WorldWideScience

Sample records for alpha-particle-emitting radioimmunoconjugate 227th-rituximab

  1. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate {sup 227}Th-rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein; Heyerdahl, Helen; Hjelmerud, Anne Kristine; Larsen, Roy H. [Oslo University Hospital, Department of Radiation Biology, The Norwegian Radium Hospital, Oslo (Norway); Jonasdottir, Thora J. [Norwegian School of Veterinary Science, Small Animal Section, Department of Companion Animal Clinical Sciences, Oslo (Norway); Nesland, Jahn M. [Oslo University Hospital, Division of Pathology, The Norwegian Radium Hospital, Oslo (Norway); University of Oslo, Faculty Division The Norwegian Radium Hospital, Medical Faculty, Oslo (Norway); Borrebaek, Joergen [Algeta AS, Oslo (Norway)

    2010-01-15

    The anti-CD20 antibody rituximab labelled with the {alpha}-particle-emitting radionuclide {sup 227}Th is of interest as a radiotherapeutic agent for treatment of lymphoma. Complete regression of human lymphoma Raji xenografts in 60% of mice treated with 200 kBq/kg {sup 227}Th-rituximab has been observed. To evaluate possible late side effects of {sup 227}Th-rituximab, the long-term radiotoxicity of this potential radiopharmaceutical was investigated. BALB/c mice were injected with saline, cold rituximab or 50, 200 or 1,000 kBq/kg {sup 227}Th-rituximab and followed for up to 1 year. In addition, nude mice with Raji xenografts treated with various doses of {sup 227}Th-rituximab were also included in the study. Toxicity was evaluated by measurements of mouse body weight, white blood cell (WBC) and platelet counts, serum clinical chemistry parameters and histological examination of tissues. Only the 1,000 kBq/kg dosage resulted in decreased body weight of the BALB/c mice. There was a significant but temporary decrease in WBC and platelet count in mice treated with 400 and 1,000 kBq/kg {sup 227}Th-rituximab. Therefore, the no-observed-adverse-effect level (NOAEL) was 200 kBq/kg. The maximum tolerated activity was between 600 and 1,000 kBq/kg. No significant signs of toxicity were observed in histological sections in any examined tissue. There were significantly (p < 0.05), but transiently, higher concentrations of serum bile acids and aspartate aminotransferase in mice treated with either {sup 227}Th-rituximab or non-labelled antibody when compared with control mice. The maximum tolerated dose to bone marrow was between 2.1 and 3.5 Gy. Therapeutically relevant dose levels of {sup 227}Th-rituximab were well tolerated in mice. Bone marrow suppression, as indicated by decrease in WBC count, was the dose-limiting radiotoxicity. These toxicity data together with anti-tumour activity data in a CD20-positive xenograft mouse model indicate that therapeutic effects could be

  2. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  3. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of {alpha}-particle-emitting {sup 211}At-labeled trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Boskovitz, Abraham; McLendon, Roger E.; Okamura, Tatsunori [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Sampson, John H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: zalut001@mc.duke.edu

    2009-08-15

    Introduction: Carcinomatous meningitis (CM) is a devastating disease characterized by the dissemination of malignant tumor cells into the subarachnoid space along the brain and spine. Systemic treatment with monoclonal antibody (mAb) trastuzumab can be effective against HER2-positive systemic breast carcinoma but, like other therapies, is ineffective against CM. The goal of this study was to evaluate the therapeutic effect of {alpha}-particle emitting {sup 211}At-labeled trastuzumab following intrathecal administration in a rat model of breast carcinoma CM. Methods: Athymic rats were injected intrathecally with MCF-7/HER2-18 breast carcinoma cells through a surgically implanted indwelling intrathecal catheter. In Experiment 1, animals received 33 or 66 {mu}Ci {sup 211}At-labeled trastuzumab, cold trastuzumab or saline. In Experiment 2, animals were inoculated with a lower tumor burden and received 46 or 92 {mu}Ci {sup 211}At-labeled trastuzumab or saline. In Experiment 3, animals received 28 {mu}Ci {sup 211}At-labeled trastuzumab, 30 {mu}Ci {sup 211}At-labeled TPS3.2 control mAb or saline. Histopathological analysis of the neuroaxis was performed at the end of the study. Results: In Experiment 1, median survival increased from 21 days for the saline and cold trastuzumab groups to 45 and 48 days for 33 and 66 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 2, median survival increased from 23 days for saline controls to 68 and 92 days for 46 and 92 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 3, median survival increased from 20 days to 29 and 36 days for animals treated with {sup 211}At-labeled TPS3.2 and {sup 211}At-labeled trastuzumab, respectively. Long-term survivors were observed exclusively in the {sup 211}At-trastuzumab-treated groups. Conclusion: Intrathecal {sup 211}At-labeled trastuzumab shows promise as a treatment for patients with HER2-positive breast CM.

  4. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  5. Synthesis and stability test of radioimmunoconjugate 177Lu-DOTA-F(ab′2-trastuzumab for theranostic agent of HER2 positive breast cancer

    Directory of Open Access Journals (Sweden)

    Sandra Hermanto

    2016-10-01

    Full Text Available The use of trastuzumab as intact IgG labeling radionuclide for HER2 positive breast cancer theranostic agent is not ideal because it is slowly eliminated from the blood and normal tissues resulting in low tumor/blood (T/B and tumor/normal tissue (T/NT ratios. To overcome this limitation, we developed the trastuzumab F(ab′2 fragments and radiolabeling of the fragments by β and γ-particle of Lutetium-177. F(ab2 fragments were produced by digestion of trastuzumab IgG (Herceptin with pepsin for 18 h at 37 °C. The F(ab′2 fragment fractionated in PD-10 column, followed by the conjugation with 2-(4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (p-SCN-Bn-DOTA as a metal chelator and radiolabeling with 177LuCl3. Molecular weight of fragments was calculated by LCMS (Liquid Chromatography Mass Spectroscopy and the radiochemical purity was evaluated by ITLC-SG (Instan Thin Layer Chromatography. Our study showed that the purity of F(ab′2 fragment generated by PD-10 fractions was >98% and the molecular weight of F(ab′2 was 98.35 kDa. The average numbers of pSCN-Bn-DOTA chelates per antibody fragment were 5.03 ± 1.5 and the optimum conjugation reactions was performed at molar ratio 20:1 (chelator to antibody. The stability test of the radioimmunoconjugate in the human serum albumin (HSA at 37 °C showed the radiochemical purity was 91.96 ± 0.26% after 96 h storage. This indicated that the radioimmunoconjugate is relatively stable when applied to the human body's physiological condition.

  6. 177Lu-DOTA-HH1, a Novel Anti-CD37 Radio-Immunoconjugate: A Study of Toxicity in Nude Mice

    Science.gov (United States)

    Repetto-Llamazares, Ada H. V.; Larsen, Roy H.; Giusti, Anna Maria; Riccardi, Elena; Bruland, Øyvind S.; Selbo, Pål Kristian; Dahle, Jostein

    2014-01-01

    Background CD37 is an internalizing B-cell antigen expressed on Non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia cells (CLL). The anti-CD37 monoclonal antibody HH1 was conjugated to the bifunctional chelator p-SCN-Bn-DOTA and labelled with the beta-particle emitting radionuclide 177Lu creating the radio-immunoconjugate (RIC) 177Lu-DOTA-HH1 (177Lu-HH1, trade name Betalutin). The present toxicity study was performed prior to initiation of clinical studieswith 177Lu-HH1. Methodology/Principal Findings Nude mice with or without tumor xenografts were treated with 50 to 1000 MBq/kg 177Lu- HH1 and followed for clinical signs of toxicity up to ten months. Acute, life threatening bone marrow toxicity was observed in animals receiving 800 and 1000 MBq/kg 177Lu-HH1. Significant changes in serum concentrations of liver enzymes were evident for treatment with 1000 MBq/kg 177Lu-HH1. Lymphoid depletion, liver necrosis and atrophy, and interstitial cell hyperplasia of the ovaries were also observed for mice in this dose group. Conclusions/Significance 177Lu-DOTA-HH1 was well tolerated at dosages about 10 times above those considered relevant for radioimmunotherapy in patients with B-cell derived malignancies.The toxicity profile was as expected for RICs. Our experimental results have paved the way for clinical evaluation of 177Lu-HH1 in NHL patients. PMID:25068508

  7. 177Lu-DOTA-HH1, a novel anti-CD37 radio-immunoconjugate: a study of toxicity in nude mice.

    Directory of Open Access Journals (Sweden)

    Ada H V Repetto-Llamazares

    Full Text Available CD37 is an internalizing B-cell antigen expressed on Non-Hodgkin lymphoma (NHL and chronic lymphocytic leukemia cells (CLL. The anti-CD37 monoclonal antibody HH1 was conjugated to the bifunctional chelator p-SCN-Bn-DOTA and labelled with the beta-particle emitting radionuclide 177Lu creating the radio-immunoconjugate (RIC 177Lu-DOTA-HH1 (177Lu-HH1, trade name Betalutin. The present toxicity study was performed prior to initiation of clinical studies with 177Lu-HH1.Nude mice with or without tumor xenografts were treated with 50 to 1000 MBq/kg 177Lu- HH1 and followed for clinical signs of toxicity up to ten months. Acute, life threatening bone marrow toxicity was observed in animals receiving 800 and 1000 MBq/kg 177Lu-HH1. Significant changes in serum concentrations of liver enzymes were evident for treatment with 1000 MBq/kg 177Lu-HH1. Lymphoid depletion, liver necrosis and atrophy, and interstitial cell hyperplasia of the ovaries were also observed for mice in this dose group.177Lu-DOTA-HH1 was well tolerated at dosages about 10 times above those considered relevant for radioimmunotherapy in patients with B-cell derived malignancies.The toxicity profile was as expected for RICs. Our experimental results have paved the way for clinical evaluation of 177Lu-HH1 in NHL patients.

  8. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma.

    Directory of Open Access Journals (Sweden)

    Ada H V Repetto-Llamazares

    Full Text Available 177Lu-DOTA-HH1 (177Lu-HH1 is a novel anti-CD37 radioimmunoconjugate developed to treat non-Hodgkin lymphoma. Mice with subcutaneous Ramos xenografts were treated with different activities of 177Lu-HH1, 177Lu-DOTA-rituximab (177Lu-rituximab and non-specific 177Lu-DOTA-IgG1 (177Lu-IgG1 and therapeutic effect and toxicity of the treatment were monitored. Significant tumor growth delay and increased survival of mice were observed in mice treated with 530 MBq/kg 177Lu-HH1 as compared with mice treated with similar activities of 177Lu-rituximab or non-specific 177Lu-IgG1, 0.9% NaCl or unlabeled HH1. All mice injected with 530 MBq/kg of 177Lu-HH1 tolerated the treatment well. In contrast, 6 out of 10 mice treated with 530 MBq/kg 177Lu-rituximab experienced severe radiation toxicity. The retention of 177Lu-rituximab in organs of the mononuclear phagocyte system was longer than for 177Lu-HH1, which explains the higher toxicity observed in mice treated with 177Lu-rituximab. In vitro internalization studies showed that 177Lu-HH1 internalizes faster and to a higher extent than 177Lu-rituximab which might be the reason for the better therapeutic effect of 177Lu-HH1.

  9. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma

    Science.gov (United States)

    Repetto-Llamazares, Ada H. V.; Larsen, Roy H.; Patzke, Sebastian; Fleten, Karianne G.; Didierlaurent, David; Pichard, Alexandre; Pouget, Jean Pierre; Dahle, Jostein

    2015-01-01

    177Lu-DOTA-HH1 (177Lu-HH1) is a novel anti-CD37 radioimmunoconjugate developed to treat non-Hodgkin lymphoma. Mice with subcutaneous Ramos xenografts were treated with different activities of 177Lu-HH1, 177Lu-DOTA-rituximab (177Lu-rituximab) and non-specific 177Lu-DOTA-IgG1 (177Lu-IgG1) and therapeutic effect and toxicity of the treatment were monitored. Significant tumor growth delay and increased survival of mice were observed in mice treated with 530 MBq/kg 177Lu-HH1 as compared with mice treated with similar activities of 177Lu-rituximab or non-specific 177Lu-IgG1, 0.9% NaCl or unlabeled HH1. All mice injected with 530 MBq/kg of 177Lu-HH1 tolerated the treatment well. In contrast, 6 out of 10 mice treated with 530 MBq/kg 177Lu-rituximab experienced severe radiation toxicity. The retention of 177Lu-rituximab in organs of the mononuclear phagocyte system was longer than for 177Lu-HH1, which explains the higher toxicity observed in mice treated with 177Lu-rituximab. In vitro internalization studies showed that 177Lu-HH1 internalizes faster and to a higher extent than 177Lu-rituximab which might be the reason for the better therapeutic effect of 177Lu-HH1. PMID:26066655

  10. High treatment efficacy by dual targeting of Burkitt's lymphoma xenografted mice with a {sup 177}Lu-based CD22-specific radioimmunoconjugate and rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Tobias; Boetticher, Benedikt; Keller, Armin; Schlegelmilch, Anne; Jaeger, Dirk; Krauss, Juergen [Heidelberg University Hospital, Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg (Germany); Mier, Walter; Kraemer, Susanne; Leotta, Karin [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Sauter, Max; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Grosse-Hovest, Ludger [University of Tuebingen, Department of Immunology, Tuebingen (Germany); Arndt, Michaela A.E. [Heidelberg University Hospital, Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg (Germany); German Cancer Research Center (DKFZ), Immunotherapy Program, National Center for Tumor Diseases, Heidelberg (Germany)

    2016-03-15

    Dual-targeted therapy has been shown to be a promising treatment option in recurrent and/or refractory B-cell non-Hodgkin's lymphoma (B-NHL). We generated radioimmunoconjugates (RICs) comprising either a novel humanized anti-CD22 monoclonal antibody, huRFB4, or rituximab, and the low-energy β-emitter {sup 177}Lu. Both RICs were evaluated as single agents in a human Burkitt's lymphoma xenograft mouse model. To increase the therapeutic efficacy of the anti-CD22 RIC, combination therapy with unlabelled anti-CD20 rituximab was explored. The binding activity of CHX-A''-DTPA-conjugated antibodies to target cells was analysed by flow cytometry. To assess tumour targeting of {sup 177}Lu-labelled antibodies, in vivo biodistribution experiments were performed. For radioimmunotherapy (RIT) studies, non-obese diabetic recombination activating gene-1 (NOD-Rag1{sup null}) interleukin-2 receptor common gamma chain (IL2r γ {sup null}) null mice (NRG mice) were xenografted subcutaneously with Raji Burkitt's lymphoma cells. {sup 177}Lu-conjugated antibodies were administered at a single dose of 9.5 MBq per mouse. For dual-targeted therapy, rituximab was injected at weekly intervals (0.5 - 1.0 mg). Tumour accumulation of RICs was monitored by planar scintigraphy. Conjugation of CHX-A''-DTPA resulted in highly stable RICs with excellent antigen-binding properties. Biodistribution experiments revealed higher tumour uptake of the {sup 177}Lu-labelled anti-CD22 IgG than of {sup 177}Lu-labelled rituximab. Treatment with {sup 177}Lu-conjugated huRFB4 resulted in increased tumour growth inhibition and significantly longer survival than treatment with {sup 177}Lu-conjugated rituximab. The therapeutic efficacy of the anti-CD22 RIC could be markedly enhanced by combination with unlabelled rituximab. These findings suggest that dual targeting with {sup 177}Lu-based CD22-specific RIT in combination with rituximab is a promising new treatment option for

  11. Radioimmunotherapy (I): development of radioimmunoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Tea Hyun; Lim, Sang Moo [Korea Institute of Radiological and Medicine, Seoul (Korea, Republic of)

    2006-04-15

    Monoclonal antibodies are designed to bind specifically to certain antigen, give therapeutic effect to the target and to be produced in large scale with homogeneity. The monoclonal conjugated with radionuclide can deliver therapeutic irradiation to the target, and showed successful results in certain malignancies, which is known as radioimmunotherapy. The target-to-background ratio depends on the antigen expression in the target and normal tissues, which is related to the therapeutic efficacy and toxicity in radioimmunotherapy. For the solid tumor beta-ray energy should be high, but lower beta energy is better for the hematological malignancies. I-131 is widely used in thyroid cancer with low cost and high availability. Labeling monoclonal antibody with I-131 is relatively simple and reproducible. Some preclinical data for the I-131 labeled monoclonal antibodies including acute toxicity and efficacy are available from already published literatures. In KIRAMS, physician sponsored clinical trial protocols using Rituximab, KFDA approved anti-CD20 chimeric monoclonal antibody and I-131 were approved by KFDA and currently are ongoing.

