WorldWideScience

Sample records for alpha-particle induced nuclear

  1. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  2. Measurement and evaluation of the excitation functions for alpha particle induced nuclear reactions on niobium

    CERN Document Server

    Tarkanyi, F; Szelecsenyi, F; Sonck, M; Hermanne, A

    2002-01-01

    Alpha particle induced nuclear reactions were investigated with the stacked foil activation technique on natural niobium targets up to 43 MeV. Excitation functions were measured for the production of sup 9 sup 6 sup m sup g Tc, sup 9 sup 5 sup m Tc, sup 9 sup 5 sup g Tc, sup 9 sup 4 sup g Tc, sup 9 sup 5 sup m sup g Nb and sup 9 sup 2 sup m Nb. Cumulative cross-sections, thick target yields and activation functions were deduced and compared with available literature data. Applications of the excitation functions in the field of thin layer activation techniques and beam monitoring are also discussed.

  3. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$I...

  4. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  5. Discrimination of nuclear recoils from alpha particles with superheated liquids

    CERN Document Server

    Aubin, F; Behnke, E; Beltran, B; Clark, K; Dai, X; Davour, A; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Krauss, C B; Leroy, C; Lessard, L; Levine, I; Levy, C; Martin, J -P; Noble, A J; Morlat, T; Nadeau, P; Piro, M -C; Pospísil, S; Shepherd, T; Sodomka, J; Starinski, N; Stekl, I; Storey, C; Wichoski, U; Zacek, V

    2008-01-01

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new effect offers the possibility of improved background suppression and could be especially useful for rare event searches such as dark matter experiments.

  6. Evaluation of nuclear reaction cross section data for the production of (87)Y and (88)Y via proton, deuteron and alpha-particle induced transmutations.

    Science.gov (United States)

    Zaneb, H; Hussain, M; Amjad, N; Qaim, S M

    2016-06-01

    Proton, deuteron and alpha-particle induced reactions on (87,88)Sr, (nat)Zr and (85)Rb targets were evaluated for the production of (87,88)Y. The literature data were compared with nuclear model calculations using the codes ALICE-IPPE, TALYS 1.6 and EMPIRE 3.2. The evaluated cross sections were generated; therefrom thick target yields of (87,88)Y were calculated. Analysis of radio-yttrium impurities and yield showed that the (87)Sr(p, n)(87)Y and (88)Sr(p, n)(88)Y reactions are the best routes for the production of (87)Y and (88)Y respectively. The calculated yield for the (87)Sr(p, n)(87)Y reaction is 104 MBq/μAh in the energy range of 14→2.7MeV. Similarly, the calculated yield for the (88)Sr(p, n)(88)Y reaction is 3.2 MBq/μAh in the energy range of 15→7MeV.

  7. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  8. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    Science.gov (United States)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  9. Activation cross sections of $\\alpha$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    CERN Document Server

    Tárk'anyi, F; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-01-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  10. Excitation function of the alpha particle induced nuclear reactions on enriched $^{116}$Cd, production of the theranostic isotope $^{117m}$Sn

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M; Szűcs, Z; Saito, M

    2016-01-01

    $^{117m}$Sn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of $^{116}$Cd metal onto high purity 12 $\\mu$m thick Cu backing. The average deposited thickness was 21.9 $\\mu$m. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of $^{117m}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In and $^{115m,g}$Cd from enriched $^{116}$Cd were deduced and compared with the available literature data and with the...

  11. Alpha-particle-induced bystander effects between zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Choi, V.W.Y.; Nikezic, D. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, V.W.T.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Dechorionaed embryos of the zebrafish, Danio rerio, at 1.5 h post-fertilization (hpf) were irradiated with alpha particles from an {sup 241}Am source. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 mum were used as support substrates for holding the embryos and recorded alpha-particle hit positions, and thus enabled calculation of the dose absorbed by the embryos. The irradiated embryos were subsequently incubated with naive (unirradiated) embryos in such a way that the irradiated and naive embryos were spatially separated but the medium was shared. Acridine orange was used to perform in vital staining to show cell deaths in the naive embryos at 24 hpf. Our results gave evidence in supporting the existence of alpha-particle-induced bystander effects between zebrafish embryos in vivo, and a general positive correlation between the cell death signals in the naive embryos and the alpha-particle dose absorbed by the irradiated embryos.

  12. Alpha particle induced gamma yields in uranium hexafluoride

    Science.gov (United States)

    Croft, Stephen; Swinhoe, Martyn T.; Miller, Karen A.

    2013-01-01

    Fluorine has a relatively large (α,n) production cross-section in the MeV range, the energy range of interest for special nuclear materials. In the uranium fuel cycle enriched UF6 in particular is a reasonably prolific source of (α,n) neutrons because along with 235U, 234U becomes enriched and it has a relatively short half-life. This enables the mass content of storage cylinders containing UF6 to be verified by neutron counting methods. In association with such measurements high resolution gamma-ray spectrometry (HRGS) measurements using a high-purity Ge detector are often undertaken to determine the 235U enrichment based off the intensity of the direct 186 keV line. The specific (α,n) neutron production, neutrons per second per gram of U, is sensitive to the relative isotopic composition, particularly the 234U concentration, and the traditional gross neutron counting approach is needed to quantitatively interpret the data. In addition to F(α,n) neutrons, α-induced reaction γ-rays are generated, notably at 110, 197, 582, 891, 1236 and 1275 keV. If one could observe 19F(α,xγ) gamma-lines in the HRGS spectra the thought was that perhaps the α-activity could be estimated directly, and in turn the 234U abundance obtained. For example, by utilizing the ratio of the detected 197-186 keV full energy peaks. However, until now there has been no readily available estimate of the expected strength of the reaction gamma-rays nor any serious consideration as to whether they might be diagnostic or not. In this work we compute the thick target yields of the chief reaction gamma-rays in UF6 using published thin target data. Comparisons are made to the neutron production rates to obtain γ/n estimates, and also to the 235U decay line at 186 keV which we take as a fiducial line. It is shown that the reaction gamma-rays are produced but are far too weak for practical safeguards purposes. Now that the underlying numerical data is readily available however, it can be used to

  13. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Science.gov (United States)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  14. Registration of alpha particles in Makrofol-E nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  15. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects

  16. Etching characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector

    International Nuclear Information System (INIS)

    This study reports the characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector. Several important parameters that control the track formation such as, the bulk etch rate (VB), track etching rate (VT), dependence of VB and VT on etching concentration and temperature have been extensively studied. The activation energy (Eb) of the bulk etching rate for the DAM–ADC sheets has been calculated, the dependence of etching efficiency and sensitivity upon etchant concentrations and temperature has been investigated, registration efficiency of DAM–ADC detector etched at the optimum etching condition has been examined. The detailed studied results presented in this study provide various useful information about the mechanism of track formation in polymers. - Highlights: • Detection of alpha particles in DAM–ADC nuclear track detector. • The activation energy of the bulk etching rate for the DAM–ADC sheets. • The dependence of etching efficiency upon etchant concentrations • Registration efficiency of DAM–ADC detector

  17. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  18. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  19. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena;

    2014-01-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same...... levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels...... cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles....

  20. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  1. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    Science.gov (United States)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  2. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  3. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  4. Mechanistic model of radon-induced lung cancer risk at low exposure levels based on cellular alpha particle hits

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Hofmann; Hatim, Fakir [Salzburg Univ., Div. of Physics and Biophysics, Dept. of Material Science (Austria); Lucia-Adina, Truta-Popa [Babes-Bolyai Univ., Faculty of Physics (Romania)

    2006-07-01

    To explore the role of the multiplicity of cellular hits by radon progeny alpha particles for lung cancer incidence, the number of single and multiple alpha particle hits were computed for basal and secretory cells in the bronchial epithelium of human airway bifurcations employing Monte Carlo methods. Hot spots of alpha particle hits were observed at the branching points of bronchial airway bifurcations, suggesting that multiple alpha particle hits may occur primarily at carinal ridges. Random alpha particle intersections of bronchial cells during a given exposure period, selected from a Poisson distribution, were simulated by an initiation-promotion model, based on experimentally observed cellular transformation and survival functions. To consider potential bystander effects, which have been observed in cellular in vitro studies, alpha particle interactions were also simulated for larger sensitive target volumes in bronchial epithelium, consisting of a collection of cells. Lung cancer risk simulations indicated that cancer induction for continuous exposures is related to the cycle time of an irradiated cell, thus exhibiting a distinct dose-rate effect. While the dominant role of single hits leads to a linear dose-response relationship at low radon exposure levels, predicted lung cancer risk for a collection of interacting cells exhibits a linear-quadratic response, suggesting that bystander effects, if operating at all under in vivo irradiations, may be restricted to a small number of adjacent cells. (author)

  5. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  6. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  7. Analysis of the miRNA-mRNA networks in malignant transformation BEAS-2B cells induced by alpha-particles.

    Science.gov (United States)

    Nie, Ji-Hua; Chen, Zhi-Hai; Shao, Chun-Lin; Pei, Wei-Wei; Zhang, Jie; Zhang, Shu-Yu; Jiao, Yang; Tong, Jian

    2016-01-01

    The aim of this study was to determine the toxicity induced by irradiation with alpha-particles on malignant transformation of immortalized human bronchial epithelial cells (BEAS-2B) using miRNA-mRNA networks. The expression of BEAS-2B cells was determined by measuring colony formation, mtDNA, mitochondrial membrane potential (MMP), and ROS levels. Changes in BEAS-2B cell gene expression were observed and quantified using microarrays that included an increase in 157 mRNA and 20 miRNA expression and a decrease in 77 mRNA and 48 miRNA. Bioinformatic software was used to analyze these different mRNA and miRNA, which indicated that miR-107 and miR-494 play an important role in alpha-particles-mediated cellular malignant transformation processes. The pathways related to systemic lupus erythematosus, cytokine-cytokine receptor interaction, MAPK signaling pathway, regulation of actin cytoskeleton, and cell adhesion molecules (CAMs) were stimulated, while those of ribosome, transforming growth factor (TGF)-beta signaling pathway, and metabolic pathways were inhibited. Data suggest that miRNA and mRNA play a crucial role in alpha-particles-mediated malignant transformation processes. It is worth noting that three target genes associated with lung cancer were identified and upregulated PEG 10 (paternally expressed gene 10), ARHGAP26, and IRS1. PMID:27267825

  8. High resolution alpha particle spectrometry through collimation

    International Nuclear Information System (INIS)

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides. - Highlights: • Alpha particle spectrometry with collimation a useful method for identifying nuclear materials among various radionuclides. • A collimator cut off alpha particles with low angle emitted from a source. • We confirm that that a collimator improves the resolution of alpha spectra through both simulation and experiments

  9. Clustering Pre-equilibrium Model Analysis for Nucleon-induced Alpha-particle Spectra up to 200 MeV

    Directory of Open Access Journals (Sweden)

    Watanabe Y.

    2012-02-01

    Full Text Available The clustering exciton model of Iwamoto and Harada is applied to the analysis of pre-equilibrium (N, xα energy spectra for medium-to-heavy nuclei up to 200 MeV. In this work, we calculate alpha-particle formation factors without any approximations that appear in the original model. The clustering process is also considered in both the primary and second pre-equilibrium emissions. We optimize the exciton and the clustering model parameters simultaneously by looking at the experimental (N, xN and (N, xα energy spectra. The experimental alpha-particle spectra are well reproduced with a unique set of clustering model parameters, which is independent of incident neutrons/protons. The present analysis also implies that the clustering model parameter is not so different between the medium and heavy nuclei. Our calculations reproduce experimental data generally well up to the incident energy of ~150 MeV, but underestimations are seen above this energy.

  10. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  11. Alpha particle emitters in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  12. Relative efficiency of the radiothermoluminescence induced by 238Pu alpha-particles in LiF:Mg, Al2O3 and CaSO4:Dy

    International Nuclear Information System (INIS)

    This work represents a comparative study of the radiothermoluminescence (R.T.L.) induced by 60Co gamma rays and 238Pu alpha-particles in three R.T.L. materials: lithium fluoride, alumina and dysprosium activated calcium sulphate. The T.L. glow curves induced by the two radiations are very similar. However, for the same absorbed dose, different sensitivity is seen to each form of irradiation. Measurements of the relative R.T.L. efficiency, epsilon, were made in the linear zone (dose<1Gy). These response differences are attributed to the manner in which the energies of the two radiations are distributed in the detection material. Theoretical determination of epsilon can be carried out from calculation of the spatial distribution of the ionization energy density around the α-particle track

  13. Alpha particle spectroscopy — A useful tool for the investigation of spent nuclear fuel from high temperature gas-cooled reactors

    Science.gov (United States)

    Helmbold, M.

    1984-06-01

    For more than a decade, alpha particle spectrometry of spent nuclear fuel has been used at the Kernforschungsanlage Jülich (KFA) in the field of research for the German high temperature reactor (HTR). Techniques used for the preparation of samples for alpha spectrometry have included deposition from aqueous solutions of spent fuel, annealing of fuel particles in an oven and the evaporation of fuel material by a laser beam. The resulting sources are very thin but of low activity and the alpha spectrometry data obtained from them must be evaluated with sophisticated computer codes to achieve the required accuracy. Measurements have been made on high and low enriched uranium fuel and on a variety of parameters relevant to the fuel cycle. In this paper the source preparation and data evaluation techniques will be discussed together with the results obtained to data, i.e. production of alpha active actinide isotopes, correlations between actinide isotopes and fission products, build up and transmutation of actinides during burn-up of HTR fuel, diffusion coefficients of actinides for fuel particle kernels and coating materials. All these KFA results have helped to establish the basis for the design, licensing and operation of HTR power plants, including reprocessing and waste management.

  14. Measurements of nuclear $\\gamma$-ray line emission in interactions of protons and $\\alpha$ particles with N, O, Ne and Si

    OpenAIRE

    Benhabiles-Mezhoud, H.; Kiener, J.; Thibaud, J. -P.; Tatischeff, V.; Deloncle, I.; Coc, A.; Duprat, J.; Hamadache, C.; Lefebvre-Schuhl, A.; Dalouzy, J. -C.; de Grancey, F.; Oliveira, F.; Dayras, F.; De Séréville, N.; Pellegriti, M. -G.

    2010-01-01

    $\\gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $\\alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $\\gamma$-ray lines of $^{16}$O produced in proton and $\\alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and...

  15. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  16. Intercomparison of alpha particle spectrometry software packages

    International Nuclear Information System (INIS)

    Software has reached an important level as the 'logical controller' at different levels, from a single instrument to an entire computer-controlled experiment. This is also the case for software packages in nuclear instruments and experiments. In particular, because of the range of applications of alpha-particle spectrometry, software packages in this field are often used. It is the aim of this intercomparison to test and describe the abilities of four such software packages. The main objectives of the intercomparison were the ability of the programs to determine the peak areas and the peak area uncertainties, and the statistical control and stability of reported results. In this report, the task, methods and results of the intercomparison are presented in order to asist the potential users of such software and to stimulate the development of even better alpha-particle spectrum analysis software

  17. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. PMID:25634901

  18. The severity of alpha-particle-induced DNA damage is revealed by exposure to cell-free extracts

    International Nuclear Information System (INIS)

    The rejoining of single-strand breaks induced by α-particle and γ irradiation in plasmid DNA under two scavenging conditions has been compared. At the two scavenger conditions has been compared. At the two scavenger capacities used of 1.5 x 107 and 3 x 108s-1 using Tris-HCl as the scavenger, the ratio of single- to double-strand breaks for α particles is fivefold less than the corresponding ratios for γ irradiation. The repair of such radiation-induced single-strand breaks has been examined using a cell-free system derived from human whole-cell extracts. We show that the rejoining of single-strand breaks for both α-particle- and γ-irradiated plasmid is dependent upon the scavenging capacity and that the efficiency of rejoining of α-particle-induced single-strand breaks is significantly less than that observed for γ-ray-induced breaks. In addition, for DNA that had been irradiated under conditions that mimic the cellular environment with respect to the radical scavenging capacity, 50 of α-particle-induced single-strand breaks are converted to double-strand breaks, in contrast with only ∼12% conversion of γ-ray-induced single-strand breaks, indicating that the initial damage caused by α particles is more severe. These studies provide experimental evidence for increased clustering of damage which may have important implications for the induction of cancer by low-level α-particle sources such as domestic radon. 37 refs., 5 figs., 1 tab

  19. Abnormal promoter methylation of multiple genes in the malignant transformed PEP2D cells induced by alpha particles exposure

    Institute of Scientific and Technical Information of China (English)

    LiP; SuiJL

    2002-01-01

    The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.

  20. Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V

    2016-01-01

    Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...

  1. Design of an alpha-particle counting system at a defined solid angle at Turkish atomic energy authority-Sarayköy nuclear research and training center (TAEK-SANAEM)

    Science.gov (United States)

    Seferinoğlu, Meryem; Yeltepe, Emin

    2015-12-01

    The design details of an alpha-particle counting set-up at a defined solid angle (ACS-DSA) constructed in Radionuclide Metrology Department at TAEK-SANAEM for use in the primary standardization of radioactive solutions and determination of nuclear decay data of alpha-particle emitters is presented. The counting system is designed such that the solid angle is very well-defined and directly traceable to the national standards. The design involves mechanical construction of different parts like the source chamber, various coaxial flanges, and circular diaphragms in front of the passivated implanted planar silicon (PIPS®) detector, distance tubes, a digital caliper and a sliding piston to allow for different measurement configurations. All geometric configurations are easily changeable and characterisable with high accuracy which facilitates the solid angle calculation. A mixed alpha source was counted to check performance of assembled ACS-DSA system and good energy resolution and low peak tailing in the alpha energy spectrum was observed for small diaphragm apertures and far source-to-detector geometries.

  2. Determination of thin layer thickness from alpha particle energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Prague. Ustav pro Elektrotechniku); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Mikusik, P. (Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie a Elektrochemie J. Heyrovskeho)

    1982-10-01

    A method which uses alpha particles from the /sup 10/B(n,alpha)/sup 7/Li nuclear reaction for the determination of surface layer thicknesses is described and experimentally checked. The thickness measurements can be performed on samples implanted with boron.

  3. L-shell X-ray production cross sections induced by protons and alpha-particles in the 0.7-2.0 MeV/amu range for Ru and Ag

    Science.gov (United States)

    Bertol, A. P. L.; Trincavelli, J.; Hinrichs, R.; Vasconcellos, M. A. Z.

    2014-01-01

    The X-ray emissions induced by protons and alpha-particles of the elements Ag and Ru were measured on mono-elemental thin films. L-shell X-ray production cross sections were obtained for the three L-subshells, considering absorption corrections. The Ag X-ray production cross sections agree with experimental data of other authors and with theoretical models, and were used to endorse the quality of the experimental values for Ru, that were not found in the literature.

  4. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  5. Alpha particle confinement in tandem mirrors

    International Nuclear Information System (INIS)

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step

  6. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  7. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    CERN Document Server

    Pollmann, Tina; Kuźniak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  8. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  9. Study of the nuclear matter distribution and isoscalar transition rates of 48Ca, 50Ti and 52Cr by scattering of 104 MeV alpha-particles

    International Nuclear Information System (INIS)

    The differential cross-sections for elastic and inelastic scattering of 104 MeV α-particles on 50Ti and 52Cr have been measured for scattering angles in the range 20 0. Additionally using previously measured data for 48Ca, the cross-sections of the N = 28 isotopic sequence 48Ca-50Ti-52Cr were analyzed on the basis of the generalized optical model. Study of the angular distribution of the elastic scattering, using modified phenomenological and microscopic methods, leads to well defined and consistent values for moments of the potentials and of the matter distributions. In particular, the Fourier-Bessel method leads to a nearly model-independent determination of the differences in isotonic radii and also to a realistic determination of error bars. For the analysis of the inelastic scattering a new method is introduced, which strongly reduces the model dependence which arises when simple analytic expressions are used for the form factors (the form of the coupling potentials). For this purpose the Fourier-Bessel method has been extended to the analysis of inelastic scattering using the collective vibrational model. Using the identities between the integral moments of a folded potential and of the underlying nuclear matter distribution, isoscalar transition rates have been derived. The extracted values are confirmed by an explicit folding model analysis. Furthermore, the folding model calculations show that the density dependence of the effective interaction between α-particle and target nucleons must be taken into account also in the analysis of inelastic scattering. (orig.)

  10. RPL in alpha particle irradiated Ag+-doped phosphate glass

    International Nuclear Information System (INIS)

    The objective of this study is to investigate the emission mechanism of radiophotoluminescence (RPL) in the Ag+-doped phosphate glass (glass dosimeter), which is now used as individual radiation dosimeter, because the emission mechanism of RPL in glass dosimeter has been not fully understood. We have investigated the assignments and characteristics of the X-ray induced color centers in the Ag+-doped phosphate glass up to now (Miyamoto et al., 2010). Optical properties such as optical absorption spectra related with alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. In this study optical properties such as optical absorption spectrum as a function of alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. Comparison of the RPL in Ag+-doped phosphate glass irradiated with alpha-particles and X-rays is discussed. - Highlights: • A Yellow and blue emission are included in the RPL of Ag+-doped phosphate glass. • The ratio of yellow and blue emission was different between alpha and X-ray irradiation. • RPL emission intensity increased in an atmosphere below room temperature

  11. Alpha particles diffusion due to charge changes

    Science.gov (United States)

    Clauser, C. F.; Farengo, R.

    2015-12-01

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, "cold" neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  12. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  13. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  14. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υalpha ∼ (PRF/nαε0) ρp, where PRF is the ICRF-wave power density, nα is the alpha density, ε0 is the alpha birth energy, and ρp is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  15. Similarities between human ataxia fibroblasts and murine SCID cells: high sensitivity to [gamma] rays and high frequency of methotrexate-induced DHFR gene amplification, but normal radiosensitivity to densely ionizing [alpha] particles

    Energy Technology Data Exchange (ETDEWEB)

    Luecke-Huhle, C. (Kernforschungszentrum Karlsruhe, Inst. fuer Genetik (Germany))

    1994-07-01

    Two [gamma]-ray hypersensitive cell lines, human ataxia telangiectasia (AT) and murine severe combined immune deficiency (SCID) cells, proved to be very competent in amplifying their dihydrofolate reductase (DHFR) gene under methotrexate selection stress. Over a period of months, methotrexate-resistant clones were obtained which were able to grow in progressively increasing methotrexate concentrations up to 1 mM. By then methotrexate-resistant AT and SCID cells had amplified their DHFR gene 6- and 30-fold, respectively, and showed very high DHFR mRNA expression. In contrast, related cells with normal radiosensitivity (human GM637 and mouse BALB/c fibroblasts) did not show DHFR gene amplification under comparable conditions. This correlation of the capacity of DHFR gene amplification and [gamma]-ray hypersensitivity in AT and SCID cells suggests that gene amplification may have a mechanism(s) in common with those involved in repair of [gamma]-radiation-induced damage. No difference in cell killing could be observed following exposure to densely ionizing [alpha] particles: AT and SCID cells exhibited comparable survival rates to GM637 and BALB/c cells, respectively. (orig.)

  16. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Science.gov (United States)

    Takács, S.; Takács, M. P.; Ditrói, F.; Aikawa, M.; Haba, H.; Komori, Y.

    2016-09-01

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the natTi(α,x)51Cr reaction. The irradiations were done with Eα = 20.7 and Eα = 51.25 MeV, Iα = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the 72,73,75Se, 71,72,74,76,78As, and 69Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  17. Evaluation through comet assay of DNA damage induced in human lymphocytes by alpha particles. Comparison with protons and Co-60 gamma rays

    International Nuclear Information System (INIS)

    Several techniques with different sensitivity to single-strand breaks and/or double strand breaks were applied to detect DNA breaks generated by high LET particles. Tests that assess DNA damage in single cells might be the appropriate tool to estimate damage induced by particles, facilitating the assessment of heterogeneity of damage in a cell population. The microgel electrophoresis (comet) assay is a sensitive method for measuring DNA damage in single cells. The objective of this work was to evaluate the proficiency of comet assay to assess the effect of high LET radiation on peripheral blood lymphocytes, compared to protons and Co-60 gamma rays. Materials and methods: Irradiations of blood samples were performed at TANDAR laboratory (Argentina). Thin samples of human peripheral blood were irradiated with different doses (0-2.5 Gy) of 20.2 MeV helium-4 particles in the track segment mode, at nearly constant LET. Data obtained were compared with the effect induced by a MeV protons and Co-60 gamma rays. Alkaline comet assay was applied. Comets were quantified by the Olive tail moment. Distribution of the helium-4 particle and protons were evaluated considering Poisson distribution in lymphocyte nuclei. The mean dose per nucleus per particle result 0.053 Gy for protons and 0.178 Gy for helium-4 particles. When cells are exposed to a dose of 0.1 Gy, the hit probability model predicts that 43% of the nuclei should have experienced and alpha traversal while with protons, 85% of the nuclei should be hit. The experimental results show a biphasic response for helium-4 particles (0.1 Gy), indicating the existence of two subpopulations: unhit and hit. Distributions of tail moment as a function of fluence and experimental dose for comets induced by helium-4 particles, protons and Co-60 gamma rays were analyzed. With helium-4 irradiations, lymphocyte nuclei show an Olive tail moment distribution flattened to higher tail moments a dose increase. However, for irradiations with

  18. Alpha particles energy straggling in noble gases

    International Nuclear Information System (INIS)

    The comparison of the calculated spectra by the Monte-Carlo simulation with the experimental alpha-particles spectra after their passage through noble gases target has good agreement for Ar, Kr, and Xe and significant deviation for He and Ne. These agreement or disagreement of the calculated and experimental spectra were ascribed to adequacy or inadequacy of the applied Bohr's charged particles energy loss formula for the specific medium. (author)

  19. Changes of gene methylation profile in malignant transformation of immortalized human bronchial epithelial cell line induced by alpha-particle irradiation

    International Nuclear Information System (INIS)

    Objective: To identify the changes of DNA methylation profile in the process of malignant transformation of BEP2D cell induced by α particles. Methods: The genomic DNAs were isolated from the malignant transformation BERP35T4 cells and immortalized human bronchial epithelial cell line BEP2D. Genomic DNAs were digested by MseI and ligated of PCR linkers. Methylated DNAs were digested by BstUI and amplified by PCR. The methylated DNA probes were prepared by labeling with Cy3 and Cy5 fluorescence dyes individually and hybridized to the methylation CpG-Island microarray. The hybridization results were scanned and analyzed. Intensity values were quality controlled and normalized. The normalized data were used to identify the differentially expressed genes based on a 1.5 fold difference of the expression level. Results: There were 16 genes which showed changes of methylation level in malignant transformation BERP35T4 cells, 9 of them were hyper methylation and 7 were hypo methylation. These genes were including the SKIP gene, PPP3CC gene, MAP2K6 gene, KIR2DL1 gene, KIR2DL4 gene, KIR3DP1 gene, ZNF493 gene, ZNF100 gene, NKX2-5 gene, TFAP2D gene, DR1 gene, KCNJ16 gene, CCDC18 gene, FNBP1L gene, IRX4 gene, EPB41L3 gene, TCP10 gene and so on. Conclusions: The DNA methylation might have effects on ionizing radiation derived tumorigenesis. (authors)

  20. The sensitivity of the alkaline comet assay in detecting DNA lesions induced by X-rays, gamma rays and alpha particles

    International Nuclear Information System (INIS)

    Experiments were designed and performed in order to investigate whether or not the different cellular energy deposition patterns of photon radiation with different energies (29 kV, 220 kV X-rays; Co-60, Cs-137-γ-rays) and alpha-radiation from an Am-241 source differ in DNA damage induction capacity in human cells. For this purpose, the alkaline comet assay (single cell gel electrophoresis) was applied to measure the amount of DNA damage in relation to the dose received. The comet assay data for the parameters o/oo DNA in the tail' and 'tail moment' for human peripheral lymphocytes did not indicate any difference in the initial radiation damage produced by 29 kV X-rays relative to the reference radiations, 220 kV X-rays and the gamma rays, whether for the total mean dose range of 0-3 Gy nor in the low-dose range. In contrast, when the 'tail length' data were analysed saturation of the fitted dose response curve appeared for X-rays at about 1.5 Gy but was not apparent for gamma rays up to 3 Gy. Preliminary data for alpha exposures of HSC45-M2 cells showed a significant increase in DNA damage only at high doses (>2 Gy Am-241), but the damage at 2 Gy exceeded the damage induced at 2 Gy by Cs-137-γ-rays by a factor of 2.5. In contrast, other experiments involving different cell systems and DNA damage indicators such as chromosomal aberrations have detected a significant increase in DNA damage at much lower doses, that is at 0.02 Gy for Am-241 and depicted a higher biological effectiveness. These results indicate that differences in biological effects arise through downstream processing of complex DNA damage. (authors)

  1. A practical alpha particle irradiator for studying internal alpha particle exposure.

    Science.gov (United States)

    Lee, Ki-Man; Lee, Ui-Seob; Kim, Eun-Hee

    2016-09-01

    An alpha particle irradiator has been built in the Radiation Bioengineering Laboratory at Seoul National University (SNU) to investigate the cellular responses to alpha emissions from radon and the progeny. This irradiator is designed to have the energy of alpha particles entering target cells similar to that of alpha emissions from the radon progeny Po-218 and Po-214 residing in the human respiratory tract. For the SNU alpha particle irradiator, an irradiation system is equipped with cell dishes of 4µm thick Mylar bottom and a special setup of cells on slide for gamma-H2AX assay. Dose calibration for the alpha particle irradiator was performed by dual approaches, detection and computer simulation, in consideration of the source-to-target distance (STD) and the size of a cell dish. The uniformity of dose among cells in a dish is achieved by keeping the STD and the size of cell dish in certain ranges. The performance of the SNU alpha particle irradiator has been proven to be reliable through the gamma-H2AX assay with the human lung epithelial cells irradiated. PMID:27475622

  2. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  3. Global alpha-particle optical potentials

    International Nuclear Information System (INIS)

    A search for a global optical potential for alpha-particles is described. It did not prove possible to find such a potential valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section. (author). 7 refs, 15 figs, 1 tab

  4. Alpha particle diagnostics using impurity pellet injection

    International Nuclear Information System (INIS)

    We have proposed using impurity injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction Fo∞(E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the helium-like ionization state, e.g., Li+ ions, we can determine the incident alpha distribution dnHe2+/dE from the measured energy distribution of neutral helium atoms. Initial experiments were performed on TEXT in which we compared pellet penetration with our impurity pellet ablation model, and measured the spatial distribution of various ionization states in carbon pellet clouds. Experiments have recently begun on TFTR with the goal of measuring the alpha particle energy distribution during D-T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3He tail produced during ICH minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  5. The simulation of the response of superheated emulsion to alpha particles

    International Nuclear Information System (INIS)

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.:  −1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures

  6. ICRF enhancement of fusion reactivity in the presence of alpha particles

    International Nuclear Information System (INIS)

    Absorption of ICRF (ion cyclotron range of frequency) waves by alpha particles and fusion reactivity enhancement due to the ICRF induced ion tail are investigated. The rate of linear absorption by alpha particles increases with the cyclotron harmonic number, and decreases with the ratio of the electron plasma frequency to the electron cyclotron frequency. The deformation of the distribution due to ICRF waves is also examined by using a solution to a Fokker-Planck equation combined with a quasi-linear RF (radiofrequency) diffusion term. It is found that second harmonic ICRF heating is comparatively applicable to the enhancement of the fusion power density even in the presence of alpha particles, while the efficiency of the enhancement is deteriorated markedly by wave deposition to alphas for higher harmonic ICRF heating in the high magnetic field. (author)

  7. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  8. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes; Mise en evidence de cassures double brin de l'ADN induites par irradiation de keratinocytes humains en microfaisceau alpha

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Th

    2006-12-15

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  9. Detection of alpha particles with undoped poly (ethylene naphthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hidehito, E-mail: hidehito@rri.kyoto-u.ac.jp [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirakawa, Yoshiyuki; Kitamura, Hisashi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sato, Nobuhiro; Takahashi, Sentaro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2014-03-01

    There has been recent interest in the use of undoped, aromatic-ring polymers as organic scintillation materials for radiation detectors. Here, we characterise the response of poly (ethylene naphthalate) (PEN) to alpha particles. The energy response to 5486 keV alpha particles emitted from {sup 241}Am was 554±45 keV electron equivalents (keVee), with an energy resolution of 11.2±0.1%. The energy response to 6118 keV alpha particles emitted from {sup 252}Cf was 618±45 keVee, with a resolution of 8.8±0.1%. It is also important to characterise the refractive index because it determines how efficiently light propagates in scintillation materials to the photodetector. By taking into account the PEN emission spectrum, it was revealed that its effective refractive index was 1.70. Overall, the results indicate that PEN has potential as a scintillation material for the detection of alpha particles. - Highlights: • PEN is characterised as a scintillation material for alpha particles. • The effective refractive index for PEN is 1.70 in its emission spectrum. • The response to 5486 (6118) keV alpha particles was 554±45 (618±45) keVee. • The energy resolution for 5486 (6118) keV alpha particles was 11.2±0.1 (8.8±0.1) %. • This work will stimulate future use of PEN for radiation detection.

