The experiment was carried out in a greenhouse so that the inoculation, both simple and combined (with the rhizospheric bacteria- Sinorhizobium andAzospirllium, en two varieties of Wheat. Materials and methodologies were used in accordance with previously prescribed conventional methodologies for this study. The experimental design was completely randomized, with 4 replicas and 10 treatments. A statistical analysis using two-way variance was done. Fertilized treatment was applied with NH4NO3 (150 ppm/kg soil. The

  11. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli.

    Science.gov (United States)

    Gao, Shanjun; Romdhane, Samir Ben; Beullens, Serge; Kaever, Volkhard; Lambrichts, Ivo; Fauvart, Maarten; Michiels, Jan

    2014-05-01

    Rhizobia are soil bacteria that can fix nitrogen in symbiosis with leguminous plants or exist free living in the rhizosphere. Crucial to their complex lifestyle is the ability to sense and respond to diverse environmental stimuli, requiring elaborate signaling pathways. In the majority of bacteria, the nucleotide-based second messenger cyclic diguanosine monophosphate (c-di-GMP) is involved in signal transduction. Surprisingly, little is known about the importance of c-di-GMP signaling in rhizobia. We have analyzed the genome sequences of six well-studied type species (Bradyrhizobium japonicum, Mesorhizobium loti, Rhizobium etli, Rhizobium leguminosarum, Sinorhizobium fredii, and Sinorhizobium meliloti) for proteins possibly involved in c-di-GMP signaling based on the presence of four domains: GGDEF (diguanylate cyclase), EAL and HD-GYP (phosphodiesterase), and PilZ (c-di-GMP sensor). We find that rhizobia possess a high number of these proteins. Conservation analysis suggests that c-di-GMP signaling proteins modulate species-specific pathways rather than ancient rhizobia-specific processes. Two hybrid GGDEF-EAL proteins were selected for functional analysis, R. etli RHE_PD00105 (CdgA) and RHE_PD00137 (CdgB). Expression of cdgA and cdgB is repressed by the alarmone (p)ppGpp. cdgB is significantly expressed on plant roots and free living. Mutation of cdgA, cdgB, or both does not affect plant root colonization, nitrogen fixation capacity, biofilm formation, motility, and exopolysaccharide production. However, heterologous expression of the individual GGDEF and EAL domains of each protein in Escherichia coli strongly suggests that CdgA and CdgB are bifunctional proteins, possessing both diguanylate cyclase and phosphodiesterase activities. Taken together, our results provide a platform for future studies of c-di-GMP signaling in rhizobia.

  12. The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals▿

    Science.gov (United States)

    Torres Tejerizo, Gonzalo; Del Papa, María Florencia; Soria-Diaz, M. Eugenia; Draghi, Walter; Lozano, Mauricio; Giusti, María de los Ángeles; Manyani, Hamid; Megías, Manuel; Gil Serrano, Antonio; Pühler, Alfred; Niehaus, Karsten; Lagares, Antonio; Pistorio, Mariano

    2011-01-01

    The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa- and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation. PMID:20971905

  13. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Pareja Eduardo

    2006-03-01

    Full Text Available Abstract Background Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. Results This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. Conclusion Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for

  14. Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales.

    Directory of Open Access Journals (Sweden)

    Mary Ellen Heavner

    Full Text Available Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order's close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species.

  15. Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula receptor kinase LYK3.

    Science.gov (United States)

    Haney, Cara H; Riely, Brendan K; Tricoli, David M; Cook, Doug R; Ehrhardt, David W; Long, Sharon R

    2011-07-01

    To form nitrogen-fixing symbioses, legume plants recognize a bacterial signal, Nod Factor (NF). The legume Medicago truncatula has two predicted NF receptors that direct separate downstream responses to its symbiont Sinorhizobium meliloti. NOD FACTOR PERCEPTION encodes a putative low-stringency receptor that is responsible for calcium spiking and transcriptional responses. LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) encodes a putative high-stringency receptor that mediates bacterial infection. We localized green fluorescent protein (GFP)-tagged LYK3 in M. truncatula and found that it has a punctate distribution at the cell periphery consistent with a plasma membrane or membrane-tethered vesicle localization. In buffer-treated control roots, LYK3:GFP puncta are dynamic. After inoculation with compatible S. meliloti, LYK3:GFP puncta are relatively stable. We show that increased LYK3:GFP stability depends on bacterial NF and NF structure but that NF is not sufficient for the change in LYK3:GFP dynamics. In uninoculated root hairs, LYK3:GFP has little codistribution with mCherry-tagged FLOTILLIN4 (FLOT4), another punctate plasma membrane-associated protein required for infection. In inoculated root hairs, we observed an increase in FLOT4:mCherry and LYK3:GFP colocalization; both proteins localize to positionally stable puncta. We also demonstrate that the localization of tagged FLOT4 is altered in plants carrying a mutation that inactivates the kinase domain of LYK3. Our work indicates that LYK3 protein localization and dynamics are altered in response to symbiotic bacteria.

  16. Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy.

    Science.gov (United States)

    Geddes, Barney A; González, Juan E; Oresnik, Ivan J

    2014-12-01

    Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.

  17. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.