  12. {sup 123}I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21{sup WAF-1/Cip-1}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Meiduo [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); University of Toronto, Department of Pharmaceutical Sciences, Toronto, ON (Canada); Chen, Paul; Wang, Judy; Scollard, Deborah A. [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); Vallis, Katherine A. [University Health Network, Department of Radiation Oncology, Toronto, ON (Canada); University of Toronto, Department of Medical Biophysics, Toronto, ON (Canada); Reilly, Raymond M. [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); University of Toronto, Department of Pharmaceutical Sciences, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, ON (Canada)

    2007-03-15

    To evaluate the internalization and nuclear translocation of {sup 123}I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21{sup WAF-1/Cip-1}. Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21{sup WAF-1/Cip-1} antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21{sup WAF-1/Cip-1}. Internalization and nuclear translocation were measured. The ability of tat-anti-p21{sup WAF-1/Cip-1} to block G{sub 1}-S phase arrest in MDA-MB-468 cells caused by EGF-induced p21{sup WAF-1/Cip-1} was evaluated. Tumor and normal tissue uptake were determined at 48 h p.i. in athymic mice implanted s.c. with MDA-MB-468 xenografts injected intratumorally with EGF. There was 13.4{+-}0.2% of radioactivity internalized by MDA-MB-468 cells incubated with {sup 123}I-tat-anti-p21{sup WAF-1/Cip-1} and 34.6{+-}3.1% imported into the nucleus. Tat-anti-p21{sup WAF-1/Cip-1}(8 {mu}M) decreased the proportion of EGF-treated cells in G{sub 1} phase from 81.9{+-}0.7% to 46.1{+-}0.7% (p<0.001), almost restoring the G{sub 1} phase fraction to that of unexposed cells (25.8{+-}0.2%). Non-specific tat-mouse IgG did not block EGF-induced G{sub 1}-S phase arrest. Tumor uptake of radioactivity was higher in mice injected with EGF to induce p21{sup WAF-1/Cip-1} than in mice not receiving EGF (3.1{+-}0.4% versus 1.8{+-}0.2% ID/g; p=0.04). Western blot analysis of tumors revealed a threefold increase in the p21{sup WAF-1/Cip-1}/{beta}-actin ratio. We conclude that intracellular and nuclear epitopes in cancer cells can be functionally targeted with tat-radioimmunoconjugates to exploit many more epitopes for imaging and radiotherapeutic applications than have previously been accessible. (orig.)

  13. Initial evaluation of {sup 227}Th-p-benzyl-DOTA-rituximab for low-dose rate {alpha}-particle radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway)]. E-mail: jostein.dahle@labmed.uio.no; Borrebaek, Jorgen [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Melhus, Katrine B. [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Bruland, Oyvind S. [Department of Clinical Medicine, University of Oslo, 0316 Oslo (Norway); Department of Oncology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Salberg, Gro [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Larsen, Roy H. [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway)

    2006-02-15

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with {beta}-emitting isotopes. In contrast to {beta}-emitters, the shorter range and high linear energy transfer (LET) of {alpha} particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of {alpha}-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The {alpha}-emitting radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the {alpha}-particle-emitting nuclide {sup 227}Th alone, the chelated form, {sup 227}Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of {sup 227}Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the {sup 227}Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of {sup 227}Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with {sup 227}Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of {sup 227}Th-DOTA-p-benzyl-rituximab.

  14. Bismuth 213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts

    Energy Technology Data Exchange (ETDEWEB)

    Sandmaier, B M.(Fred Hutchinson Cancer Research Center, Seattle, WA); Bethge, W A.(Fred Hutchinson Cancer Research Center, Seattle, WA); Wilbur, D. Scott (Washington, Univ Of); Hamlin, Donald K.(Washington, Univ Of); Santos, E B.(Fred Hutchinson Cancer Research Center, Seattle, WA); Brechbiel, M W.(National Cancer Institute, National Institutes of Health, Bethesda, MD); Fisher, Darrell R.(BATTELLE (PACIFIC NW LAB)); Storb, R. (Fred Hutchinson Cancer Research Center)

    2002-01-01

    To lower treatment-related mortality and toxicity of conventional marrow transplantation, a nonmyeloablative regimen using 200 cGy total-body irradiation (TBI) and mycophenolate mofetil (MMF) combined with cyclosporine (CSP) for postgrafting immunosuppression was developed. To circumvent possible toxic effects of external- beam gamma irradiation, strategies for targeted radiation therapy were investigated. We tested whether the short-lived (46 minutes) alpha-emitter Bi-213 conjugated to an anti-CD45 monoclonal antibody (mAb) could replace 200 cGy TBI and selectively target hematopoietic tissues in a canine model of nonmyeloablative DLA-identical marrow transplantation. Biodistribution studies using iodine 123-labeled anti-CD45 mAb showed uptake in blood, marrow, lymph nodes, spleen, and liver. In a dose-escalation study, 7 dogs treated with the Bi-213-anti-CD45 conjugate (Bi-213 dose, 0.1-5.9 mCi/kg[3.7-218 MBq/kg]) without marrow grafts had no toxic effects other than a mild, reversible suppression of blood counts. On the basis of these studies, 3 dogs were treated with 0.5 mg/kg Bi-213-labeled anti-CD45 mAb (Bi-213 doses, 3.6, 4.6, and 8.8 mCi/kg[133, 170, and 326 MBq/kg]) given in 6 injections 3 and 2 days before grafting of marrow from DLA-identical littermates. The dogs also received MMF (10 mg/kg subcutaneously twice daily the day of transplantation until day 27 afterward) and CSP (15 mg/kg orally twice daily the day before transplantation until 35 days afterward). Therapy was well tolerated except for transient elevations in levels of transaminases in 3 dogs, followed by, in one dog, ascites. All dogs achieved prompt engraftment and stable mixed hematopoietic chimerism, with donor contributions ranging from 30% to 70% after more than 27 weeks of follow-up. These results form the basis for additional studies in animals and the design of clinical trials using Bi-213 as a nonmyeloablative conditioning regimen with minimal toxicity.

  15. Small animal PET imaging of TAG-72 expressing tumor using {sup 68}Ga-NOTA-3E8 Fab radioimmunoconjugate

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. H.; Lee, T. S.; Woo, S. K.; Woo, K. S.; Chung, W. S.; Kang, J. H.; Cheon, G. J.; Choi, C. W.; Lim, S. M. [KIRAMS, Seoul (Korea, Republic of); Hong, H. J. [KRIBB, Daejeon (Korea, Republic of)

    2009-05-15

    The tumor-associated glycoprotein TAG-72 is express ed in the majority of human adenocarcinomas but is rarely expressed in most normal tissues, which makes it a potential target for the diagnosis and therapy of a variety of human cancer. 3E8 is anti-TAG-72 humanized antibody. Antibody fragments have some advantages such as improved pharmacokinetics and reduced immunogenicity compared to whole IgG. {sup 68}Ga is a short-lived positron emitter (t{sub 1/2} {sup 68} min; {beta}+, 88%) that is produced, independent from a cyclotron, by a {sup 68}Ge/{sup 68}Ga generator. The parent nuclide {sup 68}Ge has a long half-life (270.8 day), allowing its use as a generator for more than 1 year. A {sup 68}Ga is labeled with antibodies through bifunctional chelators, which allows possible kit formulation and which wide availability of the nuclear imaging agents. In this study, Fab fragment of anti-TAG-72 humanized Ab (3E8) was conjugated with 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4, 7-triacetic acid (p-SCN-Bn-NOTA) and radiolabeled with {sup 68}Ga and acquire small animal PET image.

  16. Lattice sites of Li in CdTe

    NARCIS (Netherlands)

    Restle, M; BharuthRam, K; Quintel, H; Ronning, C; Hofsass, H; Wahl, U; Jahn, SG

    1996-01-01

    The lattice site occupation of Li in CdTe at temperatures between 40 and 500 K was investigated with the emission channeling method. Radioactive Li-8 ions were implanted at low doses into CdTe single crystals. Emission channeling patterns of alpha-particles emitted in the nuclear decay of Li-8 (t(1/

  17. Biomarkers of Alpha Particle Radiation Exposure

    Science.gov (United States)

    2014-04-01

    Increased forensic capability through the development of biological tools to help identify those involved should be an integral to a national strategy... forensics capabilities and emergency preparedness response plans through the detection of those exposed to alpha-particle emitting radioactive...exposure and stored at -40°C before being processed next day. Plasma was analysed using the Piccolo Express Chemistry Analyser (Fisher Scientific

  18. alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    OpenAIRE

    Escrig, D.; Sanchez-Benitez, A M; Moro, A. M.; Alvarez, M. A. G.; Andres, M. V.; Angulo, C.; Borge, M. J. G.; J. Cabrera; Cherubini, S.; Demaret, P; Espino, J. M.; Figuera, P.; Freer, M.; Garcia-Ramos, J. E.; Gomez-Camacho, J.

    2007-01-01

    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakl...

  19. Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?

    Institute of Scientific and Technical Information of China (English)

    HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze

    2001-01-01

    The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.

  20. Open problems in formation and decay of composite systems in heavy ion reactions

    Indian Academy of Sciences (India)

    G Viesti; V Rizzi; M Barbui; D Fabris; M Lunardon; G Nebbia; S Moretto; S Pesente; M Cinausero; E Fioretto; G Prete; D Shetty

    2001-08-01

    New highly exclusive experiments in the field of formation and decay of composite systems in heavy ion reactions are presented. Dynamical effects are reviewed in the light of recent works on the role of the / asymmetry between projectile and target. The possibility of extracting directly from the experimental data the emission barrier of alpha particles emitted from highly excited nuclei is discussed. Finally, the first experimental evidence of double giant resonance excitation in fusion-evaporation reaction is presented.

  1. Electrodeposition of selected alpha-emitting nuclides from ammonium acetate electrolyte

    Science.gov (United States)

    Lee, Shan C.; Choi, Jae G.; Hodge, Vernon F.

    1994-10-01

    The experimentally optimal conditions of the electrodeposition of selected alpha particle-emitting radionuclides, including Po-208, Ra-226, Th-228, U-238, Pu-239, Am-241 and Cm-(243, 244) with ammonium acetate electrolyte have been determined. This simple method could be used for the determination of the most important actinides in radiological waste and could be applicable to waste treatment. In addition, this method could be used for radium determination instead of the traditional radon emanation technique, which requires approximately 30 days.

  2. $\\alpha$-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    CERN Document Server

    Escrig, D; Moro, A M; Alvarez, M A G; Andrés, M V; Angulo, C; García-Borge, M J; Cabrera, J; Cherubini, S; Demaret, P; Espino, J M; Figuera, P; Freer, M; García-Ramos, J E; Gómez-Camacho, J; Gulino, M; Kakuee, O R; Martel, I; Metelko, C; Pérez-Bernal, F; Rahighi, J; Rusek, K; Smirnov, D; Tengblad, O; Ziman, V

    2007-01-01

    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.

  3. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  4. 2016 Research Outreach Program report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kim, Yangkyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.

  5. Preparation and bioevaluation of {sup 177}Lu-labelled anti-CD44 for radioimmunotherapy of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Young; Hong, Young Don; Jung, Sung Hee; Choi, Sun Ju [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    CD44 is a particular adhesion molecule and facilitates both cell-cell and cell-matrix interactions. In particular, splice variants of CD44 are particularly overexpressed in a large number of malignancies and carcinomas. In this study, the {sup 177}Lu-labelled CD44 targeting antibody was prepared and bioevaluated in vitro and in vivo. Anti-CD44 was immunoconjugated with the equivalent molar ratio of cysteine-based dtPA-ncS and radioimmunoconjugated with {sup 177}Lu at room temperature within 15 minutes. the stability was tested in human serum. An in vitro study was carried out in Ht-29 human colon cancer cell lines. For the biodistribution study {sup 177}Lu-labelled anti-CD44 was injected in xenograft mice. Anti-CD44 was immunoconjugated with cysteinebased dtPA-ncS and purified by a centricon filter system having a molecular cut-off of 50 kda. radioimmunoconjugation with {sup 177}Lu was reacted for 15 min at room temperature. the radiolabeling yield was >99%, and it was stable in human serum without any fragmentation or degradation. The radioimmunoconjugate showed a high binding affinity on HT-29 colon cancer cell surfaces. In a biodistribution study, the tumor-to-blood ratio of the radioimmunoconjugate was 43 : 1 at 1 day post injection (p.i) in human colon cancer bearing mice. the anti-CD44 monoclonal antibody for the targeting of colon cancer was effectively radioimmunoconjugated with {sup 177}Lu. the in vitro high immunoactivity of this radioimmunoconjugate was determined by a cell binding assay. In addition, the antibody's tumor targeting ability was demonstrated with very high uptake in tumors. this radioimmunoconjugate is applicable to therapy in human colon cancer with highly expressed CD44.

  6. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  7. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    Science.gov (United States)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  8. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  9. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  10. Precise Branching Ratios to Unbound 12C States from 12N and 12B (beta)-Decays

    Energy Technology Data Exchange (ETDEWEB)

    Hyldegaard, S; Forssen, C; Alcorta, M; Barker, F C; Bastin, B; Borge, M G; Boutami, R; Brandenburg, S; Buscher, J; Dendooven, P; Diget, C A; Van Duppen, P; Eronen, T; Fox, S; Fulton, B R; Fynbo, H U; Huikari, J; Huyse, M; Jeppesen, H B; Jokinen, A; Jonson, B; Jungmann, K; Kankainen, A; Kirsebom, O; Madurga, M; Moore, I; Navratil, P; Nilsson, T; Nyman, G; Onderwater, G G; Penttila, H; Perajarvi, K; Raabe, R; Riisager, K; Rinta-Antila, S; Rogachevskiy, A; Saastamoinen, A; Sohani, M; Tengblad, O; Traykov, E; Vary, J P; Wang, Y; Wilhelmsen, K; Wilschut, H W; Aysto, J

    2008-08-20

    Two complementary experimental techniques have been used to extract precise branching ratios to unbound states in {sup 12}C from {sup 12}N and {sup 12}B {beta}-decays. In the first the three {alpha}-particles emitted after {beta}-decay are measured in coincidence in separate detectors, while in the second method {sup 12}N and {sup 12}B are implanted in a detector and the summed energy of the three {alpha}-particles is measured directly. For the narrow states at 7.654 MeV (0{sup +}) and 12.71 MeV (1{sup +}) the resulting branching ratios are both smaller than previous measurements by a factor of {approx_equal} 2. The experimental results are compared to no-core shell model calculations with realistic interactions from chiral perturbation theory, and inclusion of three-nucleon forces is found to give improved agreement.