  10. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω*α > ωA, where ωA is the shear-Alfven modal frequency and ω*α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  11. Technique for measuring the losses of alpha particles to the wall in TFTR

    International Nuclear Information System (INIS)

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is 10B(α,n)13N, although 14N(α,γ)18F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described

  12. Validating modelling assumptions of alpha particles in electrostatic turbulence

    CERN Document Server

    Wilkie, George; Highcock, Edmund; Dorland, William

    2014-01-01

    To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.

  13. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  14. Signature of the N=126 shell closure in dwell times of alpha-particle tunneling

    CERN Document Server

    Kelkar, N G

    2016-01-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number $N$ = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from $N=116$ to $N=132$ in Po nuclei reveals that the tunneling $\\alpha$ particle spends the least amount of time with an $N=126$ magic daughter nucleus. The shell closure at $N=126$ seems to affect the behaviour of the dwell times of the tunneling alpha particles and this occurs through the influence of the $Q$-values involved.

  15. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    Science.gov (United States)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  16. Production of $\\alpha$-particle condensate states in heavy-ion collisions

    CERN Document Server

    Raduta, Ad R; Geraci, E; Neindre, N Le; Napolitani, P; Rivet, M F; Alba, R; Amorini, F; Cardella, G; Chatterjee, M; De Filippo, E; Guinet, D; Lautesse, P; La Guidara, E; Lanzalone, G; Lanzano, G; Lombardo, I; Lopez, O; Maiolino, C; Pagano, A; Pirrone, S; Politi, G; Porto, F; Rizzo, F; Russotto, P; Wieleczko, J P

    2010-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $\\alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the $\\alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$\\alpha$ decay of the Hoyle state is isolated.

  17. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  18. Proton and alpha-particle capture reactions at sub-Coulomb energies relevant to the p process

    Energy Technology Data Exchange (ETDEWEB)

    Harissopulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Lagoyannis, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Spyrou, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Zarkadas, Ch [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Galanopoulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Perdikakis, G [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Becker, H-W [Dynamitron-Tandem-Laboratorium, Ruhr Universitaet Bochum, 44801 Bochum (Germany); Rolfs, C [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Strieder, F [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Kunz, R [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Fey, M [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Hammer, J W [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Dewald, A [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Zell, K-O [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Brentano, P von [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Julin, R [Department of Physics, University of Jyvaeskylae, 40014 Jyvaeskylae (Finland); Demetriou, P [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP226, 1050 Brussels (Belgium)

    2005-10-01

    Several cross-section measurements of proton as well as {alpha}-particle capture reactions in the Se-Sb region have been carried out at sub-Coulomb energies with the aim to obtain global input parameters for Hauser-Feshbach (HF) calculations. Some of the results are compared with HF calculations using various optical model potentials and nuclear level densities.

  19. Radon monitor and control system based upon alpha particle detection

    International Nuclear Information System (INIS)

    A system is designed for monitoring or controlling the level of radon in indoor air, based upon measuring alpha particles due to the decay of radon or its daughter atoms. In one embodiment, the alpha particle decay of radon itself is detected and analyzed to control a vent in the heating and air conditioning system to automatically keep the radon level below a preselected level. In another embodiment, the daughter atoms 218Po and 214Po are collected from the indoor air and their alpha particle decays are analyzed to provide a sensitive monitor of radon levels or to control vents in the HVAC system to reduce radon concentrations to permissible levels. In addition, the system provides information on the quality of the air filter and indicates when it needs servicing

  20. Turbulent transport of alpha particles in tokamak plasmas

    CERN Document Server

    Croitoru, A; Vlad, M; Spineanu, F

    2016-01-01

    We investigate the ExB diffusion of fusion born \\alpha particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron modes (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the \\alpha particle. According to our results, signficant turbulent transport of the \\alpha particles can appear only at energies of the order of 100KeV. We determine the corresponding conditions.

  1. Emission of alpha particles and other light nuclei as a fission process

    International Nuclear Information System (INIS)

    The fission theory was successfully applied to the emission of alpha particles and other light nuclei from a heavy nucleus. Good agreement (within +-0.8 orders of magnitude) of the theoretical life times with experimental ones over a range of 24 orders of magnitude, was obtained. Three macroscopic models have been extended for the nuclear systems with different charge densities. A phenomenological shell correction was introduced. WKB approximation was used. By taking into account the nuclear deformation, the life-time of the alpha decay from a shape isomeric state was predicted. A new semiempirical relationship for the alpha decay life-time was derived. (author)

  2. Investigations of electrical properties of structures Al-DNA-ITO-Al exposed to alpha particles

    International Nuclear Information System (INIS)

    The detection of alpha particles and other radiation sources has been an important field of research since the inception of radioactive materials in medical technology approximately a century ago. While different types of radiation sensors exist, in recent history, in light of a few catastrophic nuclear meltdowns, the development of sensors with rapid and effective detection properties have become crucial. To probe the feasibility of incorporating such features into the detector architecture, a simple sensor based on mushroom Deoxyribonucleic acid or DNA (Aluminium (Al)/DNA/Indium Tin Oxide (ITO)) was built, and the possibility of employing DNA electronics for the potential detection of alpha particles was investigated. Current–voltage (I–V) profiles were obtained following radiation using alpha particles at different dosages and exposure periods at room temperature. Properties such as series resistance, RS and other properties (barrier height, ideality factor and hypersensitivity) were calculated and analyzed using Conventional, Cheung and Cheung and Norde methods. RS values of the non-radiated samples calculated using the first method was about 8.6 MΩ. Using Conventional and Norde methods, samples irradiated for 4 min demonstrated the highest RS values of 5.79 and 1.81 MΩ, respectively. The results obtained were used to demonstrate the possibility of applying the sensitivity of DNA sensors to the measurement of alpha radiation. - Highlights: • Freshly prepared DNA solution was deposited as thin films by using the self-assembly method. • Series resistances, barrier heights and ideality factors were determined from I–V measurements. • A novel DNA hypersensitivity phenomenon was observed at low alpha radiation. • DNA based diodes can be employed as sensitive alpha particle sensors

  3. Lung cancer risk at low doses of alpha particles.

    Science.gov (United States)

    Hofmann, W; Katz, R; Zhang, C X

    1986-10-01

    A survey of inhabitant exposures arising from the inhalation of 222Rn and 220Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the "high background" and the "control" area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 222Rn and 220Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli.

  4. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    A radiochemical method for 226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to 226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks). (author)

  5. Protons from the alpha-particle bombardment of 23Na

    NARCIS (Netherlands)

    Kuperus, J.

    1964-01-01

    Resonances in the yield of ground-state protons from alpha-particle bombardment of 23Na were investigated in the energy range Eα = 1.0 – 3.3 MeV. At least thirty-eight resonances were observed. Resonance energies and strengths are presented. At nine resonances angular distribution measurements lead

  6. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  7. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained. PMID:27341133

  8. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained.

  9. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  10. Alpha-particle decays from excited states in 24Mg

    Institute of Scientific and Technical Information of China (English)

    LIOTTA; R; J

    2011-01-01

    Using a cluster model based on the Woods-Saxon potential, alpha-particle decays from excited states in 24Mg have been system atically investigated. Calculations can in general reproduce experimental data, noticing the fact that the preformation factor P of alpha particle in alpha-decaying nuclei is of order from 100 to 10?2. This can be the evidence for the α+20Ne structure in 24Mg. Meanwhile, the results also show the existence of other configurations, such as 16O+2α. Since the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster (α particle), our results could serve as a guide to experimental spin assignments.

  11. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Schwartz, S. J. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, P. [Astronomical Institute, CAS, Prague (Czech Republic); Landi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze (Italy)

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  12. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    Science.gov (United States)

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  13. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    . Flow cytometry showed that cycling cells were arrested in G{sub 2}/M while stationary cells underwent a delayed entry into S phase after release of contact inhibition. Radiation-induced chromosomal damage was studied by investigating the formation of micronuclei after first mitosis post-irradiation. Alpha-particles induced 2.7 and 4.1 times more micronuclei in cycling and stationary cells, respectively, compared with X-rays. Induction of DSBs and cell survival after irradiation were also investigated in synchronized Chinese hamster fibroblasts. The cells were synchronized with mimosine in G{sub 1}, early, mid and late S phase and in mitosis. Cell survival was determined using the clonogenic assay. The radio response between cell cycle phases varied after both 211At and X-rays, resulting in variations of RBE for 211At between 1.8 and 3.9 for DSB induction and between 3.1 and 7.9 for 37% survival. The lowest RBE was observed in mitotic cells for both DSB induction and clonogenic survival. In summary, for all endpoints studied alpha-particles from 211At were more detrimental compared with X-rays. Further, the radio response was dependent upon the proliferation status of the cells at the time of irradiation, after both low- and high-LET radiation, resulting in variations of the relative biological effects

  14. GaN-based PIN alpha particle detectors

    International Nuclear Information System (INIS)

    GaN-based PIN alpha particle detectors are studied in this article. The electrical properties of detectors have been investigated, such as current-voltage (I-V) and capacitance-voltage (C-V). The reverse current of all detectors is in nA range applied at 30 V, which is suitable for detector operation. The charge collection efficiency (CCE) is measured to be approximately 80% but the energy resolution is calculated to be about 40% mostly because the intrinsic layer is not sufficiently thick enough.

  15. Alpha Particle Induced X-ray Emission in the Classroom

    International Nuclear Information System (INIS)

    We report on an experimental demonstration in an introductory modern physics course to elucidate the X-ray line spectra, and how they arise from transitions of electrons to inner shells. We seek to determine the effect of limited use of an interactive component as a supplement to a traditional lecture, and how it would improve the student achievement. In this preliminary study the students were exposed to traditional lectures on X-ray production and Bohr's model, they then were given a homework on the abc of X-ray spectra, after which they were given a pre-test on the materials, followed by an in-class demonstration, and a final post-exam. The gain, as measured from pre- to post-exams appears to remark the differences in how students approached the subject before and after the use of the demonstration. This initial study shows the validity of in-class demonstrations as teaching tools and opens a wide new area of research in modern physics teaching

  16. Alpha particle effects on global MHD modes, and alpha particle transport in ignited tokamaks

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable primarily by the circulating α-particles through wave-particle resonances. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions, as well as Alfven continuum damping. Stability criteria are presented for TFTR, CIT, and ITER tokamaks in terms of the α-particle beta βα, the α-particle pressure gradient parameter (ω*/ωA), where ω* is the α-particle diamagnetic drift frequency, and the α-particle velocity (vα/vA) parameter. Typically the volume averaged α-particle beta threshold is on the order of 10-4. Rough estimates of the TAE mode saturation level give δBr/B ∼ 10-3 for typical D-T tokamak operations. Significant α-particle losses are found when the amplitude of the global MHD modes is large, on the order of (δBr/B) ≥ 10-4. For (δBr/B) = 5 x 10-4, the α-particle loss time is appreciably shorter than the α-particle slowing-down time. 13 refs., 1 fig

  17. A novel experiment to investigate the attenuation of alpha particles in air

    International Nuclear Information System (INIS)

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium 226. The experimental results are in close agreement with the theoretical predictions

  18. Signature of the N = 126 shell closure in dwell times of alpha-particle tunneling

    Science.gov (United States)

    Kelkar, N. G.; Nowakowski, M.

    2016-10-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number N = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from N = 116 to N = 132 in Po nuclei reveals that the tunneling α particle spends the least amount of time with an N = 126 magic daughter nucleus. The shell closure at N = 126 seems to affect the behavior of the dwell times of the tunneling alpha particles and this occurs through the influence of the Q-values involved.

  19. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12C nucleus is described as a three-alpha particle bound state. The binding energy of 12C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  20. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  1. Alpha particle slowing-down characteristics and the effect on MHD instability excitation at high-density operation points in FFHRs

    International Nuclear Information System (INIS)

    Alpha-particle slowing-down behaviors at low-temperature, high-density operation points in force-free helical reactors (FFHRs) are examined on the basis of a Fokker-Planck (FP) simulation that simultaneously consider the balance among generation, slowing down, and loss from the plasma in parallel with the density dependence of the Alfvén speed. An accurate treatment of the boundary velocity region between thermal and non-thermal components is shown to be important in evaluating the alpha particle population that can induce instability. In a typical high-density, low-temperature operation point in an FFHR, this population is reduced. (author)

  2. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  3. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  4. Computation and measurement of differential ranges of low-energy alpha particles in matter

    International Nuclear Information System (INIS)

    The stopping power formula of Bethe is discussed and is used to compute differential ranges of low-energy alpha particles in air, argon, aluminium and copper. A single radioactive source containing three active elements is used in experiments to measure the differential ranges in these materials. Finally a range-energy relationship for the alpha particles in air is deduced. (author)

  5. The biokinetics of alpha-particle emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.M. [School of Chemistry, Cardiff Univ., Cardiff (United Kingdom); Duffield, J.R. [Faculty of Applied Sciences, Univ. of the West of England, Bristol (United Kingdom)

    2005-07-01

    The past two decades have seen wide interest in the application of alpha-particle emitting radionuclides for targeted endoradiotherapy and a large number of compounds labeled with {sup 211}At (T{sup 1}/{sub 2} 7.21 h), {sup 212}Bi (T{sup 1}/{sub 2} 1 h) or {sup 213}Bi (T{sup 1}/{sub 2} 0.78 h) have been studied. Knowledge of the biokinetic behaviour of such agents is important both for their optimal clinical exploitation and for general radiological protection purposes. Animal studies of the distribution and retention of {sup 211}At compounds, including ionic astatide, substituted aromatic compounds and labelled monoclonal antibodies, have provided new information on the biochemistry of astatine. With respect the thyroid gland the uptake of the astatide ion has been shown to be very much lower than that of the iodide ion. Less information is available for {sup 212}Bi-labelled radiopharmaceuticals. The available data for both {sup 211}At and {sup 212}Bi radiopharmaceuticals are reviewed. Cautious generic biokinetic models for inorganic and simple organic compounds of {sup 211}At and {sup 212}Bi; for [{sup 211}At]-, and [{sup 212}Bi]-biphosphonates and for [{sup 211}At]-, and [{sup 212}Bi]-monoclonal antibodies, are proposed for use in general radiological protection when compound-specific data are not available. (orig.)

  6. Alpha particle response characterization of CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Amman, Mark; Lee, Julie S.; Luke, Paul N.

    2001-06-28

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance.

  7. Alpha particle response characterization of CdZnTe

    International Nuclear Information System (INIS)

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance

  8. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  9. Nuclear EMP induced chaos

    International Nuclear Information System (INIS)

    It is anticipated that a single nuclear explosion, of adequate size, on the outside of the atmosphere would generate a pulse of sufficient intensity to damage communications equipment (including telephones, radio transmitters and receivers), and to disrupt main power supplies. This damage could be done by a very intense, short duration electro-magnetic pulse (EMP). The article discusses the generation and history of EMP, the test facilities that are needed for EMP test, and techniques that can be used to harden equipment against EMP. It is also important to protect extensive systems against EMP. The article points out that fibre-optics are very useful, because they are EMP resistant and a single fibre can also carry a very high data rate

  10. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  11. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  12. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Park's low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation), and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, so that it approximates its observed flow along the magnetic field, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in poor agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. The failure of the model appears to be the breakdown of the assumption that charge-state equilibrium exists in the cloud. This problem is particularly severe for the TEXT parameters so modifications in the model to include non-equilibrium effects are being implemented

  13. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Parks' low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation) and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in pretty good agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. Also a small improvement has been made in the low-Z pellet plasma-penetration program, which brings the predictions of the model in closer agreement with the carbon pellet injection experiments on TFTR. 22 refs., 3 figs

  14. Analysis of radiation risk from alpha particle component of soalr particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The Solar Particle Events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and Linear Energy Transfer (LET) spectra in shielding are discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  15. Interaction of neutrons with alpha particles: A tribute to Heinz Barschall

    CERN Document Server

    Hoop, B

    2015-01-01

    As a tribute to our teacher and mentor on the occasion of his centennial celebration, we provide a brief historical overview and a summary of sustained interest in the topic of interaction of neutrons with alpha particles.

  16. Analysis of radiation risk from alpha particle component of solar particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  17. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    Science.gov (United States)

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  18. Feasibility of ion temperature measurement with a gyrotron scattering alpha particle diagnostic

    International Nuclear Information System (INIS)

    Collective Thomson scattering can be used to diagnose localized ion temperature as well as alpha particle velocity distribution and density in a D-T burning tokamak. With one diagnostic beam a simultaneous, but independent, measure of the bulk ion temperature and alpha particle parameters can be made. Use of a long pulse, millimeter-wave gyrotron offers a significant margin in signal to noise ratio capability (√Δftau > 1000) not previously possible with lasers. 9 refs., 2 figs

  19. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    International Nuclear Information System (INIS)

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  20. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  1. Pre-Equilibrium Alpha-Particle Emission as a Probe to Explore Alpha Clustering in Nuclei

    Science.gov (United States)

    Kravchuk, V. L.; Fotina, O. V.; Gramegna, F.; Bruno, M.; D'Agostino, M.; Sambi, S.; Barlini, S.; Casini, G.

    Experimental data of the double-differential spectra of light particles emitted at pre-equilibrium stage of nuclear processes were obtained at Laboratori Nazionali di Legnaro for the heavy-ion reactions 130 and 250 MeV 16O + 116Sn. Light charged particles were measured in coincidence with evaporation residues in order to avoid unwanted competing mechanisms. The experimental data were collected in a wide angular range from 29 to 82 degrees in the laboratory system. Theoretical model was developed in order to describe simultaneously evaporative and pre-equilibrium emission of the light particles in heavy-ion reactions. Griffin exciton model was used for the description of the pre-equilibrium stage of the compound nucleus formation, while the equilibrium evaporation processes were analyzed in the framework of the statistical theory of heavy-ion reactions. Experimental data were compared with the results of the model calculations and new approach was suggested to take into account alpha cluster formation in the projectile nucleus by measuring and analyzing pre-equilibrium alpha-particle spectra.

  2. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Science.gov (United States)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  3. Questions of the optical potential for alpha-particles at low energies

    International Nuclear Information System (INIS)

    Among the high-priority elements for the accelerator driven systems (ADS) and fusion-reactor projects are also Zr, Mo and Li, so that the corresponding nuclear data for nucleon-, deuteron-, and α-particle interactions are of actual interest for neutron production, activation, heating, shielding requirements, and material damage estimation as well as radioactive waste transmutation projects. By using advanced nuclear models that account for details of nuclear structure and the quantum nature of the nuclear scattering, significant gains in accuracy can be achieved below 150 MeV, where intranuclear cascade calculations become less accurate. It is why this work reports on the progress of the analysis of optical potentials for nucleons, deuterons and α-particles on isotopes of these elements, and corresponding reaction cross sections calculations. The elastic-scattering angular distributions measured at deuteron energies between 3 and 50 MeV on the target nucleus 6Li, and between 1 and 14.7 MeV for the target nucleus 7Li have been thus analyzed by using the computer codes SCAT2 for pure elastic scattering processes and FRESCO for the coupled reaction channels for taking into account the effects of the elastic and inelastic alpha transfer in the d+6Li interaction. The good overall agreement obtained with the experimental data for both 6,7Li target nuclei from 1 to 50 MeV has finally proved suitable optical model potentials (OMPs). Within the double folding formalism of the alpha-nucleus optical potential, used previously for a semi-microscopic analysis of the alpha-particle elastic scattering on A∼100 nuclei at energies below 32 MeV, effects due to changes of the nuclear density at a finite temperature are considered. Parameterizations of the double-folding (DF) real potential as well as of a regional phenomenological potential have been used in the study of the (n,α) reaction cross sections for the target nuclei 92,95,98,100Mo. Taking the microscopic DF potentials

  4. Laser induced nuclear waste transmutation

    OpenAIRE

    Hirlimann, Charles

    2007-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for th...

  5. Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    CERN Document Server

    Verscharen, Daniel; Chandran, Benjamin D G

    2013-01-01

    We investigate the conditions under which parallel-propagating Alfv\\'en/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which $w_{\\parallel \\alpha} \\gtrsim 0.25 v_{\\mathrm A}$, where $w_{\\parallel \\alpha} $ is the parallel alpha-particle thermal speed and $v_{\\mathrm A}$ is the Alfv\\'en speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon $w_{\\parallel \\alpha}/v_{\\mathrm A}$, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle b...

  6. Alpha-particle emission probabilities in the decay of {sup 240}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Sibbens, G., E-mail: goedele.sibbens@ec.europa.e [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Pomme, S.; Altzitzoglou, T. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Garcia-Torano, E. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Janssen, H.; Dersch, R.; Ott, O. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Martin Sanchez, A. [Departamento de Fisica, Universidad de Extremadura, Badajoz, E-06071 (Spain); Rubio Montero, M.P. [Departamento de Fisica Aplicada, Universidad de Extremadura, Merida, Badajoz, E-06800 (Spain); Loidl, M. [Laboratoire National Henri Becquerel, LNE/CEA-LIST, 91191 Gif-sur-Yvette (France); Coron, N.; Marcillac, P. de [Institut d' Astrophysique Spatiale, CNRS, 91405 Orsay Campus (France); Semkow, T.M. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States)

    2010-07-15

    Sources of enriched {sup 240}Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of {sup 240}Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from {gamma}-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while {gamma}-ray spectrometry confirms that its intensity is much lower than expected from literature.

  7. Measurement of $\\alpha$-particle quenching in LAB based scintillator in independent small-scale experiments

    CERN Document Server

    von Krosigk, B; Hans, S; Junghans, A R; Kögler, T; Kraus, C; Kuckert, L; Liu, X; Nolte, R; O'Keeffe, H M; Tseung, H S Wan Chan; Wilson, J R; Wright, A; Yeh, M; Zuber, K

    2015-01-01

    The $\\alpha$-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, $\\alpha$-particles were produced in the scintillator via $^{12}$C($n$,$\\alpha$)$^9$Be reactions. In the second approach, the scintillator was loaded with 2% of $^{\\mathrm{nat}}$Sm providing an $\\alpha$-emitter, $^{147}$Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants $^{222}$Rn, $^{218}$Po and $^{214}$Po provided the $\\alpha$-particle signal. The behavior of the observed $\\alpha$-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter $kB$ ranges from $(0.0071\\pm0.0003)$ cm/MeV to $(0.0076\\pm0.0003)$ cm/MeV. In the first approach, the $\\alpha$-particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proto...

  8. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    Energy Technology Data Exchange (ETDEWEB)

    Baccou, C., E-mail: claire.baccou@polytechnique.edu; Yahia, V.; Labaune, C. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Depierreux, S.; Neuville, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Goyon, C. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); CEA, DAM, DIF, F-91297 Arpajon (France); Consoli, F.; De Angelis, R. [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ducret, J. E.; Boutoux, G. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Rafelski, J. [Department of Physics, The University of Arizona, Tucson, Arizona 85721-0081 (United States)

    2015-08-15

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  9. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO2 laser beam from such a plasma, a resonance in the scattered power occurs near 900 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  10. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    The uranium exploration method is based on the register of 222Rn alpha particles; 222Rn gas is generated in the chain 238U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  11. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  12. High resolution alpha particle detectors based on 4H-SiC epitaxial layer

    International Nuclear Information System (INIS)

    We fabricated and characterized 4H-SiC Schottky diodes as a spectrometric detector of alpha particles. A thin blocking contact of Ni/Au (15 nm) was used to minimize the influence on alpha particles energy. Current-voltage characteristics of the detector were measured and a low current density below 0.3 nAcm−2 was observed at room temperature. 239Pu241Am244Cm was used as a source of alpha particles within the energy range between 5.1 MeV and 5.8 MeV for detector testing. The charge collection efficiency close to 100 % at reverse bias exceeding 50 V was determined. The best spectrometric performance shows a pulse height spectrum at a reverse bias of 200 V giving an energy resolution of 0.25 % in the full width and half maximum for 5.486 MeV of 241Am

  13. Intrinsic efficiency of LR-115 in alpha particles detection: simulations and experiments

    International Nuclear Information System (INIS)

    A numerical simulation is developed to characterize the response of the cellulose nitrate detector ''LR-115 type II'' to alpha particles of different incidence angles and energies. It permits to know whether an alpha particle at a given energy and direction is able to produce a visible etched track or not. For this purpose, a Vt-variable track etch rate model is used. We have considered that the track etch rate is a function of the ionization rate and the defect created by delta rays along the alpha particle trajectory. Validation of the model is presented in the form of comparisons between theoretically computed values of the sensitive energy range and the track diameters and experimentally determined ones

  14. Laser induced nuclear waste transmutation

    CERN Document Server

    Hirlimann, Charles

    2016-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for the activity to be divided by a factor of 8. High-activity, long-lasting waste that can last for thousands of years or even longer, up to geological time laps, cannot be taken care of for such long durations. Therefore, these types of waste are socially unacceptable; nobody wants to leave a polluted planet to descendants.

  15. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.W.

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  17. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  18. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles

  19. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    International Nuclear Information System (INIS)

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described

  20. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  1. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    International Nuclear Information System (INIS)

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  2. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, C.E.; Rodegheri, C.C.; Tauber, U. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Espectroscopia e Laser (LEL); Guterres, R.F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas]. E-mail: rgutterr@cnen.gov.br

    2005-11-15

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  3. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131iodine or the90yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  4. A Feasibility Study of a Portable Alpha Particle Spectrometer

    International Nuclear Information System (INIS)

    Alpha spectroscopy is widely used for detecting undeclared nuclear facilities, activities, and materials. Due to the heavy equipment required to carry out this technique, its applications is limited. With the goal of quickly and efficiently responding to undeclared nuclear facilities, activities, and materials, the present authors have designed and built a portable α-particle spectrometer. This study was conducted in order to develop a new portable α-particle spectrometer with the purpose of detecting undeclared nuclear facilities, activities, and materials on site quickly and efficiently. All heavy and large components, which are typically required for a laboratory such as a αparticle spectrometry system, were minimized and placed in a small container with a weight of 14 kg and a size of 30 cm x 30 cm x 30 cm. In the feasibility study, the calculated enrichment values of 235U obtained from the portable α-particle spectrometer were 1.868 % and 3.083 %, similar to the results from a commercial spectrometry system used in laboratories, 2.049 % and 3.253 %. These differences were possibly caused by different channel setups for each system

  5. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    Science.gov (United States)

    Charpak, G.; Benaben, P.; Breuil, P.; Peskov, V.