    Science.gov (United States)

    Veereshlingam, Harita; Haynes, Janine G; Penmetsa, R Varma; Cook, Douglas R; Sherrier, D Janine; Dickstein, Rebecca

    2004-11-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  18. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China

    Institute of Scientific and Technical Information of China (English)

    Pin Xie; Xiuli Hao; Martin Herzberg; Yantao Luo; Dietrich H.Nies; Gehong Wei

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China,a highly elevated level of heavy metal containing region,genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB).It shows that:Mesorhizobium amorphae CCNWGS0123 contains metal ~nsporters from P-type ATPase,CDF (Cation Diffusion Facilitator),HupE/UreJ and CHR (chromate ion transporter) family involved in copper,zinc,nickel as well as chromate resistance and homeostasis.Meanwhile,the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter,assisted with putative CzcD,determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286.The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  19. Photosynthetic and Molecular Markers of CO2-mediated Photosynthetic Downregulation in Nodulated Alfalfa

    Institute of Scientific and Technical Information of China (English)

    (A)lvaro Sanz-Sáez; Gorka Erice; Iker Aranjuelo; Ricardo Aroca; Juan Manuel Ruíz-Lozano; Jone Aguirreolea; Juan José Irigoyen

    2013-01-01

    Elevated CO2 leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth.This process is known as photosynthetic downregulation.There is no agreement on the definition of which parameters are the most sensitive for detecting CO2 acclimation.In order to investigate the most sensitive photosynthetic and molecular markers of CO2 acclimation,the effects of elevated CO2,and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains.Plants (Medicago sativa L.cv.Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG).At the end of the experiment,all plants showed acclimation in both seasons,especially under elevated summer temperatures.This was probably due to the lower nitrogen (N) availability caused by decreased N2-fixation under higher temperatures.Photosynthesis measured at growth CO2 concentration,rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation.Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis.Despite the sensitivity of rubisco content as a marker of acclimation,it was not coordinated with gene expression,possibly due to a lag between gene transcription and protein translation.

  20. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Cheng eQin

    2016-03-01

    Full Text Available The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula genome, 10 14-3-3 family genes were identified, and they can be grouped into ε and non-ε groups. An exon-intron analysis showed that the gene structures are conserved in the same group. The protein structure analysis showed that 14-3-3 proteins in M. truncatula are composed of nine typical antiparallel α-helices. The expression patterns of Mt14-3-3 genes indicated that they are expressed in all tissues. Furthermore, the gene expression levels of Mt14-3-3 under hormone treatment and Sinorhizobium meliloti infection showed that the Mt14-3-3 genes were involve in nodule formation. Our findings lay a solid foundation for further functional studies of 14-3-3 in M. truncatula.

  1. Effect of Mixture of Phosphate Solubilizing Bacteria and Nodule Bacteria on Alfafa Seedling Growth%溶磷菌和根瘤菌混合菌剂对苜蓿苗期生长的影响

    Institute of Scientific and Technical Information of China (English)

    赵冬青; 姚拓; 刘青海; 马文彬; 李建宏

    2015-01-01

    采用钼锑抗比色法和高效液相色谱法,测定了1株优良根瘤菌(Sinorhizobium meliloti gs1)和2株溶磷菌(Pseudomonas∥orescens gs91和Bacills sp.gs5)单独培养及混合后的溶磷量和IAA分泌量变化及菌剂对苜蓿苗期生长的影响.结果表明:混合菌株的溶磷及分泌IAA能力均有提高,其中菌株组合gs91+ gs5+ gs1的溶磷和分泌IAA能力分别达248.27mg/L和24.63μg/mL;混合菌剂的促生效果优于单一菌剂,以gs91 +gs5+gs1组合效果最好,苜蓿的株高、根长、结瘤数、地上生物量、地下生物量、粗蛋白质含量及含磷量等分别较对照增加了67.05%、37.62%、130.38%、86.44%、122.31%、36.02%和40.81%.

  2. Environmental Signals and Regulatory Pathways That Influence Exopolysaccharide Production in Rhizobia

    Directory of Open Access Journals (Sweden)

    Monika Janczarek

    2011-11-01

    Full Text Available Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids and stress conditions (osmolarity, ionic strength affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.

  3. 根瘤菌基因组内简单重复序列的分析%Analysis of Simple Sequence Repeats in Rhizobium Genomes

    Institute of Scientific and Technical Information of China (English)

    高亚梅; 韩毅强; 汤辉; 孙东梅; 王彦杰; 王伟东

    2008-01-01

    [目的]分析根瘤菌基因组中的简单重复序列(simple sequence repeats,SSRs),为其在根瘤菌遗传多样性研究中的应用提供有益的信息.[方法]利用公共的微生物串联重复序列数据库资源,对已测序的3种根瘤菌基因组中SSRs的结构类型,分布,丰度等进行系统的比较分析.[结果]大豆慢生根瘤菌(Bradyrhizobium japonicum)、百脉根根瘤菌(blesorhizobium loti)和苜蓿中华根瘤菌(Sinorhizobium meliloti)基因组中的SSRs分别为1 410个、859个和638个,3种根瘤菌基因组中长重复的四、五、六核苷酸基序更为丰富,变异性更高.数目最少的为单碱基重复.[结论]3种根瘤菌的SSR在结构类型和分布规律上均具有一定的相似性.

  4. Functionality of in vitro reconstituted group II intron RmInt1-derived ribonucleoprotein particles

    Directory of Open Access Journals (Sweden)

    María Dolores Molina-Sánchez

    2016-09-01

    Full Text Available The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP consisting of the intron-encoded protein (IEP and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En and cannot cut the bottom strand to generate the 3’ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.<