  11. Non-linear relationship of cell hit and transformation probabilities in low dose of inhaled radon progenies

    CERN Document Server

    Balásházy, Imre; Madas, Balázs Gergely; Hofmann, Werner

    2013-01-01

    Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or in support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions, which are characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterize the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a funct...

  12. Rutherford Experiment

    CERN Multimedia

    This experiment, carried out by Ernest Rutherford in 1910, revolutionised understanding of the structure of matter, showing that almost all the mass of an atom is concentrated in a very small, positively charged nucleus. Alpha particles emitted at bombard a thin gold foil. A detector records the number of alpha particles crossing the foil per second. The number is displayed on the counter and updated every minute. Alpha particles are helium nuclei, they consist of 2 protons and 2 neutrons. Rotate the central knob to change the angle between the foil and the detector. The number of alpha particles detected depends on the angle. Most of the alpha particles travel straight through the foil because the gold atoms are mainly empty space. However some hit the atomic nucleus and are deflected.

  13. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  14. Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables

    Science.gov (United States)

    Ihantola, S.; Pelikan, A.; Pöllänen, R.; Toivonen, H.

    2011-11-01

    The correct handling of statistical uncertainties is crucial especially when unfolding alpha spectra that contain a low number of counts or overlapping peaks from different nuclides. For this purpose, we have developed a new spectrum analysis software package called ADAM, which performs a full covariance calculus for alpha-particle emitting radionuclides. By analyzing a large number of simulated and measured spectra, the program was proved to give unbiased peak areas and statistically correct uncertainty limits. This applies regardless of the peak areas and the number of unknown parameters during the fitting. In addition, ADAM performs reliable deconvolution for multiplets, which opens the way for the determination of isotope ratios, such as 239Pu/240Pu.

  15. Mechanism of reactions induced by 7 MeV deuterons on /sup 9/Be ((d,p), (d,d), (d,t), (d,/sup 4/He))

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, A.; Bodek, K.; Krug, J.; Luebcke, W.; Ruehl, H.; Steinke, M.; Stephan, M.; Kamke, D.; Hajdas, W.; Jarczyk, L.

    1989-07-01

    Angular distributions of protons, deuterons, tritons and alpha-particles emitted from the reactions in the d+/sup 9/Be-system at E/sub d/=7 MeV as well as excitation functions at selected angles in the energy range E/sub d/=6.5-7.5 MeV (LAB) were measured. The potential part of the elastic scattering is described by the phenomenological optical model. The compound nucleus contribution to all exit channels is determined using the Hauser-Feshbach model. The collective excitation of the 2.43 MeV excited state of /sup 9/Be and transfer processes are analysed within the DWBA formalism. The analyses suggest a significant contribution of five-nucleon transfer to the (d, /sup 4/He) channel.

  16. Pre-equilibrium {\\alpha}-particle emission as a probe to study {\\alpha}-clustering in nuclei

    CERN Document Server

    Fotina, O V; Eremenko, D O; Platonov, S Yu; Yuminov, O A; Kravchuk, V L; Gramegna, F; Marchi, T; Cinausero, M; D'Agostino, M; Bruno, M; Baiocco, G; Morelli, L; Degerlier, M; Casini, G; Barlini, S; Valdrè, S; Piantelli, S; Pasquali, G; Bracco, A; Camera, F; Wieland, O; Benzoni, G; Blasi, N; Giaz, A; Corsi, A

    2013-01-01

    A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {\\alpha}-particle production. Griffin's model of non-equilibrium processes is used to account for the first stage of the compound system formation, while a Monte Carlo statistical approach was used to describe the further decay from a hot source at thermal equilibrium. The probabilities of neutron, proton and {\\alpha}-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Fission and {\\gamma}-ray emission competition were also considered after equilibration. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and {\\alpha}-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to th...

  17. Improved radioimmunotherapy of hematologic malignancies. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Press, O.W.

    1996-08-15

    Experiments were performed to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells. An attempt was made to examine in vivo the effects of lysosomotropic amines and thioamides on the retention of radiolabeled monoclonal antibodies by tumor cells. Experiments also examined the impact of newer radioiodination techniques on the metabolic degradation of radioiodinated antibodies, and on the radioimmunoscintigraphy and radioimmunotherapy of neoplasms. The endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with I-131, In-111, and Y-90 were compared. The utility of radioimmunoconjugates targeting oncogene products for the radioimmunotherapy and radioimmunoscintigraphy of cancer was investigated.

  18. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re.

    NARCIS (Netherlands)

    Brouwers, A.H.; Eerd-Vismale, J.E.M. van; Frielink, C.; Oosterwijk, E.; Oyen, W.J.G.; Corstens, F.H.M.; Boerman, O.C.

    2004-01-01

    Radioimmunotherapy (RIT) can be performed with various radionuclides. We tested the stability, biodistribution, and therapeutic efficacy of various radioimmunoconjugates ((131)I, (88/90)Y, (177)Lu, and (186)Re) of chimeric antirenal cell cancer monoclonal antibody G250 (mAb cG250) in nude mice with

  19. Development of an integrated sampler based on direct {sup 222}Rn/{sup 220}Rn progeny sensors in flow-mode for estimating unattached/attached progeny concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rosaline, E-mail: rosaline@barc.gov.i [Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sapra, B.K.; Mayya, Y.S. [Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2009-11-15

    A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of {sup 222}Rn/{sup 220}Rn progeny concentration. The essential element of this sampler is the direct {sup 222}Rn/{sup 220}Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for {sup 220}Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 +- 0.64 (track cm{sup -2} h{sup -1}) (Bq m{sup -3}){sup -1} and 22.30 +- 0.18 (track cm{sup -2} h{sup -1}) (Bq m{sup -3}){sup -1}, respectively; while that of DRPS-loaded sampler for {sup 222}Rn progeny deposition, is 3.03 +- 0.14 (track cm{sup -2} h{sup -1}) (Bq m{sup -3}){sup -1} and 2.08 +- 0.07 (track cm{sup -2} h{sup -1}) (Bq m{sup -3}){sup -1}, respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.

  20. Improved radioimmunotherapy of hematologic malignancies. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Press, O.W.

    1992-03-24

    This research project proposes to develop novel new approaches of improving the radioimmunodetection and radioimmunotherapy of malignancies by augmenting retention of radioimmunoconjugates by tumor cells. The approaches shown to be effective in these laboratory experiments will subsequently be incorporated into out ongoing clinical trials in patients. Specific project objectives include: to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells; To examine the effects of lysosomotropic amines (e.g. chloroquine, amantadine), carboxylic ionophores (monensin, nigericin), and thioamides (propylthiouracil), on the retention of radiolabeled MoAbs by tumor cells; to examine the impact of newer radioiodination techniques (tyramine cellobiose, paraiodobenzoyl) on the metabolic degradation of radioiodinated antibodies; to compare the endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with different radionuclides ({sup 131}Iodine, {sup 111}Indium, {sup 90}Yttrium, {sup 99m}Technetium, {sup 186}Rhenium); and to examine the utility of radioimmunoconjugates targeting oncogene products for the radioimmunotherapy and radioimmunoscintigraphy of cancer.

  1. Improved radioimmunotherapy of hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Press, O.W.

    1992-03-24

    This research project proposes to develop novel new approaches of improving the radioimmunodetection and radioimmunotherapy of malignancies by augmenting retention of radioimmunoconjugates by tumor cells. The approaches shown to be effective in these laboratory experiments will subsequently be incorporated into out ongoing clinical trials in patients. Specific project objectives include: to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells; To examine the effects of lysosomotropic amines (e.g. chloroquine, amantadine), carboxylic ionophores (monensin, nigericin), and thioamides (propylthiouracil), on the retention of radiolabeled MoAbs by tumor cells; to examine the impact of newer radioiodination techniques (tyramine cellobiose, paraiodobenzoyl) on the metabolic degradation of radioiodinated antibodies; to compare the endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with different radionuclides ({sup 131}Iodine, {sup 111}Indium, {sup 90}Yttrium, {sup 99m}Technetium, {sup 186}Rhenium); and to examine the utility of radioimmunoconjugates targeting oncogene products for the radioimmunotherapy and radioimmunoscintigraphy of cancer.

  2. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    Science.gov (United States)

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  3. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Energy Technology Data Exchange (ETDEWEB)

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  4. Development of Reagents for Application of At-211 to Targeted Radionuclide Therapy of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, D. Scott

    2011-12-23

    This grant covered only a period of 4 months as the major portion of the award was returned to DOE due to an award of funding from NIH that covered the same research objectives. A letter regarding the termination of the research is attached as the last page of the Final Report. The research conducted was limited due to the short period of this grant, but the results obtained in that period are outlined in the Final Report. The studies addressed in the research effort were directed at a problem that is of critical importance to the in vivo application of the alpha-particle emitting radionuclide At-211. That problem, low in vivo stability of many astatinated molecules, severely limits the use of At-211 in therapeutic applications. The advances sought in the studies were expected to expand the types of biomolecules that can be used as carriers of At-211, and provide improved in vivo targeting of the radiation dose compared with the dose delivered to normal tissue.

  5. Characteristics of Nucleus-Nucleus Interaction with Relativistic Heavy-Ions

    Science.gov (United States)

    Das, Gourisankar

    A systematic study of relativistic heavy-ion collisions in nuclear emulsion, initiated by ('40)Ar, ('56)Fe at E = 1.8 GeV/N, ('56)Fe at 0.8 GeV/N, and ('12)C at 400 MeV/N, has been made. Projectile fragmentation reactions, where there is no visual indication of target excitation, are studied in terms of multiplicity and projected angular distributions. The standard deviation widths of the projected angular distributions are compared with the first order theory of Lepore and Riddell. In quasi-central collisions, where a part of both the projectile and target nuclei participate, we have undertaken a study of the space angle distributions of the relativistic alpha particles, emitted in ('40)Ar -emulsion interactions at E = 1.8 GeV/N and ('56)Fe-emulsion interactions at E = 0.8 GeV/N. The large angle alpha particle distributions are fitted with moving relativistic Boltzmann distributions, and compared with distributions obtained by Monte Carlo simulation of (alpha)-p hard scattering process. Mean free path of secondary relativistic projectile fragments, emitted in such collisions, are carefully studied to verify the presence of 'anomalous' mfp component among these fragments. This is followed by a study of the mean free path of secondary alpha particles. Finally, in central collisions, the angular distributions of singly charged particles with (beta) > 0.7 are studied with a view to observe collective phenomena, such as nuclear shock wave in nuclear matter.

  6. Cyclotron production of cesium radionuclides as analogues for francium-221 biodistribution

    Science.gov (United States)

    Finn, R.; McDevitt, M.; Sheh, Y.; Lom, C.; Qiao, J.; Cai, S.; Burnazi, E.; Nacca, A.; Pillarsetty, N.; Jaggi, J.; Scheinberg, D.

    2005-12-01

    In our clinical investigations focussing on improved therapeutic treatment of specific tumors we have concentrated on a targeted therapy approach utilizing designed radiolabeled monoclonal antibodies as the cytotoxic reagent. The physical characteristics of the alpha particle emitting radionuclide bismuth-213 including the short half-life of 45.6 min, has shown promise for the treatment of specific cancers such as leukemias and lymphomas or micrometastatic carcinomas. In an effort to increase the cytocidal effect of the HuM195, a humanized monoclonal antibody carrier to the CD33 antigen expressed on leukemia cells, our focus is directed toward an "internal" nano-generator composed of Ac-225 radionuclide, the parent of the bismuth-213. The actinium-225 radionuclide decays through several short-lived, alpha emitting daughters including francium-221, astatine-217 and bismuth-213. In order to study the biodistribution and the pharmacokinetics of the individual daughter nuclide, francium-221, the cyclotron production and separation of cesium radionuclides, specifically cesium-132, from a natural xenon gas target was undertaken. The choice of cesium as an analogue for francium was predicated upon both elements being in Group 1A alkali metals and cesium radionuclide possesses a sufficient half-life to allow biodistribution studies to be performed. The preliminary experimental results of this investigation are presented.

  7. Design and synthesis of {sup 225}Ac radioimmunopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, Michael R.; Ma, Dangshe; Simon, Jim; Frank, R. Keith; Scheinberg, David A. E-mail: d-scheinberg@ski.mskcc.org

    2002-12-01

    The alpha-particle-emitting radionuclides {sup 213}Bi, {sup 211}At, {sup 224}Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. {sup 213}Bi and {sup 211}At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated {sup 224}Ra chloride selectively seeks bone. {sup 225}Ac possesses favorable physical properties for radioimmunotherapy (10 d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential {sup 225}Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach {sup 225}Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93{+-}8% radiochemically pure (n=26). The second step yielded {sup 225}Ac-DOTA-IgG constructs that were 95{+-}5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted {sup 225}Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  8. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  9. Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pesente, Silvia; Nebbia, Giancarlo; Lunardon, Marcello; Viesti, Giuseppe E-mail: giuseppe.viesti@pd.infn.it; Sudac, Davorin; Nad, Karlo; Blagus, Sasha; Valkovic, Vladivoj

    2004-10-01

    Non-destructive inspection of luggage has been simulated in laboratory conditions by using a 14 MeV tagged neutron beam and BaF{sub 2} scintillation detectors (Tagged Neutron Inspection System, TNIS). The tagged neutron beam is produced by detecting the associated alpha particle emitted in the D+T reaction by means of a YAP:Ce scintillator. The TNIS intrinsic time resolution has been measured to be {delta}t=0.9 ns [FWHM], which allows inspection of a minimum voxel of 5 cm depth along the neutron flight path. This characteristic is demonstrated by identifying graphite and water samples hidden inside a hard plastic suitcase filled with background material. Finally, explosive devices such as small anti-personnel or anti-tank landmines have been inspected when placed inside the suitcase. In the case of relatively large explosive objects such as an anti-tank landmine, the system is capable of testing directly the TNT charge inside the device, separating this material from the external plastic case. Further developments of the TNIS concept are discussed.