    2008-02-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 104). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  6. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  7. A variational calculation of 12C in the alpha-particle model

    International Nuclear Information System (INIS)

    Some physical properties of three structureless alpha particles interacting through two-body potentials were discussed. Comparison between them and the corresponding experimental observations for the 12C nucleus is done. The wave function is expanded in terms of translationally invariant harmonic-oscillator states, the coefficients being variational parameters

  8. Long-Range Alpha Particle Emission in the Fission of U235 by 3-MeV Neutrons

    International Nuclear Information System (INIS)

    The energy and angular distribution of long-range alpha particles emitted in the fission of U235 induced by 3-MeV neutrons have been measured. The alpha panicles were detected by solid-state detector and the fission fragments were detected by a gas scintillation counter. The neutrons were produced by the T (p, n) He3 reaction using a 5.5- MeV Van de Graaff accelerator. About 3000 fission events accompanied by the emission of a high-energy alpha panicle were recorded. The most probable energy of the alpha particles is between 15-16 MeV. and the energy distribution has a full width at half maximum of about D MeV, which is the same as observed in tliermal- neutron fission. The angular distribution of the long-range alpha panicles with respect to the incident neutron direction was found to be forward-peaked, in agreement with previous work on alpha emission in 14-MeV neutron-induced fission of LP. At angles of 0° and 90° with respect to the incident neutron direction the alpha panicles were detected with an angular spread of about ± 25°. The anisotropy [Nα(0°)/ Nα(90°)] was found to be 1.320 ± 0.12. This value is in agreement with the anisotropy calculated on the basis of statistical evaporation of panicles. The results of the present investigation are consistent with the hypothesis that the emission of long-range alpha panicles in fission is an evaporation process. The implications of the results of this work and of other recent investigations on long-range alpha emission are discussed. (author)

  9. New concept for a wall detector for alpha particles

    International Nuclear Information System (INIS)

    A new concept for a wall-mounted detector is described here that would measure D-T alpha flux and corresponding pitch angle distribution in tokamaks (or related toroidal devices). The sensing element is a conical Micro Channel Ring (MCR) coated with 1 to 2μ of ZnS scintillator (or possibly ZnO). The collimation of the α particles is provided by two circumferential slots at the wall surface. The alpha scintillation events on the MCR are transferred through the ring channels and coupled fiber optics bundle to an external processor. From the magnetic field vector at a given point on the device wall, a certain relation can be set up between the α-induced scintillation position on the MCR and its original pitch angle (i.e., the angle between the α emission from the fusion reaction and the magnetic field vector) which is equal to the local pitch angle since the wall α flux is dominated by prompt losses

  10. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  11. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  12. Radiation electromagnetic effect in germanium crystals under high-energy. cap alpha. -particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    Results of experimental investigation into radiation electromagnetic effect (REM) in samples of germanium crystals under approximately 40 MeV ..cap alpha..-particle irradiation in a cyclotron are presented. A high level of excitation, volumetric character of generation of non-equilibrium carriers and formation of defects as well as the form of their spatial distribution are shown to result in some peculiarities of the EMF of the REM effect on the particle flux, fluence and sample parameters. Agreement of theoretical calculations, conducted with account of specificity of ..cap alpha..-particle interaction with a crystal, and experimental data is obtained. It is revealed that the REM effect can be applied in obtaining data on spatial distribution of non-equilibrium carrier concentrations along the particle trajectory in the crystal.

  13. Radiation-electromagnetic effect in germanium crystals irradiated with high-energy. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    An experimental investigation was made of the radiation-electromagnetic effect in germanium crystals irradiated in a cyclotron with ..cap alpha.. particles of energies up to 40 MeV. The high excitation rate, the bulk nature of generation of nonequilibrium carriers and defects, and their spatial distributions gave rise to several special features in the dependence of the emf due to the radiation-electromagnetic effect on the particle flux, fluence, and parameters of samples. Theoretical calculations carried out allowing for the specific nature of the interaction of ..cap alpha.. particles with crystals agreed well with the experimental results. The radiation-electromagnetic effect could be used to obtain information on the nature of the spatial distribution of the density of nonequilibrium carriers along the trajectory of a particle in a crystal.

  14. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  15. GAMCAT - a personal computer database on alpha particles and gamma rays from radioactive decay

    International Nuclear Information System (INIS)

    The GAMCAT database is a compilation of data describing the alpha particles and gamma rays that occur in the radioactive decay of all known nuclides, adapted for IBM Personal Computers and compatible systems. These compiled data have been previously published, and are now available as a compact database. Entries can be retrieved by defining the properties of the parent nuclei as well as alpha-particle and gamma-ray energies or any combination of these parameters. The system provides fast access to the data and has been completely written in C to run on an AT-compatible computer, with a hard disk and 640K of memory under DOS 2.11 or higher. GAMCAT is available from the Fachinformationszentrum Karlsruhe. (orig.)

  16. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  17. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  18. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  19. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  20. Effect of alpha particles on the stability of Elmo Bumpy Torus (EBT) reactor. Final report

    International Nuclear Information System (INIS)

    The macroscopic stability of an ignited EBT reactor is investigated by studying the effects of the alpha particles generated by the Deuterium-Tritium (D-T) fusion reaction on the background interchange mode, the interacting interchange mode, and the high-frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and the alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizable Larmor radii. The destabilization is most pronounced when the beta of the alpha particles in highest, i.e., at birth, and recovery of stabilization takes place as these particles slow down toward thermalization. It is also shown that the alphas completely stabilize the high frequency modes so that it can safely be concluded that fusion alphas present no detrimental effects on the stability of an EBT reactor that possesses an appropriate hot electron ring for macroscopic stability

  1. Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    CERN Document Server

    Burgos, S; Ghag, C; Gold, M; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; McMillan, J E; Muna, D; Murphy, A StJ; Nicklin, G G; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Smith, N J T; Snowden-Ifft, D P; Spooner, N J C; Sumner, T J; Turk, J; Tziaferi, T

    2007-01-01

    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.

  2. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    Science.gov (United States)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  3. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    Science.gov (United States)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  4. Laser-induced nuclear excitation

    International Nuclear Information System (INIS)

    An analysis is presented of the Coulomb excitation of low-lying nuclear levels by the electrons produced by strong-field ionization of atoms. It is shown that the resulting short-lived radioactivity can be as high as on the order of 103 Ci for certain isotopes excited by using modern laser systems. Relativistic effects are demonstrated that substantially increase radioactivity as compared to that predicted by nonrelativistic theory results.

  5. Effect of Magnetohydrodynamic Perturbations on the Orbit Loss of Alpha Particles in Tokamak Plasma

    Institute of Scientific and Technical Information of China (English)

    邬良能; 俞国扬

    2002-01-01

    We investigate the orbit loss of alpha particles under helical magnetic perturbation in a tokamak. The results show that low-frequency andlow-mode number magnetic perturbation can cause stochastic loss ofalpha particles.This effect is significant for those particles close to the boundary between the transit zone and the trapped zone.The particle loss is sensitive to the phase of the magnetic perturbation, indicating the modulation of the particle loss with respect to magnetic perturbation. It is also found that the precession of the particle banana orbit can even further enhance the particle loss.

  6. Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios

    CERN Document Server

    Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E

    2016-01-01

    An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.

  7. Study of compound nucleus formation via bremsstrahlung emission in proton $\\alpha$-particle scattering

    CERN Document Server

    Maydanyuk, Sergei P

    2016-01-01

    In this paper a role of many-nucleon dynamics in formation of the compound $^{5}{\\rm Li}$ nucleus in the scattering of protons off $\\alpha$-particles at the proton incident energies up to 20 MeV is investigated. We propose a bremsstrahlung model allowing to extract information about probabilities of formation of such nucleus on the basis of analysis of experimental cross-sections of the bremsstrahlung photons. In order to realize this approach, the model includes elements of microscopic theory and also probabilities of formation of the short-lived compound nucleus. Results of calculations of the bremsstrahlung spectra are in good agreement with the experimental cross-sections.

  8. Nuclear dynamics induced by antiprotons

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Reaction dynamics in collisions of antiprotons on nuclei is investigated within the Lanzhou quantum molecular dynamics model. The reaction channels of elastic scattering, annihilation, charge exchange and inelastic collisions of antiprotons on nucleons have been included in the model. Dynamics on particle production, in particular pions, kaons, antikaons and hyperons, is investigated in collisions of $\\overline{p}$ on $^{12}$C, $^{20}$Ne, $^{40}$Ca and $^{181}$Ta from a low to high incident momenta. It is found that the annihilations of $\\overline{p}$ on nucleons are of importance on the dynamics of particle production in phase space. Hyperons are mainly produced via meson induced reactions on nucleons and strangeness exchange collisions, which lead to the delayed emission in antiproton-nucleus collisions.

  9. The role of alpha particles in the dynamics of ring-stabilized devices

    International Nuclear Information System (INIS)

    The use of relativistic electron rings to stabilize plasmas against the interchange modes has been utilized in such devices as the Elmo Bumpy Torus (EBT) and the plugs of a Tandem Mirror device (STM). In the EBT case enhanced stability is reflected in higher betas (ratio of plasma to magnetic field pressures), while in the Tandem Mirror case symmetry in the plug magnetic geometry results in reduced particle diffusion across the magnetic field in the central cell. Regardless of the application, the question arises as to what effect would alpha particles generated by the Deuterium-Tritium (DT) reactions have on the stability of such ring-stabilized devices. In this paper the macroscopic stability of such systems is reexamined in order to assess the effect of alphas on the background interchange mode, the interacting interchange mode, and the high frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizeable Larmor radii. The destabilization is most pronounced at high alpha energies i.e., at birth, and near complete recovery of stability is achieved as these particles approach thermalization with the background ions. It is also shown that the alphas completely stabilize the high frequency modes. (orig.)

  10. Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations

    CERN Document Server

    Bourouaine, Sofiane; Chandran, Benjamin D G; Maruca, Bennett A; Kasper, Justin C

    2013-01-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\\'en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\\em Wind} spacecraft's Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\\perp\\alpha}/T_{\\perp p}$ ($T_{\\parallel\\alpha}/T_{\\parallel p}$) when alpha-proton differential flow vel...

  11. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    Science.gov (United States)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  12. The feasibility of [sup 225]Ac as a source of [alpha]-particles in radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geerlings, M.W.; Hout, R. van der (Akzo nv, Arnhem (Netherlands)); Kaspersen, F.M. (Organon International bv, Oss (Netherlands)); Apostolides, C. (Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements)

    1993-02-01

    This paper proposes the utilization of [sup 225]Ac for the [alpha]-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived [alpha]-and [beta]-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, [sup 213]Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of [alpha]-particles in radioimmunotherapy. This isotope is the last [alpha] emitter in the [sup 225]Ac decay-cascade and can be extracted from a [sup 225]Ac source at the bedside of the patient. [sup 225]Ac can quasi ad infinitum be obtained from one of its precursors, [sup 229]Th, which can be made available by various means. The indications for the use of [alpha]-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified. (author).

  13. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    Science.gov (United States)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  14. Features of the gas discharge in the narrow gap micro-pattern gas detectors (MPGD) at a high level of alpha-particles background

    CERN Document Server

    Razin, V I

    2010-01-01

    In given article preliminary results of the research of the electron multiplication in MPGD are presented at a high level of alpha-particles background. This work has expanded borders of understanding of the streamer mode nature. It is seen as a complex from electrostatic and electromagnetic interactions which begin with appearance of the precursor in plasma state. In an inter-electrode gap the plasma oscillations occur, accompanied by longitudinal elastic waves of ionization, which can reach the cathode surface with induced negative charge. With the release of this charge due to previously established conducting channel there is a strong current pulse, accompanied by the emission due to recombination of positive and negative ions and a thin cord or streamer derive. In the aim of the MPGD protection from the spark breakdown at a high level of the alpha-particle background the next gas composition from a buffer, cooling and electronegative components are offered: 70% He +28% CF4 +2% SF6.

  15. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Directory of Open Access Journals (Sweden)

    Hélène Riquier

    2015-03-01

    Full Text Available Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  16. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  17. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    International Nuclear Information System (INIS)

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  18. Pre-equilibrium {\\alpha}-particle emission as a probe to study {\\alpha}-clustering in nuclei

    CERN Document Server

    Fotina, O V; Eremenko, D O; Platonov, S Yu; Yuminov, O A; Kravchuk, V L; Gramegna, F; Marchi, T; Cinausero, M; D'Agostino, M; Bruno, M; Baiocco, G; Morelli, L; Degerlier, M; Casini, G; Barlini, S; Valdrè, S; Piantelli, S; Pasquali, G; Bracco, A; Camera, F; Wieland, O; Benzoni, G; Blasi, N; Giaz, A; Corsi, A

    2013-01-01

    A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {\\alpha}-particle production. Griffin's model of non-equilibrium processes is used to account for the first stage of the compound system formation, while a Monte Carlo statistical approach was used to describe the further decay from a hot source at thermal equilibrium. The probabilities of neutron, proton and {\\alpha}-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Fission and {\\gamma}-ray emission competition were also considered after equilibration. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and {\\alpha}-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to th...

  19. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  20. Assessment of gamma, beta and alpha-particle-emitting nuclides in marine samples

    International Nuclear Information System (INIS)

    Depending on the physical properties of radionuclides different systems must be used for their measurement. Most convenient is if gamma spectrometry can be used by germanium, Silicon or Scintillation detectors (eg. NaI). If, however, the main emission consists of beta or alpha particles or low-energy photons as is the case for radionuclides decaying by electron capture, radiochemical separation and specific source preparations must be undertaken. In such cases also the radiochemical yield must be determined. The radiochemical part mainly follows the lines presented by prof. T. Jaakkola, Department of Radiochemistry, Helsinki, Finland, at a course in radioecology in Lurid, 1991. For very long-lived radionuclides other methods such as mass spectrometry are superior although often associated with sophisticated expensive instrumentation. (author)

  1. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    International Nuclear Information System (INIS)

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as μ-randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 references, 3 figures, 2 tables

  2. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  3. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  4. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  5. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Budny, R.V.; McCune, D.C.; Miller, C.O.; White, R.B.

    1996-05-01

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold {delta}{sub s}/{delta}{sub GWB} {ge} 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations.

  6. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold δs/δGWB ≥ 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations

  7. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  8. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  9. Properties of an $\\alpha$ particle in a Bohrium $270$ Nucleus under the Generalized Symmetric Woods-Saxon Potential

    CERN Document Server

    Lütfüoğlu, B C

    2016-01-01

    The energy eigenvalues and the wave functions of an $\\alpha$ particle in a Bohrium $270$ nucleus were calculated by solving Schr\\"odinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature were calculated. Stability and emission characteristics are interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed $\\alpha$ particle was calculated using the quasi-bound states, which is found close to the experimental value.

  10. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  11. Self-consistent analysis of alpha-particle heating of a fast-solenoid plasma

    International Nuclear Information System (INIS)

    A numerical technique has been developed to analyse the dynamics of a linear, magnetically confined plasma column and its associated fusion-produced alpha-particles in a self consistent manner. The thermonuclear background plasma is considered as a radially non-uniform, axially symmetric magnetofluid in pressure equilibrium with the surrounding axial magnetic field. A multi-group technique is utilized to examine the alphas as a collection of particles distributed among a continuous spectrum of confined orbits. The technique is shown to be an effective one for observing the interaction between super-thermal particles with large orbit sizes and a stable plasma of comparable size. The use of a distribution function in an adiabatic-invariant representation results in an enormous increase in the time scale which can be treated. This enables analysis of the entire duty cycle of a laser solenoid plasma in reasonable computation times. An analysis of a fast solenoid plasma is described, where the initial plasma radius and temperature are varied parametrically. A plasma column of radius 7mm, temperature 6keV, and β=0.95 will reach an ion temperature of 10keV, corresponding to a fusion energy gain of 8, after 3ms. A range of maximum gain occurs for initial temperatures of 5 to 7keV, with larger radius plasmas more favoured by the cooler limits. The effect of increasing the alpha-particle-electron energy transfer rate by a moderate amount to account for anomalous effects is to increase the plasma temperature at longer times, as long as this energy transfer is well-coupled to the electron-ion energy transfer. Increasing the rate at which plasma transport processes occur (''anomalous transport'') always results in lower fusion yield, because of rapid plasma diffusion. (author)

  12. A new method for alpha-particle detection in a classroom experiment

    International Nuclear Information System (INIS)

    Complete text of publication follows. The World Year of Physics (WYP 2005) was a worldwide celebration of Physics and its importance in our everyday lives. In harmony with its aims, that is to raise the worldwide awareness of Physics and Physical Science, we introduced a novel lab work involving a new imaging and data evaluation method for alpha-particle detection, which can be easily implemented in a classroom environment. The target group of the experiments is mainly secondary school students (age between 16-18 years). Our aim is to motivate students to develop a better understanding of Physics, allowing them to experience for themselves something of its fascination. In order to increase their attractiveness, the experiments include using a CMOS video image sensor with a video output. The covering glass window of the sensor must be carefully removed in order to make it sensitive for alpha rays. The sensor is connected to a computer where the images are recorded as a short video clip. The recorded video is played back by frames. The resulted frames are then merged together into one image. On this image the student can count the number of spots, where each spot corresponds to a hit of an alpha particle. The experiment can also be visible on a TV screen even by a whole class, however the authors suggest implementing the following experiments as a practical work individually or in small groups. As students are familiar with modern information technology, we think that they will be highly motivated to make these experiments on their own. Acknowledgements. The development of the above experimental setup was funded by ATOMKI and it was presented to the interactive science centre 'Magic corner', Debrecen, Hungary at Christmas, 2005. (author)

  13. Sawtooth mixing of alpha particles in TFTR D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, M.P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Budny, R.V.; Chang, Z. [Princeton Plasma Physics Physics Lab., Princeton, NJ (United States)] [and others

    1996-12-31

    Radially resolved confined alpha particle energy and density distributions are routinely measured on TFTR using two diagnostics: PCX and {alpha}-CHERS. The Pellet Charge-eXchange (PCX) diagnostic uses the ablation cloud formed by an impurity pellet (Li or B) for neutralization of the alphas followed by analysis of the escaping helium neutrals. PCX detects deeply trapped alpha particles in the energy range 0.5 - 3.8 MeV. The {alpha}-CHERS technique, were the alpha signal is excited by charge-exchange between alphas and the deuterium atoms of one of the heating beams and appears as a wing on the He{sup +} 468.6 nm line, detects mainly passing alphas in the range of 0.15 - 0.7 MeV. Studies of alpha losses during DT experiments on TFTR have also been conducted using lost alpha detectors located on the walls of the plasma chamber. All of these diagnostics were used for investigating the influence of sawtooth crashes on alphas in high power D-T discharges in TFTR. Both PCX and {alpha}-CHERS measurements show a strong depletion of the alpha core density and transport of trapped alphas radially outwards well beyond q = 1 surface after a sawtooth crash. Lost alpha detectors measure bursts of alpha loss of the previously confined alphas (<1%). Thus, a sawtooth crash leads mainly to radial redistribution of the alphas rather than losses. For modeling of alpha sawtooth mixing, a code is used which is based on the conventional model of magnetic reconnection and the conservation of particles, energy and magnetic flux. The effect of the particle orbit averaged toroidal drift in a perturbed helical electric field generated by the crash has also been included in the code. It is shown that mixing of the passing alphas is dominated by the magnetic reconnection whereas trapped alphas are affected mainly by ExB drift.

  14. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  15. Nuclear apoptosis induced by isolated mitochondria

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We isolated and purified mitochondria from mouse livers and spinach leaves. When added into egg extracts of Xenopus laevis, they caused nuclei of mouse liver to undergo apoptotic changes. Chromatin condensation, margination and DNA ladder were observed. After incubating isolated mitochondria in some hypotonic solutions, and centrifuging these mixtures at high speed, we got mitochondrial supernatants. It was found that in the absence of cytosolic factor, the supernatant alone was able to induce apoptotic changes in nuclei. The effective components were partly of protein. DNA fragmentation was partly inhibited by caspase inhibitors AC-DEVD-CHO and AC-YVADCHO. Meanwhile, caspase inhibitors fully blocked chromatin condensation. Primary characterization of the nuclear endonuclease(s) induced by mitochondrial supernatants was also conducted. It was found that this endonuclease is different from endonuclease G, cytochrome c-induced nuclease, or Ca2+-activated endonuclease.

  16. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  17. Nuclear effects in neutrino induced reactions

    CERN Document Server

    Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S

    2008-01-01

    We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.

  18. Repair of alpha-particle-induced DNA double strand breaks and their localization in chromatin in human lymphocytes%α粒子照射诱发DNA双链断裂修复及其在染色质中的分布

    Institute of Scientific and Technical Information of China (English)

    张亚平; 张旭霞; 王晶; 暴一众; 李佳颖; 殷丽娜; 陈红红

    2014-01-01

    Objective To investigate the characteristics of repair of DNA double strand breaks (DSB) induced by high-LET α-particle irradiation and their relationship with chromatin structure in the G0 lymphocytes of human peripheral blood,in order to provide the experimental basis for the judgement and dose evaluation of internal α-particle radiation.Methods Peripheral whole blood were collected from four healthy adults and lymphocytes were separated.A monocellular layer of human lymphocytes attached in Mylar film were irradiated with 0 and 0.5 Gy of α-particles and the lymphocytes suspensions were irradiated with 0 and 0.5 Gy of γ-rays.The formations of γH2AX foci as a surrogate marker of DSB and Rad51 foci as a marker of homologous recombination (HR) repair and their spatial localization in chromatin structure were measured by immunofluorescence staining technique at 10 min-48 h post-irradiation.Results Linear-γH2AX foci tracks were observe at 10 min-2 h post-irradiation in lymphocytes exposed to α-particle irradiation(t =11.12,14.40,16.56,P < 0.05),and almost completely disppeared at 6 h postirradiation.The frequencies of γH2AX foci peaked at 30 min after α-particle irradiation (t =51.72,P <0.05) and then decreased rapidly during 6 h post-irradiation (t =29.83,P < 0.05).The average number of foci remained only about 16% at 24-48 h post-irradiation.Moreover,27% of γH2AX foci located at DAPI-bright heterochromatin region at 10 min after α-particle radiation,suggesting that the efficacy of DSB repair may be decreased.In contrast,at 10 min-48 h after γ-ray irradiation,no linear γH2AX foci track was observed and the γH2AX foci diffused randomly in nucleus and predominantly located in DAPI-weak euchromatin region.The numbers of formative and residual γH2AX foci after γ-ray irradiation were significantly less than those after α-particle radiation.During 30 min-2 h after α-particle and γ-ray irradiation,the frequencies of Rad51 foci slightly but not

  19. AVERAGE REACTION CROSS-SECTIONS FOR 74-MEV TO 112-MEV ALPHA-PARTICLES ON I-127 AND CS-133

    NARCIS (Netherlands)

    WARNER, RE; WILSCHUT, HW; RULLA, WF; FELDER, GN

    1991-01-01

    The average reaction cross section for 74- to 112-MeV alpha particles on I-127 and Cs-133 was measured by a new method using a magnetic spectrograph and a CsI scintillation detector. The result, sigma-R = 2220+/-50 mb, is in good agreement with optical model calculations and finite-range microscopic

  20. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  1. Wettability control of BeO surfaces by alpha-irradiation-induced nuclear transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Je [Radiation Instrumentation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Hur, Min Goo, E-mail: hur09@kaeri.re.kr [Radiation Instrumentation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Kong, Young Bae [Radiation Instrumentation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Son, Jeong Mun [Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 (Korea, Republic of); Park, Yong Dae; Park, Jeong Hoon; Yang, Seung Dae [Radiation Instrumentation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2014-08-01

    A simple method to control the wettability of BeO surfaces is developed on the base of alpha irradiation. In this research, BeO disks were irradiated with an alpha beam under conditions of ∼25 MeV in alpha particle energy and ∼315 nA/cm{sup 2} in beam current density. After the alpha irradiation, changes in morphology and chemical composition of BeO surfaces were analyzed using a field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The wettability of pristine and alpha-irradiated BeO surfaces was analyzed by measuring water contact angles (CAs). The result of analysis indicated that C and F atoms were produced by the alpha irradiation. {sup 12}C atoms were mainly produced by (α, n) nuclear reaction when {sup 9}Be atoms collide with energetic alpha particles. On the other hand, {sup 19}F atoms were mostly created by (α, n) reaction and following β+ decay when {sup 16}O atoms collide with alpha particles. Moreover, CF{sub 2} functional groups, which provide hydrophobic property, were formed by the combination of produced C and F atoms. The amount of CF{sub 2} functional groups produced on the surface increased as the fluence increased while no significant change in the surface roughness was observed. Accordingly, the CA of alpha-irradiated BeO surfaces gradually increased as the fluence increased. In conclusion, the wettability of BeO surfaces could be easily and precisely controlled by the alpha irradiation, from hydrophilicity to hydrophobicity.

  2. Nuclear interaction cross sections for proton radiotherapy

    CERN Document Server

    Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A

    1999-01-01

    Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.

  3. Alfven waves, alpha particles, and pickup ions in the solar wind

    Science.gov (United States)

    Goldstein, B. E.; Neugebauer, M.; Smith, E. J.

    1995-01-01

    Past studies of the properties of Alfven waves in the solar wind have indicated that (1) the amplitude of the velocity fluctuations is almost always smaller than expected on the basis of the amplitude of the field fluctuations, even when the anisotropy of the plasma is taken into account, and (2) the alpha particles do not participate in the wave motions because they 'surf' on the waves carried by the proton fluid. Ulysses data are used to demonstrate that (1) the discrepancy between the velocity and field fluctuations is greater at high heliographic latitudes than in the ecliptic plane, and (2) the alphas do participate in the waves, being either in phase or out of phase with the proton motions depending on whether the differential flow speed between the alphas and protons is greater than or less than the 'observed' wave speed, B(sub o)(delta v squared / delta B squared)exp 1/2, as determined from the ratio of the amplitudes of the velocity and magnetic fluctuations. It is proposed that the modification of Alfven wave propagation speed is due to pressure anisotropies resulting from asymmetric distributions of interstellar pickup ions. If the proposed explanation is correct, it indicates that scattering of pickup ions onto a (bi)spherical shell may not be as complete as generally supposed.

  4. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  5. Alpha particle spectroscopy for CR-39 detector utilizing matrix of energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Awad, E.M. [Department of General Sciences, Yanbu Industrial College, PO Box 30436, Madinat Yanbu Al-Sinaiya (Saudi Arabia); Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)], E-mail: ayawad@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; Rammah, Y.S. [Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)

    2007-10-01

    A method for determining alpha-particle energy using CR-39 detector by utilizing matrix of energy equation was described. The matrix was composed from two axes; the track minor axis (m) and diameter of etched out track end (d) axis of some selected elliptical tracks. The energy E in (m,d) coordinate was approximated by matrix of energy equations given by: E{sub k}={sigma}{sub i,j=0}{sup 2}a{sub ij}d{sub k}{sup i}m{sub k}{sup j}, which was identified using two different approaches. First, i and j were treated as power exponents for d and m. The adjusting parameters values a{sub ij} were obtained and the energy of a given track was deduced directly from it. Second, i and j were treated as indices of some chosen tracks that were fitted to obtain iso-energy curves that were superimposed on m-d scatter plot as calibration curves. The energy between any two successive iso-energy curves in this case was assumed varied linearly with d for a given m. The energy matrix in both cases was solved numerically. Results of the two approaches were compared.

  6. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  7. Evaluation of internal alpha-particle radiation exposure and subsequent fertility among a cohort of women formerly employed in the radium dial industry

    Energy Technology Data Exchange (ETDEWEB)

    Schieve, L.A.; Davis, F.; Freels, S. [Univ. of Illinois, Chicago, IL (United States)] [and others

    1997-02-01

    This study examined the effect of internal exposure to {alpha}-particle radiation on subsequent fertility among women employed in radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n = 603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of {alpha} particles emitted, fraction of energy absorbed within the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of {gamma}-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility. 42 refs., 5 tabs.

  8. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  10. Study of the performance of the ATLAS monitored drift tube chambers under the influence of heavily ionizing $\\alpha$-particles

    CERN Document Server

    Sampsonidis, Dimitrios; Liolios, Anastasios; Manolopoulou, Metaxia; Petridou, C

    2004-01-01

    The MDT chambers of the ATLAS Muon Spectrometer will operate in a heavy LHC background environment mainly from photons and neutrons. The ionization produced by neutron recoils is much higher than the one from photons or muons and can be simulated by the use of alpha particles. A systematic study of the behavior of the ATLAS Monitored Drift Tubes (MDTs) under controlled irradiation has been performed. The presence of alpha particles results in the reduction of the gas gain due to space charge effects. The gas gain reduction has been studied in a single tube set up using a well controlled radium (/sup 226/Ra) source in order to enrich the tube gas (Ar/CO/sub 2/) with the alpha emitter /sup 220/Rn and irradiate the tubes internally. The results are confronted with Garfield simulations.

  11. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    Science.gov (United States)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  12. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  13. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f1(z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The fl(z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  14. Nucleon-alpha particle interactions from inversion of scattering phase shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, N.; Amos, K.; Apagyi, B.; Lun, D.R.

    1996-03-01

    Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-{alpha}) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the `Martin` condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - {alpha} and p - {alpha} (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs.

  15. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    Science.gov (United States)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-10-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  16. Determination of arsenic, antimony, and bismuth in silicon using 200 keV. cap alpha. -particle backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Krejci, P.; Rybka, V. (Tesla, Prague (Czechoslovakia)); Pelikan, L. (Technical University of Prague (Czechoslovakia). Dept. of Microelectronics)

    1982-11-16

    Concentration profiles of As, Sb, and Bi implanted into Si are studied using backscattering of the 200 keV ..cap alpha..-particles. A conventional ion implanter serves as a source of analyzing beam and the scattered particles are detected using a silicon surface barrier detector. Measured projected ranges R/sub P/ of implanted atoms are found to be in satisfactory agreement with theoretical predictions.

  17. Increase in the area of etched alpha-particle tracks in CR-39 plastic with increasing storage time under nitrogen

    CERN Document Server

    Bhakta, J R; Miles, J C H

    1999-01-01

    The area of etched tracks in CR-39 (polyallyl diglycol carbonate, PADC) exposed to alpha-particles from an americium-241 source has been investigated as a function of post-exposure storage time in a dry nitrogen atmosphere. Data were collected over 2.5 years and the results show that the nominal maximum area of the track area distribution increases with increasing storage time.