  10. Evolving treatment approaches for the management of metastatic castration-resistant prostate cancer – role of radium-223

    Directory of Open Access Journals (Sweden)

    Mukherji D

    2014-05-01

    Full Text Available Deborah Mukherji,1 Imane El Dika,1 Sally Temraz,1 Mohammed Haidar,2 Ali Shamseddine11Department of Hematology/Oncology, 2Department of Nuclear Medicine, American University of Beirut Medical Center, Beirut, LebanonAbstract: Radium-223 is a first-in-class alpha particle-emitting radiopharmaceutical approved for the treatment of bone metastatic castration-resistant prostate cancer. Radium-223 is administered intravenously with no requirement for complex shielding and specifically targets areas of bone metastasis. In a randomized placebo-controlled Phase III study, treatment with radium-223 was shown to improve overall survival, time to skeletal-related events, and health-related quality of life. Apart from radium-223, the cytotoxic chemotherapy agents docetaxel and cabazitaxel, androgen biosynthesis inhibitor abiraterone acetate, novel anti-androgen enzalutamide, and immunotherapy sipuleucel-T have also been shown to improve survival of men with advanced prostate cancer in Phase III trials. This review will outline current treatment approaches for advanced prostate cancer with a focus on the role of radium-223 in changing treatment paradigms.Keywords: Alpharadin, alpha-emitting radionuclide, bone metastasis

  11. Inverse-kinematics study of 78Kr + 40Ca at 10 AMeV

    Directory of Open Access Journals (Sweden)

    Henry E.

    2015-01-01

    Full Text Available The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. Analysis of the experimental data focused on a class of selected events consistent with the complete fusion and subsequent binary split of the of the reacting system. This class of events features a broad A, Z distribution of fission fragments centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. The center-of-mass angular distribution (dσ/dΘ of the fission fragments exhibit an unexpected anisotropy inconsistent with a compound-nucleus reaction and indicates a dynamic fusion-fission like process. The observed angular distribution features an asymmetric forward-backward peaking most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis, in analogy to dynamic fragmentation of projectile-like fragments. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions.

  12. Multidetector system for nanosecond tagged neutron technology based on hardware selection of events

    Science.gov (United States)

    Karetnikov, M. D.; Korotkov, S. A.; Khasaev, T. O.

    2016-09-01

    At the T( d, n)He4 reaction a neutron is accompanied by an associated alpha-particle emitted in the opposite direction. A time and a direction of the neutron escape can be determined by measuring a time and coordinates of the alpha particle at the position-sensitive alpha-detector. The nanosecond tagged neutron technology (NTNT) based on this principle has great potentialities for various applications, e.g., for remote detection of explosives. A spectrum of gamma-rays emitted at the interaction of tagged neutrons with nuclei of chemical elements allows identify a chemical composition of an irradiated object. For practical realization of NTNT, a time resolution of recording the alpha-gamma coincidences should be close to 1 ns. The total intensity of signals can exceed 1 × 106 1/s from all gamma-detectors and 7 × 106 1/s from the alpha-detector. The processing of such stream of data without losses and distortion of information is one of challenging problems of NTNT. Several models of analog DAQ system based on hardware selection of events were devised and their characteristics are examined. The comparison with the digital DAQ systems demonstrated that the analog DAQ provides better timing parameters, lower power consumption, and higher maximum rate of useful events.

  13. Phase I Rinal Report: Ultra-Low Background Alpha Activity Counter

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K.

    2005-07-22

    In certain important physics experiments that search for rare-events, such as neutrino or double beta decay detections, it is critical to minimize the number of background events that arise from alpha particle emitted by the natural radioactivity in the materials used to construct the experiment. Similarly, the natural radioactivity in materials used to connect and package silicon microcircuits must also be minimized in order to eliminate ''soft errors'' caused by alpha particles depositing charges within the microcircuits and thereby changing their logic states. For these, and related reasons in the areas of environmental cleanup and nuclear materials tracking, there is a need that is important from commercial, scientific, and national security perspectives to develop an ultra-low background alpha counter that would be capable of measuring materials' alpha particle emissivity at rates well below 0.00001 alpha/cm{sup 2}/hour. This rate, which corresponds to 24 alpha particles per square meter per day, is essentially impossible to achieve with existing commercial instruments because the natural radioactivity of the materials used to construct even the best of these counters produces background rates at the 0.005 alpha/cm{sup 2}/hr level. Our company (XIA) had previously developed an instrument that uses electronic background suppression to operate at the 0.0005 0.005 alpha/cm{sup 2}/hr level. This patented technology sets up an electric field between a large planar sample and a large planar anode, and fills the gap with pure Nitrogen. An alpha particle entering the chamber ionizes the Nitrogen, producing a ''track'' of electrons, which drift to the anode in the electric field. Tracks close to the anode take less than 10 microseconds (us) to be collected, giving a preamplifier signal with a 10 us risetime. Tracks from the sample have to drift across the full anode-sample gap and produce a 35 us risetime signal. By

  14. On the Analytic Estimation of Radioactive Contamination from Degraded Alphas

    CERN Document Server

    Kadel, Richard W

    2016-01-01

    The high energy spectrum of alpha particles emitted from a single isotope uniformly contaminating a bulk solid has a flat energy spectrum with a high end cutoff energy equal to the maximal alpha kinetic energy ($T_{\\alpha}$) of the decay. In this flat region of the spectrum, we show the surface rate $r_b\\text{\\,(Bq/keV-cm}^{2})$ arising from a bulk alpha contamination $\\rho_b$ (Bq/cm$^3$) from a single isotope is given by $r_b =\\rho_b \\Delta R/ 4 \\Delta E $, where $\\Delta E = E_1-E_2>0\\ $ is the energy interval considered (keV) in the flat region of the spectrum and $\\Delta R = R_2-R_1$, where $R_2$ ($R_1$) is the amount of the bulk material (cm) necessary to degrade the energy of the alpha from $T_{\\alpha}$ to $E_2$ ($E_1$). We compare our calculation to a rate measurement of alphas from $^{147}$Sm, ($15.32\\%\\,\\pm\\,0.03\\%$ of Sm($nat$) and half life of $(1.06\\,\\pm\\,0.01)\\times\\,10^{11} \\text{yr}$, and find good agreement, with the ratio between prediction to measurement of $100.2\\%\\pm 1.6\\%\\,\\text{(stat)}\\pm...

  15. Calculating CR-39 Response to Radon in Water Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    2012-09-01

    Full Text Available Introduction CR-39 detectors are widely used for Radon and progeny measurement in the air. In this paper, using the Monte Carlo simulation, the possibility of using the CR-39 for direct measurement of Radon and progeny in water is investigated. Materials and Methods Assuming the random position and angle of alpha particle emitted by Radon and progeny, alpha energy and angular spectrum that arrive at CR-39, the calibration factor, and the suitable depth of chemical etching of CR-39 in air and water was calculated. In this simulation, a range of data were obtained from SRIM2008 software. Results Calibration factor of CR-39 in water is calculated as 6.6 (kBq.d/m3/(track/cm2 that is corresponding with EPA standard level of Radon concentration in water (10-11 kBq/m3. With replacing the skin instead of CR-39, the volume affected by Radon and progeny was determined to be 2.51 mm3 for one m2 of skin area. The annual dose conversion factor for Radon and progeny was calculated to be between 8.8-58.8 nSv/(Bq.h/m3. Conclusion Using the CR-39 for Radon measurement in water can be beneficial. The annual dose conversion factor for Radon and progeny was calculated to be between 8.8-58.8 nSv/ (Bq.h/m3.

  16. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Science.gov (United States)

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  17. Observation of {sup 222}Rn progeny-and {sup 220}Rn progeny-loaded aerosols by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.K.C.; Tso, M.Y.W.; Lam, J.H.C. [The Univ., of Hong Kong, Hong Kong (China); Zhau, Q.F. [Ministry of Health, Beijing (China)

    2002-07-01

    Atomic force microscopy is becoming a powerful tool for the study of nuclear tracks in materials such as CR-39. Coupled with its capability of observing near nm aerosol particles, we have utilized the AFM to observe the radon progeny-loaded aerosol particles deposited on surfaces of CR-39 and to observe the corresponding etch pits produced by the {alpha} -particles emitted from the radon progenies. A special platform was built so that after the aerosol particles on the CR-39 have been scanned and recorded, the CR-39 can be etched and then scanned for the etch pits at the same location. Both {sup 222}Rn and {sup 220}Rn progenies were used in the study. The progenies were generated by the appropriate radon sources and mixed with aerosol particles generated by aerosol generators. The aerosol size distributions were analyzed by a scanning mobility particle sizer. Some of the limitations and difficulties of the technique will be described. The results enable us to examine the attachment process including multiple attachments of radon progenies on aerosols.

  18. Direct measurement of attachment of {sup 220}Rn progeny on aerosols by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.K.C. E-mail: jkcleung@hku.hk; Tso, M.Y.W.; Lam, J.H.C.; Zhau, Q.F

    2003-08-11

    Atomic force microscopy (AFM) is becoming a powerful tool for the study of nuclear tracks in materials such as CR-39. Coupled with its capability of observing near nm aerosol particles, we have utilized the AFM to observe the radon progeny-loaded aerosol particles deposited on surfaces of CR-39 and to observe the corresponding etch pits produced by the {alpha}-particles emitted from the radon progenies. A special platform was built so that after the aerosol particles on the CR-39 have been scanned and recorded, the CR-39 can be etched and then scanned for the etch pits at the same location. Both {sup 222}Rn and {sup 220}Rn progenies were used in the study. The progenies were generated by the appropriate radon sources and mixed with aerosol particles generated by aerosol generators. The aerosol size distributions were analyzed by a scanning mobility particle sizer. Some of the limitations and difficulties of the technique will be described. The results enable us to examine the attachment process including multiple attachments of radon progenies on aerosols.

  19. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  20. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  1. Occurrence of radium-224, radium-226, and radium-228 in water of the unconfined Kirkwood-Cohansey aquifer system, southern New Jersey

    Science.gov (United States)

    Szabo, Zoltan; dePaul, Vincent T.; Kraemer, Thomas F.; Parsa, Bahman

    2005-01-01

    Water in the unconfined Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain contains elevated concentrations (above 3 pCi/L (picocuries per liter)) of the alpha-particle-emitting radionuclide radium-224. Previously, water from the aquifer system had been found to contain radium-226 and radium-228. This observation is of concern because the previously undetected presence of radium-224 may pose an additional, quantifiable health risk that currently is not accounted for by the Maximum Contaminant Level (MCL) of 5 pCi/L for combined radium (the sum of radium-226 plus radium-228 is termed 'combined radium') in drinking water. Water samples were collected from a regional network of 88 wells for determination of concentrations of radium-224, radium-226, and radium-228; gross alpha-particle activity; and concentrations of major ions and selected trace elements. Both gamma and alpha spectroscopic techniques were used to determine concentrations of radium-224, which ranged from activity of about 15 pCi/L (the MCL) 36 to 48 hours, respectively, after sample collection when ingrowth of radium-224 progeny radionuclides is considered, even with the unlikely assumption that no other alpha-particle-emitting radionuclide is present in the water. Concentrations of 3.4 to 3.7 pCi/L radium-224 result in a gross alpha-particle activity of 10 pCi/L 36 to 48 hours, respectively, after sample collection when ingrowth of Ra-224 progeny radionuclides is considered. In this latter case, it is possible that the summed alpha-particle activity from radium-226 present at a concentration less than or equal to 5 pCi/L (the MCL for combined radium) and from radium-224 present at a concentration about 3.4 pCi/L or greater may exceed the 15-pCi/L MCL for gross alpha-particle activity. In this study, gross alpha-particle activities were measured within 48 hours after sample collection and were found to exceed the MCL of 15 pCi/L in nearly half (43) of the 88 samples collected. The

  2. Targeted Radiolabeled Compounds in Glioma Therapy.

    Science.gov (United States)

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  3. In vitro experimental {sup 211}At-anti-CD33 antibody therapy of leukaemia cells overcomes cellular resistance seen in vivo against gemtuzumab ozogamicin

    Energy Technology Data Exchange (ETDEWEB)

    Petrich, Thorsten; Korkmaz, Zekiye; Krull, Doris; Meyer, Geerd J.; Knapp, Wolfram H. [Hanover University School of Medicine, Department of Nuclear Medicine, Hanover (Germany); Froemke, Cornelia [Hanover University School of Medicine, Department of Biometry, Hanover (Germany)

    2010-05-15

    Monoclonal anti-CD33 antibodies conjugated with toxic calicheamicin derivative (gemtuzumab ozogamicin, GO) are a novel therapy option for acute myeloid leukaemia (AML). Key prognostic factors for patients with AML are high CD33 expression on the leukaemic cells and the ability to overcome mechanisms of resistance to cytotoxic chemotherapies, including drug efflux or other mechanisms decreasing apoptosis. Alpha particle-emitting radionuclides overwhelm such anti-apoptotic mechanisms by producing numerous DNA double-stranded breaks (DSBs) accompanied by decreased DNA repair. We labelled anti-CD33 antibodies with the alpha-emitter {sup 211}At and compared survival of leukaemic HL-60 and K-562 cells treated with the {sup 211}At-labelled antibodies, GO or unlabelled antibodies as controls. We also measured caspase-3/7 activity, DNA fragmentation and necrosis in HL-60 cells after treatment with the different antibodies or with free {sup 211}At. The mean labelling ratio of {sup 211}At-labelled antibodies was 1:1,090 {+-} 364 (range: 1:738-1:1,722) in comparison to 2-3:1 for GO. Tumour cell binding of {sup 211}At-anti-CD33 was high in the presence of abundant CD33 expression and could be specifically blocked by unlabelled anti-CD33. {sup 211}At-anti-CD33 decreased survival significantly more than did GO at comparable dilution (1:1,000). No significant differences in induction of apoptosis or necrosis or DNA DSB or in decreased survival were observed after {sup 211}At-anti-CD33 (1:1,090) versus GO (1:1) treatment. Our results suggest that {sup 211}At is a promising, highly cytotoxic radioimmunotherapy in CD33-positive leukaemia and kills tumour cells more efficiently than does calicheamicin-conjugated antibody. Labelling techniques leading to higher chemical yield and specific activities must be developed to increase {sup 211}At-anti-CD33 therapeutic effects. (orig.)

  4. Individual variation in p53 and Cip1 expression profiles in normal human fibroblast strains following exposure to high-let radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, T.R.; Johnson, N.F.; Gilliland, F.D. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

    1995-12-01

    Exposure to {alpha}-particles emitted by radon progeny appears to be the second-leading cause of lung cancer mortality. However, individual susceptibility to the carcinogenic effects of {alpha}-particles remains poorly characterized. Variation in susceptibility to cancer produced by certian classes of DNA-damaging chemicals is suspected to involve differences in metabolic activation and detoxication. Susceptibility to {alpha}-particle-induced cancer may involve variations in capacity or opportunity to repair DNA damage. Subtle variations in DNA repair capacity would more likely explain radon-related lung cancer susceptibility. The p53 tumor suppressor protein accumulates as a cellular response to DNA damage from ionizing radiation and regulates arrest in the G{sub 1} portion of the cell cycle. Arrest in G{sub 1} portion of the cell cycle. While upstream regulation of p53 protein stability is poorly understood, variations in the ability to accumulate p53 following DNA damage represent potential variations in lung cancer susceptibility related to radon progeny. Further, transcription of the cell-cycle regulatory gene Cip1 is regulated by p53 and increases following ionizing radiation. Therefore, variations in the expression of Cip1 following {alpha}-particle exposure may also be a susceptibility factor in radon-related lung cancers. The purpose of the present investigation was to measure p53 and Cip1 protein induction following {alpha}-particle exposure of fibroblast lines from nine individuals to determine if there were significant variations. The expression of Cip1 protein indicates the differences in response are biologically relevant.

  5. Enhanced efficacy of combined {sup 213}Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario; Seidl, Christof; Blechert, Birgit; Li, Zhoulei; Gaertner, Florian C.; Senekowitsch-Schmidtke, Reingard; Essler, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Gilbertz, Klaus-Peter [German Armed Forces, Institute of Radiobiology, Munich (Germany); Baumgart, Anja [Technische Universitaet Muenchen, III. Medical Department, Munich (Germany); Aichler, Michaela; Feuchtinger, Annette; Walch, Axel K. [Helmholtz Zentrum Muenchen, Institute of Pathology, Neuherberg (Germany); Bruchertseifer, Frank; Morgenstern, Alfred [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany)

    2012-12-15

    Targeted therapy with {alpha}-particle emitting radionuclides is a promising new option in cancer therapy. Stable conjugates of the vascular tumour-homing peptide F3 with the {alpha}-emitter {sup 213}Bi specifically target tumour cells. The aim of our study was to determine efficacy of combined {sup 213}Bi-diethylenetriaminepentaacetic acid (DTPA)-F3 and paclitaxel treatment compared to treatment with either {sup 213}Bi-DTPA-F3 or paclitaxel both in vitro and in vivo. Cytotoxicity of treatment with {sup 213}Bi-DTPA-F3 and paclitaxel, alone or in combination, was assayed towards OVCAR-3 cells using the alamarBlue assay, the clonogenic assay and flow cytometric analyses of the mode of cell death and cell cycle arrest. Therapeutic efficacy of the different treatment options was assayed after repeated treatment of mice bearing intraperitoneal OVCAR-3 xenograft tumours. Therapy monitoring was performed by bioluminescence imaging and histopathologic analysis. Treatment of OVCAR-3 cells in vitro with combined {sup 213}Bi-DTPA-F3 and paclitaxel resulted in enhanced cytotoxicity, induction of apoptosis and G2/M phase arrest compared to treatment with either {sup 213}Bi-DTPA-F3 or paclitaxel. Accordingly, i.p. xenograft OVCAR-3 tumours showed the best response following repeated (six times) combined therapy with {sup 213}Bi-DTPA-F3 (1.85 MBq) and paclitaxel (120 {mu}g) as demonstrated by bioluminescence imaging and histopathologic investigation of tumour spread on the mesentery of the small and large intestine. Moreover, mean survival of xenograft mice that received combined therapy with {sup 213}Bi-DTPA-F3 and paclitaxel was significantly superior to mice treated with either {sup 213}Bi-DTPA-F3 or paclitaxel alone. Combined treatment with {sup 213}Bi-DTPA-F3 and paclitaxel significantly increased mean survival of mice with peritoneal carcinomatosis of ovarian origin, thus favouring future therapeutic application. (orig.)

  6. Abscopal induction of leukaemia and osteosarcoma following administration of alpha-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lord, B.I. (Paterson Institute for Cancer Research, Christie Hospital Manchester, Manchester (United Kingdom))

    2008-12-15

    Alpha-particle-emitting, bone-seeking radionuclides can induce leukaemia and/ or osteosarcoma in mice. Furthermore, plutonium-239, given to male mice before mating with normal females, while not directly leading to leukaemia in the progeny does lead to enhanced susceptibility to leukaemogenic agents. In the first case, the amounts of radionuclide are very small in experimental terms; and zero in the case of transgenerational activity. In both cases, the development of the disorders is remote in time and location relative to that of the contaminating radionuclide, making interpretation of the mechanisms and estimation of radiation risk problematic. It is necessary, then, to address questions involving the basis of haemopoiesis itself. Cellular kinetics of the development of blood from the pluripotent stem cells to the mature functional cells are outlined, describing compensatory proliferation mechanisms and extensive movement of cells throughout the marrow space. The locations of potential oncogenic target cells are identified and the nature of the stromal microenvironment that regulates haemopoiesis is defined. Plutonium-239, given to male mice, targets spermatogenesis at the stem cell level leaving unidentified damage that is inherited by his offspring. This leaves the offspring susceptible to a leukaemogenic agent encountered later in life. The characteristics of this, corroborated by consideration of the cellular kinetics, are of an inherited genomic instability. Cells of the microenvronment, inheriting the same genetic damage, probably act in the role of an enhancing 'bystander'. In adult mice, the mechanisms are different. Bone turnover results in radioactivity being gradually transported through the marrow by long-lived macrophages. A model based on temporal microdistributions of activity, defining specific target cell regions, is able to illustrate that considering bone marrow as a uniform mass of cells is inadequate to describe the observed

  7. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Science.gov (United States)

    Mougnaud, S.; Tribet, M.; Rolland, S.; Renault, J.-P.; Jégou, C.

    2015-07-01

    Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  8. Final Report for grant entitled "Production of Astatine-211 for U.S. Investigators"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Daniel Scott

    2012-12-12

    Alpha-particle emitting radionuclides hold great promise in the therapy of cancer, but few alpha-emitters are available to investigators to evaluate. Of the alpha-emitters that have properties amenable for use in humans, 211At is of particular interest as it does not have alpha-emitting daughter radionuclides. Thus, there is a high interest in having a source of 211At for sale to investigators in the US. Production of 211At is accomplished on a cyclotron using an alpha-particle beam irradiation of bismuth metal. Unfortunately, there are few cyclotrons available that can produce an alpha particle beam for that production. The University of Washington has a cyclotron, one of three in the U.S., that is currently producing 211At. In the proposed studies, the things necessary for production and shipment of 211At to other investigators will be put into place at UW. Of major importance is the efficient production and isolation of 211At in a form that can be readily used by other investigators. In the studies, production of 211At on the UW cyclotron will be optimized by determining the best beam energy and the highest beam current to maximize 211At production. As it would be very difficult for most investigators to isolate the 211At from the irradiated target, the 211At-isolation process will be optimized and automated to more safely and efficiently obtain the 211At for shipment. Additional tasks to make the 211At available for distribution include obtaining appropriate shipping vials and containers, putting into place the requisite standard operating procedures for Radiation Safety compliance at the levels of 211At activity to be produced / shipped, and working with the Department of Energy, Isotope Development and Production for Research and Applications Program, to take orders, make shipments and be reimbursed for costs of production and shipment.

  9. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  10. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  11. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  12. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

    Science.gov (United States)

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-09-19

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.

  13. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI{gamma}S{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M; Zimmerman, W R; Kading, T J; Seo, P-N; Young, A H [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Ahmed, M W; Stave, S C; Henshaw, S S; Martel, P P; Weller, H R [TUNL, Dept. of Physics, Duke University, Durham, NC 27708 (United States); Breskin, A; Chechik, R [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Bromberger, B; Dangendorf, V; Tittelmeier, K [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Delbar, Th [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); III, R H France [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); McDonald, J E R, E-mail: moshe.gai@yale.edu [Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2010-12-15

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO{sub 2}(80%) + N{sub 2}(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HI{gamma}S) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm{sup 3}. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N{sub 2} emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a {sup 148}Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and {sup 12}C particles from the dissociation of {sup 16}O and of three alpha-particles from the dissociation of {sup 12}C have been measured during initial in-beam test experiments performed at the HI{gamma}S facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  14. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    Science.gov (United States)

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers.

  15. A kinematically complete, interdisciplinary, and co-institutional measurement of the 19F(α,n) cross section for nuclear safeguards science

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Smith, M. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pittman, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, S. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clement, R. R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cizewski, J. A. [Rutgers Univ., New Brunswick, NJ (United States); Pain, S. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Febbraro, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States); Chipps, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burcher, S. [Rutgers Univ., New Brunswick, NJ (United States); Manning, B. [Rutgers Univ., New Brunswick, NJ (United States); Reingold, C. [Rutgers Univ., New Brunswick, NJ (United States); Avetisyan, R. [Univ. of Notre Dame, IN (United States); Battaglia, A. [Univ. of Notre Dame, IN (United States); Chen, Y. [Univ. of Notre Dame, IN (United States); Long, A. [Univ. of Notre Dame, IN (United States); Lyons, S. [Univ. of Notre Dame, IN (United States); Marley, S. T. [Univ. of Notre Dame, IN (United States); Seymour, C. [Univ. of Notre Dame, IN (United States); Siegl, K. T. [Univ. of Notre Dame, IN (United States); Smith, M. K. [Univ. of Notre Dame, IN (United States); Strauss, S. [Univ. of Notre Dame, IN (United States); Talwar, R. [Univ. of Notre Dame, IN (United States); Bardayan, D. W. [Univ. of Notre Dame, IN (United States); Gyurjinyan, A. [Univ. of Notre Dame, IN (United States); Smith, K. [Univ. of Tennessee, Knoxville, TN (United States); Thornsberry, C.; Thompson, P.; Madurga, M. [Univ. of Tennessee, Knoxville, TN (United States); Stech, E. [Univ. of Notre Dame, IN (United States); Tan, W. P. [Univ. of Notre Dame, IN (United States); Wiescher, M. [Univ. of Notre Dame, IN (United States); Ilyushkin, S. [Colorado School of Mines, Golden, CO (United States); Tully, Z. [Tennessee Technological Univ., Cookeville, TN (United States); Grinder, M. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    Alpha particles emitted from the decay of uranium in a UF6 matrix can interact with fluorine and generate neutrons via the 19F(α,n)22Na reaction. These neutrons can be used to determine the uranium content in a UF6 storage cylinder. The accuracy of this self-interrogating, non-destructive assay (NDA) technique is, however, limited by the uncertainty of the 19F(α,n)22Na cross section. We have performed complementary measurements of the 19F(α,n)22Na reaction with both 4He and 19F beams to improve the precision of the 19F(α,n)22Na cross section over the alpha energy range that encompasses common actinide alpha decay needed for NDA studies. We have determined an absolute cross section for the 19F(α,n)22Na reaction to an average precision of 7.6% over the alpha energy range of 3.9 – 6.7 MeV. We utilized this cross section in a simulation of a 100 g spherical UF6 assembly and obtained a change in neutron emission rate values of approximately 10-12%, and a significant (factor of 3.6) decrease in the neutron emission rate uncertainty (from 50-51% to 13-14%), compared to simulations using the old cross section. Our new absolute cross section enables improved interpretations of NDAs of containers of arbitrary size and configuration.

  16. Purification of cyclotron-produced {sup 203}Pb for labeling Herceptin

    Energy Technology Data Exchange (ETDEWEB)

    Garmestani, Kayhan [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Milenic, Diane E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Brady, Erik D. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Plascjak, Paul S. [PET Department, Clinical Center, NIH, Bethesda, MD 20892-1002 (United States); Brechbiel, Martin W. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States)]. E-mail: martinwb@mail.nih.gov

    2005-04-01

    A simple and rapid procedure was developed for the purification of cyclotron-produced {sup 203}Pb via the {sup 203}Tl(d,2n) {sup 203}Pb reaction. A Pb(II) selective ion-exchange resin, with commercial name Pb Resin from Eichrom Technologies, Inc., was used to purify {sup 203}Pb from the cyclotron-irradiated Tl target with excellent recovery of the enriched Tl target material. The purified {sup 203}Pb was used to radiolabel the monoclonal antibody Herceptin. The in vitro and in vivo properties of the {sup 203}Pb radioimmunoconjugate were evaluated.

  17. Preparation and quality control of {sup 166}Ho-DTPA-antiCD20 for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadri, S.; Jalilian, A.R.; Yousefnia, H.; Bahrami-Sumani, A.; Shirvani-Arani, S.; Ghannadi-Maragheh, M. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (IR). Radiopharmaceutical Research and Development Lab. (RRDL)

    2011-07-01

    In this work, anti-CD20 was successively labeled with beta-particle emitting radionuclide, Ho-166, for ultimate radioimmunotherapy applications. Ho-166 chloride was obtained by thermal neutron flux (1 x 10{sup 13} n cm{sup -2} s{sup -1}) of natural Ho{sub 2}(NO{sub 3}){sub 3} sample, dissolved in acidic media. {sup 166}Ho-holmium chloride (185 MBq) was added to the conjugated antibody after ccDTPA residulation at room temperature. Radiochemical purity of 95% (ITLC) and 98% (HPLC) were obtained for final radioimmunoconjugate (specific activity = 3-3.5 GBq/mg). The final isotonic {sup 166}Ho-rituximab complex was checked by gel electrophoresis for protein integrity retention. Biodistribution studies of Ho-166 chloride and radioimmunoconjugate were performed in wild-type rats to determine the biodistribution. The accumulation of the radiolabeled antibody in lungs, liver and spleen demonstrates a similar pattern to the other radiolabeled anti-CD20 immunoconjugates. (orig.)

  18. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Lars R.; Vosjan, Maria J.W.D.; Budde, Marianne [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, PO Box 7057, MB, Amsterdam (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Nuclear Medicine and PET Research, Amsterdam (Netherlands); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, PO Box 7057, MB, Amsterdam (Netherlands); VU University Medical Center, Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2010-02-15

    Immuno-PET is an emerging imaging tool for the selection of high potential antibodies (mAbs) for imaging and therapy. The positron emitter zirconium-89 ({sup 89}Zr) has attractive characteristics for immuno-PET with intact mAbs. Previously, we have described a multi-step procedure for stable coupling of {sup 89}Zr to mAbs via the bifunctional chelate (BFC) tetrafluorophenol-N-succinyldesferal (TFP-N-sucDf). To enable widespread use of {sup 89}Zr-immuno-PET, we now introduce the novel BFC p-isothiocyanatobenzyl-desferrioxamine B (Df-Bz-NCS) and compare its performance in {sup 89}Zr-immuno-PET with the reference BFC TFP-N-sucDf. Three mAbs were premodified with Df-Bz-NCS and labeled with {sup 89}Zr at different pHs to assess the reaction kinetics and robustness of the radiolabeling. Stability of both {sup 89}Zr-Df-Bz-NCS- and {sup 89}Zr-N-sucDf-conjugates was evaluated in different buffers and human serum. Comparative biodistribution and PET studies in tumor-bearing mice were undertaken. The selected conjugation conditions resulted in a chelate:mAb substitution ratio of about 1.5:1. Under optimal radiolabeling conditions (pH between 6.8-7.2), the radiochemical yield was >85% after 60 min incubation at room temperature, resulting in radioimmunoconjugates with preserved integrity and immunoreactivity. The new radioimmunoconjugate was very stable in serum for up to 7 days at 37 C, with <5% {sup 89}Zr release, and was equally stable compared to the reference conjugate when stored in the appropriate buffer at 4 C. In biodistribution and imaging experiments, the novel and the reference radioimmunoconjugates showed high and similar accumulation in tumors in nude mice. The novel Df-Bz-NCS BFC allows efficient and easy preparation of optimally performing {sup 89}Zr-labeled mAbs, facilitating further exploration of {sup 89}Zr-immuno-PET as an imaging tool. (orig.)