  18. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  19. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, S.K.; Krishna, R.M.; Zavalla, K.J. [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Mandal, K.C., E-mail: mandalk@cec.sc.edu [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-02-11

    Schottky barrier detectors have been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 360 μm SiC substrates by depositing ∼10 nm nickel contact. Current–voltage (I–V) and capacitance–voltage (C–V) measurements were carried out to investigate the Schottky barrier properties. The detectors were evaluated for alpha particle detection using a {sup 241}Am alpha source. An energy resolution of ∼2.7% was obtained with a reverse bias of 100 V for 5.48 MeV alpha particles. The measured charge collection efficiency (CCE) was seen to vary as a function of bias voltage following a minority carrier diffusion model. Using this model, a diffusion length of∼3.5 μm for holes was numerically calculated from the CCE vs. bias voltage plot. Rise-time measurements of digitally recorded charge pulses for the 5.48 MeV alpha particles showed a presence of two sets of events having different rise-times at a higher bias of 200 V. A biparametric correlation scheme was successfully implemented for the first time to visualize the correlated pulse-height distribution of the events with different rise-times. Using the rise-time measurements and the biparametric plots, the observed variation of energy resolution with applied bias was explained.

  20. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  1. Stability and {alpha}-particle confinement in the Sphellamak reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2000-10-01

    The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs

  2. The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis. An analysis of published data

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, G.B. [Radiation Effects Research Foundation, Hiroshima (Japan)

    2002-12-01

    Chronic exposure to high linear energy transfer (LET) radiation has been shown to cause liver cancer in humans based on studies of patients who received Thorotrast, a colloidal suspension of thorium dioxide formerly used as a radiological contrast agent, and on studies of Russian nuclear weapons workers exposed to internally ingested plutonium. Risk estimates for these exposures and specific subtypes of liver cancer have not been previously reported. Combining published data with tumor registry data pertinent to the Thorotrast cohorts in Germany, Denmark, Portugal, and Japan and to Russian workers, we generally found significantly elevated risks of three major histologic types of liver tumors: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and hemangiosarcoma (HS) for Thorotrast exposures. In contrast, HS was the only liver tumor significantly associated with the lower {alpha}-particle doses experienced by the Russian workers. Excess cases per 1,000 persons exposed to Thorotrast were similar for the three liver cancer subtypes but lower for plutonium exposure. Odds ratios (OR) of HS and CC for Thorotrast were from 26 to 789 and from 1 to 31 times higher than those for HCC, respectively. ORs of liver cirrhosis for Thorotrast exposure ranged from 2.7 (95% confidence interval (CI): 2.2-3.4) to 6.7 (5.1-8.7). (author)

  3. Probability of induced nuclear fission in diffusion model

    International Nuclear Information System (INIS)

    The apparatus of the fission diffusion model taking into account nonequilibrium stage of the process as applied to the description of the probability of induced nuclear fission is described. The results of calculation of the energy dependence of 212Po nuclear fissility according to the new approach are presented

  4. Initial evaluation of {sup 227}Th-p-benzyl-DOTA-rituximab for low-dose rate {alpha}-particle radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway)]. E-mail: jostein.dahle@labmed.uio.no; Borrebaek, Jorgen [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Melhus, Katrine B. [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Bruland, Oyvind S. [Department of Clinical Medicine, University of Oslo, 0316 Oslo (Norway); Department of Oncology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Salberg, Gro [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Larsen, Roy H. [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway)

    2006-02-15

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with {beta}-emitting isotopes. In contrast to {beta}-emitters, the shorter range and high linear energy transfer (LET) of {alpha} particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of {alpha}-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The {alpha}-emitting radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the {alpha}-particle-emitting nuclide {sup 227}Th alone, the chelated form, {sup 227}Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of {sup 227}Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the {sup 227}Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of {sup 227}Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with {sup 227}Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of {sup 227}Th-DOTA-p-benzyl-rituximab.

  5. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    Science.gov (United States)

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.

  6. Pulse-shape discrimination and energy quenching of alpha particles in Cs$_2$LiLaBr$_6$:Ce$^{3+}$

    CERN Document Server

    Mesick, Katherine E; Stonehill, Laura C

    2016-01-01

    Cs$_2$LiLaBr$_6$:Ce$^{3+}$ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from $^{227}$Ac to determine the quenching factor of the alphas. A linear quenching relationship $L_{\\alpha} = E_{\\alpha} \\times q + L_0$ was found at alpha particle energies above 5 MeV, with a quenching factor $q = 0.71$ MeVee/MeV and an offset $L_0 = - 1.19$ MeVee.

  7. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?

    Directory of Open Access Journals (Sweden)

    Hong Song

    2012-06-01

    Full Text Available Alpha-particle emitter labeled monoclonal antibodies are being actively developed for treatment of metastatic cancer due to the high linear energy transfer (LET and the resulting greater biological efficacy of alpha-emitters. Our knowledge of high LET particle radiobiology derives primarily from accelerated heavy ion beam studies. In heavy ion beam therapy of loco-regional tumors, the modulation of steep transition to very high LET peak as the particle approaches the end of its track (known as the Bragg peak enables greater delivery of biologically potent radiation to the deep seated tumors while sparing normal tissues surrounding the tumor with the relatively low LET track segment part of the heavy ion beam. Moreover, fractionation of the heavy ion beam can further enhance the peak-to-plateau relative biological effectiveness (RBE ratio. In contrast, internally delivered alpha particle radiopharmaceutical therapy lack the control of Bragg peak energy deposition and the dose rate is determined by the administered activity, alpha-emitter half-life and biological kinetics of the radiopharmaceutical. The therapeutic ratio of tumor to normal tissue is mainly achieved by tumor specific targeting of the carrier antibody. In this brief overview, we review the radiobiology of high LET radiations learned from ion beam studies and identify the features that are also applicable for the development of alpha-emitter labeled antibodies. The molecular mechanisms underlying DNA double strand break repair response to high LET radiation are also discussed.

  8. Comprehensive evaluation of the linear stability of Alfv\\'en eigenmodes driven by alpha particles in an ITER baseline scenario

    CERN Document Server

    Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E

    2016-01-01

    The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...

  9. Studies of UV-cured CR-39 recording properties in view of its applicability in radiobiological experiments with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Sylvain [Laboratoire de Microanalyses Nucleaires, UMR CEA E4, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Ross, Caroline J. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Armbruster, Vincent [Laboratoire d' Optique P.M. DUFFIEUX, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Hill, Mark A. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Gharbi, Tijani [Laboratoire d' Optique P.M. DUFFIEUX, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Fromm, Michel [Laboratoire de Microanalyses Nucleaires, UMR CEA E4, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France)

    2005-11-15

    In radiobiology, low doses of high-LET radiation correspond to a few particle traversals through the cell population. Therefore, for studies on cell monolayers irradiated with a low dose of {alpha}-particles, it is extremely useful if the number and position of particle traversals can be determined. In this study we describe a new method, based on UV-curing, to obtain a 10{mu}m thick CR-39 grafted onto a 2.5{mu}m thick PolyEthylene Terephtalate (PET). This thin double polymeric layer, used as a dish base, has a regular and reproducible detector thickness which can be traversed by 3.5MeV {alpha}-particles, with a sufficient residual energy to traverse mammalian cells attached to the base. The recording properties of a PET-CR-39 dish, together with a demonstration of its use for radiobiological experiments, are presented. This new tool allows the precise determination of single-track impact parameters at a sub-cellular level.

  10. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    Science.gov (United States)

    Al-Ta’Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  11. Excitation function calculations for α + 93Nb nuclear reactions

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  12. Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field

    CERN Document Server

    Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

    2014-01-01

    Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

  13. X-ray luminescence spectra of graded-gap Al xGa 1- xAs structures irradiated by alpha particle

    Science.gov (United States)

    Šilėnas, A.; Požela, J.; Požela, K.; Jucienė, V.; Dapkus, L.

    2011-12-01

    The influence of 241Am alpha particle irradiation on X-ray luminescence spectra of the graded-gap AlxGa1-xAs structures of different thicknesses is investigated. It is observed that the integral X-ray luminescence intensity of nonirradiated thin (15 μm) structure is 1.4 times less than that in the thick (32 μm) structure, and this difference increases to 3 times after 3×1010 cm-2 dose of irradiation by alpha particle. The X-ray luminescence intensity of the energy hνFgg is responsible of that large difference, because it shifts the X-ray generated carriers to the narrow-gap surface with great nonradiative surface recombination rate. The alpha particle irradiation increases nonradiative recombination rate and causes a decrease of the X-ray luminescence intensity of all spectra lines in the thin (15 μm) detector. The most significant drop in X-ray luminescence efficiency is observed from the region at narrow-gap surface after the initial stage (109 cm-2 dose) of alpha particle irradiation. In the 32 μm thick detector, the luminescence intensity of the energy hν=1.8 eV does not change up to 2×1010 cm-2 of alpha particle irradiation dose. That means the high irradiation hardness of the thick graded-gap X-ray detector with optical response.

  14. INDUCED NUCLEAR ACTIVITY IN GALAXY PAIRS

    OpenAIRE

    F. J. Hernández-Ibarra; D. Dultzin; Krongold, Y.; del Olmo, A.; Perea, J.

    2011-01-01

    Analizamos espectros del núcleo de 893 galaxias entre pares de galaxias y galaxias aisladas de la muestra SLOAN (DR7). Estos pares pueden ser divididos en tres grupos: S+S, E+E y E+S de acuerdo con el catálago de pares aislados de galaxias de Karachentsev (KPG). También analizamos dos muestras de galaxias aisladas: el catálogo de galaxias aisladas de Karachentseva (CIG) y la muestra de galaxias aisladas en el hemisferio norte de Varela. Estudiamos la incidencia de la actividad nuclear en cada...

  15. INDUCED NUCLEAR ACTIVITY IN GALAXY PAIRS

    Directory of Open Access Journals (Sweden)

    F. J. Hernández-Ibarra

    2011-01-01

    Full Text Available Analizamos espectros del núcleo de 893 galaxias entre pares de galaxias y galaxias aisladas de la muestra SLOAN (DR7. Estos pares pueden ser divididos en tres grupos: S+S, E+E y E+S de acuerdo con el catálago de pares aislados de galaxias de Karachentsev (KPG. También analizamos dos muestras de galaxias aisladas: el catálogo de galaxias aisladas de Karachentseva (CIG y la muestra de galaxias aisladas en el hemisferio norte de Varela. Estudiamos la incidencia de la actividad nuclear en cada grupo. Nuestros resultados muestran que la incidencia de actividad nuclear es significativamente mayor en galaxias pares que en las aisladas. Más aún, mostramos que esta incidencia es mayor para galaxias con morfología de tipo temprano. La presencia del bulbo parece ser crucial para explicar cómo se alimenta el hoyo negro supermasivo en AGN. También confirmamos que los AGN de tipo 1 están casi ausentes en toda la muestra. Este resultado no es posible explicarlo tomando sólo en cuenta un modelo unificado.

  16. Poloidal drift enhancement for improved collisionless alpha particle confinement in stellarator configurations in the quasi-isodynamic category

    International Nuclear Information System (INIS)

    Poloidal closure of contours of the second adiabatic invariant has been reported to be an essential issue in the realization of good collisionless alpha particle confinement in stellarator configurations in the quasi-isodynamic category. This common feature is examined from a different aspect, that of the poloidal drift enhancement. This is realized by radial variation of the uniform magnetic field component with a diamagnetic effect for finite beta equilibria in the W7-X stellarator, which gives poloidal drift enhancement everywhere on a flux surface. On the other hand, the additional helicity introduced to the vacuum field in the quasi-isodynamic configuration can also enhance poloidal drift. The different methods for poloidal drift enhancement are clarified systematically on the basis of the magnetic field spectrum and the magnetic topography. (author)

  17. Special features of photoelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated by. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    Results of studies on a spatial distribution of defects arising in Ge crystals following ..cap alpha..-particle (40 MeV) irradiation are given. The distribution of defects playing the role of recombination centres is shown to produce the definite effect on diffusion-recombination processes in semiconductors. The carrier capture cross section on recombination centres is determined to be sigma approximately 10/sup -15/ cm/sup -2/. A representation of recombination wall appearing in the vicinity of radiation defect concentration peak is introduced. The experimental data are compared with the developed theoretical representations. It is shown that studies on the photoelectromagnetic effect can give information both on the pattern of radiation defect spatial distribution and recombination parameters of irradiated semiconductors.

  18. Characteristics of the photelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated with. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    The spatial distribution of defects created in Ge crystals by irradiation with 40-MeV ..cap alpha.. particles was investigated. The distribution of the defects acting as recombination centers had a decisive influence on the diffusion-recombination processes in this semiconductor. The carrier-capture cross section of the recombination centers (sigmaapprox.10/sup -15/ cm/sup 2/) was determined. A concept of a recombination wall, which appeared in the region of a maximum of the radiation defect concentration, was introduced. The experimental data were compared with theoretical representations. This comparison demonstrated that an investigation of the photoelectromagnetic effect could give information both on the nature of the spatial distribution of radiation defects and on the recombination parameters of an irradiated semiconductor.

  19. Development of diamond thin film-based alpha particle detectors for online assay of plutonium content in corrosive liquid medium

    International Nuclear Information System (INIS)

    In the present work, diamond thin films were prepared using microwave plasma chemical vapor deposition (MPCVD) method and characterized using XRD, OES, SEM, Raman spectroscopy and I-V techniques. These films were subjected to annealing and chemical cleaning for further improving the film quality. Surface metallization was obtained by gold deposition using PVD. These films were configured in semiconductor-insulator-metal heterostructure and mounted in SS shells. Gold coated growth surface (detector's active area) was sealed by chemical resistant sealing. Suitable bias was applied between the front and back electrical contacts to enable charge collection generated upon alpha particle interaction with diamond. The photograph of developed detector in the lab is shown

  20. Use of the Kalman filter in signal processing to reduce beam requirements for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Several techniques proposed for diagnosing the velocity distribution of fast alpha-particles in a burning plasma require the injection of a beam of fast neutral atoms as probes. The author discusses how improving signal detection techniques is a high leverage factor in reducing the cost of the diagnostic beam. Optimal estimation theory provides a computational algorithm, the Kalman filter, that can optimally estimate the amplitude of a signal with arbitrary (but known) time dependence in the presence of noise. In one example presented, based on a square-wave signal and assumed noise levels, the Kalman filter achieves an enhancement of signal detection efficiency of about a factor of 10 (as compared with the straightforward observation of the signal superimposed on noise) with an observation time of 100 signal periods

  1. On the features of bursts of neutrons, hard x-rays and alpha-particles in the pulse vacuum discharge with a virtual cathode and self-organization

    Science.gov (United States)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu; Samoylov, I. S.; Ostashev, V. E.

    2015-11-01

    In this paper, we continue the discussion of the experimental results on the yield of DD neutrons and hard x-rays in the nanosecond vacuum discharge (NVD) with a virtual cathode, which was started in the previous article of this issue, and previously (Kurilenkov Y K et al 2006 J. Phys. A: Math. Gen. 39 4375). We have considered here the regimes of very dense interelectrode aerosol ensembles, in which diffusion of even hard x-rays is found. The yield of DD neutrons in these regimes is conditioned not only by the head-on deuteron-deuteron collisions in the potential well of virtual cathode, but also by the channel of “deuteron-deuterium cluster” reaction, which exceeds overall yield of neutrons per a shot by more than an order of magnitude, bringing it up to ∼ 107/(4π). Very bright bursts of hard x-rays are also represented and discussed here. Presumably, their nature may be associated with the appearance in the NVD of some properties of random laser in the x-ray spectrum. Good preceding agreeing of the experiment on the DD fusion in the NVD with its particle-in-cell (PIC) simulations provides a basis to begin consideration of nuclear burning “proton-boron” in the NVD, which will be accompanied by the release of alpha particles only. With this objective in view, there has been started the PIC-simulation of aneutronic burning of p-B11, and its preliminary results are presented.

  2. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology; Immunovectorisation de radioelements emetteurs de particules alpha: une nouvelle voie therapeutique en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, M

    2007-05-15

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the {sup 131}iodine or the{sup 90}yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  3. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  4. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  5. Optically induced dynamic nuclear spin polarisation in diamond

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  6. Ultraviolet radiation-induced modifications of the optical and registration properties of a CR-39 nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.F., E-mail: abdallahsaad56@hotmail.com [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Al-Faitory, N.M. [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya); Hussein, M. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mohamed, R.A. [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya)

    2015-09-15

    The UV–VIS (ultraviolet–visible) spectra and etching characteristics of poly allyl diglycol carbonate (PADC, a form of the CR-39 polymer) detector films after exposure to UV radiation for various times have been studied. Etching experiments were carried out on the UV-exposed CR-39 detectors after alpha particle and fission-fragment irradiation using a {sup 252}Cf source. The bulk and track etch rates were measured using the alpha and fission-fragment track diameters, and the sensitivity and the detection efficiency were also determined. The optical band gap for both indirect and direct transitions was calculated based on the absorption edge of the UV spectra of the pristine and variously UV-exposed detectors. The optical band gap evidently indicates a gradual change in the optical properties of the CR-39 detector that is induced by the UV radiation. This study shows that the UV-exposed CR-39 detectors were demonstrated to be highly sensitive to alpha particles, but proved to be somewhat less sensitive to the fission fragments.

  7. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, T., E-mail: T.Dupuis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Chene, G., E-mail: Gregoire.Chene@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Mathis, F., E-mail: Francois.Mathis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); and others

    2011-12-15

    The 'IPNAS' laboratory, in collaboration with the 'Centre Europeen d'Archeometrie' is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  8. Angular and velocity distributions of secondary particles emitted in interaction of 3. 6-GeV/nucleon. cap alpha. particles and lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Antonenko, V.G.; Vinogradov, A.A.; Galitskii, V.M.; Grigor' yan, Y.I.; Ippolitov, M.S.; Karadzhev, K.V.; Kuz' min, E.A.; Man' ko, V.I.; Ogloblin, A.A.; Paramonov, V.V.; Tsvetkov, A.A.

    1980-04-01

    The technique is described and results presented of measurements of the velocity and angular distributions of pions, protons, and deuterons, and tritons emitted in bombardment of lead nuclei by ..cap alpha.. particles with energy 3.6 GeV/nucleon.

  9. Effects of spins and resonance parities of 12C on the mechanism of emission of three alpha particles in the 11B (p, 3 α) reaction

    International Nuclear Information System (INIS)

    This research thesis reports the study of the mechanism of emission of alpha particles in the 11B (p, 3 α) reaction with respect to the effects of spins and parities of the various resonances met between 150 keV and 4 MeV. From an experimental point of view, the reaction has been studied by two methods: the detection of alpha particles by a semiconductor-based counter located at a given angle with respect to the beam direction and study of continuous spectra of alpha particles with respect to projectile energies, and recording, for a given resonance, of alpha-alpha coincidences by using the multi-parametric technique with two semiconductor-based sensors with a varying relative angular position. After a discussion of the main characteristics of resonance and of the mechanism of emission of alpha particles, the author first reports the theoretical study of a reaction producing three particles in the final state, and then reports the theoretical calculation of direct alpha spectrum shapes in the case of the 11B (p, 3 α) reaction (statistic hypothesis, hypothesis of interaction with two particles in the final state). The next part reports the experimental study of the 11B (p, 3 α) reaction

  10. Prm3p Is a Pheromone-induced Peripheral Nuclear Envelope Protein Required for Yeast Nuclear Fusion

    OpenAIRE

    Shen, Shu; Tobery, Cynthia E.; Rose, Mark D.

    2009-01-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromon...

  11. 3D Effect of Ferromagnetic Materials on Alpha Particle Power Loads on First Wall Structures and Equilibrium on ITER

    International Nuclear Information System (INIS)

    Full text: The finite number and limited toroidal extent of the TF coils cause a periodic variation of the toroidal field called the magnetic ripple. This ripple can provide a significant channel for fast particle leakage, leading to very localized fast particle loads on the walls. Ferromagnetic inserts will be embedded in the double wall structure of the vacuum vessel in order to reduce the ripple. In ITER the toroidal field deviations are locally further enhanced by the presence of discrete ferromagnetic structures, e.g. TBM. Thus, there are complex symmetry-breaking effects. It is not yet fully understood how superimposing the periodic ripple and a local perturbation affect the fast ion confinement and concerns have been voiced that the combined effect might lead to significant channelling of the alpha power. In this work, the wall power loads due to fusion-born alpha particles were restudied for a variety of cases addressing issues such as different wall configurations, proper inclusion of the TBM effect on the magnetic background, and the possible corrections to 3D equilibrium introduced by the ferromagnetic materials using the 3D equilibrium code, VMEC, since 3D corrections to the equilibrium might enhance the alpha particle loss. To properly include the TBM effect on the magnetic background, the FEMAG code was used, and the effect was calculated on the total field including the poloidal field by the plasma current as well as the vacuum field. In the VMEC analysis, it was found that the difference between a full 3D equilibrium reconstruction and 'an axisymmetric equilibrium + vacuum fields' was small. Thus, it was concluded that no 3D equilibrium reconstruction was needed and that it was sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Under the new boundary condition, the wall load calculation was carried out by using ASCOT, DELTA5D, and F3D OFMC code. Including the plasma current contribution in the magnetic field

  12. Radiation risk to low fluences of alpha particles may be greater than we thought.

    Science.gov (United States)

    Zhou, H; Suzuki, M; Randers-Pehrson, G; Vannais, D; Chen, G; Trosko, J E; Waldren, C A; Hei, T K

    2001-12-01

    Based principally on the cancer incidence found in survivors of the atomic bombs dropped in Hiroshima and Nagasaki, the International Commission on Radiation Protection (ICRP) and the United States National Council on Radiation Protection and Measurements (NCRP) have recommended that estimates of cancer risk for low dose exposure be extrapolated from higher doses by using a linear, no-threshold model. This recommendation is based on the dogma that the DNA of the nucleus is the main target for radiation-induced genotoxicity and, as fewer cells are directly damaged, the deleterious effects of radiation proportionally decline. In this paper, we used a precision microbeam to target an exact fraction (either 100% or making risk estimates for low dose, high linear-energy-transfer (LET) radiation exposure. PMID:11734643

  13. A primer for electroweak induced low-energy nuclear reactions

    Indian Academy of Sciences (India)

    Y N Srivastava; A Widom; L Larsen

    2010-10-01

    Under special circumstances, electromagnetic and weak interactions can induce low-energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow-moving electrons can – under appropriate circumstances – be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low-energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analysed previously, present order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.

  14. Studies of 3He Induced Nuclear Reactions on Cadmium

    International Nuclear Information System (INIS)

    Excitation functions of 3He induced nuclear reactions on natural cadmium were measured using the standard stacked foil technique and high resolution gamma ray spectroscopy. The experimental cross sections for the nuclear reactions natCd(3He,xnp )117m,g,116m115m,114m,113m,111,110m,g,109,108,107 In were measured from their threshold energy up to 27 MeV. The integral yields for some medically important products were determined. Theoretical calculations using the nuclear codes ALICE- IPPE, TAL YS, and EMPIRE-3 were used to describe the formation of these products. Theoretical and experimental results were compared with each other. K

  15. Polarized nuclear target based on parahydrogen induced polarization

    Energy Technology Data Exchange (ETDEWEB)

    Budker, D., E-mail: dbudker@gmail.com [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ledbetter, M.P. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Appelt, S. [Central Institute for Electronics, Research Center Juelich, D-52425 Juelich (Germany); Bouchard, L.S. [Department of Chemistry and Biochemistry, California NanoSystems Institute, Biomedical Engineering IDP, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095 (United States); Wojtsekhowski, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam. -- Highlights: Black-Right-Pointing-Pointer Novel concept for polarized nuclear targets. Black-Right-Pointing-Pointer The target features fast reversal and operates at near-zero magnetic field. Black-Right-Pointing-Pointer Based on the technique of parahydrogen induced polarization that is revolutionizing NMR and enables NMR/MRI without magnets. Black-Right-Pointing-Pointer Competitive figure-of-merit for polarized targets.

  16. Polarized nuclear target based on parahydrogen induced polarization

    Energy Technology Data Exchange (ETDEWEB)

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  17. Coherence effects in nuclear bremsstrahlung

    NARCIS (Netherlands)

    Lohner, H

    2002-01-01

    The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-

  18. Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation.

    Directory of Open Access Journals (Sweden)

    Christian Wulbrand

    Full Text Available Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting (213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with (213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM. Survival and viability of CAL33 cells decreased both after incubation with increasing (213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml-1.48 MBq/ml and irradiation with increasing doses of photons (0.5-12 Gy. Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by (213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting (213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, (213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors.

  19. An octahedral deformation with six alpha particles at the Z = 12 system, Mg nuclides: Third nucleons, Alpharons

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We suggest that the emergence of a large deformation in the magnesium, Mg, nuclides, especially at the Z = 12, N = 12, should be associated with an octahedral deformed shape. Within the framework of molecular geometrical symmetry, we find a possibility that the Z = 12, N = 12 system would form an octahedral structure consisting of six points of alpha(4He) particles, yielding the ground collectivity. With this point of view, we draw the following serial molecular structures; the Z = 10, N = 10, 20Ne, corresponds to a hexahedral, the Z = 8, N = 8, 16O, does to a tetrahedral, and the Z = 6, N = 6, 12C, does to a trigonal symmetry. Moreover, the Z = 2, N = 2, 4He(alpha), fits into a tetrahedral symmetry with four points of nucleons; two protons and two neutrons. The enhanced deformation at Z = 12 with N > 20 would be explained by a deformed shape related to an Ethene(Ethylene)-like skeleton with six alpha particles. The deformation at Z = 10, with N = 10 and 12, can be interpreted as being attributed to a hexahed...

  20. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    Science.gov (United States)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  1. The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2014-01-01

    The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes have been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particle have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for th...

  2. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report for the period September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1993-09-06

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in {sup 82}Sr; structure of and identical bands in {sup 182}Hg and {sup 178}Pt; a highly deformed band in {sup 136}Pm; particle decay of the {sup 164}Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of {sup 12}O; modeling and theoretical studies; excited {sup 16}O disassembly into four alpha particles; {sup 209}Bi + {sup 136}Xe collisions at 28.2 MeV/amu; and development work on 4{pi} solid angle gamma detectors, and x-ray detectors.

  3. Laser-induced nuclear orientation and gamma anisotropy in sodium

    International Nuclear Information System (INIS)

    The use of laser optical pumping to induce nuclear orientation in several isotopes and one isomer of atomic sodium vapor is described. Essentially complete nuclear polarization, P > 90%, has been achieved in stable 23Na when pumping with modest laser intensities (I approx. = 10 mW/cm2). The volume of the sample cell was approximately 10 cc, and was filled with a sodium density of about 10'' atoms/cc. Complete coverage of the Doppler distribution was accomplished with the use of trace amounts (less than or equal to 1 torr) of argon buffer gas to induce velocity changing collisions. A theoretical model which accurately predicts the amount of polarization is developed. The orientation of nuclei which are unstable to gamma decay can manifest itself in anisotropic gamma ray emission. This anisotropy can be used to measure isotope and isomer shifts, from which nuclear properties can be derived. Gamma anisotropy was observed in two systems, 22Na and /sup 24m/Na. From the observed anisotropy in /sup 24m/Na, a negative sign for the g factor is determined. Values are derived for the magnetic moment, μ = 2.56 +- 0.64 nm, and the isomer shift, deltaν/sub 24m/ = 288 +- 191 MHz (D1 line). A model is described which relates various laser and fubber gas parameters to the observed gamma anisotropy lineshape. This model facilitates the extraction of physical parameters from knowledge of the laser frequency at which the anisotropy is a maximum

  4. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  5. Application techniques of alpha particles and heavy ion elastic scattering to chemical analysis of thin layers and surfaces

    International Nuclear Information System (INIS)

    This work turns to account two aspects of the elastic scattering: Rutherford or non-Rutherford backscattering of alpha particles for the study of the stoechiometry of complex thin layers and production of recoil nuclei under energetic argon ion (16-20 MeV) bombardment for the surface analysis of light elements like oxygen, nitrogen and carbon. The first section treats the analysis conditions of Ti(1-x)NbxO2 and Ti(1-x)VxO2 layers whose composition depends on deposition parameters of the H.F. cathodic sputtering process of mixtures of oxide powders. In the first place, the analysis conditions of these layers were determined with the best possible accuracy. As for the experimental results, we show for the best deposition conditions (residual vacuum, pre-sputtering) that the ratio O/(M+Ti) can be adjusted to 2±0.1 over all the target concentration ranges. The evolution of the ratio Nb/(Nb+Ti) and V/(V+Ti) is not identical to that of targets with deviations whose significance we attempt to interprete. In the second section dealing with time of flight detection of recoil nuclei, we justify our choice of experimental parameters by a detailed study of their influence on the analytical performances. In spite of serious limitations posed by angular dispersions the depth resolution typically varies from 2 to 5 nm for oxygen and carbon depending on whether one deals with a matrix of medium Z(Si) or high Z (Ta). An energy discrimination serves at optimizing the analysable depths and avoiding interferences (C,N and O analysable over 70 nm). This discrimination allows us to lower the detection limit (down to 1013 at/cm2) by reduction of background noise. The current limitations and possible improvements are presented from surface analysis examples

  6. Design and calibration of a two-channel low-noise heterodyne receiver for use in a CO2 laser Thomson scattering alpha particle diagnostic

    International Nuclear Information System (INIS)

    A dual channel low noise heterodyne receiver has been constructed as part of a development effort to build a carbon dioxide laser based Thomson scattering alpha particle diagnostic for a burning plasma experiment. The receiver employs two wide bandwidth (>1 GHz) HgCdTe photovoltaic mixers followed by low noise IF amplifiers. A noise equivalent power of less than 3.0 /times/ 10-20 WHz has been demonstrated. Design details and calibration methods are described. 8 refs

  7. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  8. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Directory of Open Access Journals (Sweden)

    Cheoun Myung-Ki

    2016-01-01

    Full Text Available We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  9. Comprehensive evaluation of the linear stability of Alfvén eigenmodes driven by alpha particles in an ITER baseline scenario

    Science.gov (United States)

    Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-07-01

    The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.

  10. A systematic approach to the linear-stability assessment of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles for ITER-like equilibria

    CERN Document Server

    Rodrigues, P; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Loureiro, N F; Oliver, H J C; Sharapov, S E

    2014-01-01

    A systematic approach to assess the linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is described. Because experimental results for ITER are not available yet, it is not known beforehand which Alfv\\'en eigenmodes will interact more intensively with the alpha-particle population. Therefore, the number of modes that need to be considered in stability assessments becomes quite large and care must be exercised when choosing the numerical tools to work with, which must be fast and efficient. In the presented approach, all possible eigenmodes are first found after intensively scanning a suitable frequency range. Each solution found is then tested to find if its discretization over the radial grid in use is adequate. Finally, the interaction between the identified eigenmodes and the alpha-particle population is evaluated with the drift-kinetic code CASTOR-K, in order to assess their growth rates and hence their linear stability. The described approach enables one to single out t...