  19. Therapeutic efficacy and toxicity of {sup 225}Ac-labelled vs. {sup 213}Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Essler, Markus; Gaertner, Florian C.; Blechert, Birgit; Senekowitsch-Schmidtke, Reingard; Seidl, Christof [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Neff, Frauke [Helmholtz Zentrum Muenchen, Institute of Pathology, Neuherberg (Germany); Bruchertseifer, Frank; Morgenstern, Alfred [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany)

    2012-04-15

    Targeted delivery of alpha-particle-emitting radionuclides is a promising novel option in cancer therapy. We generated stable conjugates of the vascular tumour-homing peptide F3 both with {sup 225}Ac and {sup 213}Bi that specifically bind to nucleolin on the surface of proliferating tumour cells. The aim of our study was to determine the therapeutic efficacy of {sup 225}Ac-DOTA-F3 in comparison with that of {sup 213}Bi-DTPA-F3. ID{sub 50} values of {sup 213}Bi-DTPA-F3 and {sup 225}Ac-DOTA-F3 were determined via clonogenic assays. The therapeutic efficacy of both constructs was assayed by repeated treatment of mice bearing intraperitoneal MDA-MB-435 xenograft tumours. Therapy was monitored by bioluminescence imaging. Nephrotoxic effects were analysed by histology. ID{sub 50} values of {sup 213}Bi-DTPA-F3 and {sup 225}Ac-DOTA-F3 were 53 kBq/ml and 67 Bq/ml, respectively. The median survival of control mice treated with phosphate-buffered saline was 60 days after intraperitoneal inoculation of 1 x 10{sup 7} MDA-MB-435 cells. Therapy with 6 x 1.85 kBq of {sup 225}Ac-DOTA-F3 or 6 x 1.85 MBq of {sup 213}Bi-DTPA-F3 prolonged median survival to 95 days and 97 days, respectively. While F3 labelled with short-lived {sup 213}Bi (t{sub 1/2} 46 min) reduced the tumour mass at early time-points up to 30 days after treatment, the antitumour effect of {sup 225}Ac-DOTA-F3 (t{sub 1/2} 10 days) increased at later time-points. The difference in the fraction of necrotic cells after treatment with {sup 225}Ac-DOTA-F3 (43%) and with {sup 213}Bi-DTPA-F3 (36%) was not significant. Though histological analysis of kidney samples revealed acute tubular necrosis and tubular oedema in 10-30% of animals after treatment with {sup 225}Ac-DOTA-F3 or {sup 213}Bi-DTPA-F3, protein casts were negligible (2%), indicating only minor damage to the kidney. Therapy with both {sup 225}Ac-DOTA-F3 and {sup 213}Bi-DTPA-F3 increased survival of mice with peritoneal carcinomatosis. Mild renal toxicity of both

  20. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  1. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy

    Science.gov (United States)

    Ceder, Jens; Elgqvist, Jörgen

    2017-01-01

    , exhibiting cellular resistance mechanisms to conventional therapy. This paper presents and evaluates the possibility of using alpha-particle emitting radionuclides in the treatment of prostate cancer (PCa) and discusses the parameters that have to be considered as well as pros and cons of targeted alpha-particle therapy in the treatment of PCa. By targeting and eradicating the CSCs responsible of tumor recurrence in patients who no longer respond to conventional therapies, including androgen deprivation and castration, it may be possible to cure the disease, or prolong survival significantly. PMID:28119854

  2. [Research programs in radiotherapy]. DOE final report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    DeNardo, S.J.

    1996-12-31

    Results which have not yet been published in detail are reported here on the following associated studies: Progress in the area of macrocyclic chelates for targeted therapy; Progress in biologic activation with radioimmunoconjugate therapy: Association of molecular receptor increase and tumor response in ChL6/L6 protocol patients; Progress in genetically engineered Lym-1 single chain molecules; Progress in analysis of molecular genetic coded messages to enhance tumor response; Progress on development and validation of planar imaging for therapy planning systems; Progress in development of a 3-D treatment planning system using SPECT; Progress in development of methods to evaluate enhancement of tumor penetration in a murine model; and Progress in clinical applications.

  3. Preparation and Characterization of {sup 177}Lu Labeled Antibody against Tyrosine Kinase Receptor Her2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Hong, Young-Don; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    The tyrosine kinase receptor Her2, also known in humans as erbB2, is a member of the epidermal growth factor receptor (EGFR or erbB1) family. The Her2 is highly expressed in many cancer types and over expressed in approximately 30% of all primary breast cancer. Overexpression of Her2 is associated with a poor prognosis. Her2 is a suitable target because it involves an extracellular domain that can be targeted by antibodies produced by B cells. Based on these advantages, we tried to prepare the {sup 177}Lu labeled Her2 antibody. This radioimmunoconjugate could act by not only blocking the Her2 signalling pathway using antibody but also killing the tumour cell using {beta} energy of {sup 177}Lu.

  4. Evaluation of (177)Lu-CHX-A''-DTPA-Bevacizumab as a radioimmunotherapy agent targeting VEGF expressing cancers.

    Science.gov (United States)

    Kameswaran, Mythili; Pandey, Usha; Gamre, Naresh; Vimalnath, K V; Sarma, Haladhar Dev; Dash, Ashutosh

    2016-08-01

    This study aimed at the preparation and evaluation of (177)Lu-CHX-A''-DTPA-Bevacizumab for targeting VEGF over-expressing cancers. Bevacizumab conjugated to p-NCS-Bn-CHX-A''-DTPA was radiolabeled with (177)Lu. The radioimmunoconjugate characterized by SE-HPLC exhibited radiochemical purity of 98.0±0.6%. In vitro stability was retained upto 4 days at 37°C. In vitro cell binding studies showed good uptake by VEGF expressing U937 tumor cells. Biodistribution studies in melanoma model showed significant uptake and retention of (177)Lu-CHX-A''-DTPA-Bevacizumab in tumor with reduction in uptake in presence of cold Bevacizumab confirming its specificity to VEGF.

  5. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  6. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    In recent years, the use of high linear energy transfer (LET) radiation for radiotherapeutic applications has gained increased interest. Astatine-211 (211At) is an alpha-particle emitting radionuclide, promising for targeted radioimmunotherapy of isolated tumor cells and microscopic clusters. To improve development of safe radiotherapy using 211At it is important to increase our knowledge of the radiobiological effects in cells. During radiotherapy, both tumors and adjacent normal tissue will be irradiated and therefore, it is of importance to understand differences in the radio response between proliferating and resting cells. The aim of this thesis was to investigate effects in fibroblasts with different proliferation status after irradiation with alpha-particles from 211At or X-rays, from inflicted DNA damage, to cellular responses and biological consequences. Throughout this work, irradiation was performed with alpha-particles from 211A or X-rays. The induction and repair of double-strand breaks (DSBs) in human normal fibroblasts were investigated using pulsed-field gel electrophoresis and fragment analysis. The relative biological effectiveness (RBE) of 211At for DSB induction varied between 1.4 and 3.1. A small increase of DSBs was observed in cycling cells compared to stationary cells. The repair kinetics was slower after 211At and more residual damage was found after 24 h. Comparison between cells with different proliferation status showed that the repair was inefficient in cycling cells with more residual damage, regardless of radiation quality. Activation of cell cycle arrests was investigated using immunofluorescent labeling of the checkpoint kinase Chk2 and by measuring cell cycle distributions with flow cytometry analysis. After alpha-particle irradiation, the average number of Chk2-foci was larger and the cells had a more affected cell cycle progression for several weeks compared with X-irradiated cells, indicating a more powerful arrest after 211At

  7. NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics.

    Science.gov (United States)

    Natarajan, A; Gruettner, C; Ivkov, R; DeNardo, G L; Mirick, G; Yuan, A; Foreman, A; DeNardo, S J

    2008-06-01

    Dextran and PEG-coated iron oxide nanoparticles (NP), when suitably modified to enable conjugation with molecular targeting agents, provide opportunities to target cancer cells. Monoclonal antibodies, scFv, and peptides conjugated to 20 nm NP have been reported to target cancer for imaging and alternating magnetic field (AMF) therapy. The physical characteristics of NPs can affect their in vivo performance. Surface morphology, surface charge density, and particle size are considered important factors that determine pharmacokinetics, toxicity, and biodistribution. New NanoFerrite (NF) particles having improved specific AMF absorption rates and diameters of 30 and 100 nm were studied to evaluate the variation in their in vitro and in vivo characteristics in comparison to the previously studied 20 nm superparamagnetic iron oxide (SPIO) NP. SPIO NP 20 nm and NF NP 30 and 100 nm were conjugated to (111)In-DOTA-ChL6, a radioimmunoconjugate. Radioimmunoconjugates were conjugated to NPs using 25 microg of RIC/mg of NP by carbodiimide chemistry. The radioimmunonanoparticles (RINP) were purified and characterized by PAGE, cellulose acetate electrophoresis (CAE), live cell binding assays, and pharmacokinetics in athymic mice bearing human breast cancer (HBT 3477) xenografts. RINP (2.2 mg) were injected iv and whole body; blood and tissue data were collected at 4, 24, and 48 h. The preparations used for animal study were >90% monomeric by PAGE and CAE. The immunoreactivity of the RINP was 40-60% compared to (111)In-ChL6. Specific activities of the doses were 20-25 microCi/2.2 mg and 6-11 microg of mAb/2.2 mg of NP. Mean tumor uptakes (% ID/g +/- SD) of each SPIO 20 nm, NF 30 nm, and 100 nm RINP at 48 h were 9.00 +/- 0.8 (20 nm), 3.0 +/- 0.3 (30 nm), and 4.5 +/- 0.8 (100 nm), respectively; the ranges of tissue uptakes were liver (16-32 +/- 1-8), kidney (7.0-15 +/- 1), spleen (8-17 +/- 3-8), lymph nodes 5-6 +/- 1-2), and lung (2.0-4 +/- 0.1-2). In conclusion, this study

  8. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  9. Antibody Conjugates: From Heterogeneous Populations to Defined Reagents

    Directory of Open Access Journals (Sweden)

    Patrick Dennler

    2015-08-01

    Full Text Available Monoclonal antibodies (mAbs and their derivatives are currently the fastest growing class of therapeutics. Even if naked antibodies have proven their value as successful biopharmaceuticals, they suffer from some limitations. To overcome suboptimal therapeutic efficacy, immunoglobulins are conjugated with toxic payloads to form antibody drug conjugates (ADCs and with chelating systems bearing therapeutic radioisotopes to form radioimmunoconjugates (RICs. Besides their therapeutic applications, antibody conjugates are also extensively used for many in vitro assays. A broad variety of methods to functionalize antibodies with various payloads are currently available. The decision as to which conjugation method to use strongly depends on the final purpose of the antibody conjugate. Classical conjugation via amino acid residues is still the most common method to produce antibody conjugates and is suitable for most in vitro applications. In recent years, however, it has become evident that antibody conjugates, which are generated via site-specific conjugation techniques, possess distinct advantages with regard to in vivo properties. Here, we give a comprehensive overview on existing and emerging strategies for the production of covalent and non-covalent antibody conjugates.

  10. Preparation, quality control and biodistribution studies of [{sup 67}Ga]-DOTA-anti-CD20

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, A.R.; Khorrami, A. [Nuclear Science and Technology Research Inst., Karaj (IR). Nuclear Medicine Research Group, Agriculture, Medicine and Industrial Research School (AMIRS); Mirsadeghi, L.; Haji-Hosseini, R. [Payam-e-Noor Univ., Tehran (Iran). Biochemistry Dept.

    2008-07-01

    Rituximab was successively labeled with [{sup 67}Ga]-gallium chloride. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 C using DOTA, N-hydroxy succinimide (NHS) in CH{sub 2}Cl{sub 2}. DOTA-Rituximab was obtained by the addition of 1 mL of a Rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH=7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 C in 3 h. Radio-thin layer chromatography showed an overall radiochemical purity of 90%-95% at optimized conditions (specific activity = 30 GBq/mg, labeling efficacy; 82%). The final isotonic {sup 67}Ga-DOTA-rituximab complex was checked by gel electrophoresis for radiolysis. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 {mu}m filter. Preliminary biodistribution studies in normal rat model performed to determine complex distribution of the radioimmunoconjugate up to 28 h. (orig.)

  11. Myeloablative radioimmunotherapy in conditioning prior to haematological stem cell transplantation: closing the gap between benefit and toxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Buchmann, Inga; Haberkorn, Uwe [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); University of Luebeck, Luebeck (Germany); Meyer, Ralf G. [University of Mainz, Department of Medicine 3, Mainz (Germany); Mier, Walter [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2009-03-15

    High-dose radio-/chemotherapy in the context of autologous and allogeneic haematopoietic stem cell transplantation is a double-edged sword. The requirement for dose intensification is linked to an increase in toxicity to noninvolved organs. Particularly for older patients and patients with comorbidities, efficient but toxicity-reduced schemes are needed. Myeloablative radioimmunotherapy is a targeted, internal radiotherapy that uses radiolabelled monoclonal antibodies (mAb) with affinity to the bone marrow. It involves the administration of high radiation doses (up to 30 Gy) to the bone marrow and spleen but without exposing radiosensitive organs to doses higher than 1-7 Gy. Added to conventional or intensity-reduced conditioning, myeloablative radioimmunotherapy may achieve a pronounced antileukaemic effect with tolerable toxicities. A rational and individual design of the ideal nuclide-antibody combination optimizes therapy. The anti-CD33, anti-CD45 and anti-CD66 mAbs appear to be ideal tracers so far. The {beta}-emitter {sup 90}Y is coupled by DTPA and is the best nuclide for myeloablation. Approval trials for DTPA anti-CD66 mAb are underway in Europe, and in the near future these therapies may become applicable in practice. This review gives an overview of current myeloablative conditioning radioimmunotherapy. We discuss the selection of the optimal radioimmunoconjugate and discuss how radioimmunotherapy might be optimized in the future by individualization of therapy protocols. We also highlight the potential advantages of combination therapies. (orig.)

  12. Trastuzumab Labeled to High Specific Activity with (111)In by Site-Specific Conjugation to a Metal-Chelating Polymer Exhibits Amplified Auger Electron-Mediated Cytotoxicity on HER2-Positive Breast Cancer Cells.

    Science.gov (United States)

    Ngo Ndjock Mbong, Ghislaine; Lu, Yijie; Chan, Conrad; Cai, Zhongli; Liu, Peng; Boyle, Amanda J; Winnik, Mitchell A; Reilly, Raymond M

    2015-06-01

    Our objective was to evaluate the cytotoxicity toward HER2-positive human breast cancer (BC) cells of trastuzumab modified site-specifically with a metal-chelating polymer (MCP) that presents multiple DTPA chelators for complexing (111)In. (111)In emits subcellular range Auger electrons that induce multiple lethal DNA double-strand breaks (DSBs) in cells. MCPs were synthesized with a polyglutamide backbone with 24 or 29 pendant DTPA groups, with or without nuclear translocation sequence (NLS) peptide modification and a terminal hydrazide group for reaction with aldehydes generated by sodium periodate (NaIO4)-oxidation of glycans on the Fc-domain of trastuzumab. Trastuzumab was site-specifically modified with two DTPA and labeled with (111)In for comparison (trastuzumab-NH-Bn-DTPA-(111)In). The maximum specific activity (SA) for labeling trastuzumab-Hy-MCP with (111)In was 90-fold greater than for trastuzumab-NH-Bn-DTPA-(111)In [8.9 MBq/μg (1.5 × 10(6) MBq/μmol) vs 0.1 MBq/μg (1.2 × 10(4) MBq/μmol)]. Trastuzumab-Hy-MCP-(111)In was bound, internalized, and imported into the nucleus of SK-BR-3 cells. NLS peptide modification of MCPs did not increase nuclear importation. A greater density of DNA DSBs was found for BC cells exposed to high SA (5.5 MBq/μg) than low SA (0.37 MBq/μg) radioimmunoconjugates. At 20 nmol/L, high SA trastuzumab-Hy-MCP-(111)In was 6-fold more effective at reducing the clonogenic survival (CS) of HER2 overexpressed and HER2 gene-amplified SK-BR-3 cells (1.3 × 10(6) receptors/cell) than low SA MCP-radioimmunoconjugates (CS = 1.8 ± 1.3 vs 10.9 ± 0.7%; P = 0.001). Low SA trastuzumab-NH-Bn-DTPA-(111)In (20 nmol/L) reduced the CS of SK-BR-3 cells to 15.8 ± 2.1%. The CS of ZR-75-1 cells with intermediate HER2 density (4 × 10(5) receptors/cell) but without HER2 gene amplification was reduced to 20.5 ± 4.3% by high SA trastuzumab-Hy-MCP-(111)In (20 nmol/L). The CS of HER2-overexpressed (5 × 10(5) HER2/cell) but trastuzumab-resistant TrR1

  13. Validation of analytical method to calculate the concentration of conjugated monoclonal antibody; Validacao de metodo analitico para calculo de concentracao de anticorpo monoclonal conjugado

    Energy Technology Data Exchange (ETDEWEB)

    Alcarde, Lais F.; Massicano, Adriana V.F.; Oliveira, Ricardo S.; Araujo, Elaine B. de, E-mail: lais_alcarde@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of this study was to develop a quantitative analytical method using high performance liquid chromatography (HPLC) to determine the antibody concentration in conjunction with bifunctional chelator. Assays were performed using a high performance liquid chromatograph, and the following conditions were used: flow rate of 1 mL / min, 15 min run time, 0.2 M sodium phosphate buffer pH 7.0 as the mobile phase and column of molecular exclusion BioSep SEC S-3000 (300 x 7.8 mm, 5 μM - Phenomenex). The calibration curve was obtained with AcM diluted in 0.2 M sodium phosphate buffer pH 7.0 by serial dilution, yielding the concentrations: 400 μg/mL, 200 μg/mL, 100 μg/mL, 50 μg/mL, 25 μg/mL and 12.5 μg/mL. From the calibration curve calculated the equation of the line and with it the concentration of the immunoconjugate. To ensure the validity of the method accuracy and precision studies were conducted. The accuracy test consisted in the evaluation of 3 samples of known concentration, being this test performed with low concentrations (50 μg/mL), medium (100 μg/mL) and high (200 μg/mL). The precision test consisted of 3 consecutive measurements of one sample of known concentration, subject to the conditions set forth above for the other tests. The correlation coefficient of the standard curve was greater than 97%, the accuracy was satisfactory at low concentrations as well as accuracy. The method was validated by showing it for the accurate and precise determination of the concentration of the immunoconjugate. Furthermore, this assay was found to be extremely important, because using the correct mass of the protein, the radiochemical purity of the radioimmunoconjugate was above 95% in all studies.

  14. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    Science.gov (United States)

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  15. Preparation and in vivo evaluation of a novel stabilized linker for {sup 211}At labeling of protein

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, Vladimir S. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)]. E-mail: vstalanov@msrce.howard.edu; Garmestani, Kayhan [Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Regino, Celeste A.S. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Milenic, Diane E. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Plascjak, Paul S. [Department of Nuclear Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Waldmann, Thomas A. [Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Brechbiel, Martin W. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)]. E-mail: martinwb@mail.nih.gov

    2006-05-15

    Significant improvement of in vivo stability of {sup 211}At-labeled radioimmunoconjugates achieved upon employment of a recently reported new linker, succinimidyl N-2-(4-[{sup 211}At]astatophenethyl)succinamate (SAPS), prompted additional studies of its chemistry. The {sup 211}At radiolabeling of succinimidyl N-2-(4-tributylstannylphenethyl)succinamate (1) was noted to decline after storage at -15{sup o}C for greater than 6 months. Compound 1 was found to degrade via a ring closure reaction with the formation of N-2-(4-tributylstannylphenethyl)succinimide (3), and a modified procedure for the preparation of 1 was developed. The N-methyl structural analog of 1, succinimidyl N-2-(4-tributylstannylphenethyl)-N-methyl succinamate (SPEMS), was synthesized to investigate the possibility of improving the stability of reagent-protein linkage chemistry. Radiolabeling of SPEMS with {sup 211}At generates succinimidyl N-2-(4-[{sup 211}At]astatophenethyl)-N-methyl succinamate (Methyl-SAPS), with yields being consistent for greater than 1 year. Radiolabelings of 1 and SPEMS with {sup 125}I generated succinimidyl N-2-(4-[{sup 125}I]iodophenethyl)succinamate (SIPS) and succinimidyl N-2-(4-[{sup 125}I]iodophenethyl)-N-methyl succinamate (Methyl-SIPS), respectively, and showed no decline in yields. Methyl-SAPS, SAPS, Methyl-SIPS and SIPS were conjugated to Herceptin for a comparative assessment in LS-174T xenograft-bearing mice. The conjugates of Herceptin with Methyl-SAPS or Methyl-SIPS demonstrated immunoreactivity equivalent to if not superior to the SAPS and SIPS paired analogs. The in vivo studies also revealed that the N-methyl modification resulted in a superior statinated product.

  16. (90) Y/(177) Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Sarma, Haladhar Dev; Nair, K V Vimalnath; Rajeswari, Ardhi; Dash, Ashutosh

    2016-07-01

    Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human-mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of (90) Y-labelled Cetuximab and (177) Lu-labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N-[(R)-2-amino-3-(paraisothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N',N″,N″-pentaacetic acid (CHX-A″-DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for (90) Y-CHX-A″-DTPA-Cetuximab and 1.14 ± 0.15 GBq/mg for (177) Lu-CHX-A″-DTPA-Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both (90) Y-CHX-A″-DTPA-Cetuximab and (177) Lu-CHX-A″-DTPA-Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24-h post-injection (p.i.) (~16%ID/g) with good tumour-to-background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of (90) Y-CHX-A″-DTPA-Cetuximab in tumour-bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.

  17. The inverse electron demand Diels-Alder click reaction in radiochemistry.

    Science.gov (United States)

    Reiner, Thomas; Zeglis, Brian M

    2014-04-01

    The inverse electron-demand Diels-Alder (IEDDA) cycloaddition between 1,2,4,5-tetrazines and strained alkene dienophiles is an emergent variety of catalyst-free 'click' chemistry that has the potential to have a transformational impact on the synthesis and development of radiopharmaceuticals. The ligation is selective, rapid, high-yielding, clean, and bioorthogonal and, since its advent in 2008, has been employed in a wide variety of chemical settings. In radiochemistry, the reaction has proven particularly useful with (18)  F and has already been utilized to create a number of (18)  F-labeled agents, including the PARP1-targeting small molecule (18)  F-AZD2281, the αv β3 integrin-targeting peptide (18)  F-RGD, and the GLP-1-targeting peptide (18)  F-exendin. The inherent flexibility of the ligation has also been applied to the construction of radiometal-based probes, specifically the development of a modular strategy for the synthesis of radioimmunoconjugates that effectively eliminates variability in the construction of these agents. Further, the exceptional speed and biorthogonality of the reaction have made it especially promising in the realm of in vivo pretargeted imaging and therapy, and pretargeted imaging strategies based on the isotopes (111) In, (18)  F, and (64) Cu have already proven capable of producing images with high tumor contrast and low levels of uptake in background, nontarget organs. Ultimately, the characteristics of inverse electron-demand Diels-Alder click chemistry make it almost uniquely well-suited for radiochemistry, and although the field is young, this ligation has the potential to make a tremendous impact on the synthesis, development, and study of novel radiopharmaceuticals.

  18. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    Directory of Open Access Journals (Sweden)

    Alan Perkins

    2002-09-01

    Full Text Available The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C595 (IgG3 which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radioimmunoconjugates of the C595 antibody have been produced with high radiolabelling efficiency and immunoreactivity using Tc-99m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun.A administração de anticorpos conjugados para o tratamento do câncer está agora provando ser de valor clínico. Nós estamos atualmente realizando um programa de estudos clínicos usando o anticorpo monoclonal C595 (IgG3 que reage com a glicoproteína MUC1 que está aberrantemente expressa numa alta proporção de tumores de bexiga. Tem sido produzidos radioimunoconjugados do anticorpo C595, com alta eficiência de radiomarcação e a imunoreatividade, usando-se o Tc-99m e In-111, para o diagnóstico por imagem e estagiamento de doenças. Tem sido produzidos, também, radionuclídeos citotóxicos (Cu-67 e Re-188 para o tratamento de cânceres superficiais de bexiga. A fase terapêutica I/II já se iniciou, envolvendo a administração intravesical do anticorpo diretamente na bexiga.

  19. Studies on the optimization of leukemia and non-Hodgkin lymphoma therapies using opioids, chemotherapy and radioimmunotherapy; Studien zur Optimierung von Leukaemie- und non-Hodgkin-Lymphom-Therapien durch den Einsatz von Opioiden, Chemotherapeutika und Radioimmuntherapien

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, Mareike

    2013-05-24

    Despite complex treatment schedules for cancer, the occurrence of resistances and relapses is a major concern in oncology. Hence, novel treatment options are needed. In this thesis, different approaches using radioimmunotherapy and the opioid D,L-methadone alone or in combination with doxorubicin were analyzed regarding their cytotoxic potential and the triggered signalling pathways in sensitive and resistant leukaemia and non-Hodgkin lymphoma (NHL). The radioimmunoconjugates [Bi-213]anti-CD33 and [Bi-213]anti-CD20 for treatment of acute myeloid leukaemia (AML) or NHL, respectively, were applied exemplary for the use of targeted alpha-therapies (TAT). Depending on the analyzed cell lines, the used activity concentrations and specific activities (MBq/μg antibody) apoptosis was induced abrogating radio- and chemo-cross-resistances specifically. The cell death was caspase-dependent activating the mitochondrial pathway and was executed by downregulation of the anti-apoptotic proteins XIAP and Bcl-xL. D,L-Methadone induces apoptosis in vitro and in vivo in opioid-receptor (OR) expressing cells depending on the OR density and the used concentrations. Resistances could be overcome and proliferation was inhibited. In combination with doxorubicin, a synergistic effect regarding cytotoxicity in ex vivo patient cells and cell lines was observed. This effect depends on the increase of doxorubicin uptake co-administering D,L-methadone whereas doxorubicin enhances OR expression. The activation of OR leads to the downregulation of cAMP playing a pivotal role in apoptosis induction. In vivo, the therapeutic potential of D,L-methadone alone or in combination with doxorubicin could be proven as mice transplanted with human T-ALL-cells could be identified as tumour free. In summary, these studies show that TAT using [Bi-213]anti-CD33 and [Bi-213]anti-CD20 as well as the opioid D,L-methadone harbour the potential to optimize conventional treatment modalities for leukaemia and NHL.

  20. Occurrence of selected radionuclides in ground water used for drinking water in the United States; a reconnaissance survey, 1998

    Science.gov (United States)

    Focazio, Michael J.; Szabo, Zoltan; Kraemer, Thomas F.; Mullin, Ann H.; Barringer, Thomas H.; dePaul, Vincent T.

    2001-01-01

    concentration of 72.3 pCi/L measured in water from a non-transient, noncommunity, public-supply well in Maryland.Radium-224, which is a decay product of Ra-228 in the Th-232 decay series, was significantly correlated with Ra-228 (Spearman?s rank correlation coefficient ?r? equals 0.82) and to a lesser degree with Ra-226 (r equals 0.69), which is an isotope in the U-238 decay series. The rank correlation coefficient between Ra-226 and Ra-228 was 0.63. The high correlation between Ra-224 and Ra-228 concentrations and the corresponding isotopic ratios of the two (about 1:1 in 90 percent of the samples) indicates that the two radionuclides occur in approximately equal concentrations in most ground water sampled. Thus, Ra-228 can be considered as a reasonable proxy indicator for the occurrence of Ra-224 in ground water.The maximum concentration of Po-210 was 4.85 pCi/L and exceeded 1 pCi/L in only two samples. The maximum concentration of Pb-210 was 4.14 pCi/L, and about 10 percent of the samples exceeded 1 pCi/L. Areas with known, or suspected, elevated concentrations of polonium and lead were not targeted in this survey.Three major implications are drawn for future radionuclide monitoring on the basis of this information: (1) grossalpha particle analyses of ground water should be done within about 48?72 hours after collection to determine the presence of the short-lived, alpha-particle emitting isotopes, such as Ra-224, which was detected in elevated concentrations in many of the samples collected for this survey; (2) the isotope ratios of Ra-224 to Ra-228 in ground water are variable on a national scale, but the two radioisotopes generally occur in ratios near 1:1, therefore, the more commonly measured Ra-228 can be used as an indicator of Ra-224 occurrence for some general purposes other than compliance; and (3) the isotopic ratios of Ra-226 to Ra-228 were less than 3:2 in many samples. These ratios corroborate results of previous studies that have shown the presence of Ra-228

  1. Design Techniques for Power-Aware Combinational Logic SER Mitigation

    Science.gov (United States)

    Mahatme, Nihaar N.

    The history of modern semiconductor devices and circuits suggests that technologists have been able to maintain scaling at the rate predicted by Moore's Law [Moor-65]. With improved performance, speed and lower area, technology scaling has also exacerbated reliability issues such as soft errors. Soft errors are transient errors that occur in microelectronic circuits due to ionizing radiation particle strikes on reverse biased semiconductor junctions. These radiation induced errors at the terrestrial-level are caused due to radiation particle strikes by (1) alpha particles emitted as decay products of packing material (2) cosmic rays that produce energetic protons and neutrons, and (3) thermal neutrons [Dodd-03], [Srou-88] and more recently muons and electrons [Ma-79] [Nara-08] [Siew-10] [King-10]. In the space environment radiation induced errors are a much bigger threat and are mainly caused by cosmic heavy-ions, protons etc. The effects of radiation exposure on circuits and measures to protect against them have been studied extensively for the past 40 years, especially for parts operating in space. Radiation particle strikes can affect memory as well as combinational logic. Typically when these particles strike semiconductor junctions of transistors that are part of feedback structures such as SRAM memory cells or flip-flops, it can lead to an inversion of the cell content. Such a failure is formally called a bit-flip or single-event upset (SEU). When such particles strike sensitive junctions part of combinational logic gates they produce transient voltage spikes or glitches called single-event transients (SETs) that could be latched by receiving flip-flops. As the circuits are clocked faster, there are more number of clocking edges which increases the likelihood of latching these transients. In older technology generations the probability of errors in flip-flops due to SETs being latched was much lower compared to direct strikes on flip-flops or SRAMs leading to

  2. History and progress in the accurate determination of the Avogadro constant

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Peter [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2001-12-01

    The Avogadro constant, N{sub A}, is a fundamental physical constant that relates any quantity at the atomic scale to its corresponding macroscopic scale. Inspired by the kinetic gas theory Avogadro proposed his hypothesis in 1811, in order to describe chemical reactions as an atomic process between atoms or molecules. Starting from his pioneering findings, the determination of this large number has fascinated generations of scientists up to this day. The review of methods aimed at finding a value for N{sub A} starts with the calculations made by Loschmidt (1865; N{sub A}{approx}72x10{sup 23} mol{sup -1}) who evaluated the number of molecules in a given gas volume, derived from estimates of molecular diameters and the mean free path length. Consideration of Brownian motion led to some more accurate determinations of N{sub A} around the beginning of the 20th century (Perrin (1908); N{sub A}{approx}6.7x10{sup 23} mol{sup -1}). Other methods developed in the following years are based on Millikan's oil drop experiment (1917, N{sub A}{approx}6.064(6)x10{sup 23} mol{sup -1}), on the counting of alpha particles emitted from radium or uranium (Rutherford (1909); N{sub A}{approx}6.16x10{sup 23} mol{sup -1}) and on investigations of molecular monolayers on liquids (Nuoy (1924); N{sub A}{approx}6.004x10{sup 23} mol{sup -1}). A modern method to derive N{sub A} from the density, the relative atomic mass, and the unit cell length was introduced by Bragg in 1913. It makes use of the diffraction of x-rays by the interatomic spacings of a crystal lattice and its periodic arrangement. The accuracy of this method is extremely affected by the fact that the lattice scale of the structurally imperfect lattice can be calibrated only approximately in SI units. Data of NA were, therefore, found to be in disagreement with other fundamental constants (Bearden (1931); N{sub A}{approx}6.019(3)x10{sup 23} mol{sup -1}). A break though was achieved with perfect crystals of silicon and x

  3. 6th Annual European Antibody Congress 2010: November 29-December 1, 2010, Geneva, Switzerland.

    Science.gov (United States)

    Beck, Alain; Wurch, Thierry; Reichert, Janice M

    2011-01-01

    The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC. As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration FDA. The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements of

  4. 6th Annual European Antibody Congress 2010

    Science.gov (United States)

    2011-01-01

    The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC.1,2 As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration (FDA). The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements

  5. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Buchmann, I.; Seitz, U.; Glatting, G.; Neumaier, B.; Kotzerke, J.; Buck, A. [Ulm Univ. (Germany). Abt. Nuklearmedizin; Bunjes, D.; Doehner, H. [Abteilung Innere Medizin III, Haematologie und Onkologie, Universitaetsklinikum Ulm (Germany); Martin, H.; Bergmann, L. [Klinik fuer Haematologie und Onkologie, Johann-Wolfgang-Goethe Universitaet Frankfurt (Germany)

    2001-07-01

    Disease recurrence following stem cell transplantation (SCT) remains a major problem. Despite the sensitivity of leukaemias to chemotherapy and irradiation, conventional conditioning before SCT is limited by significant organ toxicity. Targeted irradiation of bone marrow and spleen by radioimmunotherapy may provide considerable dose escalation, with limited toxicity to non-target organs. In this study, 27 patients with high-risk or relapsing leukaemia were treated with rhenium-188-labelled CD66a,b,c,e radioimmunoconjugates ({sup 188}Re-mAb) specific for normal bone marrow in addition to conventional conditioning with high-dose chemotherapy and 12 Gy total body irradiation prior to SCT. A mean activity of 10.2{+-}2.1 (range 6.9-15.8) GBq {sup 188}Re-mAb was administered intravenously. Acute side-effects were assessed according to the CTC classification and patient outcome was determined. Mean radiation doses (Gy; range in parentheses) to relevant organs and whole body were as follows: 13.1 (6.5-22) to bone marrow, 11.6 (1.7-31.1) to spleen, 5.0 (2.0-11.7) to liver, 7.0 (2.3-11.6) to kidneys, 0.7 (0.3-1.3) to lungs and 1.4 (0.8-2.1) to the whole body. Stem cells engrafted in all patients within 9-18 days post SCT. Acute organ toxicity of grade II or less was observed. During follow-up for 25.4{+-}5.3 (range 18-34) months, 4/27 (15%) patients died from relapse, and 9/27 (33%) from transplantation-related complications. Fourteen patients (52%) are still alive and in ongoing complete clinical remission. Radioimmunotherapy with the bone marrow-seeking {sup 188}Re-labelled CD66 mAb can double the dose to bone marrow and spleen without undue extramedullary acute organ toxicity, when given in addition to high-dose chemotherapy and 12 Gy TBI before allogeneic SCT. This intensified conditioning regimen may reduce the relapse rate of high-risk leukaemia. (orig.)

  6. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  7. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Gruenberg, Juergen; Lindenblatt, Dennis; Cohrs, Susan; Fischer, Eliane [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Dorrer, Holger [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); Zhernosekov, Konstantin [ITG Isotope Technologies Garching GmbH, Garching (Germany); Koester, Ulli [Institut Laue-Langevin, Grenoble (France); Tuerler, Andreas [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); University of Bern, Department of Chemistry and Biochemistry, Berne (Switzerland); Schibli, Roger [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2014-10-15

    The L1 cell adhesion molecule (L1CAM) is considered a valuable target for therapeutic intervention in different types of cancer. Recent studies have shown that anti-L1CAM radioimmunotherapy (RIT) with {sup 67}Cu- and {sup 177}Lu-labelled internalising monoclonal antibody (mAb) chCE7 was effective in the treatment of human ovarian cancer xenografts. In this study, we directly compared the therapeutic efficacy of anti-L1CAM RIT against human ovarian cancer under equitoxic conditions with the radiolanthanide {sup 177}Lu and the potential alternative {sup 161}Tb in an ovarian cancer therapy model. Tb was produced by neutron bombardment of enriched {sup 160}Gd targets. {sup 161}Tb and {sup 177}Lu were used for radiolabelling of DOTA-conjugated antibodies. The in vivo behaviour of the radioimmunoconjugates (RICs) was assessed in IGROV1 tumour-bearing nude mice using biodistribution experiments and SPECT/CT imaging. After ascertaining the maximal tolerated doses (MTD) the therapeutic impact of 50 % MTD of {sup 177}Lu- and {sup 161}Tb-DOTA-chCE7 was evaluated in groups of ten mice by monitoring the tumour size of subcutaneous IGROV1 tumours. The average number of DOTA ligands per antibody was 2.5 and maximum specific activities of 600 MBq/mg were achieved under identical radiolabelling conditions. RICs were stable in human plasma for at least 48 h. {sup 177}Lu- and {sup 161}Tb-DOTA-chCE7 showed high tumour uptake (37.8-39.0 %IA/g, 144 h p.i.) with low levels in off-target organs. SPECT/CT images confirmed the biodistribution data. {sup 161}Tb-labelled chCE7 revealed a higher radiotoxicity in nude mice (MTD: 10 MBq) than the {sup 177}Lu-labelled counterpart (MTD: 12 MBq). In a comparative therapy study with equitoxic doses, tumour growth inhibition was better by 82.6 % for the {sup 161}Tb-DOTA-chCE7 than the {sup 177}Lu-DOTA-chCE7 RIT. Our study is the first to show that anti-L1CAM {sup 161}Tb RIT is more effective compared to {sup 177}Lu RIT in ovarian cancer xenografts

  8. Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody.

    Science.gov (United States)

    Wagner, Henry N; Wiseman, Gregory A; Marcus, Carol S; Nabi, Hani A; Nagle, Conrad E; Fink-Bennett, Darlene M; Lamonica, Dominick M; Conti, Peter S

    2002-02-01

    nuclear medicine plays in the care of patients with cancer. Understanding the unique properties of this novel radioimmunoconjugate will facilitate its safe and effective use.

  9. Myeloablative radioimmunotherapies in the conditioning of patients with AML, MDS and multiple myeloma prior to stem cell transplantation; Myeloablative Radioimmuntherapien zur Konditionierung bei Patienten mit AML, MDS und multiplem Myelom vor Stammzelltransplantation

    Energy Technology Data Exchange (ETDEWEB)

    Buchmann, I. [Abt. fuer Nuklearmedizin, Universitaetsklinik Heidelberg (Germany)

    2008-06-15

    Aggressive consolidation chemotherapy and hematopoietic stem cell transplantation have improved the prognosis of patients with acute myeloid leukemia (AML), myelodyplastic syndrome (MDS) and multiple myeloma. Nevertheless, only a minor fraction of patients achieve long-term disease-free survival after stem cell transplantation with disease recurrence being the most common cause of treatment failure. In addition, therapy-related effects such as toxicity of chemotherapy and complications of stem cell transplantation increase mortality rates significantly. Myeloablative radioimmunotherapy uses radiolabeled monoclonal antibodies (mAb) with affinity for the hematopoietic marrow. It applies high radiation doses in the bone marrow but spares normal organs. Adding myeloablative radioimmunotherapy to the conditioning schemes of AML, MDS and multiple myeloma before stem cell transplantation allows for the achievement of a pronounced antileukemic/antimyeloma effect for the reduction of relapse rates without significant increase of acute organ toxicity and therapy-related mortality. In order to optimise therapy, a rational design of the nuclide-antibody combination is necessary. {sup 90}Y, {sup 188}Re and {sup 131}I are the most frequently used {beta}{sup -}-particles. Of these, {sup 90}Y is the most qualified nuclide for myeloablation. Backbone stabilised DTPA are ideal chelators to stably conjugate {sup 90}Y to antibodies so far. For myeloablative conditioning, anti-CD66-, -45- and -33-mAb are used. The anti-CD66-antibody BW250/183 binds to normal hematopoietic cells but not to leukemic blasts and myeloma cells. The {sup 90}Y-2B3M-DTPA-BW250/183 is the most suited radioimmunoconjugate for patients with an infiltration grade of leukemic blasts in the bone marrow < 25%. The specific doses (Gy/GBq) are 10.2 {+-} 1.8 (bone marrow), 2.7 {+-} 2 (liver) and < 1 (kidneys). In contrast, radiolabeled anti-CD33- and anti-CD45-antibodies bind to both, most of white blood cells and

  10. In vivo monitoring of intranuclear p27{sup kip1} protein expression in breast cancer cells during trastuzumab (Herceptin) therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart [Division of Nuclear Medicine, University Health Network, Toronto, ON, Canada M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); MRC/CRUK Gray Institute for Radiation Oncology and Biology, Oxford University, OX3 7LJ Oxford (United Kingdom)], E-mail: bart.cornelissen@rob.ox.ac.uk; Kersemans, Veerle; McLarty, Kristin [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Tran, Lara [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vallis, Katherine A. [MRC/CRUK Gray Institute for Radiation Oncology and Biology, Oxford University, OX3 7LJ Oxford (United Kingdom); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3E2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada)

    2009-10-15

    Introduction: Trastuzumab, a humanized antibody directed against the Her2 receptor, induces the expression of p27{sup kip1}, an intranuclear cyclin-dependent kinase inhibitor in some breast cancer cells. The aim of this study was to develop a radioimmunoconjugate (RIC) to monitor trastuzumab-induced p27{sup kip1} protein up-regulation in vivo. Materials and Methods: Anti-p27{sup kip1} IgG was purified, and conjugated to diethylenetriaminopentaacetate, to allow radiolabeling with {sup 111}In for in vivo detection. Then tat peptide (GRKKRRQRRRPPQGYG), containing a nuclear localization sequence (underlined), was conjugated to the Fc-domain of IgG, using NaIO{sub 4} oxidation of carbohydrates and the resulting Schiff base stabilized with NaCNBH{sub 3}. The conjugate was radiolabeled with {sup 111}In, yielding [{sup 111}In]-anti-p27{sup kip1}-tat. {sup 111}In labeling efficiency, purity and p27{sup kip1} binding were measured. Trastuzumab-induced p27{sup kip1} up-regulation was assessed in a panel of breast cancer cell lines by Western blot analysis. Uptake and retention of [{sup 111}In]-anti-p27{sup kip1}-tat were measured in MDA-MB-361 and SKBr3 cells after exposure to trastuzumab. Uptake of [{sup 111}In]-anti-p27{sup kip1}-tat was determined at 72 h postintravenous injection in MDA-MB-361 xenografts in athymic mice treated with trastuzumab or saline. Results: [{sup 111}In]-anti-p27{sup kip1}-tat was synthesized to 97% purity. The RIC was able to bind to p27{sup kip1} protein and internalized in the cells and was transported to the nuclei of MDA-MB-361 cells. The level of p27{sup kip1} protein in MDA-MB-361 cells was increased after exposure to clinically relevant doses of trastuzumab for 3 days. Trastuzumab-mediated induction of p27{sup kip1} was not associated with increased cellular uptake or nuclear localization of [{sup 111}In]-anti-p27{sup kip1}-tat (6.53{+-}0.61% vs. 6.98{+-}1.36% internalized into trastuzumab-treated vs. control cells, respectively). However

  11. Radiolabeling of rituximab with {sup 188}Re and {sup 99m}Tc using the tricarbonyl technology

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla Roberta [Instituto de Pesquisas Energeticas e Nucleares, Av. Professor Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Jeger, Simone [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Osso, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares, Av. Professor Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Mueller, Cristina; De Pasquale, Christine; Hohn, Alexander; Waibel, Robert [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Schibli, Roger, E-mail: roger.schibli@psi.c [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Department of Chemistry and Applied Biosciences of the ETH, 8093 Zurich (Switzerland)

    2011-01-15

    Introduction: The most successful clinical studies of immunotherapy in patients with non-Hodgkin's lymphoma (NHL) use the antibody rituximab (RTX) targeting CD20{sup +} B-cell tumors. Rituximab radiolabeled with {beta}{sup -} emitters could potentiate the therapeutic efficacy of the antibody by virtue of the particle radiation. Here, we report on a direct radiolabeling approach of rituximab with the {sup 99m}Tc- and {sup 188}Re-tricarbonyl core (IsoLink technology). Methods: The native format of the antibody (RTX{sub wt}) as well as a reduced form (RTX{sub red}) was labeled with {sup 99m}Tc/{sup 188}Re(CO){sub 3}. The partial reduction of the disulfide bonds to produce free sulfhydryl groups (-SH) was achieved with 2-mercaptoethanol. Radiolabeling efficiency, in vitro human plasma stability as well as transchelation toward cysteine and histidine was investigated. The immunoreactivity and binding affinity were determined on Ramos and/or Raji cells expressing CD20. Biodistribution was performed in mice bearing subcutaneous Ramos lymphoma xenografts. Results: The radiolabeling efficiency and kinetics of RTX{sub red} were superior to that of RTX{sub wt} ({sup 99m}Tc: 98% after 3 h for RTX{sub red} vs. 70% after 24 h for RTX{sub wt}). {sup 99m}Tc(CO){sub 3}-RTX{sub red} was used without purification for in vitro and in vivo studies whereas {sup 188}Re(CO){sub 3}-RTX{sub red} was purified to eliminate free {sup 188}Re-precursor. Both radioimmunoconjugates were stable in human plasma for 24 h at 37{sup o}C. In contrast, displacement experiments with excess cysteine/histidine showed significant transchelation in the case of {sup 99m}Tc(CO){sub 3}-RTX{sub red} but not with pre-purified {sup 188}Re(CO){sub 3}-RTX{sub red}. Both conjugates revealed high binding affinity to the CD20 antigen (K{sub d}=5-6 nM). Tumor uptake of {sup 188}Re(CO){sub 3}-RTX{sub red} was 2.5 %ID/g and 0.8 %ID/g for {sup 99m}Tc(CO){sub 3}-RTX{sub red} 48 h after injection. The values for other