  11. Avalanche proton-boron fusion based on elastic nuclear collisions

    Science.gov (United States)

    Eliezer, Shalom; Hora, Heinrich; Korn, Georg; Nissim, Noaz; Martinez Val, Josè Maria

    2016-05-01

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 109 alphas. We suggest that these unexpected very high fusion reactions of proton with 11B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-11B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  12. Microbial-induced corrosion in nuclear power plant materials

    Science.gov (United States)

    Licina, George J.; Cubicciotti, Daniel

    1989-12-01

    The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which microbial-induced corrosion (MIC) can occur. Carbon and low-alloy steels, stainless steels and copper alloys are all susceptible to MIC in raw-water applications. Visual examination is particularly useful in performing preliminary assessments of MIC. If properly diagnosed, MIC can be effectively treated during plant construction, operation and temporary shutdowns.

  13. Induced starburst and nuclear activity: Faith, facts, and theory

    Science.gov (United States)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  14. Exposure of nuclear track emulsion to thermal neutrons, heavy ions and muons

    CERN Document Server

    Artemenkov, D A; Zaitsev, A A; Zarubin, P I; Zarubina, I G; Kattabekov, R R; Mamatkulov, K Z; Rusakova, V V

    2014-01-01

    Physical analysis of exposures of test samples of reproduced nuclear track emulsion (NTE) is presented. In boron enriched NTE the angular and energy correlations of products of the reaction induced by thermal neutrons n$_{th} + ^{10}B \\rightarrow ^{7}Li + (\\gamma) + \\alpha$ are studied. NTE was exposed to ions $^{86}Kr^{+17}$ and $^{124}Xe^{+26}$ of energy about 1.2 A MeV. Measurements of the heavy ion ranges of in NTE allowed one to determine their energy on a basis of the SRIM model. Nuclear stars of large multiplicity of target nuclei are observed in exposure of NTE to ultrarelativistic $\\mu$-mesons. The kinematical characteristics of the events of splitting of carbon nuclei into three $\\alpha$-particles studied in this exposure point to a nuclear diffractive mechanism of interactions.

  15. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  16. Charged fusion product loss measurements using nuclear activation

    International Nuclear Information System (INIS)

    In ITER, α particle loss measurements will be required in order to understand the alpha particle physics. Techniques capable of operating in a fusion reactor environment need further development. Recent experimental studies on JET demonstrated the potential of nuclear activation to measure the flux of escaping MeV ions. New results from MeV ion induced activation of metallic, ceramic, and crystal samples placed near the plasma edge are reported. Activation products were measured as function of orientation with respect to the magnetic field as well as function of the distance to the plasma. Sample activity was measured using ultralow-level gamma-ray spectrometry. Distribution of 14.68 MeV fusion proton induced activation products is strongly anisotropic in agreement with simulations and falls off sharply with increasing distance to the plasma. Prospects for using the technique in ITER are discussed.

  17. A sequential radiochemical procedure to determine natural radionuclides in samples from a strongly polluted river by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    River Tinto is located in the Huelva province, SW of Spain. This river has been strongly affected by anthropogenic activities in its vicinity such as mining, paper mills or phosphoric acid industries (in fact phosphogypsum deposits, so-called gyp-stacks, are located in the mouth of the Tinto River estuary). The combination of acid water from mines, different industrial effluents and fluvial and sea waters plays a determining role in the evolutionary process of the environmental characteristics of the Tinto River and its estuary. In this context several natural radionuclides as polonium, radium, thorium and uranium isotopes, could be used as markers and/or tracers of several environmental processes. Therefore, environmental matrixes (superficial sediments, waters and suspended matter) have been collected from 12 points along the Tinto River and its estuary. Activity concentrations of natural radionuclides (210Po, 226,228Ra, 230,232Th, 234,238U) have been determined in these samples. Due to sampling conditions, low water volumes and suspended matter masses were collected, so radioactive activities were expected to be close to the mBq order of magnitude. As a consequence, alpha-particle spectrometry was a suitable radiometric technique to perform our wide set of measurements. Then a radiochemical scheme for polonium, radium, thorium and uranium isolation, purification and deposition from these polluted environmental samples was needed. This work will show the sequential radiochemical procedure, originally developed by CSIRO laboratories, adapted to our laboratory conditions and applied for natural radionuclides determination in environmental samples collected from the Tinto River. Hence, and after pretreatment of the sample, polonium was extracted by DDTC and deposited onto silver planchets. Then, after a co-precipitation process, uranium was found in the supernatant whereas radium and thorium were found in the precipitate. Using TBP, uranium was separated and

  18. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  19. Probing the Nuclear Symmetry Energy with Heavy-Ion Reactions Induced by Neutron-Rich Nuclei

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Yong, Gao-Chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter, especially the density dependence of the nuclear symmetry energy. In particular, recent analyses of the isospin diffusion data in heavy-ion reactions have already put a stringent constraint on the nuclear symmetry energy around the nuclear matter saturation density. We review this exciting result and discuss its implications on nuclear effective ...

  20. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.)

  1. Excitation Functions of Deuteron Induced Nuclear Reactions on Iron

    International Nuclear Information System (INIS)

    The excitation functions were measured for nuclear reactions induced by deuterons on natural iron leading to the production of 52g,54Mn and 55,56,57,58gCo radionuclides in the energy range from threshold energy up to 10 MeV. The measured data were compared with other measured data and also with the results of theoretical calculations using the default parameters of the codes EMPIRE-3.0 and TALYS. The coulomb barrier Bc for iron target was calculated and the excitation curves were discussed taking in consideration the deuteron breakup and the pre-equilibrium emission processes. The integral yields of 55,56,57,58gCO radionuclides were calculated as a function of deuteron energy

  2. Microbial-induced corrosion in nuclear power plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Licina, G.J. (Structural Integrity Associates, San Jose, CA (USA)); Cubicciotti, D. (Electric Power Research Inst., Palo Alto, CA (USA))

    1989-12-01

    Microbial-induced corrosion (MIC) has been recognized for more than 50 years but has frequently been ignored as a significant contributor to the degradation of structural materials, including those found in fossil-fuel and nuclear power plants. Microorganisms have undoubtedly exerted an influence on the overall corrosion degradation of components such as buried pipes, heat exchangers and tanks, but these components have simply been repaired or replaced as a result of routine corrosion at a rate slightly greater than originally anticipated at the design state. Failures of corrosion-resistant materials in benign environments, such as untreated domestic waters at ambient temperature, have caused costly, unplanned outages (in some cases prompting replacement even before plant operation). The authors discuss how root cause investigations revealed that biological influences could in fact produce such failures.

  3. Microbial-induced corrosion in nuclear power plant materials

    International Nuclear Information System (INIS)

    Microbial-induced corrosion (MIC) has been recognized for more than 50 years but has frequently been ignored as a significant contributor to the degradation of structural materials, including those found in fossil-fuel and nuclear power plants. Microorganisms have undoubtedly exerted an influence on the overall corrosion degradation of components such as buried pipes, heat exchangers and tanks, but these components have simply been repaired or replaced as a result of routine corrosion at a rate slightly greater than originally anticipated at the design state. Failures of corrosion-resistant materials in benign environments, such as untreated domestic waters at ambient temperature, have caused costly, unplanned outages (in some cases prompting replacement even before plant operation). The authors discuss how root cause investigations revealed that biological influences could in fact produce such failures

  4. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  5. Radiation induced corrosion of copper for spent nuclear fuel storage

    International Nuclear Information System (INIS)

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems. - Highlights: • Copper cubes were exposed to gamma radiation in anoxic pure water. • The dissolution of copper increases with increasing absorbed total dose. • The oxide layer formed consists mainly of cuprite. • Numerical simulations of the irradiation experiments were performed. • There is a large discrepancy between numerical simulations and experimental results

  6. Stopping powers of havar for 0.63 5.9 MeV protons and 2.6 24 MeV alpha particles

    Science.gov (United States)

    Porter, L. E.; Trzaska, W. H.; Räisänen, J.; Lyapin, V.

    2004-11-01

    A transmission experiment utilizing thin foil targets has been conducted in order to establish the stopping powers of the cobalt-base alloy, havar, for 0.6-5.9 MeV protons and 2.6-24 MeV alpha particles. The basic technique of the novel experimental method used was to record both the projectile energy and the time of flight while alternating measurements with and without the target in place. The uncertainties of the proton and alpha particle data sets ranged from 1.4 to 2.3% and 1.1 to 1.5%, respectively. Modified Bethe-Bloch theory was applied to the measurements in order to ascertain values of the target mean excitation energy (I) and Barkas-effect parameter (b) for each projectile. The extracted values were I = 304.3 ± 2.4 eV and b = 1.37 ± 0.04 for the case of protons, and I = 306.3 ± 2.3 eV and b = 1.47 ± 0.03 for the case of alpha particles. The I-values are somewhat higher than the additivity-based expectation of 295.7 eV, whereas the b-values are clearly consistent with the expected range of 1.4 ± 0.1. The parameter values extracted from the measurements are appraised for compatibility with recently observed trends in values of I and of b with increasing projectile atomic number.

  7. SOLANG: A user-friendly code to calculate the geometry factor using Monte Carlo simulations. Application to alpha-particle spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo Diaz, N.A. [Centro de Proteccion e Higiene de las Radiaciones, C.P. 6195, La Habana (Cuba); Martin Sanchez, A., E-mail: ams@unex.e [Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz (Spain); Torre Perez, J. de la [Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz (Spain)

    2011-05-15

    Monte Carlo simulation was applied to calculate the effective solid angle (or geometry factor) presented by a plane radioactive source at a detector entrance window. A fast and user-friendly computer program SOLANG was written to perform the calculations for disk or rectangular sources and circular non-coaxial detector disks. Results can be achieved with great precision, depending on the number of simulated trajectories. Some checks and applications to the calculation of efficiencies of semiconductor detectors and gas ionization chambers used to measure alpha particles are presented. Their results were very reliable. The code is available free of charge on request to the authors.

  8. Self-healing capacity of nuclear glass observed by NMR spectroscopy

    Science.gov (United States)

    Charpentier, Thibault; Martel, Laura; Mir, Anamul H.; Somers, Joseph; Jégou, Christophe; Peuget, Sylvain

    2016-05-01

    Safe management of high level nuclear waste is a worldwide significant issue for which vitrification has been selected by many countries. There exists a crucial need for improving our understanding of the ageing of the glass under irradiation. While external irradiation by ions provides a rapid simulation of damage induced by alpha decays, short lived actinide doping is more representative of the reality. Here, we report radiological NMR experiments to compare the damage in International Simplified Glass (ISG) when irradiated by these two methods. In the 0.1 mole percent 244Cm doped glass, accumulation of high alpha decay only shows small modifications of the local structure, in sharp contrast to heavy ion irradiation. These results reveal the ability of the alpha particle to partially repair the damage generated by the heavy recoil nuclei highlighting the radiation resistance of nuclear glass and the difficulty to accurately simulate its behaviour by single ion beam irradiations.

  9. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    Science.gov (United States)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  10. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    Science.gov (United States)

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.

  11. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.-P. [Toronto-Sunnybrook Regional Cancer Centre, Radiotherapy Dept., Toronto, Ontario (Canada); Slabbert, J. [National Accelerator Centre, Faure (South Africa)

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,{alpha}) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends. (author)

  12. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    Science.gov (United States)

    Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-01

    Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  13. Relative drifts and temperature anisotropies of protons and $\\alpha$ particles in the expanding solar wind -- 2.5D hybrid simulations

    CERN Document Server

    Maneva, Y G; Viñas, A

    2014-01-01

    We perform 2.5D hybrid simulations to investigate the origin and evolution of relative drift speeds between protons and $\\alpha$ particles in the collisionless turbulent low-$\\beta$ solar wind plasma. We study the generation of differential streaming by wave-particle interactions and absorption of turbulent wave spectra. Next we focus on the role of the relative drifts for the turbulent heating and acceleration of ions in the collisionless fast solar wind streams. The energy source is given by an initial broad-band spectrum of parallel propagating Alfv\\'en-cyclotron waves, which co-exists with the plasma and is self-consistently coupled to the perpendicular ion bulk velocities. We include the effect of a gradual solar wind expansion, which cools and decelerates the minor ions. This paper for the first time considers the combined effect of self-consistently initialized dispersive turbulent Alfv\\'enic spectra with differentially streaming protons and $\\alpha$ particles in the expanding solar wind outflows withi...

  14. Response of semi-insulating 100{mu}m thick GaAs detector for {alpha}-particles, {gamma}-rays and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kordyasz, A.J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5a, 02-093 Warsaw (Poland)]. E-mail: kord@slcj.uw.edu.pl; Strzelecka, S.G. [Institute of Electronic Materials Technology, Warsaw (Poland); Kownacki, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5a, 02-093 Warsaw (Poland); Dobrzanski, L. [Institute of Electronic Materials Technology, Warsaw (Poland); Hruban, A. [Institute of Electronic Materials Technology, Warsaw (Poland); OrIowski, W. [Institute of Electronic Materials Technology, Warsaw (Poland); Wegner, E. [Institute of Electronic Materials Technology, Warsaw (Poland); Reissig, L. [Center for Inter-Faculty Individual Studies in Mathematical and Natural Sciences, University of Warsaw, Warsaw (Poland)]. E-mail: louisa@slcj.uw.edu.pl

    2005-06-21

    The 100{mu}m thick, transmission, fully depleted GaAs Schottky barrier detector fabricated from LEC bulk GaAs crystals has been tested. The basic structure of the detector consists of a Cr/Au Schottky contact and an Au/Ge/Ni/Au alloyed ohmic contact. Pulse height spectra for {alpha}-particles resulting from irradiation with triple source {sup 239}Pu, {sup 241}Am, {sup 244}Cm, with energies 5.155, 5.486, 5.805MeV were acquired. The energy resolution for these energies was better than 10keV (1.8%). Using {sup 241}Am 5.486MeV {alpha}-particles a charge collection efficiency (CCE) of about 94% was obtained at 570V bias potential. The spectra of low-energy {gamma}-rays 59.5keV and X-rays with average energy 16.2keV from {sup 241}Am source measured at room temperature are presented. An energy resolution of about 6.1keV (10.3%) FWHM at 59.5keV was obtained.

  15. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Man; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10{sup -6} at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV.

  16. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  17. Measurement of thermal and optical properties of CR-39 solid-state nuclear detector by photothermal deflection

    Science.gov (United States)

    Mohammed, K. I.; Azawe, M. I.

    2013-08-01

    The thermal and optical properties of the nuclear detector CR-39 were studied in light of the demand for CR-39 and its novel physical properties, as well as its technological implications in many fields. Thermal diffusivity is the most important parameter when this detector is exposed to nuclear radiation and when consequent heat transfer processes influence the photothermal deflection spectroscopy. Thermal-induced effects on the surface of the CR-39 detector were studied using transient heat diffusion simulations. The resulting thermal deformation due to alpha particle irradiation of CR-39 will be presented. Irradiation of CR-39 by α-particles was found to lower the refractive index change with temperature. The temperature distribution was studied numerically by solving the heat diffusion equation to illustrate the effects of α-particle exposure on the CR-39. The thermal diffusivity of exposed CR-39 is the primary subject of this article.

  18. Euclidean resonance and a new type of nuclear reactions

    CERN Document Server

    Ivlev, B I

    2003-01-01

    The extremely small probability of quantum tunneling through an almost classical potential barrier may become not small under the action of the specially adapted nonstationary field. The tunneling rate has a sharp peak as a function of the particle energy when it is close to the certain resonant value defined by the nonstationary field (Euclidean resonance). Alpha decay of nuclei has a small probability since the alpha particle should tunnel through a very nontransparent Coulomb barrier. The incident proton, due to the Coulomb interaction with the tunneling alpha particle, plays the role of a nonstationary field which may result in Euclidean resonance in tunneling of the alpha particle. At the resonant proton energy, which is of the order of 0.2 Mev, the alpha particle escapes the nucleus and goes to infinity with no influence of the nuclear Coulomb barrier. The process is inelastic since the alpha particle releases energy and the proton gains it. This stimulation of alpha decay by a proton constitutes a new ...

  19. Nuclear chemistry fifty years after the discovery of artificial radioactivity

    International Nuclear Information System (INIS)

    In January 1934, the observation and the chemical identification of radiophosphorus as a reaction product in the bombardment of Aluminium by alpha particles have been the first step of a new scientific branch: Nuclear Chemistry. We describe here how this discovery in itself contains the frame of all the development which has followed. It consisted in four stages, each of them being a crucial starting point. The first one is the possibility for a total balance of the nuclear reaction in the exit channels, so that reaction mechanisms can be studied. The second, the most important perhaps, is the opening of nuclear synthesis. Nuclear chemists can now interfere into nuclear matter and instead of staying as observers of the radioactive decays of natural isotopes, they were able to build up a numerous chart of various nuclear species, going step by step further and further away from the nuclear stability conditions. The third aspect of the discovery was the appearance of a new mode of radioactive decay with the production of the first particle an antimater. 50 years later, the instability due to a much larger excess of protons is known to induce the proton emission radioactivity for new species like 109I or 115Cs, in the vicinity of proton unstability. Finally, the last point, so fertile for the future, was the observation of a neutron in the exit channel, so that neutron fluxes could result from alpha induced nuclear reactions and became such a strong tool for the production of transuranium elements and for nuclear fission. In the present survey, the wide interest of the second point, i.e. the nuclear synthesis, is emphasized, as well as the huge change in the technical methods

  20. Improvement of a method for the sequential determination of {sup 210}Pb, {sup 226}Ra, and uranium isotopes by LSC and alpha-particle spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J.C. [Departamento de Fisica Fundamental, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca (Spain); Blanco Rodriguez, P. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain); Vera Tome, F., E-mail: fvt@unex.es [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain); Leal-Cidoncha, E. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain)

    2012-04-15

    In a previous paper the authors proposed a sequential method for the determination of isotopes of uranium, thorium, radium, and lead from environmental samples using alpha-particle spectrometry and LSC techniques. Although the radiochemical yields were suitable when the assays were performed on synthetic samples, application to real environmental samples caused a major decrease in the radiochemical yield, especially for uranium in inorganic samples (soils). A modification of the procedure is described that overcomes this drawback. - Highlights: Black-Right-Pointing-Pointer Sequential methods permit one to obtain the radionuclides from the same aliquot. Black-Right-Pointing-Pointer The proposal method enhances the radiochemical yields. Black-Right-Pointing-Pointer For soil samples, the yields were of (56{+-}2)%, (57{+-}6)%, and (71{+-}4)% for U, Ra, and Pb.

  1. Simulations of alpha particle ripple loss on CFETR%CFETR阿尔法粒子波纹损失的数值模拟

    Institute of Scientific and Technical Information of China (English)

    郝保龙; 吴斌; 王进芳; 李昊; 胡纯栋

    2016-01-01

    使用导心轨道程序ORBIT,在平衡程序EFIT给出的中国聚变工程实验堆(CFETR)平衡位型下,结合不同的阿尔法(α)粒子分布模型,计算了氘氚聚变产生的α粒子波纹损失情况。计算结果表明:在不考虑锯齿模不稳定性的α粒子分布下,ITER-like和super-X位型下的α粒子波纹损失份额为0.1%,snowflake位型在0.4%,反磁剪切位形在0.6%;在较平缓的α粒子分布下,损失份额增大,损失的高能量α粒子有局域性。%The fusion-produced alpha particle ripple loss on Chinese fusion engineering test reactor (CFETR) was simulated with orbit following Monte Carlo code ORBIT, under the plasma equilibrium flux surfaces generated by the equilibrium code EFIT and different alpha model source profile. The prediction of the pre-sawtooth peaked profile particle loss for the steady state phases was 0.1% to 0.4% under the normal shear configuration. Simulation of reversed magnetic shear case predicted that the alpha particle loss was near 0.6%. The ripple loss fraction was very localized and predicted to increase several times with flat source profile or sawtooth-broadened profile.

  2. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.

    Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  3. Annual Technical Report - Nuclear Engineering Institute/ Dept. of Physics (IEN/DEFI) 1988

    International Nuclear Information System (INIS)

    The researches carried out by physics department of Nuclear Engineering Institute(IEN)/Brazilian CNEN are presented. The researches in nuclear physics, isotope production and irradiation damages using CV-28 cyclotron which accelerates protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively are described. (M.C.K.)

  4. Toward an automated analysis of slow ions in nuclear track emulsion

    CERN Document Server

    Mamatkulov, K Z; Ambrozova, I; Artemenkov, D A; Bradnova, V; Kamanin, D V; Majling, L; Marey, A; Ploc, O; Rusakova, V V; Stanoeva, R; Turek, K; Zaitsev, A A; Zarubin, P I; Zarubina, I G

    2015-01-01

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of $\\alpha $-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a ${}^{252}$Cf source started. Planar events containing fragments and long-range $\\alpha $-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  5. Few-body nuclear reactions at low energies – an investigation on observed anomalies

    International Nuclear Information System (INIS)

    Few-body aspects of nuclear interaction are expected to be best studied at sufficiently lower energies where various pair-wise interactions overlap effectively with one another in the allowed phase space in kinematically complete configuration. In this direction, next to nucleon-deuteron systems, a very powerful testing ground has been the alpha-deuteron system where the alpha particle could be treated as a structureless boson due to its very high binding energy. The aim of the present work is to examine the strong anomalies observed in explaining the kinematically complete experimental observables in the light of Faddeev theoretical calculations (FT) due to Koike, involving alpha-induced break-up of deuterons at comparatively lower energies, ranging from Eα(inc)=11 to 18 MeV

  6. Ionization Cluster Size Distributions Created by Low Energy Electrons and Alpha Particles in Nanometric Track Segment in Gases

    CERN Document Server

    Bantsar, Aliaksandr

    2012-01-01

    The interaction of ionizing radiation with nanometric targets is a field of interest for many branches of science such as: radiology, oncology, radiation protection and nanoelectronics. A new experimental technique known as nanodosimetry has been developed for the qualitative as well as quantitative description of these types of interactions. The work presented here is a contribution to this development, namely by further improvement of the new experimental technique called the Jet Counter, originally developed at the Andrzej So{\\l}tan Institute for Nuclear Studies. The Jet Counter is a unique device in the world for studying the interaction of low energy electrons with nanometer targets in the range 2-10 nm (in unit density). The basic experimental result is the frequency distribution of ionization cluster size produced by ionizing particles in a gaseous (nitrogen or propane) nanometric track segment. The first experimental data on the frequency distribution of ionization cluster size produced by low energy ...

  7. Investigations of the radial distributions of nucleons in 1fsub(7/2)-shell nuclei by elastic alpha particle scattering

    International Nuclear Information System (INIS)

    The radial size and shape of the distribution of nucleons - i.e. the sum of protons and neutrons - in atomic nuclei of the 1fsub(7/2) shell is investigated in the present work. The experimental basis of the studies are differential cross sections of elastic α particle scattering by sup(40,42,43,44,48)Ca, 50Ti, 51V, 52Cr precisely measured over a wide angular range at the 104 MeV α particle beam from the Karlsruhe Isochronous Cyclotron. The experimental cross sections are analyzed using so-called 'model independent' optical potentials by which the data are very well reproduced. The error bands of these potentials are determined in a well-defined form from the analyses. The high sensitivity of the data to the radial form of the real optical potential justifies, in principle, that the experiments are a suitable tool for investigating nuclear density distributions. Some pre-informations on this question are obtained from the optical potential analyses. For a more direct access to the nuclear matter distributions - in particular to differences between neighbouring nuclei - a semimicroscopic reaction model is presented which on the one hand is based on a fully microscopic many body approach. On the other hand all quantities being not of particular interest for the results are treated in a phenomenological way. Thereby, it is possible to reproduce the experimental cross sections as well as by the 'model independent' potentials and to obtain full consistency between the two approaches. This has not been achieved by any other microscopic reaction model. (orig./HSI)

  8. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, N., E-mail: ndwaikat@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Sciences, Department of Physics, Dhahran 31261 (Saudi Arabia)

    2015-10-15

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  9. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    International Nuclear Information System (INIS)

    Highlights: ► AIRE induces apoptosis in epithelial cells. ► CARD domain of AIRE is sufficient for apoptosis induction. ► AIRE induced apoptosis involves GAPDH translocation to the nuclei. ► Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  10. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia); Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  11. COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor.

    Science.gov (United States)

    Yin, Ruohe; Skvortsova, Mariya Y; Loubéry, Sylvain; Ulm, Roman

    2016-07-26

    The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling. PMID:27407149

  12. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  13. Nuclear fusion induced by X-rays in a crystal

    CERN Document Server

    Belyaev, V B; Otto, J; Rakityansky, S A

    2016-01-01

    The nuclei that constitute a crystalline lattice, oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (X-rays or the synchrotron radiation). Exposing to the X-rays the solid compound LiD (lithium-deuteride) for the duration of 111 hours, we have detected 88 events of the nuclear fusion d+Li6 ---> Be8*. Our theoretical estimate agrees with what we observed. One of possible applications of the phenomenon we found, could be the measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  14. External man-induced events on nuclear power plants

    International Nuclear Information System (INIS)

    These notes for the postgraduate course on Radiological Protection and Nuclear Safety deal with the effects produced by some human activities on the siting and design of a nuclear installation. The existing activities, as well as the foreseen or foreseeable future ones are evaluated. In the first place, the potential sources of events are identified and classified in two categories: stationary and mobile, and the events are classified in five groups: 1) Aircraft crash; 2) Chemical explosions; 3) Discharge of dangerous fluids (explosive, toxic or corrosive); 4) Fire, and 5) Sabotage, terrorism, guerrillas. Then, the effects which may result from these events and affect the nuclear installation are studied: 1) pressure waves; 2) Impact of missiles; 3) Heat, fire; 4) Smoke and dust; 5) Gas or inflammable and/or explosive dust clouds; 6) Toxic and/or corrosive gases and liquids; 7) Ground shaking; 8) Flooding or lack of water; 9) Foundations failure or collapse. Next, the methods for making a deterministic and/or a probabilistic study (or both) are indicated for each event considered, and from these studies the ''screening'' values which allow to determine if an event can be rejected or must be considered are established. For this second case, the method for obtaining the ''design event'' that shall serve as a basis for the design of the plant is indicated. (M.E.L.)

  15. Voltage induced conversion of helical to uniform nuclear spin polarization in a quantum wire

    OpenAIRE

    Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel

    2015-01-01

    We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once...

  16. Effect of Induced Refractive Error and Nuclear Sclerotic Cataracts on Ishihara Colour Plate Testing

    OpenAIRE

    Eneh AA; Rogalska T; Urton T; Schweitzer KD

    2014-01-01

    Objective: To determine the effect of induced refractive blur and nuclear sclerotic (NS) cataracts on Ishihara colour plate (ICP) scores. Design: Prospective evaluation of a diagnostic test Participants: Patients who presented to Hotel Dieu Hospital Eye clinic between January and March 2010 with either a lone diagnosis of nuclear sclerotic cataracts, or with no identified ocular disease with complete examination. Methods: Patients were divided into two groups: those having no id...

  17. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  18. Stopping power and energy loss straggling of thin Formvar foil for 0.3-2.7 MeV protons and alpha particles

    Science.gov (United States)

    Mammeri, S.; Ammi, H.; Dib, A.; Pineda-Vargas, C. A.; Ourabah, S.; Msimanga, M.; Chekirine, M.; Guesmia, A.

    2012-12-01

    Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ˜0.3 μm) have been measured in the energy range (0.3-2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe-Bloch theory to extract the target mean excitation and ionization potential . A resulting value of ≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe-Livingston's classical theories or by Yang's empirical formula. A deviation of ˜40%-80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.

  19. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Energy Technology Data Exchange (ETDEWEB)

    Paradzah, A.T.; Auret, F.D.; Legodi, M.J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between −50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30–350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 10{sup 10} cm{sup −2}. Current–voltage and capacitance–voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  20. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Science.gov (United States)

    Paradzah, A. T.; Auret, F. D.; Legodi, M. J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between -50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30-350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 1010 cm-2. Current-voltage and capacitance-voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  1. Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei

    CERN Document Server

    Maydanyuk, Sergei P; Belchikov, Sergei V

    2015-01-01

    A high precision method to determine fusion in the capture of $\\alpha$-particles by nuclei is presented. For $\\alpha$-capture by $^{40}{\\rm Ca}$ and $^{44}{\\rm Ca}$, such an approach gives (1) the parameters of the $\\alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $\\alpha + ^{40}{\\rm Ca}$ and $34.06$ times for $\\alpha + ^{44}{\\rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wong's formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $\\alpha + ^{40}{\\rm Ca}$ and $\\alpha + ^{44}{\\rm Ca}$, which is connected with the theory ...

  2. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  3. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S;

    1994-01-01

    stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that...... IL-2 induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  4. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182Hg and 182Au at high spin, a highly deformed band in 136Pm and the anomalous h11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209Bi + 136Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  5. [Reaction mechanism studies of heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    This report contains papers that discuss: Target Dependence of Complex Fragment Emission in 47-MeV/u La-Induced Reactions; Deconvolution of Time-of-Flight Data to Improve Mass Identification; and Study of the Reaction of La + Al at E/A = 50 MeV with Landau-Vlasov Dynamics

  6. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway.

    Science.gov (United States)

    Schulz, Katharina S; Klupp, Barbara G; Granzow, Harald; Passvogel, Lars; Mettenleiter, Thomas C

    2015-11-01

    Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. PMID:25678269

  7. Lysophosphatidic acid induced nuclear translocation of nuclear factor-κB in Panc-1 cells by mobilizing cytosolic free calcium

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Arita; Tetsuhide Ito; Takamasa Pond; Ken Kawabe; Terumasa Hisano; Ryoichi Takayanagi

    2008-01-01

    AIM: To clarify whether Lysophosphatidic acid (LPA) activates the nuclear translocation of nuclear factor-κB (NF-κB) in pancreatic cancer.METHODS: Panc-1, a human pancreatic cancer cell line, was used throughout the study. The expression of LPA receptors was confirmed by reverse-transcript polymerase chain reaction (RT-PCR). Cytosolic free calcium was measured by fluorescent calcium indicator fura-2, and the localization of NF-κB was visualized by immunofluorescent method with or without various agents, which effect cell signaling.RESULTS: Panc-1 expressed LPA receptors, LPAA1,LPA2 and LPA3. LPA caused the elevation of cytosolic free calcium dose-dependently. LPA also caused the nuclear translocation of NF-κB. Cytosolic free calcium was attenuated by pertussis toxin (PTX) and U73122,an inhibitor of phospholipase C. The translocation of NF-κB was similarly attenuated by PTX and U73122,but phorbol ester, an activator of protein kinase C,alone did not translocate NF-κB. Furthermore, the transtocation of NF-κB was completely blocked by Ca2+ chelator BAPTA-AM. Thapsigargin, an endoplasmic-reticulum Ca2+-ATPase pump inhibitor, also promoted the translocation of NF-κB. Staurosporine, a protein kinase C inhibitor, attenuated translocation of NF-κB induced by LPA.CONCLUSlON: These findings suggest that protein kinase C is activated endogenously in Panc-1, and protein kinase C is essential for activating NF-κB with cytosolic calcium and that LPA induces the nuclear translocation of NF-κB in Panc-1 by mobilizing cytosolic free calcium.

  8. Solar He-3: Information from nuclear reactions in flares

    Science.gov (United States)

    Ramaty, R.; Kozlovsky, B.

    1974-01-01

    Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production.

  9. Competition between fermions and bosons in nuclear matter at low densities and finite temperatures

    CERN Document Server

    Mabiala, J; Bonasera, A; Kohley, Z; Yennello, S J

    2016-01-01

    We derive the free energy for fermions and bosons from fragmentation data. Inspired by the symmetry and pairing energy of the Weizsacker mass formula we obtain the free energy of fermions (nucleons) and bosons (alphas and deuterons) using Landau's free energy approach. We confirm previously obtained results for fermions and show that the free energy for alpha particles is negative and very close to the free energy for ideal Bose gases. Deuterons behave more similarly to fermions (positive free energy) rather than bosons. This is due to their low binding energy, which makes them very 'fragile', i.e., easily formed and destroyed. We show that the {\\alpha}-particle fraction is dominant at all temperatures and densities explored in this work. This is consistent with their negative free energy, which favors clusterization of nuclear matter into {\\alpha}-particles at subsaturation densities and finite temperatures. The role of finite open systems and Coulomb repulsion is addressed.

  10. Nuclear dynamical deformation induced hetero- and euchromatin positioning

    CERN Document Server

    Awazu, Akinori

    2015-01-01

    The contributions of active deformation dynamics in cell nuclei to the intra-nuclear positioning of hetero- and euchromatin are investigated. We analyzed the behaviors of model chains containing two types of regions, one with high and the other with low mobility, confined in a pulsating container. Here, the regions with high and low mobility represent eu- and heterochromatic regions, respectively, and the pulsating container simulates a nucleus exhibiting dynamic deformations. The Brownian dynamics simulations of this model show that the positioning of low mobility regions transition from sites near the periphery to the central region of the container if the affinity between low mobility regions and the container periphery disappears. Here, the former and latter positioning are similar to the "conventional" and "inverted" chromatin positioning observed in nuclei of normal differentiated cells and cells lacking Lamin-related proteins like mouse rod photoreceptor cell.

  11. Are There Nuclear Structure Effects on the Isoscalar Giant Monopole Resonance and Nuclear Incompressibility near A~90?

    CERN Document Server

    Gupta, Y K; Howard, K B; Matta, J T; Senyigit, M; Itoh, M; Ando, S; Aoki, T; Uchiyama, A; Adachi, S; Fujiwara, M; Iwamoto, C; Tamii, A; Akimune, H; Kadono, C; Matsuda, Y; Nakahara, T; Furuno, T; Kawabata, T; Tsumura, M; Harakeh, M N; Kalantar-Nayestanaki, N

    2016-01-01

    "Background-free" spectra of inelastic $\\alpha$-particle scattering have been measured at a beam energy of 385 MeV in $^{90, 92}$Zr and $^{92}$Mo at extremely forward angles, including 0$^{\\circ}$. The ISGMR strength distributions for the three nuclei coincide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near $A\\sim$90 as was claimed in recent measurements.

  12. Alpha particle emission in the interaction of sup 1 sup 2 C with sup 5 sup 9 Co and sup 9 sup 3 Nb at incident energies of 300 and 400 MeV

    CERN Document Server

    Gadioli, E; Fabrici, E; Erba, E G; Birattari, C; Mica, I; Solia, S; Steyn, G F; Förtsch, S V; Lawrie, J J; Nortier, F M; Stevens, T G; Connell, S H; Sellschop, J P Friedel; Cowley, A A

    1999-01-01

    The results of measured inclusive double differential cross sections of alpha particles emitted in the interaction of sup 1 sup 2 C ions with sup 5 sup 9 Co and sup 9 sup 3 Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation functions, forward recoil ranges and angular distributions of residues produced in the interaction of sup 1 sup 2 C with a target nucleus in the same mass range. In particular, the probabilities associated with alpha-particle reemission following incomplete fusion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of sup 1 sup 2 C with nuclei are presented.

  13. Causality principle and nuclear dispersion anomaly in the elastic scattering for α+12C system

    Institute of Scientific and Technical Information of China (English)

    Abdolmajid Izadpanah

    2010-01-01

    The optical model analysis of the alpha particle elastic scattering on a carbon target was performed on the basis of the dispersion relation between the real and imaginary parts of the calculated volume integrals. A nuclear dispersion anomaly in an α+12C system was observed and interpreted clearly.

  14. MCDHF calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    CERN Document Server

    Bieron, Jacek; Gaidamauskas, Erikas; Fritzsche, Sephan; Indelicato, Paul; Jönsson, Per

    2009-01-01

    The multiconfiguration Dirac-Hartree-Fock theory (MCDHF) has been employed to calculate the electric dipole moment of the 7s6d 3D2 state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  15. In vitro study of the influence of alpha particles irradiation on the pre-neoplastic transformation of rat trachea epithelial cells

    International Nuclear Information System (INIS)

    Intern contamination by actinide oxide inhalation is potentially one health hazard during the nuclear fuel fabrication process. The aerosol particles can induce pulmonary lesions, such as epithelial cancers in particular. Their toxicity is mainly due to radiotoxicity of α irradiation. The aim of this work was to contribute, by an in vitro model, to the study of the apparition of pre-neoplastic states on epithelial cells after high LET irradiation. Primary cultures of rat tracheal epithelial cells were used. Two rat strain cells, SD TR for Sprague Dawley rats and WF TR for Wistar Furth I Fischer F344 rats, were compared after exposure to a dose range from 0 to 5 Gy. Reproductive cell death, i.e. senescent death, seems to be the main lethal way induced by α and γ irradiations. The nuclear volume of WF TR cells is higher than that of SD TR ones, explaining the higher α radiation-induced lethality of these cells. These WF TR cells are also much sensitive to dose rate and α particles energy. In the same manner, pre-neoplastic transformation rate of the cells seems to depend on the physical parameters of irradiation. But, it mainly varies as a function of cell radiosensitivity, that means cell death. In fact, the transformation rate of sensitive WF TR cells is lower than that of SD TR ones. In term of transformation for SD TR cells, dose-effect relationship fits to a linear and infra linear function after α irradiation, whereas the curve fits to linear and quadratic function after γ irradiation. The Relative Biological Efficiency (RBE) of α particles for lethality and pre-neoplastic transformation were determined for several levels of dose. A constant value of about 3 was found for RBE of lethality whatever the α dose. By contrast, the RBE of transformation has a value of about 10 up to 0.5 Gy and gradually decreases at higher doses to reach a value of 1 at 5 Gy. Similar shapes of dose-effect relationship can be observed for malignant lung tumour induction after

  16. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  17. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Amundson, S.A.; Chen, D.J.

    1994-12-31

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by {alpha}-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and {alpha}-particles. WTK1 is also more mutable by {alpha}-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while {alpha}-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-induced tk- mutants of TK6, were not induced significantly by {alpha}-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  18. Analysis of nuclear facilities for tornado-induced flow and reentrainment

    International Nuclear Information System (INIS)

    This report describes an analytical procedure that may be used to calculate tornado-induced flow and material reentrainment within nuclear fuel cycle facilities. The procedure involves the following four steps. (1) A computer code models the overall ventilation pathways and predicts tornado-induced flows and pressures. (2) A second computer code models individual rooms or cells and predicts velocities within the room induced by the flows from step (1). (3) These velocities are then used to predict reentrainment and suspension of particulate materal. (4) The possibility of release is predicted from the flow patterns calculated in (1). For illustrative purposes only, the head-end ventilation system of the Nuclear Fuel Services, West Valley, New York, plant was analyzed using the proposed procedure

  19. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    Science.gov (United States)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  20. A review of microbial induced corrosion in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Licina, G.J.

    1988-01-01

    Microbial induced corrosion (MIC) relevant to nuclear power plant systems is reviewed. The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which MIC can occur. Carbon and low alloy steels, stainless steels, and copper alloy are all susceptible to MIC in raw water applications. Methods for diagnosis, treatment, and prevention of MIC during construction, operation, and lay-up are discussed. Visual examination is noted to be particularly useful in performing preliminary assessments of MIC.

  1. A review of microbial induced corrosion in nuclear power plant systems

    International Nuclear Information System (INIS)

    Microbial induced corrosion (MIC) relevant to nuclear power plant systems is reviewed. The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which MIC can occur. Carbon and low alloy steels, stainless steels, and copper alloy are all susceptible to MIC in raw water applications. Methods for diagnosis, treatment, and prevention of MIC during construction, operation, and lay-up are discussed. Visual examination is noted to be particularly useful in performing preliminary assessments of MIC

  2. Application of laser-induced photoacoustic spectroscopy for determination of plutonium concentration in nuclear waste solutions.

    Science.gov (United States)

    Surugaya, Naoki; Sato, Soichi; Jitsukata, Syu; Watahiki, Masaru

    2008-04-01

    Laser-induced photoacoustic spectroscopy was used in a quantitative analysis of Pu in HNO3 medium. Plutonium was quantitatively oxidized to Pu(VI) using Ce(IV). The photoacoustic measurement of Pu(VI) with maximum absorption at 830.5 nm was subsequently performed to determine the concentration. The photoacoustic signal was linearly proportional to the Pu(VI) ion concentration. The detection limit of Pu(VI) was estimated to be 0.5 microg mL(-1) (3sigma) in 3 M HNO3. By the proposed method, Pu concentration was successfully determined in a nuclear waste solution for use in nuclear materials management.

  3. Ion-exchange separation of radioiodine and its application to production of {sup 124}I by alpha particle induced reactions on antimony

    Energy Technology Data Exchange (ETDEWEB)

    Shuza Uddin, Md. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh); Qaim, Seyed M.; Spahn, Ingo; Spellerberg, Stefan; Scholten, Bernhard; Coenen, Heinz H. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Hermanne, Alex [Vrije Univ. Brussel (Belgium). Cyclotron Lab.; Hossain, Syed Mohammod [Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh)

    2015-07-01

    The basic parameters related to radiochemical separation of iodine from tellurium and antimony by anion-exchange chromatography using the resin Amberlyst A26 were studied. The separation yield of {sup 124}I amounted to 96% and the decontamination factor from {sup 121}Te and {sup 122}Sb was > 10{sup 4}. The method was applied to the production of {sup 124}I via the {sup 123}Sb(α, 3n) reaction. In an irradiation of 110 mg of {sup nat}Sb{sub 2}O{sub 3} (thickness ∝0.08 g/cm{sup 2}) with 38 MeV α-particles at 1.2 μA beam current for 4 h, corresponding to the beam energy range of E{sub α} = 37 → 27 MeV, the batch yield of {sup 124}I obtained was 12.42 MBq and the {sup 125}I and {sup 126}I impurities amounted to 3.8% and 0.7%, respectively. The experimental batch yield of {sup 124}I amounted to 80% of the theoretically calculated value but the level of the radionuclidic impurities were in agreement with the theoretical values. About 96% of the radioiodine was in the form of iodide and the inactive impurities (Te, Sb, Sn) were below the permissible level. Due to the relatively high level of radionuclidic impurity the {sup 124}I produced would possibly be useful only for restricted local consumption or for animal experiments.

  4. Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage

    Directory of Open Access Journals (Sweden)

    Elisabetta Albi

    2014-06-01

    Full Text Available Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein.

  5. Experimental nuclear and radiochemistry. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    This project entails the investigation of deep nuclear spallation reactions induced by high-energy light particles on complex nuclei. Experimental studies involve activation of various medium- to heavy-mass targets bombarded by pi mesons, protons, and alpha particles. A prime objective is to deconvolve the cascade and evaporation steps in the reaction mechanism. Experimentally, then, particular emphasis has been placed on spallation products far from yield maxima. Irradiations have been performed predominantly at the Clinton P. Anderson Los Alamos Meson Physics Facility. Results from bombardments of 89Y with 190-MeV π-, 800-MeV protons and 720-MeV alphas (SREL) have been nearly completed; mass-yield distributions were compared. Pion-induced neutron removal reactions have been presented for 90Zr and 96Ru along with a serious critique of the final-state charge interaction hypothesis. Theoretical efforts are being directed at the evaporative behavior of very high-temperature nuclei as determined by the nuclear equation of state and how such behavior might become evident in spallation processes. In addition, the soft spheres model has been extended to consider the significance of nuclear transparency in high-energy reactions

  6. Role of nuclear surface tension coefficient in alpha decay process of the superheavy nuclei

    International Nuclear Information System (INIS)

    The present paper role of nuclear surface tension in alpha decay resulted from the need to improve the Isospin Cluster Model, where the excess of neutron and proton numbers are taken in account effectively of a nucleus in decay calculations. The appropriate value of nuclear surface tension coefficient in proximity potential which plays an important role to estimate the nuclear attraction between two nuclear surfaces is reviewed, in this model. The nuclear proximity force is proportional to the surface tension and its contribution necessarily should be appropriate. The synthesis of super heavy elements, formed by either of cold fusion or hot fusion process, is primarily decay through alpha-particle emission. The successive emission of alpha particles from a superheavy element ends at spontaneous fission

  7. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy.

    Directory of Open Access Journals (Sweden)

    Franziska Graf

    Full Text Available RATIONALE: Key biologic effects of the alpha-particle emitter Actinium-225 in comparison to the beta-particle emitter Lutetium-177 labeled somatostatin-analogue DOTATOC in vitro and in vivo were studied to evaluate the significance of γH2AX-foci formation. METHODS: To determine the relative biological effectiveness (RBE between the two isotopes (as - biological consequence of different ionisation-densities along a particle-track, somatostatin expressing AR42J cells were incubated with Ac-225-DOTATOC and Lu-177-DOTATOC up to 48 h and viability was analyzed using the MTT assay. DNA double strand breaks (DSB were quantified by immunofluorescence staining of γH2AX-foci. Cell cycle was analyzed by flow cytometry. In vivo uptake of both radiolabeled somatostatin-analogues into subcutaneously growing AR42J tumors and the number of cells displaying γH2AX-foci were measured. Therapeutic efficacy was assayed by monitoring tumor growth after treatment with activities estimated from in vitro cytotoxicity. RESULTS: Ac-225-DOTATOC resulted in ED50 values of 14 kBq/ml after 48 h, whereas Lu-177-DOTATOC displayed ED50 values of 10 MBq/ml. The number of DSB grew with increasing concentration of Ac-225-DOTATOC and similarly with Lu-177-DOTATOC when applying a factor of 700-fold higher activity compared to Ac-225. Already 24 h after incubation with 2.5-10 kBq/ml, Ac-225-DOTATOC cell-cycle studies showed up to a 60% increase in the percentage of tumor cells in G2/M phase. After 72 h an apoptotic subG1 peak was also detectable. Tumor uptake for both radio peptides at 48 h was identical (7.5%ID/g, though the overall number of cells with γH2AX-foci was higher in tumors treated with 48 kBq Ac-225-DOTATOC compared to tumors treated with 30 MBq Lu-177-DOTATOC (35% vs. 21%. Tumors with a volume of 0.34 ml reached delayed exponential tumor growth after 25 days (44 kBq Ac-225-DOTATOC and after 21 days (34 MBq Lu-177-DOTATOC. CONCLUSION: γH2AX-foci formation, triggered

  8. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate {sup 227}Th-rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein; Heyerdahl, Helen; Hjelmerud, Anne Kristine; Larsen, Roy H. [Oslo University Hospital, Department of Radiation Biology, The Norwegian Radium Hospital, Oslo (Norway); Jonasdottir, Thora J. [Norwegian School of Veterinary Science, Small Animal Section, Department of Companion Animal Clinical Sciences, Oslo (Norway); Nesland, Jahn M. [Oslo University Hospital, Division of Pathology, The Norwegian Radium Hospital, Oslo (Norway); University of Oslo, Faculty Division The Norwegian Radium Hospital, Medical Faculty, Oslo (Norway); Borrebaek, Joergen [Algeta AS, Oslo (Norway)

    2010-01-15

    The anti-CD20 antibody rituximab labelled with the {alpha}-particle-emitting radionuclide {sup 227}Th is of interest as a radiotherapeutic agent for treatment of lymphoma. Complete regression of human lymphoma Raji xenografts in 60% of mice treated with 200 kBq/kg {sup 227}Th-rituximab has been observed. To evaluate possible late side effects of {sup 227}Th-rituximab, the long-term radiotoxicity of this potential radiopharmaceutical was investigated. BALB/c mice were injected with saline, cold rituximab or 50, 200 or 1,000 kBq/kg {sup 227}Th-rituximab and followed for up to 1 year. In addition, nude mice with Raji xenografts treated with various doses of {sup 227}Th-rituximab were also included in the study. Toxicity was evaluated by measurements of mouse body weight, white blood cell (WBC) and platelet counts, serum clinical chemistry parameters and histological examination of tissues. Only the 1,000 kBq/kg dosage resulted in decreased body weight of the BALB/c mice. There was a significant but temporary decrease in WBC and platelet count in mice treated with 400 and 1,000 kBq/kg {sup 227}Th-rituximab. Therefore, the no-observed-adverse-effect level (NOAEL) was 200 kBq/kg. The maximum tolerated activity was between 600 and 1,000 kBq/kg. No significant signs of toxicity were observed in histological sections in any examined tissue. There were significantly (p < 0.05), but transiently, higher concentrations of serum bile acids and aspartate aminotransferase in mice treated with either {sup 227}Th-rituximab or non-labelled antibody when compared with control mice. The maximum tolerated dose to bone marrow was between 2.1 and 3.5 Gy. Therapeutically relevant dose levels of {sup 227}Th-rituximab were well tolerated in mice. Bone marrow suppression, as indicated by decrease in WBC count, was the dose-limiting radiotoxicity. These toxicity data together with anti-tumour activity data in a CD20-positive xenograft mouse model indicate that therapeutic effects could be

  9. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of {alpha}-particle-emitting {sup 211}At-labeled trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Boskovitz, Abraham; McLendon, Roger E.; Okamura, Tatsunori [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Sampson, John H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: zalut001@mc.duke.edu

    2009-08-15

    Introduction: Carcinomatous meningitis (CM) is a devastating disease characterized by the dissemination of malignant tumor cells into the subarachnoid space along the brain and spine. Systemic treatment with monoclonal antibody (mAb) trastuzumab can be effective against HER2-positive systemic breast carcinoma but, like other therapies, is ineffective against CM. The goal of this study was to evaluate the therapeutic effect of {alpha}-particle emitting {sup 211}At-labeled trastuzumab following intrathecal administration in a rat model of breast carcinoma CM. Methods: Athymic rats were injected intrathecally with MCF-7/HER2-18 breast carcinoma cells through a surgically implanted indwelling intrathecal catheter. In Experiment 1, animals received 33 or 66 {mu}Ci {sup 211}At-labeled trastuzumab, cold trastuzumab or saline. In Experiment 2, animals were inoculated with a lower tumor burden and received 46 or 92 {mu}Ci {sup 211}At-labeled trastuzumab or saline. In Experiment 3, animals received 28 {mu}Ci {sup 211}At-labeled trastuzumab, 30 {mu}Ci {sup 211}At-labeled TPS3.2 control mAb or saline. Histopathological analysis of the neuroaxis was performed at the end of the study. Results: In Experiment 1, median survival increased from 21 days for the saline and cold trastuzumab groups to 45 and 48 days for 33 and 66 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 2, median survival increased from 23 days for saline controls to 68 and 92 days for 46 and 92 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 3, median survival increased from 20 days to 29 and 36 days for animals treated with {sup 211}At-labeled TPS3.2 and {sup 211}At-labeled trastuzumab, respectively. Long-term survivors were observed exclusively in the {sup 211}At-trastuzumab-treated groups. Conclusion: Intrathecal {sup 211}At-labeled trastuzumab shows promise as a treatment for patients with HER2-positive breast CM.

  10. Millimeter-Scale Chemistry of Observable Endmembers with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer and Mars Hand Lens Imager

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Thompson, Lucy; Berger, Jeff; Campbell, Iain; Edgett, Ken; McBride, Marie; Minitti, Michelle; Desouza, Elstan; Boyd, Nick

    2016-04-01

    The Alpha Particle X-ray Spectrometer (APXS) is a bulk chemistry instrument conducting high-precision in-situ measurements of Martian rocks and soils onboard both active NASA rovers [1]. Mounted at the end of the Curiosity rover arm, the APXS can conduct multi-spot (raster) investigations in a single morning or evening. Combining APXS raster spectra and Mars Hand Lens Imager (MAHLI) images, a modeled terrain is developed in which the positions of APXS field of views (FOV) can be localized, thereby mitigating arm placement uncertainty. An acquired APXS spectrum is the result of the weighted sum of the signals from within the FOV. The spatial sensitivity of the APXS consists of an off-nadir contribution in addition to a vertical separation (standoff with respect to the APXS detector) contribution [2, 3]. MAHLI images and focus merge (MFM) products facilitate a 3D surface model of the target [4] compensating for the effects of sample relief in an APXS spectrum. Employing a MFM relief map, APXS placement is modeled in three-dimensions, permitting variable APXS docking (standoff, deployment angle). Through minimization, we arrive at millimeter-scale chemistry of veins, diagenetic features and dust-free rock endmembers of Martian targets. Several rasters have been conducted with Curiosity's APXS on Mars including a study of the Garden City outcrop. The area is characterized by its contrasting light and dark veins of cm-scale surface relief. Three-dimensional localization and minimization indicated calcium sulfate as the major component of the light vein while the dark vein is enriched in CaO (without accompanying SO3), MnO, Ni and Zn, with respect to average Mars composition. References: [1] Gellert et al. (2014), LPSC XLV, #1876. [2] VanBommel et al. (2015), LPSC XLVI, #2049. [3] VanBommel et al. (2016), XRS #2681. [4] Edgett et al. (2015), MAHLI Tech Rept 0001. Acknowledgements: The MSL APXS is financed and managed by the Canadian Space Agency (CSA) with Mac

  11. Experimental nuclear and radiochemistry. Progress report, February 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Deep nuclear spallation reactions induced by high-energy light particles on complex nuclei were investigated. Experimental studies involve activation of various medium to heavy mass targets bombarded by pi-mesons, protons and alpha particles. A prime objective is to deconvolve the cascade and evaporation steps in the reaction mechanism. Emphasis has been placed on spallation products far from yield maxima where the deconvolution is most justifiable. Irradiations have been performed predominantly at the Clinton P. Anderson Los Alamos Meson Physics Facility. Results of cross section determinations from bombardments of 89Y, 92Mo, 96Mo and 100Mo with 800 MeV protons have nearly been completed, providing comparison of isobaric and mass-yield distributions. Data have also been obtained at 500 MeV. Theoretical efforts are being directed at the evaporative behavior of very high-temperature nuclei as determined by the nuclear equation of state and how such behavior might be observed in very deep spallation processes. In addition, the soft spheres model has been combined with spallation systematics to explore the feasibility of high-intensity beams to incinerate high-level nuclear wastes and also to predict interaction lengths in nuclear emulsion studies of relativistic heavy ions. Data are presented on spallation of 130Te by 800-MeV protons, decay of 87Zr, and 84Zr, spallation-transmutation of 90Sr, and anomalous relativistic projectile fragments in emulsion detectors

  12. Preparation of Nuclear Spin Singlet States using Spin-Lock Induced Crossing

    CERN Document Server

    DeVience, Stephen J; Rosen, Matthew S

    2013-01-01

    We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet/singlet polarization transfer and singlet state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly-coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D2O, and by using SLIC to measure the J-couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly-equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet/singlet polarization transfer occurs on the same timescale as spin-lattice relaxation.

  13. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... hand, for the BPPT-based cross coupling of relativity and correlation. For ?ll, the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the 129Xe nuclear shielding is compared to experiment...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...

  14. Charged particle-induced nuclear fission reactions – Progress and prospects

    Indian Academy of Sciences (India)

    S Kailas; K Mahata

    2014-12-01

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.

  15. The atomic electric dipole moment induced by the nuclear electric dipole moment; the magnetic moment effect

    CERN Document Server

    Porsev, S G; Flambaum, V V

    2010-01-01

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.

  16. Description of Induced Nuclear Fission with Skyrme Energy Functionals: II. Finite Temperature Effects

    CERN Document Server

    Schunck, N; Carr, H

    2013-01-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production of nuclear waste management. The goal of this paper is to set up the foundations of a microscopic model to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the fission of 239Pu(n,f). We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature, and predict the evolution of both the inner and outer fission barriers as ...

  17. Role of nuclear receptor CAR in carbon tetrachloride-induced hepatotoxicity

    Institute of Scientific and Technical Information of China (English)

    Yuichi Yamazaki; Satoru Kakizaki; Norio Horiguchi; Hitoshi Takagi; Masatomo Mori; Masahiko Negishi

    2005-01-01

    AIM: To investigate the precise roles of CAR in CCl4-induced acute hepatotoxicity.METHODS: To prepare an acute liver injury model, CCl4 was intraperitoneally injected in CAR+/+ and CAR-/- mice.RESULTS: Elevation of serum alanine aminotransferase and extension of centrilobular necrosis were slightly inhibited in CAR-/- mice compared to CAR+/+ mice without PB. Administration of a CAR inducer, PB, revealed that CCl4-induced liver toxicity was partially inhibited in CAR-/- mice compared with CAR+/+ mice. On the other hand,androstanol, an inverse agonist ligand, inhibited hepatotoxicity in CAR+/+ but not in CAR-/- mice. Thus, CAR activation caused CCl4 hepatotoxicity while CAR inhibition resulted in partial protection against CCl4-induced hepatotoxicity.There were no differences in the expression of CYP2E1, the main metabolizing enzyme for CCl4, between CAR+/+ and CAR-/- mice. However, the expression of other CCl4-metabolizing enzymes, such as CYP2B10 and 3A11, was induced by PB in CAR+/+ but not in CAR-/- mice. Although the main pathway of CCl4-induced acute liver injury is mediated by CYP2E1, CAR modulates its pathway via induction of CYP2B10 and 3A11 in the presence of activator or inhibitor.CONCLUSION: The nuclear receptor CAR modulates CCl4-induced liver injury via induction of CCl4-metabolizing enzymes in the presence of an activator. Our results suggest that drugs interacting with nuclear receptors such as PB might play critical roles in drug-induced liver injury or drugdrug interaction even though such drugs themselves are not hepatotoxic.

  18. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  19. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    OpenAIRE

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Cells have evolved mechanisms to silence foreign DNA to prevent the expression of foreign genes within them. In mammalian cells, this involves the assembly of heterochromatin on foreign DNAs such as viral or transfected DNA. Herpesviruses have evolved strategies to counteract these host mechanisms to express their own genes. Herein we demonstrate that the nuclear DNA sensor IFN-inducible protein 16 (IFI16) is involved in the host silencing response to foreign DNA. IFI16 promotes the assembly ...

  20. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

    Science.gov (United States)

    Yumerefendi, Hayretin; Lerner, Andrew Michael; Zimmerman, Seth Parker; Hahn, Klaus; Bear, James E; Strahl, Brian D; Kuhlman, Brian

    2016-06-01

    We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation. PMID:27089030

  1. Molecular mapping of a new induced gene for nuclear male sterility in sunflower (Helianthus annuus L.)

    Science.gov (United States)

    A new NMS line, NMS HA89-872, induced by mitomycin C and streptomycin carries a single recessive male-sterile gene ms6. An F2 population of 88 plants was obtained from a cross between nuclear male-sterile mutant NMS HA89-872 (msms) and male-fertile line RHA271 (MsMs). 225 SSR primers and 9 RFLP-deri...

  2. Jet-induced modifications of the characteristic of the bulk nuclear matter

    CERN Document Server

    Marcinkowski, P; Kikoła, D; Sikorski, J; Porter-Sobieraj, J; Gawryszewski, P; Zygmunt, B

    2015-01-01

    We present our studies on jet-induced modifications of the characteristic of the bulk nuclear matter. To describe such a matter, we use efficient relativistic hydrodynamic simulations in (3+1) dimensions employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  3. Hyperglycemia Exacerbates Burn-Induced Liver Inflammation via Noncanonical Nuclear Factor-κB Pathway Activation

    OpenAIRE

    Gabriela A. Kulp; Tilton, Ronald G.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Hyperglycemia and inflammation are hallmarks of burn injury. In this study, we used a rat model of hyperglycemia and burn injury to investigate the effects of hyperglycemia on inflammatory responses in the liver. Hyperglycemia was induced in male Sprague-Dawley rats with streptozotocin (STZ) (35–40 mg/kg), followed by a 60% third-degree scald burn injury. Cytokine levels (by multiplex, in cytosolic liver extracts), hormones (by enzyme-linked immunosorbent assay [ELISA], in serum), nuclear fac...

  4. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States); Coder, David; George, Thaddeus [Amnis Corporation, Seattle, Washington (United States); Asaly, Michael [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States); Yen, Andrew, E-mail: ay13@cornell.edu [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States)

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  5. Nuclear

    International Nuclear Information System (INIS)

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  6. EWS represses cofilin 1 expression by inducing nuclear retention of cofilin 1 mRNA.

    Science.gov (United States)

    Huang, L; Kuwahara, I; Matsumoto, K

    2014-06-01

    In Ewing's sarcoma family tumors (ESFTs), the proto-oncogene EWS that encodes an RNA-binding protein is fused by chromosomal translocation to the gene encoding one of the E-twenty six (ETS) family of transcription factors, most commonly friend leukemia virus integration 1 (FLI-1). Although EWS/FLI-1 chimeric proteins are necessary for carcinogenesis, additional events seem to be required for transformation to occur. We have previously reported that a protein product of an EWS mRNA target, whose expression is negatively regulated by EWS but not by EWS/FLI-1, contributes to ESFT development. However, the mechanism by which EWS represses protein expression remains to be elucidated. Here, we report that overexpression of full-length EWS repressed protein expression and induced nuclear retention of reporter mRNAs in a tethering assay. In contrast, when a mutant lacking the EWS C-terminal nuclear localization signal (classified as a PY-NLS) was expressed, reporter protein expression was upregulated, and the number of cells exporting reporter mRNA to the cytoplasm increased. EWS binds to the 3'-untranslated region in another mRNA target, cofilin 1 (CFL1), and negatively regulates the expression of CFL1. Overexpression of EWS induced nuclear retention of CFL1 mRNA. Furthermore, ESFT cell proliferation and metastatic potential were suppressed by small interfering RNA-mediated CFL1 knockdown. Together, our findings suggest that EWS induces nuclear retention of CFL1 mRNA, thereby suppressing expression of CFL1, and that CFL1 promotes development of ESFT. Targeting CFL1 might therefore provide another novel approach for treatment of this aggressive disease. PMID:23831569

  7. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  8. Advanced Elastic/Inelastic Nuclear Data Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Frank; Chowdhury, Partha; Greife, Uwe; Fisher Hicks, Sally; Tsvetkov, Pavel; Rahn Vanhoy, Jeffrey; Hill, Tony; Kawano, Toshihiko; Slaughter, David

    2015-06-08

    The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus is described as a blob of nuclear matter with properties based upon its number of nucleons. This infers that a single potential can describe the interaction of particles with different energies with different nuclei.

  9. Proteomic analysis of nuclear matrix proteins during arsenic trioxide induced apoptosis in leukemia K562 cells

    Institute of Scientific and Technical Information of China (English)

    WANG Zi-hui; YU Ding; CHEN Yan; HAO Jian-zhong

    2005-01-01

    Background Arsenic trioxide (As2O3) has been identified as a very potent anti-acute leukemic agent. However its role in apoptosis needs to be elucidated. As2O3 interferes with the proliferation and survival of tumor cells via a variety of mechanisms. Drug-target interactions at the level of nuclear matrix (NM) may be critical events in the induction of cell death by As2O3. This study dealt with As2O3-target interactions at the level of NM in chronic myelogenous leukemia cell line K562 by proteomics. Methods K562 cells were cultured in MEM and treated with different concentrations of As2O3. The nuclear matrix proteins were analyzed by high-resolution two-dimensional gel electrophoresis and computer-assisted image analysis. Results As2O3 significantly inhibited the growth of chronic myelogenous leukemia cell line K562 at low concentrations. While more than 200 protein spots were shared among the nuclear matrices, about 18 distinct spots in the nuclear matrices were found characteristic for As2O3 treated cells. Conclusions: As2O3 induces apoptosis in K562 cells in a dose and time-dependent manner. Our results demonstrated that for the detection of the onset of apoptosis, the alteration in the composition of nuclear matrix proteins was a more sensitive indicator than nucleosomal DNA fragmentation test. These results indicated that As2O3 might be clinically useful in the treatment of chronic myelogenous leukemia. The changes of nuclear matrix proteins in the treated cells can be used as a useful indicator for this treatment.

  10. Reports to the DOE Nuclear Data Committee

    International Nuclear Information System (INIS)

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program

  11. Reports to the DOE Nuclear Data Committee

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  12. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chiolo, Irene; Georgescu, Walter; Tang, Jonathan; Costes, Sylvain V.

    2013-09-03

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  13. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chiolo, Irene; Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.

    2013-10-01

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  14. Determination of the nuclear induced electrical conductivity of 3He for magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    This is the final report for a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The continual need for more efficient, high-output energy conversion techniques has renewed interest in nuclear-driven magnetohydrodynamic (MHD) energy conversion. To provide the fundamental knowledge required to evaluate the potential value of this concept, a one-year project aimed at measuring the nuclear-induced electrical conductivity of a 3He/4He gas mixture under thermodynamic conditions consistent with the MHD flow conditions was carried out. The range of bulk gas conditions to be considered were: pressure = 0.1 to 3800 Torr and temperature = 300 to 1500 K. The maximum neutron flux to be considered was 1016/cm2sec. The range of parameters considered surpassed previous experiments in all aspects

  15. Nuclear Binding Near a Quantum Phase Transition

    Science.gov (United States)

    Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam

    2016-09-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.

  16. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153.

    Directory of Open Access Journals (Sweden)

    Alexandra Jauhiainen

    Full Text Available DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders.

  17. Neutron-induced complex reaction analysis with 3D nuclear track simulation

    International Nuclear Information System (INIS)

    Complex (multiple) etched tracks are analysed through digitised images and 3D simulation by a purpose-built algorithm. From a binary track image an unfolding procedure is followed to generate a 3D track model, from which several track parameters are estimated. The method presented here allows the deposited energy, that originated from particle fragmentation or carbon spallation by means of induced tracks in commercially available PADC detectors, to be estimated. Results of evaluated nuclear tracks related to 12C (n,3αn') reaction are presented here. The detectors were exposed on the ISS in 2001

  18. External main-induced events in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    This safety Guide recomments procedures and provides information for use in implementing that part of the code of safety in Nuclear Power Plant Siting (IAEA Safety Series No. 50-C-S) which concerns man-induced events external to the plant, up to the evaluation of corresponding design basis parameters. Like the code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing codes of practice and safety Guides relating to land-based stationary thermal neutron power plants

  19. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    OpenAIRE

    Zujun Wang; Shaoyan Huang; Minbo Liu; Zhigang Xiao; Baoping He; Zhibin Yao; Jiangkun Sheng

    2014-01-01

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD), dark signal spike, dark signal non-uniformity (DSNU), noise (VN)...

  20. Pion-induced production of the $Z_c(3900)$ off a nuclear target

    OpenAIRE

    Huang, Yin; He, Jun; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2015-01-01

    We investigate the possibility to study the charmoniumlike state $Z_c(3900)$ through the pion-induced production off a nuclear target. By using a high-energy pion beam, the $Z_c(3900)$ can be produced off a proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the $p(\\pi^-, Z^-_c(3900))$ and $p(\\pi^-, Z^-_c(3900)\\to J/\\psi\\pi^-)$ reactions are calculated, a...

  1. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Science.gov (United States)

    Kada, W.; Kambayashi, Y.; Ando, Y.; Onoda, S.; Umezawa, H.; Mokuno, Y.; Shikata, S.; Makino, T.; Koka, M.; Hanaizumi, O.; Kamiya, T.; Ohshima, T.

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  2. The potential for vault-induced seismicity in nuclear fuel waste disposal: experience from Canadian mines

    International Nuclear Information System (INIS)

    A seismic event which causes damage to an underground opening is called a rockburst. Practical experience indicates that these damaging seismic events are associated with deep mines where extraction ratios are greater than 0.6. For the arrangement being considered by AECL for nuclear fuel waste disposal vaults, extraction ratios, for the room and pillar design, will be less than 0.3. At this extraction ratio the stress magnitudes will not be sufficient to induce seismic events that can damage the underground openings. Documented world-wide experience shows that unless the underground opening is very close to the source of a naturally occurring seismic event, such as an earthquake, the opening will also not experience any significant damage. Backfilling a disposal vault will improve its resistance to earthquake damage. Backfilling a disposal vault will also reduce the total convergence of the openings caused by thermal loads and hence minimize the potential for thermally-induced seismic events. (author)

  3. Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)

    International Nuclear Information System (INIS)

    Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of βα(0) required for instability. No TAE activity was observed when the central alpha particle βα reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold

  4. Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)

    Energy Technology Data Exchange (ETDEWEB)

    Batha, S.H.; Levinton, F.M. [Fusion Physics and Technology, Torrance, CA (United States); Spong, D.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-07-01

    Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of {beta}{sub {alpha}}(0) required for instability. No TAE activity was observed when the central alpha particle {beta}{sub {alpha}} reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold.

  5. Second Mexican School of Nuclear Physics: Notes

    International Nuclear Information System (INIS)

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  6. Setup for Fission and Evaporation Cross-Section Measurements in Reactions Induced by Secondary Beams

    CERN Document Server

    Hassan, A A; Kalpakchieva, R; Skobelev, N K; Penionzhkevich, Yu E; Dlouhý, Z; Radnev, S; Poroshin, N V

    2002-01-01

    A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of alpha-particle and fission fragment energy spectra. By measuring the alpha-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30 % of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion?fission reactions and of reactions leading to evaporation residue production.

  7. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  8. Laser-induced nuclear motions in the Coulomb explosion of C2H2+ ions

    International Nuclear Information System (INIS)

    The laser-induced multifragmentation of C2H2 into protons and multicharged carbon ions is shown to be a direct instantaneous explosion of the molecule. The evolution of the overall nuclear structure is studied through ion-ion correlation peak shapes. The ratios of the maxima of the kinetic-energy release distributions to the Coulomb repulsion energies calculated at the equilibrium internuclear distances are measured to be 45% for the protons and 53% for the CZ+ ions for all the detected H++CZ'++CZ+ +H+ fragmentation channels. The time scale for electronic polarization and stripping compared with the intramolecular electronic and nuclear time evolutions does not allow using a frozen molecular ion structure for the description of the explosion, thus explaining in part the observed fragmentation pattern. During the laser-induced alignment and subsequent stabilization of the molecular frame around the laser polarization direction, the carbon-carbon axis undergoes small damped oscillations that remain larger than the corresponding oscillations of the hydrogen-hydrogen axis. This difference comes from the lower moment of inertia of the hydrogen atoms compared with that of the carbon atoms in the molecule. However, the subsequent deviation from the initial linear structure remains small and is observed when the molecular ion is not completely aligned along the laser electric field

  9. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Elisa Coluzzi

    Full Text Available One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5 in vitro with hydrogen peroxide (100 and 200 µM for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs, we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.

  10. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia

    Institute of Scientific and Technical Information of China (English)

    Bryon; Ellis; Leah; Kaercher; Courtney; Snavely

    2012-01-01

    AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  11. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    Energy Technology Data Exchange (ETDEWEB)

    Kurooka, Hisanori, E-mail: hkurooka@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan); Sugai, Manabu [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan); Mori, Kentaro [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yokota, Yoshifumi, E-mail: yokota@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan)

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  12. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  13. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  14. Analysis of factors related to man-induced hazard for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2003-03-15

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out.

  15. Nuclear gamma rays from 720-MeV alpha-induced reactions on Al-27 and Si-28

    Science.gov (United States)

    Lieb, B. J.; Plendl, H. S.; Funsten, H. O.; Stronach, C. E.; Lind, V. G.

    1980-01-01

    Prompt gamma rays from the interaction of 720-MeV alpha particles with Al-27 and Si-28 were detected and analyzed to identify residual nuclei and to determine cross sections for production of specific levels. No gamma-ray transitions were detected from nuclei heavier than the target. From Doppler broadening, the momentum of the residual nuclei was estimated. The results are compared with previous results for 140- and 1600-MeV alphas on Al-27 and approximately 200-MeV positive or negative pions on Al-27 and Si-28 and fitted to a spallation-yield formula.

  16. Model description of non-Maxwellian nuclear processes in the solar interior

    CERN Document Server

    Voronchev, Victor T; Watanabe, Yukinobu

    2016-01-01

    A consistent model for the description of non-Maxwellian nuclear processes in the solar core triggered by fast reaction-produced particles is formulated. It essentially extends an approach to study suprathermal solar reactions discussed previously [Phys. Rev. C 91, 028801 (2015)] and refines its predictions. The model is applied to examine in detail the slowing-down of 8.7-MeV alpha particles produced in the 7Li(p,alpha)alpha reaction of the pp chain, and to study suprathermal processes in the solar CNO cycle induced by them. The influence of electron degeneracy and electron screening on suprathermal reactions through in-flight reaction probability and fast particle emission rate is clarified. In particular, these effects account for a 20% increase of the 14N(alpha,p)17O reaction rate at R 18F of nuclear flow transforms to abnormal sequential flow 14N --> 17O --> 18F, and the 14N(alpha,p)17O reaction rate exceeds the rate of 17O burn up through conventional 17O(p,alpha)14N and 17O(p,gamma)18F processes. It i...

  17. Nuclear binding near a quantum phase transition

    CERN Document Server

    Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam

    2016-01-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...

  18. Lasers from fission. [nuclear pumping feasibility experiments

    Science.gov (United States)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  19. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HIγS1

    International Nuclear Information System (INIS)

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIγS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm3. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIγS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  20. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI{gamma}S{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M; Zimmerman, W R; Kading, T J; Seo, P-N; Young, A H [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Ahmed, M W; Stave, S C; Henshaw, S S; Martel, P P; Weller, H R [TUNL, Dept. of Physics, Duke University, Durham, NC 27708 (United States); Breskin, A; Chechik, R [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Bromberger, B; Dangendorf, V; Tittelmeier, K [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Delbar, Th [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); III, R H France [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); McDonald, J E R, E-mail: moshe.gai@yale.edu [Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2010-12-15

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO{sub 2}(80%) + N{sub 2}(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HI{gamma}S) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm{sup 3}. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N{sub 2} emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a {sup 148}Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and {sup 12}C particles from the dissociation of {sup 16}O and of three alpha-particles from the dissociation of {sup 12}C have been measured during initial in-beam test experiments performed at the HI{gamma}S facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  1. Second Mexican School of Nuclear Physics: Notes; Segunda Escuela Mexicana de Fisica Nuclear: Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Chavez L, E.R. [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P.O. [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico)

    2001-07-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  2. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    OpenAIRE

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we rep...

  3. Nuclear antigen expression by ultraviolet light irradiation - a contribution to the UV-induced autoimmunity

    International Nuclear Information System (INIS)

    A review is given about nuclear antigen expression due to UVB, UVA, and PUVA. UVB alters DNA resulting in strong immunogenic UVDNA and complementary antibodies. Antibodies to UVDNA cross react with double-stranded DNA. UVDNA plays a (hypothetical) role in the induction of cutaneous lesions in lupus erythematosus (LE). Investigations about SS-A/Ro expression due to UVB seem to be more important under this view. Antibodies against SS-A/Ro are related to an increased photosensitivity in LE. PUVA and UVA are able to induce antinuclear antibodies of unknown specificity. It is likely that PUVA enhances SS-A/Ro expression in vitro. The results are discussed in sense of LE photobiology and unwanted side effects of photo(chemo)therapy in psoriasis. (author)

  4. Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Csikai, J; Hermanne, A; Uddin, S; Baba, M

    2016-01-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80 MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of ${}^{104m,104g,105}$${}^{g,106m,110m}$Ag, ${}^{100,101}$Pd, ${}^{99m,99g,100,}$${}^{101m}$${}^{,101g,102m,102g,105}$Rh and ${}^{103,}$${}^{97}$Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed.

  5. Activation cross sections of proton induced nuclear reactions on ytterbium up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels (Belgium); Takacs, S.; Ditroi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary); Kiraly, B. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary)], E-mail: kiralyb@atomki.hu; Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578 (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk 249020 (Russian Federation)

    2009-09-01

    Cross sections of proton induced nuclear reactions on ytterbium were measured up to 70 MeV by using the standard stacked foil irradiation technique and high-resolution gamma-ray spectroscopy. Experimental cross sections and derived integral yields are reported for the first time for the {sup nat}Yb(p,xn){sup 173,172mg,171mg,170,167}Lu, {sup nat}Yb(p,x){sup 175cum,166cum}Yb and {sup nat}Yb(p,x){sup 173ind,172ind,168,167cum,165cum}Tm reactions. No earlier experimental cross section data were found in the literature. The experimental data were compared to and analyzed with the results of the theoretical model code ALICE-IPPE. Production routes of medical radioisotope {sup 167}Tm are discussed.

  6. Program POD. A computer code to calculate cross sections for neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    A computer code, POD, was developed for neutron-induced nuclear data evaluations. This program is based on four theoretical models, (1) the optical model to calculate shape-elastic scattering and reaction cross sections, (2) the distorted wave Born approximation to calculate neutron inelastic scattering cross sections, (3) the preequilibrium model, and (4) the multi-step statistical model. With this program, cross sections can be calculated for reactions (n, γ), (n, n'), (n, p), (n, α), (n, d), (n, t), (n, 3He), (n, 2n), (n, np), (n, nα), (n, nd), and (n, 3n) in the neutron energy range above the resonance region to 20 MeV. The computational methods and input parameters are explained in this report, with sample inputs and outputs. (author)

  7. Search for Perturbations of Nuclear Decay Rates Induced by Reactor Electron Antineutrinos

    CERN Document Server

    Barnes, V E; Bryan, C D; Cinko, N; Deichert, G G; Gruenwald, J T; Heim, J M; Kaplan, H B; LaZur, R; Neff, D; Nistor, J M; Sahelijo, N; Fischbach, E

    2016-01-01

    We report the results of an experiment conducted near the High Flux Isotope Reactor of Oak Ridge National Laboratory, designed to address the question of whether a flux of reactor-generated electron antineutrinos can alter the rates of weak nuclear interaction-induced decays for Mn-54, Na-22, and Co-60. This experiment, while quite sensitive, cannot exclude perturbations less than one or two parts in $10^4$ in $\\beta$ decay (or electron capture) processes, in the presence of an antineutrino flux of $3\\times 10^{12}$ cm$^{-2}$ s$^{-1}$. The present experimental methods are applicable to a wide range of isotopes. Improved sensitivity in future experiments may be possible if we can understand and reduce the dominant systematic uncertainties.

  8. Proceedings of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    The meeting of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions was held at the University of Tokyo, May 13 and 14, 1982. The aim of this seminar has been not only to recognize the common problems lying between above two research fields, but also to obtain an overview of the theoretical and experimental approaches to clear the current problems. In the seminar, more than 50 participants gathered and presented 16 papers. These are two general reviews and fourteen comprehensive surveys on topical subjects which have been developed very intensively in recent years. The editors would like to thank all participants for their assistance and cooperation in making possible a publication of these proceedings. (author)

  9. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  10. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x1012 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  11. Pion-induced production of the $Z_c(3900)$ off nuclear target

    CERN Document Server

    Huang, Yin; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2015-01-01

    We investigate the possibility to study the charmonium-like state $Z_c(3900)$ through the pion-induced production off nuclear target. By using high-energy pion beam, the $Z_c(3900)$ can be produced off proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the $p(\\pi^-, Z^-_c(3900))$ and $p(\\pi^-, Z^-_c(3900)\\to J/\\psi\\pi^-)$ reactions are calculated, which order of magnitude is about 0.1 and 0.01nb, respectively, with an assumption of branch ratio 10\\% for the $Z_c(3900)$ decay in $J/\\psi\\pi$ channel. If proton target is replaced by nuclear target, the production of the $Z_c(3900)$ enhances obviously. The predicted total cross sections for the $A(\\pi^-, Z^-_c(3900))$ and $A(\\pi^-, Z^-_c(3900)\\to J/\\psi\\pi^-)$ reactions with $A=^{12}$C or $^{208}$Pb are on the order of magnitude of 100 and 10 nb, respectively, which is about one thousand times larger than the cross sections ...

  12. From nuclear power to coal power: Aerosol-induced health and radiative effects

    Science.gov (United States)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  13. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    Science.gov (United States)

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  14. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d(3He,p)4He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  15. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    Science.gov (United States)

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  16. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M. [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  17. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    International Nuclear Information System (INIS)

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant's electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant's protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well

  18. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    International Nuclear Information System (INIS)

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  19. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Science.gov (United States)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  20. Vanadate affects nuclear division and induces aberrantly-shaped cells during subsequent cytokinesis in Tetrahymena

    DEFF Research Database (Denmark)

    Nilsson, Jytte R.

    1999-01-01

    cellebiology,endocytosis,monsters,nuclear elongation,sodium orthovanadate,Tetrahymena pyriformis,proliferation......cellebiology,endocytosis,monsters,nuclear elongation,sodium orthovanadate,Tetrahymena pyriformis,proliferation...

  1. External man-induced events in relation to nuclear power plant design

    International Nuclear Information System (INIS)

    This Guide deals with the basic design requirements for nuclear power plants, and presents a general design approach for protection against the effects of man-induced events. Section 2 discusses the general design approach. Section 3 outlines the development of the basic information necessary for an evaluation of the adequacy of a design against the effects of aircraft crashes, fires, explosions, and the release of toxic gases or corrosive substances. Section 4 outlines the design logic for protection against external man-induced events. It indicates possible methods of ensuring overall plant safety, including protection against possible secondary effects. Included for each event are: a methodology for calculating the design input parameters from the data generated in the siting study, system protection considerations from the effects of this man-induced event, and criteria for judging the adequacy of the protection provided. Specific design guidance related to acts of sabotage is not provided in this Guide. It should be recognized, however, that for certain situations such acts can be important to safety and could constitute the controlling postulated initiating event for design. The list of events covered is not necessarily complete. However, important events on which enough work has already been done in various Member States to enable their effects to be converted into generally accepted design parameters are included. In addition, other man-induced events such as dam ruptures, ship collisions, construction accidents and the like are identified but no general guidelines for design can be specified for these at present. These events need to be considered on an ad hoc basis, in order to arrive at design input parameters for them

  2. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Um, So Young [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Park, Jung Hyun [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Chung, Myeon Woo [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Kim, Kyu-Bong [College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Kim, Seon Hwa [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Choi, Ki Hwan, E-mail: hyokwa11@korea.kr [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Lee, Hwa Jeong, E-mail: hwalee@ewha.ac.kr [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer NMR based metabolomics - gastric damage by indomethacin. Black-Right-Pointing-Pointer Pattern recognition analysis was performed to biomarkers of gastric damage. Black-Right-Pointing-Pointer 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. Black-Right-Pointing-Pointer The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the {sup 1}H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg{sup -1}) or co-administration with cimetidine (100 mg kg{sup -1}), which protects against GI damage. The {sup 1}H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg{sup -1}) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by

  3. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    International Nuclear Information System (INIS)

    Highlights: ► NMR based metabolomics – gastric damage by indomethacin. ► Pattern recognition analysis was performed to biomarkers of gastric damage. ► 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. ► The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg−1) or co-administration with cimetidine (100 mg kg−1), which protects against GI damage. The 1H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg−1) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  4. Studies on the reaction mechanism of the muon induced nuclear fission

    International Nuclear Information System (INIS)

    The mass and energy distribution of the fission fragments after muon induced nuclear fission allows the determination of the mean excitation energy of the fissioning nucleus after muon capture. By the systematic comparison with a mass distribution of a corresponding reaction for the first time for this an accuracy of about 1 MeV could be reached. Theoretical calculations on the excitation probability in the muon capture allow in connection with the fission probability an estimating calculation of this energy. The experimental result represents by this a test criterium for the valuation of the theoretical calculation. The measured probabilities for the occurrence of radiationless transitions in the muonic γ cascade of 237Np permit an indirect experimental determination of the barrier enhancement which causes the muon present during the fission process. The value found for this extends to 0.75+-0.1 MeV. A change of the mass distribution by the muon cannot be detected in the nuclides 235U, 237Np, and 242Pu studied here. Only the mean total kinetic energy of the fission products is reduced in these three nuclides in the prompt μ- induced fission by 1 to 2 MeV. For this result the incomplete screening of the nuclear charge during the fission process is made responsible. A mass dependence of this reduction has not been stated. Because the muon has appearently no influence on the mass splitting it can be valied as nearly ideal particle in order to study the hitherto little studied dynamics of the fission process. (orig.)

  5. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    OpenAIRE

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT...

  6. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  7. Molecular analysis and comparison of radiation-induced large deletions of the HPRT locus in primary human skin fibroblasts

    Science.gov (United States)

    Yamada, Y.; Park, M. S.; Okinaka, R. T.; Chen, D. J.

    1996-01-01

    Genetic alterations in gamma-ray- and alpha-particle-induced HPRT mutants were examined by multiplex polymerase chain reaction (PCR) analysis. A total of 39-63% of gamma-ray-induced and 31-57% of alpha-particle-induced mutants had partial or total deletions of the HPRT gene. The proportion of these deletion events was dependent on radiation dose, and at the resolution limits employed there were no significant differences between the spectra induced by equitoxic doses of alpha particles (0.2-0.4 Gy) and gamma rays (3 Gy). The molecular nature of the deletions was analyzed by the use of sequence tagged site (STS) primers and PCR amplification as a "probe" for specific regions of the human X chromosome within the Xq26 region. These STSs were closely linked and spanned regions approximately 1.7 Mbp from the telomeric side and 1.7 Mbp from the centromeric side of the HPRT gene. These markers include: DXS53, 299R, DXS79, yH3L, 3/19, PR1, PR25, H2, yH3R, 1/44, 1/67, 1/1, DXS86, D8C6, DXS10 and DXS144. STS analyses indicated that the maximum size of total deletions in radiation-induced HPRT mutants can be greater than 2.7 Mbp and deletion size appears to be dependent on radiation dose. There were no apparent differences in the sizes of the deletions induced by alpha particles or gamma rays. On the other hand, deletions containing portions of the HPRT gene were observed to be 800 kbp or less, and the pattern of the partial deletion induced by alpha particles appeared to be different from that induced by gamma rays.

  8. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    Science.gov (United States)

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  9. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    Science.gov (United States)

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  10. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  11. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  12. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    International Nuclear Information System (INIS)

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d 3D2 state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  13. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    OpenAIRE

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we rep...

  14. The Nuclear Receptor, Nor-1, Induces the Physiological Responses Associated With Exercise.

    Science.gov (United States)

    Goode, Joel M; Pearen, Michael A; Tuong, Zewen K; Wang, Shu-Ching M; Oh, Tae Gyu; Shao, Emily X; Muscat, George E O

    2016-06-01

    Skeletal muscle remodels metabolic capacity, contractile and exercise phenotype in response to physiological demands. This adaptive remodeling response to physical activity can ameliorate/prevent diseases associated with poor diet and lifestyle. Our previous work demonstrated that skeletal muscle-specific transgenic expression of the neuron-derived orphan nuclear receptor, Nor-1 drives muscle reprogramming, improves exercise endurance, and oxidative metabolism. The current manuscript investigates the association between exercise, Nor-1 expression and the role of Nor-1 in adaptive remodeling. We demonstrate that Nor-1 expression is induced by exercise and is dependent on calcium/calcineurin signaling (in vitro and in vivo). Analysis of fatigue-resistant transgenic mice that express Nor-1 in skeletal muscle revealed increased hypertrophy and vascularization of muscle tissue. Moreover, we demonstrate that transgenic Nor-1 expression is associated with increased intracellular recycling, ie, autophagy, involving 1) increased expression of light chain 3A or LC3A-II, autophagy protein 5, and autophagy protein 12 in quadriceps femoris muscle extracts from Tg-Nor-1 (relative to Wild-type (WT) littermates); 2) decreased p62 expression indicative of increased autophagolysosome assembly; and 3) decreased mammalian target of rapamycin complex 1 activity. Transfection of LC3A-GFP-RFP chimeric plasmid demonstrated that autophagolysosome formation was significantly increased by Nor-1 expression. Furthermore, we demonstrated a single bout of exercise induced LC3A-II expression in skeletal muscle from C57BL/6 WT mice. This study, when combined with our previous studies, demonstrates that Nor-1 expression drives multiple physiological changes/pathways that are critical to the beneficial responses of muscle to exercise and provides insights into potential pharmacological manipulation of muscle reprogramming for the treatment of lifestyle induced chronic diseases. PMID:27144290

  15. UV-induced nuclear import of XPA is mediated by importin-α4 in an ATR-dependent manner.

    Directory of Open Access Journals (Sweden)

    Zhengke Li

    Full Text Available Xeroderma pigmentosum Group A (XPA is a crucial factor in mammalian nucleotide excision repair (NER and nuclear import of XPA from the cytoplasm for NER is regulated in cellular DNA damage responses in S-phase. In this study, experiments were carried out to determine the transport mechanisms that are responsible for the UV (ultraviolet-induced nuclear import of XPA. We found that, in addition to the nuclear localization signal (NLS of XPA, importin-α4 or/and importin-α7 are required for the XPA nuclear import. Further investigation indicated that, importin-α4 and importin-α7 directly interacted with XPA in cells. Interestingly, the binding of importin-α4 to XPA was dependent on UV-irradiation, while the binding of importin-α7 was not, suggesting a role for importin-α7 in nuclear translocation of XPA in the absence of DNA damage, perhaps with specificity to certain non-S-phases of the cell-cycle. Consistent with the previous report of a dependence of UV-induced XPA nuclear import on ataxia telangiectasia and Rad3-related protein (ATR in S-phase, knockdown of ATR reduced the amount of XPA interacting with importin-α4. In contrast, the GTPase XPA binding protein 1 (XAB1, previously proposed to be required for XPA nuclear import, showed no effect on the nuclear import of XPA in our siRNA knockdown analysis. In conclusion, our results suggest that upon DNA damage transport adaptor importin-α4 imports XPA into the nucleus in an ATR-dependent manner, while XAB1 has no role in this process. In addition, these findings reveal a potential new therapeutic target for the sensitization of cancer cells to chemotherapy.

  16. The effects of the Bragg curve on the nuclear track formation in CR-39 polycarbonate, with the atomic force microscopy approach

    OpenAIRE

    C. Vázquez-López; B.E. Zendejas-Leal; R. Fragoso; J. I. Golzarri; Espinosa, G.

    2013-01-01

    The etching nuclear track parameters were analyzed, using atomic force microscopy (AFM), allowing the simulation of the nuclear track profiles evolution. For these experiments, CR-39 (LantrackTM) was chosen, because the excellent energy response to alpha particles. Due to the AFM limitations, it was necessary to reduce the incident particle energy in order to reach the Bragg peak region in the AFM scanning process. The different profile shapes of the etched tracks were clearly observed in the...

  17. The effect of dimethyl sulfoxide on the induction of DNA double-strand breaks in V79-4 mammalian cells by alpha particles

    International Nuclear Information System (INIS)

    The present study was undertaken to assess the protective effect of dimethyl sulfoxide (DMSO) against the induction and rejoining of DNA double-strand breaks (DSBs) and inactivation of V79-4 Chinese hamster cells by both high- and low-linear energy transfer (LET) radiations. The cells were exposed under aerobic conditions as monolayers to either low-LET photons (60Co γ rays) or high-LET α particles (238Pu) at 277 K. The initial yield of DSBs, determined by elution under nondenaturing conditions, is linearly dependent on dose. When the irradiation was carried out in the presence of DMSO (0-0.6 mol dm-3), the initial yields of DSBs induced by both γ and α-particle irradiation decrease. With γ irradiation at [DMSO]>0.6 mol dm-3, a further decrease in the yield of DSBs by 50 ± 5% and 32 ± 4% for photons and α-particle irradiation with protection factors of 1.7 and 1.4, respectively, for survival and 2.0 and 1.5, respectively, for DSBs. After incubation of the irradiated cells for 3 h at 310K after high-LET irradiation, the residual yield of DSBs is reduced by -3 DMSO. With γ irradiation in the presence of 0.5 mol dm-3 DMSO, 90% of the DSBs are rejoined by 3 h incubation at 310 K. Therefore, the nonscavengeable DSBs induced by α particles are not significantly rejoined within 3 h, in contrast to rejoining of the majority of the nonscavengeable DSBs induced by γ irradiation. From comparison of the data on DSBs and survival for α-particle irradiation, it is inferred that the severity of damage is reduced by DMSO through minimizing the formation of OH-induced sugar/base modifications in the vicinity of nonscavengeable DSBs. 47 refs., 5 figs

  18. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    Science.gov (United States)

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  19. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  20. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    Science.gov (United States)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from

  1. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  2. Study of radiation effects on the cell structure and evaluation of the dose delivered by x-ray and {alpha}-particles microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosior, Ewelina; Cloetens, Peter [European Synchrotron Radiation Facility, F-38000 Grenoble (France); Deves, Guillaume; Ortega, Richard [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bohic, Sylvain [European Synchrotron Radiation Facility, 38000 Grenoble (France); INSERM U-836 (Team 6: Synchrotron Radiation and Medical Research), Grenoble Institut of Neuroscience, F-38000 Grenoble (France)

    2012-12-24

    Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to study radiation effects on cells. Experiments were performed on freeze-dried cells at the nano-imaging station ID22NI of the European synchrotron radiation facility. Quantitative phase contrast imaging provides maps of the projected mass and is used to evaluate the structural changes due to irradiation during X-ray fluorescence experiments. Complementary to phase contrast imaging, scanning transmission ion microscopy is performed and doses of all the experiments are compared. We demonstrate the sensitivity of the proposed approach to study radiation-induced damage at the sub-cellular level.

  3. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Science.gov (United States)

    Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-06-01

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass-polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  4. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael F.; Nattress, J.; Jovanovic , I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  5. Virus-Induced Chaperone-Enriched (VICE domains function as nuclear protein quality control centers during HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Christine M Livingston

    2009-10-01

    Full Text Available Virus-Induced Chaperone-Enriched (VICE domains form adjacent to nuclear viral replication compartments (RC during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70, the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42 degrees C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.

  6. Nuclear data relevant to single event upsets in semiconductor memories induced by cosmic-ray neutrons and protons

    International Nuclear Information System (INIS)

    The role of nuclear data is examined in the study of single event upset (SEU) phenomena in semiconductor memories caused by cosmic-ray neutrons and protons. Neutron and proton SEU cross sections are calculated with a simplified semi-empirical model using experimental heavy-ion SEU cross-sections and a dedicated database of neutron and proton induced reactions on 28Si. Some impacts of the nuclear reaction data on SEU simulation are analyzed by investigating relative contribution of secondary ions and neutron elastic scattering to SEU and influence of simultaneous multiple ions emission on SEU. (author)

  7. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  8. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    Science.gov (United States)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  9. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-07-01

    Full Text Available The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal spike, dark signal non-uniformity (DSNU, noise (VN, saturation output signal voltage (VS, and dynamic range (DR versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  10. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    International Nuclear Information System (INIS)

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD), dark signal spike, dark signal non-uniformity (DSNU), noise (VN), saturation output signal voltage (VS), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike

  11. Seismic induced nonlinear rotor-bearing-casing interaction of rotating nuclear components

    International Nuclear Information System (INIS)

    The study of the dynamics of turbomachinery during seismic events has been of continuous interest to both researchers and designers of large rotating equipment. Failure in such equipment, especially those associated with nuclear power generation, can lead to catastrophic consequences. Hence, there is a general trend for corporations to overdesign the equipment without any indepth understanding of the dynamical performance of the machine under extreme operating conditions. The overall objective of this paper are fourfold, namely: (1) To study the nonlinear dynamics of rotor-bearing casing system during rub interactions; (2) To examine the effects of suddenly induced imbalance and base motion in the global dynamical behavior of the system; (3) To develop engineering insights through the modal parameters in both time and frequency domain; (4) To generate signature analysis on rub forces for pattern recognition. These goals are achieved through the development of a modal impact model. Accuracy and efficiency of this transient model are maintained using a self-adaptive integration scheme

  12. Annual report of the Nuclear Physics Laboratory, University of Washington

    International Nuclear Information System (INIS)

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful 51Cr neutrino source experiment. The first data from 8B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate 192Os and oblate 194Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A ∼ 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures

  13. Annual report of the Nuclear Physics Laboratory, University of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Snover, K.; Fulton, B. [eds.

    1996-04-01

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful {sup 51}Cr neutrino source experiment. The first data from {sup 8}B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate {sup 192}Os and oblate {sup 194}Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A {approximately} 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures.

  14. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    After the satisfactory and busy operation of the 12 UD tandem accelerator for five years, the accelerating tubes showed the symptom of deterioration mainly due to stain, so that a few tubes were changed. In spite of this trouble, the operation over 3000 hours was maintained. The development of peripheral apparatus around the tandem accelerator and detectors was made. Above all, a beam pulsing system was successfully installed. The experimental works on nuclear physics were directed to the studies on polarization phenomena and heavy ion-induced reactions. The importance of the two-step process in the reaction mechanism was established. As the remarkable theoretical progress, a self-consistent collective coordinate method for the large amplitude collective motion was successfully developed, and the boson expansion theory was refined. The yield of X-ray and radiative electron capture and the equilibrium charge state in the collision of heavy ions were studied in detail. By the back scattering of 18 MeV alpha particles channeled in solid state, the shift of resonant peak energy was clearly observed, thus the influence of lattice effect in crystals was shown. (Kako, I.)

  15. Reviews Book: Marie Curie and Her Daughters Resource: Cumulus Equipment: Alpha Particle Scattering Apparatus Equipment: 3D Magnetic Tube Equipment: National Grid Transmission Model Book: Einstein's Physics Equipment: Barton's Pendulums Equipment: Weather Station Web Watch

    Science.gov (United States)

    2013-09-01

    WE RECOMMEND Marie Curie and Her Daughters An insightful study of a resilient and ingenious family and their achievements Cumulus Simple to install and operate and with obvious teaching applications, this weather station 'donationware' is as easy to recommend as it is to use Alpha Particle Scattering Apparatus Good design and construction make for good results National Grid Transmission Model Despite its expense, this resource offers excellent value Einstein's Physics A vivid, accurate, compelling and rigorous treatment, but requiring an investment of time and thought WORTH A LOOK 3D Magnetic Tube Magnetic fields in three dimensions at a low cost Barton's Pendulums A neat, well-made and handy variant, but not a replacement for the more traditional version Weather Station Though not as robust or substantial as hoped for, this can be put to good use with the right software WEB WATCH An online experiment and worksheet are useful for teaching motor efficiency, a glance at CERN, and NASA's interesting information on the alpha-magnetic spectrometer and climate change

  16. Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S.; Ajala, Afis; Olamiyl, Hezekiah B. [Dept. of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria)

    2016-04-15

    The Feshbach-Kerman-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  17. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Energy Technology Data Exchange (ETDEWEB)

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  18. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization; consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment; and consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  19. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    Directory of Open Access Journals (Sweden)

    Sarit Anavi

    2015-04-01

    Full Text Available Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA complex (1 mM, 2:1 oleic and palmitic acids. In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2. Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP. 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment.

  20. Modulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor

    International Nuclear Information System (INIS)

    In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells

  1. Formation of multinuclear cells induced by dimethyl sulfoxide: inhibition of cytokinesis and occurrence of novel nuclear division in dictyostelium cells

    OpenAIRE

    Fukui, Y.

    1980-01-01

    Our previous studies showed that 10 percent dimethyl sulfoxide (DMSO) induces the formation of actin microfilament bundles in the cell nucleus together with the dislocation of cortical microfilaments from the plasma membrane. The present study investigated the effects of DMSO on diverse activities mediated by cellular microfilaments as the second step toward assessing potential differences between nuclear and cytoplasmic actins of dictyostelium mucoroides. DMSO was found to reversibly inhibit...

  2. Possibility of 5He emission in neutron induced reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingshang

    2004-01-01

    The unstable nucleus 5He emission has never been included in the widely used statistical model codes as the evaluation tool and interpretation experimental data.The calculated threshold energies of 5He emission from light nuclei to heavy nuclei indicate that in most cases the compound nucleus induced by incident neutron would emit 5He rather than 3He. Since 5He is unstable and can be separated into n+α spontaneously,so neutron is produced in 5He emission process. The formulation of the double-differential cross section of the neutron from the two-body breakup process of emitted 5He is established. Because of the strong recoil effect, the energy balance is strictly taken into account to meet the needs in nuclear engineering. Further improvement of the statistical model calculation codes on this respect is proposed. It is expected that the correlative measurement will be available to account the outgoing neutron and alpha particle simultaneously and to test and verify the existence of 5He emission.

  3. Operational modal analysis of flow-induced vibration of nuclear fuel rods in a turbulent axial flow

    Energy Technology Data Exchange (ETDEWEB)

    De Pauw, B., E-mail: bdepauw@vub.ac.be [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium); Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering (AVRG), Brussels (Belgium); Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol (Belgium); Weijtjens, W.; Vanlanduit, S. [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering (AVRG), Brussels (Belgium); Van Tichelen, K. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol (Belgium); Berghmans, F. [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium)

    2015-04-01

    Highlights: • We describe an analysis technique to evaluate nuclear fuel pins. • We test a single fuel pin mockup subjected to turbulent axial flow. • Our analysis is based on operational modal analysis (OMA). • The accuracy and precision of our method is higher compared to traditional methods. • We demonstrate the possible onset of a fluid-elastic instability. - Abstract: Flow-induced vibration of nuclear reactor fuel pins can result in mechanical noise and lead to failure of the reactor's fuel assembly. This problem can be exacerbated in the new generation of liquid heavy metal fast reactors that use a much denser and more viscous coolant in the reactor core. An investigation of the flow-induced vibration in these particular conditions is therefore essential. In this paper, we describe an analysis technique to evaluate flow-induced vibration of nuclear reactor fuel pins subjected to a turbulent axial flow of heavy metal. We deal with a single fuel pin mockup designed for the lead–bismuth eutectic (LBE) cooled MYRRHA reactor which is subjected to similar flow conditions as in the reactor core. Our analysis is based on operational modal analysis (OMA) techniques. We show that the accuracy and precision of our OMA technique is higher compared to traditional methods and that it allows evaluating the evolution of modal parameters in operational conditions. We also demonstrate the possible onset of a fluid-elastic instability by tracking the modal parameters with increasing flow velocity.

  4. Nuclear vasohibin-2 promotes cell proliferation by inducing G0/G1 to S phase progression.

    Science.gov (United States)

    Ge, Qianqian; Zhou, Jia; Tu, Min; Xue, Xiaofeng; Li, Zhanjun; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Miao, Yi; Gao, Wentao

    2015-09-01

    As a member of the vasohibin (VASH2) family, VASH2 is localized intracellularly as a nuclear and cytoplasmic type. Cytoplasmic VASH2 is associated with carcinoma angiogenesis and malignant transformation and promotes cancer growth. However, the function of nuclear VASH2 has yet to be investigated. The aim of the present study was to detect the nuclear VASH2 expression profile in human organs and tissues by protein microarray technique. To examine the function of nuclear VASH2, we analyzed the relationship between nuclear VASH2 and Ki-67, and stably constructed VASH2 overexpression and knockdown in LO2 and HepG2 cell lines, based on a previous study in hepatic cells. The study was conducted using bromodeoxyuridine, immunofluorescent staining, western blot analysis and flow cytometry. Nuclear VASH2 was highly expressed in actively dividing cells in normal and cancer tissues. There was a significant positive correlation between nuclear VASH2 and Ki-67, indicating that nuclear VASH2 positively correlated with cell proliferation in normal and cancer tissues. The bromodeoxyuridine (BrdU) proliferation test showed that nuclear VASH2 increased the S-phase population and promoted cell proliferation, while VASH2 knockdown reduced BrdU absorbance. Cell cycle analysis revealed that nuclear VASH2 overexpression increased the S-phase population in LO2 and HepG2 cells, while nuclear VASH2 knockdown reduced the S-phase population and increased the G0/G1 population. The findings of this study challenge the classic view of VASH2, which was previously reported as an angiogenesis factor. Furthermore, to the best of our knowledge, these results are the first clinical data indicating that nuclear VASH2, but not cytoplasmic VASH2, promotes cell proliferation by driving the cell cycle from the G0/G1 to S phase.

  5. Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the aberrant expression of nuclear matrix proteins in human gastric cancer cells before and after hexamethylene bisacetamide (HMBA) treatment.METHODS: Proteomics analysis of differential nuclear matrix proteins was performed by two dimensional electrophoresis polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The expression levels of three nuclear matrix proteins were further confirmed by Western blotting and their location...

  6. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Stéphane Garcia; Juan Lucio Iovanna; Marie-Josèphe Pébusque; Norio Sawabu

    2006-01-01

    AIM: Overexpression of tumor protein p53-induced nuclear protein 1 (TP53INP1) induces G1 cell cycle arrest and increases p53-mediated apoptosis. To clarify the clinical importance of TP53INP1, we analyzed TP53INP1and p53 expression in gastric cancer.METHODS: TP53INP1 and p53 expression were examined using immunohistochemistry in 142 cases of gastric cancer. The apoptosis of gastric cancer cells was analyzed using the TUNEL method. The relationship between the expression of TP53INP1 and clinicopathological factors was statistically analyzed.RESULTS: TP53INP1 was expressed in 98% (139/142cases) of non-cancerous gastric tissues and was downexpressed in 64% (91/142 cases) of gastric cancer lesions from the same patients. TP53INP1 expression was significantly decreased (43.9%) in poorly differentiated adenocarcinoma compared with well or moderately differentiated adenocarcinoma (81.6%).Cancers invading the submucosa or deeper showed lower positively (59.1%) compared with mucosal cancers (85.2%). Decrease or loss of TP53INP1 expression was significantly correlated with lymphatic invasion (54.3%vs 82.0% without lymphatic invasion) and node-positive patients (31.3% vs 68.3% in node-negative patients).P53 was expressed in 68 (47.9%) patients of gastric cancer, whereas it was absent in normal gastric tissues.A significant association was also observed between TP53INP1 status and the level of apoptosis in tumor cells: the apoptotic index in TP53INP1-positive tissues was significantly higher than that in TP53INP1-negative portions. Finally, when survival data were analyzed,loss of TP53INP1 expression had a significant effect in predicting a poor prognosis (P= 0.0006).CONCLUSION: TP53INP1-positive rate decreases with the progression of gastric cancer. TP53INP1 protein negativity is significantly associated with aggressive pathological phenotypes of gastric cancer. TP53INP1is related to the apoptosis of gastric cancer cells. The decreased expression of the TP53INP1 protein may

  7. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    Science.gov (United States)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  8. Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M G

    2006-06-13

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).

  9. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    Science.gov (United States)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA

  10. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    Directory of Open Access Journals (Sweden)

    Dong Chan Moon

    Full Text Available Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs, (225RKRKRK(230. Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1 gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  11. Application of neutron induced radiography technique in determination of boron in aluminium

    International Nuclear Information System (INIS)

    The technique of Neutron Induced Radiography has been applied to determine boron concentration and its spatial distribution in aluminium using Allyl diglycol carbonate (CR-39) detectors. The technique is based upon the simultaneous irradiation of sample and a standard fixed on a track detector with thermal neutrons and the counting of alpha and /sup 7/Li tracks produced in the detector from the nuclear reaction /sup 10/B(n,α)/sup 7/Li after chemical etching. Boron concentration is determined by comparing the /sup 7/Li and alpha particle tracks density with that of a standard of known boron concentration. Boron concentration in aluminium has been found to be (135.8 ±0.7) ppm in this study which is on the higher side within the normal range reported in the literature. The technique of boron determination by Neutron Induced Radiography is a simple and reliable. It can be used to study the other α-emitting radionuclides in minerals and other materials. (author)

  12. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.K. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  13. Neocarzinostatin-induced Rad51 nuclear focus formation is cell cycle regulated and aberrant in AT cells

    International Nuclear Information System (INIS)

    DNA double-stranded breaks are the most detrimental form of DNA damage and, if not repaired properly, may lead to an accumulation of chromosomal aberrations and eventually tumorigenesis. Proteins of the Rad51/Rad52 epitasis group are crucial for the recombinational repair of DNA double-stranded breaks, whereas the Rad50/NBS1/Mre11 nuclease complex is involved in both the recombinational and the end-joining repair of DNA double-stranded breaks. Herein, we demonstrate that the chemotherapeutic enediyne antibiotic neocarzinostatin induced Rad51, but not NBS1, nuclear focus formation in a cell- cycle-dependent manner. Furthermore, neocarzinostatin-induced Rad51 foci formation revealed a slower kinetic change in AT cells, but not in wild-type or NBS cells. In summary, our results suggest that neocarzinostatin induces Rad51 focus formation through an ATM- and cell-cycle-dependent, but NBS1-independent, pathway

  14. Orphan nuclear receptor Nur77 is required for the differentiation of C6 glioma cells induced by cholera toxin

    Institute of Scientific and Technical Information of China (English)

    Dong XU; Yi-jun HUANG; Yan LI; Wei YIN; Guang-mei YAN

    2009-01-01

    Aim: To investigate a possible regulator gene involved in the cholera toxin-induced differentiation of rat C6 glioma cells. Methods: The global changes in the mRNA expression pattern induced by cholera toxin were analyzed using gene chip microarray. The selected gene was then silenced by RNA interference or overexpressed with an ORF plasmid to determine its necessity in this process. Results: Nur77, a member of the orphan nuclear receptor family (NR4A), was markedly up-regulated during the process of differentiation. Furthermore, RNAi of nur77 attenuated the induction effect of cholera toxin on C6 cells, whereas overexpression of nur77 led to similarly differentiated behavior, including morphologic and biomarker changes, as well as cell cycle arrest. Conclusion: Nur77 participated actively and essentially as an important regulator in the cholera toxin-induced differentiation of C6 cells.

  15. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tárkányi, F.; Takács, S. [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2014-04-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the {sup nat}Nd(d,x) {sup 151,150,149,148m,148g,146,144,143}Pm, {sup 149,147,139m}Nd, {sup 142}Pr and {sup 139g}Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed.

  16. Spatial gradient of dynamic nuclear spin polarization induced by breakdown of quantum Hall effect

    OpenAIRE

    Kawamura, Minoru; Kono, Kimitoshi; Hashimoto, Yoshiaki; Katsumoto, Shingo; Machida, Tomoki

    2010-01-01

    We studied spatial distribution of dynamic nuclear polarization (DNP) in a Hall-bar device in a breakdown regime of the quantum Hall effect (QHE). We detected nuclear magnetic resonance (NMR) signals from the polarized nuclear spins by measuring the Hall voltage $V_{xy}$ using three pairs of voltage probes attached to the conducting channel of the Hall bar. We find that the amplitude of the NMR signal depends on the position of the Hall voltage probes and that the largest NMR signal is obtain...

  17. KAR5 Encodes a Novel Pheromone-inducible Protein Required for Homotypic Nuclear Fusion

    OpenAIRE

    Beh, Christopher T.; Brizzio, Valeria; Rose, Mark D.

    1997-01-01

    KAR5 is required for membrane fusion during karyogamy, the process of nuclear fusion during yeast mating. To investigate the molecular mechanism of nuclear fusion, we cloned and characterized the KAR5 gene and its product. KAR5 is a nonessential gene, and deletion mutations produce a bilateral defect in the homotypic fusion of yeast nuclei. KAR5 encodes a novel protein that shares similarity with a protein in Schizosaccharomyces pombe that may play a similar role in nuclear fusion. Kar5p is i...

  18. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  19. Alpha particles for treatment of disseminated melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Link, E.M. [London Univ. (United Kingdom)

    2010-11-15

    Invading melanoma spreads to local and unpredictable distant location at the early stages of its development. It is justifiable, therefore to classify the disease as a systemic disorder. This requires a systemic treatment that reaches all melanoma cells irrespective of whether they are singly dispersed and in circulation or already forming solid tumours of various sizes. Targeted radiotherapy affects directly and selectively cancer cells provided an appropriate radionuclide and its carrier are chosen. Melanoma is a pigmented tumour. Methylene blue (MTB) accumulates selectively in melanoma cells due to its exceptionally high affinity to melanin. MTB serves, therefore, as a carrier for radionuclides. {sup 211}At-MTB has proved to be particularly effective in treating disseminated melanoma when administered systemically and, at the same time, non-toxic to normal non-pigmented and pigmented organs. (author)

  20. Alpha particles for treatment of disseminated melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Link, E.M. [London University (United Kingdom)

    2010-07-01

    Invading melanoma spreads to local and unpredictable distant location at the early stages of its development. It is justifiable, therefore, to classify the disease as a systemic disorder. This requires a systemic treatment that reaches all melanoma cells irrespective of whether they are singly dispersed and in circulation or already forming solid tumours of various sizes. Targeted radiotherapy affects directly and selectively cancer cells provided an appropriate radionuclide and its carrier are chosen. Melanoma is a pigmented tumour. Methylene blue (MTB)) accumulates selectively in melanoma cells due to its exceptionally high affinity to melanin. MTB serves, therefore, as a carrier for radionuclides. {sup 211}At-MTB has proved to be particularly effective in treating disseminated melanoma when administered systemically and, at the same time, non-toxic to normal non-pigmented and pigmented organs. (authors)

  1. Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice

    Directory of Open Access Journals (Sweden)

    Davina Kruczek

    2015-06-01

    Full Text Available Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR families including the retinoic acid receptors (RAR and liver X receptors (LXR. We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the cuprizone mouse model. Cuprizone, which causes oligodendrocyte degeneration, was given for three weeks as a food additive. For the activation of nuclear receptors mice were treated with daily i.p. injections of agonists for RXR (9-cis RA, RAR (all-trans RA, and LXR (T0901317. Myelin status, oligodendrocyte survival, astrogliosis, microglial activation, and axon density were monitored with immunohistochemistry and evaluated quantitatively. Three weeks of cuprizone feeding caused severe demyelination and significantly raised the number of Iba1 immunoreactive microglia cells in the caudal corpus callosum. This increase of microglia activity was reduced with 9-cis RA treatment but was enhanced with all-trans RA and was not affected by T0901317. Nuclear receptor activation did not influence the degree of demyelination, oligodendrocyte survival, astrogliosis, or axonal preservation. We conclude that RXR activation, although affecting Iba1-positive microglia, does not protect oligodendrocytes from cuprizone toxicity and does not induce compensatory mechanisms in the initial phase of demyelination.

  2. Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4$\\pi$ Configuration of Plastic Track Detectors

    CERN Multimedia

    2002-01-01

    % EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...

  3. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Science.gov (United States)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  4. Signal transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in the parasitic protozoan Trichomonas vaginalis.

    Science.gov (United States)

    Hsu, Hong-Ming; Lee, Yu; Hsu, Pang-Hung; Liu, Hsing-Wei; Chu, Chien-Hsin; Chou, Ya-Wen; Chen, Yet-Ran; Chen, Shu-Hui; Tai, Jung-Hsiang

    2014-10-17

    Iron was previously shown to induce rapid nuclear translocation of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. In the present study, iron was found to induce a transient increase in cellular cAMP, followed by the nuclear influx of Myb3, whereas the latter was also induced by 8-bromo-cyclic AMP. Iron-inducible cAMP production and nuclear influx of Myb3 were inhibited by suramin and SQ22536, respective inhibitors of the Gα subunit of heterotrimeric G proteins and adenylyl cyclases. In contrast, the nuclear influx of Myb3 induced by iron or 8-bromo-cAMP was delayed or inhibited, respectively, by H89, the inhibitor of protein kinase A. Using liquid chromatography-coupled tandem mass spectrometry, Thr(156) and Lys(143) in Myb3 were found to be phosphorylated and ubiquitinated, respectively. These modifications were induced by iron and inhibited by H89, as shown by immunoprecipitation-coupled Western blotting. Iron-inducible ubiquitination and nuclear influx were aborted in T156A and K143R, but T156D was constitutively ubiquitinated and persistently localized to the nucleus. Myb3 was phosphorylated in vitro by the catalytic subunit of a T. vaginalis protein kinase A, TvPKAc. A transient interaction between TvPKAc and Myb3 and the phosphorylation of both proteins were induced in the parasite shortly after iron or 8-bromo-cAMP treatment. Together, these observations suggest that iron may induce production of cAMP and activation of TvPKAc, which then induces the phosphorylation of Myb3 and subsequent ubiquitination for accelerated nuclear influx. It is conceivable that iron probably exerts a much broader impact on the physiology of the parasite than previously thought to encounter environmental changes.

  5. Low temperature breakdown of coherent tunneling in amorphous solids induced by the nuclear quadrupole interaction

    OpenAIRE

    Burin, A. L.; Polishchuk, I. Ya.; Fulde, P.; Sereda, Y.

    2005-01-01

    We consider the effect of the internal nuclear quadrupole interaction on quantum tunneling in complex multi-atomic two-level systems. Two distinct regimes of strong and weak interactions are found. The regimes depend on the relationship between a characteristic energy of the nuclear quadrupole interaction $\\lambda_{\\ast}$ and a bare tunneling coupling strength $\\Delta_{0}$. When $\\Delta_{0}>\\lambda_{\\ast}$, the internal interaction is negligible and tunneling remains coherent determined by $\\...

  6. Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage

    OpenAIRE

    Elisabetta Albi; Giuseppina Perrella; Andrea Lazzarini; Samuela Cataldi; Remo Lazzarini; Alessandro Floridi; Francesco Saverio Ambesi-Impiombato; Francesco Curcio

    2014-01-01

    Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomye...

  7. Nuclear Rac1 regulates the bFGF-induced neurite outgrowth in PC12 cells

    OpenAIRE

    Kim, Eung-Gook; Shin, Eun-Young

    2013-01-01

    Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated...

  8. Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis

    OpenAIRE

    Tabbi-Anneni, Imene; Cooksey, Robert; Gunda, Viswanath; Liu, Shiguo; Mueller, Aubrey; Song, Guisheng; McClain, Donald A.; Wang, Li

    2010-01-01

    The orphan nuclear receptor small heterodimer partner (SHP) regulates metabolic pathways involved in hepatic bile acid production and both lipid and glucose homeostasis via the transcriptional repression of other nuclear receptors. In the present study, we generated fat-specific SHP-overexpressed transgenic (TG) mice and determined the potential role of SHP activation, specifically in adipocytes, in the regulation of adipose tissue function in response to stressors. We determined in 2 mo-old ...

  9. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2.

  10. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  11. Activation cross-sections of deuteron induced nuclear reactions on gold up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Ditroi, F., E-mail: ditroi@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Takacs, S.; Kiraly, B. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2011-06-15

    Cross-sections of deuteron induced nuclear reactions on gold were measured up to 40 MeV by using the standard stacked foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the {sup 197}Au(d,xn){sup 197m,197g,195m,195g}Hg and {sup 197}Au(d,x){sup 198g,196m,196g,195,194}Au nuclear reactions. The experimental data are analyzed and compared to literature and predictions of the ALICE-IPPE, EMPIRE and TALYS theoretical model codes. The application of the new cross-sections for accelerator technology, medical radioisotope production, thin layer activation and dose calculation is discussed.

  12. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-11-27

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA.

  13. Nuclear spin induced collapse and revival shape of Rabi oscillations of a single electron spin in diamond

    Institute of Scientific and Technical Information of China (English)

    Hu Xin; Liu Dong-Qi; Pan Xin-Yu

    2011-01-01

    A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature.Because of hyperfine interaction between the host 14N nuclear spin and the nitrogen-vacancy centre electron spin,different orientations of the 14N nuclear spins lead to a triplet splitting of the transition between ground state (ms =0) and excited state (ms =1).The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm.Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.

  14. Histone H2B-IFI16 Recognition of Nuclear Herpesviral Genome Induces Cytoplasmic Interferon-β Responses

    Science.gov (United States)

    Iqbal, Jawed; Ansari, Mairaj Ahmed; Kumar, Binod; Dutta, Dipanjan; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Dutta, Sujoy; Veettil, Mohanan Valiya; Chandran, Bala

    2016-01-01

    IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1β and antiviral type-1 interferon-β (IFN-β) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1β generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-β. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn’t induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn’t affect the acetylation of H2B, its cytoplasmic

  15. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    International Nuclear Information System (INIS)

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P0 interaction, but not during compatible TMV-P1.2 interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant

  16. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    Science.gov (United States)

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  17. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    Science.gov (United States)

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  18. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  19. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Sayama, Koji, E-mail: sayama@m.ehime-u.ac.jp [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan)

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  20. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    Science.gov (United States)

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear