WorldWideScience

Sample records for alpha-gamma pulse shape

  1. Alpha-gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG):Ce3+ crystal scintillator using shape indicator

    Science.gov (United States)

    Tamagawa, Yoichi; Inukai, Yuji; Ogawa, Izumi; Kobayashi, Masaaki

    2015-09-01

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.

  2. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  3. Pulse shaping on the Nova laser system

    International Nuclear Information System (INIS)

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs

  4. The digitization of photomultiplier pulse shapes

    International Nuclear Information System (INIS)

    This paper describes a system under construction for the pulse shape digitization of photomultiplier pulses in the range 20-500 nS FWHM. The system measures a number of pulse parameters from which the shape may be reconstructed for example, the risetime is measured with a resolution of InS. The method will form the basis for digitising pulses from an array of atmospheric Cerenkov detectors to be deployed in 1976. (orig.)

  5. Pulse Shaped OFDM for 5G Systems

    OpenAIRE

    Zhao, Zhao; Schellmann, Malte; Gong, Xitao; Wang, Qi; Böhnke, Ronald; Guo, Yan

    2016-01-01

    OFDM-based waveforms with filtering or windowing functionalities are considered key enablers for a flexible air-interface design for multi-service support in future 5G systems. One candidate from this category of waveforms is pulse shaped OFDM, which follows the idea of subcarrier filtering and aims at fully maintaining the advantages of standard OFDM systems while addressing their drawbacks. In this paper, we elaborate on several pulse shaping design methods, and show how pulse shapes can be...

  6. New pulse shape analysis method with multi-shaping amplifiers

    International Nuclear Information System (INIS)

    A novel pulse-shape-analysis method that uses 'similarity' to recognize an individual pulse shape is presented. We obtain four pulse heights by using four linear amplifiers with time constants of 0.5, 2, 3 and 6 μs. We treat a combination of four pulse heights as a pattern vector. Each pulse shape is analyzed by using the similarity. The method has been applied to the improvement of characteristics of a CdZnTe semiconductor detector (eV Products 180.5.5.5s, 5x5x5 mm). A CdZnTe semiconductor detector has prominent properties that are desirable as a radiation detector. The high atomic numbers indicate a larger detection efficiency for X or gamma rays than that of other semiconductor detectors such as Si or Ge ones. The large forbidden band gap energy permits room temperature operation. However, as is common with other compound semiconductor materials, the pulse shapes from CdZnTe detectors differ from event to event depending on the positions of radiation interaction because of the different mobilities of the holes and electrons, and the short life time of the holes or trapping in the bulk. We tried to correct each pulse height by analyzing and compensating through the analysis of the pulse shapes with the similarity. After the correction procedure with the similarity, characteristics of the energy spectrum of the CdZnTe semiconductor detector such as peak-to-valley ratio or photopeak efficiency were improved. The results are tabulated. This method is simple and useful for pulse shape analysis, which can be used for many other applications

  7. Attosecond pulse shaping using partial phase matching

    International Nuclear Information System (INIS)

    We propose a method for programmable shaping of the amplitude and phase of the extreme ultraviolet and x-ray attosecond pulses produced by high-order harmonic generation. It overcomes the bandwidth limitations of existing spectral filters and enables removal of the intrinsic attosecond chirp as well as the synthesis of pulse sequences. It is based on partial phase matching using a longitudinally addressable modulation. Although the method is in principle applicable to any form of partial phase matching, we focus on quasi-phase matching using a counterpropagating pulse train. We present simulations of the production of isolated attosecond pulses at 250 eV, including a 31 as transform-limited pulse, tunably chirped pulses and double pulses. (paper)

  8. Modified pulse shapes for effective neural stimulation

    Directory of Open Access Journals (Sweden)

    Lorenz eHofmann

    2011-09-01

    Full Text Available Electrical stimulation of neuronal structures is used as treatment of many neu- rological disorders, e.g. for the treatment of Parkinsons disease via deep brain stimulation. To reduce side effects, to avoid tissue or electrode damage and to increase battery lifetimes, an effective but gentle electrical stimulation is of prime importance. We study different modified pulse shapes for application in deep brain stimulation with respect to their efficiency to initiate neuronal activity. Numeri- cal simulations of two mathematical neuron models are performed to investigate the effectiveness of different modified pulse shapes. According to our results, the considered pulse shapes show a considerably increased efficiency in terms of both activation and entrainment of neural activity. We find that the introduction of a gap of specific and optimized duration in a biphasic pulse and the reversal of the stan- dard pulse phase order yield stimulation protocols that may increase the efficiency and therefore reduce the energy consumption of stimulation. The improvements are achieved only by simple modifications of existing stimulation techniques. The modification of the pulse shapes results in an improvement of up to 50% for both the activation of resting neurons and the entrainment of bursting neurons.

  9. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  10. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  11. Attosecond pulse shaping using partial phase matching

    OpenAIRE

    Austin, Dane R.; Biegert, Jens

    2014-01-01

    We propose a method for programmable shaping of the amplitude and phase of the XUV and x-ray attosecond pulses produced by high-order harmonic generation. It overcomes the bandwidth limitations of existing spectral filters and enables removal of the intrinsic attosecond chirp as well as the synthesis of pulse sequences. It is based on partial phase matching, such as quasi-phase matching, using a longitudinally addressable modulation.

  12. Laser pulse shaping with liquid crystals

    OpenAIRE

    Martín Pereda, José Antonio; Muriel Fernández, Miguel Ángel

    1983-01-01

    A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pu...

  13. Interactions between butterfly-shaped pulses in the inhomogeneous media

    International Nuclear Information System (INIS)

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived

  14. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  15. Pulse shape analysis by shape-filtering method

    International Nuclear Information System (INIS)

    The usual method for Pulse-shape Analysis is based on Charge to Digital Converters (QDC). In this report some preliminary results with this analysis based rather on 'traditional' electronics are presented. The main problem consists in the preamplifier performances. It must produce a pulse risetime reproducing as accurately as possible the shape current integral provided by the photomultiplier. The results are presented for the following four detector types: 1. A PM-based phoswich detector with NaI(Tl) and CsI(Tl) for X-ray measurements; 2. A PM-based phoswich detector with glass and BGO scintillators for beta-ray counting; 3. A PM-based detector with BaF2 scintillator for gamma and alpha particle detection; 4. A PM-based detector with NE213 liquid scintillator for neutron and gamma-ray detection

  16. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  17. Maximal capacity nonorthogonal pulse shape modulation

    Directory of Open Access Journals (Sweden)

    Chen Zhaonan

    2015-12-01

    Full Text Available To improve spectral utilization of communication system, a novel nonorthogonal pulse shape modulation (NPSM based on prolate spheroidal wave function (PSWF is proposed. The modulation employs nonorthogonal PSWF pulses to transmit information and it shows a higher capacity than traditional orthogonal modulations. The NPSM capacity under the constraint of finite input alphabet, which is determined by parameters of PSWF pulse, is derived. An optimization model for maximal capacity of NPSM is constructed and an exhaustive self-adapting gradient search algorithm for the model is proposed. A practical NPSM scheme with the maximal capacity is obtained by this search algorithm and it is proved to be superior to orthogonal signaling in the capacity. Our theoretical analysis is validated by numerical simulations and practical tests, and the results show that NPSM outperforms orthogonal modulations in the capacity and has a lower Peak-to-Average Power Ratio.

  18. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  19. ICI Alleviation in OFDM System Utilizing Scale Alpha Pulse Shaping

    OpenAIRE

    Nor Adibah Ibrahim; Razali Ngah; Hamza M. R. Al-Khafaji

    2015-01-01

    In this study, a new pulse shaping method namely scale alpha is proposed for mitigating Inter-Carrier Interference (ICI) effect in Orthogonal Frequency-Division Multiplexing (OFDM) system. The suggested pulse shape is designed and simulated using MATLAB software. Results show that the new pulse shape has lower ICI power and better impulse response performance than Franks, raised cosine and double-jump pulses.

  20. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra;

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  1. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  2. Energy dependence of pulse shapes in liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Savran, D.; Glorius, J.; Loeher, B.; Pietralla, N.; Simon, V.; Sonnabend, K. [Institut fuer Kernphysik, (Germany); Miklavec, M.; Vencelj, M. [Institut Jozef Stefan (Slovenia)

    2009-07-01

    In ({gamma},n) experiments, e.g. at the NEPTUN photon tagger system at the S-DALINAC, the neutron spectroscopy has to be realized in an environment of high photon background and therefore an effective discrimination between photons and neutrons is mandatory. Liquid scintillators like BC501A allow a separation of neutrons and photons based on a pulse shape analysis of the subsequent photomultiplier pulses. However, the quality of this separation is not constant, but varies with the incident neutron energy. The energy dependence of the pulse shapes and the resulting separation is studied in detail using digital pulse shape analysis. First results are presented.

  3. A new smart circuit for pulse shape discrimination

    International Nuclear Information System (INIS)

    This paper describes a novel technique of distinguishing pulses from different detectors. This extremely simple circuit was developed to separate optical pulses from those arising from X-ray attenuation in BGO detector. The circuit can be adopted for a variety of other applications which require pulse shape discrimination. (author)

  4. Algorithms for pulse shape analysis using silicon detectors

    International Nuclear Information System (INIS)

    The development of digital electronics and their application to nuclear spectroscopy has provided an opportunity to perform experiments beyond the technical capabilities of analog systems. The pulse-shape analysis of Si detectors is described here for the selective identification of pile-up pulses resulting from the sequential alpha decay of 109Xe and 105Te isotopes. A two stage offline pulse shape analysis algorithm is described which is able to detect pile-up pulses from the two alpha decays with time differences between the two individual pulses as low as 100 ns over a wide range of relative amplitudes.

  5. New pulse-shape analysis method with multi-shaping amplifiers

    CERN Document Server

    Sakai, H; Takenaka, Y; Mori, C; Iguchi, T

    1999-01-01

    A novel pulse-shape analysis method that uses similarity to recognize an individual pulse shape is presented in this paper. We obtain four pulse heights by using four linear amplifiers with different shaping time constants. We treat a combination of the four pulse heights as a pattern vector. A similarity of the pulse shape can be obtained by comparison between the pattern vector and a discriminant vector which was given in advance. Each pulse shape is analyzed by using the similarity. The method has been applied for the improvement of characteristics of a CdZnTe semiconductor detector. The characteristics of the energy spectrum of the CdZnTe detector such as the photopeak efficiency or the peak-to-valley ratio are improved after the correction procedure with the similarity.

  6. Arterial pulse shape measurement using self-mixing inteferometry

    Science.gov (United States)

    Hast, Jukka T.; Myllyla, Risto A.; Sorvoja, Hannu; Miettinen, Jari

    2003-07-01

    This paper investigates the correlation between the shape of the first derivative of a blood pressure pulse and the corresponding Doppler spectrogram, reconstructed from a Doppler signal produced by the movement of the skin above the radial artery in the human wrist. The aim is to study to what extent the arterial pulse shape can be measured using self-mixing interferometry. To obtain a point of reference, a commercial non-invasive blood pressure monitor was first used to measure both blood pressure and pulse shape. Then, a self-mixing interferometer was applied to measure the arterial pulse above the radial artery. Measurements on 10 volunteers yielded a total of 738 pulses for analysis. A cross correlation of 0.84 +/- 0.05 was established between the shape of the first derivative of the pressure pulse and the Doppler spectrogram. Using an empirical constant of 0.7 as a limit for successfully detected pulses produced a detection accuracy of 95.7%. The results show that self-mixing interferometry lends itself to the measurement of the arterial pulse shape, and that the thus obtained shape is in good agreement with that produced by a commercial blood pressure monitor.

  7. Laser-generated ultrasonic pulse shapes at solid wedges.

    Science.gov (United States)

    Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P

    2016-08-01

    Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188

  8. UV pulse shaping for the photocathode RF gun

    International Nuclear Information System (INIS)

    Recently, manipulation with the drive laser plays a significant role in high brightness electron beam production by the photocathode RF gun. The article takes efforts on the temporal shaping of the driving laser for the photocathode RF gun. Method based on pulse stacking by birefringent crystal of α-BBO serials was tried to directly shape ultraviolet laser pulse. Using four pieces of α-BBO crystals to separate an input UV pulse with appropriate duration into 16 sub-pulses can form a ps-spaced pulse train suitable for coherent THz production. The group delay dispersion induced by the crystals was also carefully considered. To avoid beam deterioration by long path propagation, imaging relay of the shaped pulse was applied.

  9. UV pulse shaping for the photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Yan Lixin, E-mail: yanlx@mail.tsinghua.edu.cn [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Beijing 100084 (China); Du Qiang; Du Yingchao; Hua Jianfei; Huang Wenhui; Tang Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Beijing 100084 (China)

    2011-05-01

    Recently, manipulation with the drive laser plays a significant role in high brightness electron beam production by the photocathode RF gun. The article takes efforts on the temporal shaping of the driving laser for the photocathode RF gun. Method based on pulse stacking by birefringent crystal of {alpha}-BBO serials was tried to directly shape ultraviolet laser pulse. Using four pieces of {alpha}-BBO crystals to separate an input UV pulse with appropriate duration into 16 sub-pulses can form a ps-spaced pulse train suitable for coherent THz production. The group delay dispersion induced by the crystals was also carefully considered. To avoid beam deterioration by long path propagation, imaging relay of the shaped pulse was applied.

  10. Pulse Shape Filtering in Wireless Communication-A Critical Analysis

    Directory of Open Access Journals (Sweden)

    A. S Kang

    2011-03-01

    Full Text Available The goal for the Third Generation (3G of mobile communications system is to seamlessly integrate a wide variety of communication services. The rapidly increasing popularity of mobile radio services has created a series of technological challenges. One of this is the need for power and spectrally efficient modulation schemes to meet the spectral requirements of mobile communications. Pulse shaping plays a crucial role in spectral shaping in the modern wireless communication to reduce the spectral bandwidth. Pulse shaping is a spectral processing technique by which fractional out of band power is reduced for low cost, reliable , power and spectrally efficient mobile radio communication systems. It is clear that the pulse shaping filter not only reduces inter-symbol interference (ISI, but it also reduces adjacent channel interference. The present paper deals with critical analysis of pulse shaping in wireless communication.

  11. Shaping of electron beam picosecond current pulses in waveguide accelerators

    International Nuclear Information System (INIS)

    Results are given of experiments on extracting a single bunch in an experimental SHF wavegujde accelerator operating in the stoped energy mode. The accelerator has the following parameters: 8 MeV energy, 1818 MHz frequency of the accelerating field, 10 ns pulse duration of current; 20 A pulsed current, operation in the mode of single massages. An electron beam in the shape of a 10 ns pulse has been injected into the waveguide at the end of a SHF-pulse. The shape of detected picosecond pulses of accelerated electron current is close to triangular one, pulse duration at half-height with correction for rise time of the measuring system is equal to 50 ps, pulse current is about 100 A, electron energy equals 8 MeV

  12. Pulse shape discrimination studies in a liquid Argon scintillation detector

    OpenAIRE

    Pollmann, T.

    2007-01-01

    Liquid rare gases have been gaining popularity as detector media in rare event searches, especially dark matter experiments, and one factor driving their adoption is the possibility to recognise different types of ionizing radiation by the pulse shapes they evoke. This work on pulse shape discrimination in a liquid argon scintillation detector was done in the framework of the GERDA experiment, where liquid argon scintillation signals may be used for background suppression purposes. Liquid arg...

  13. Pulse Shaping Entangling Gates and Error Supression

    Science.gov (United States)

    Hucul, D.; Hayes, D.; Clark, S. M.; Debnath, S.; Quraishi, Q.; Monroe, C.

    2011-05-01

    Control of spin dependent forces is important for generating entanglement and realizing quantum simulations in trapped ion systems. Here we propose and implement a composite pulse sequence based on the Molmer-Sorenson gate to decrease gate infidelity due to frequency and timing errors. The composite pulse sequence uses an optical frequency comb to drive Raman transitions simultaneously detuned from trapped ion transverse motional red and blue sideband frequencies. The spin dependent force displaces the ions in phase space, and the resulting spin-dependent geometric phase depends on the detuning. Voltage noise on the rf electrodes changes the detuning between the trapped ions' motional frequency and the laser, decreasing the fidelity of the gate. The composite pulse sequence consists of successive pulse trains from counter-propagating frequency combs with phase control of the microwave beatnote of the lasers to passively suppress detuning errors. We present the theory and experimental data with one and two ions where a gate is performed with a composite pulse sequence. This work supported by the U.S. ARO, IARPA, the DARPA OLE program, the MURI program; the NSF PIF Program; the NSF Physics Frontier Center at JQI; the European Commission AQUTE program; and the IC postdoc program administered by the NGA.

  14. Pulse shape analysis in cryogenic detectors for rare event search

    Energy Technology Data Exchange (ETDEWEB)

    Hitzler, Ferdinand [Physik Department E15, Technische Universitaet Muenchen, 85748 Muenchen (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    Based on an established pulse shape analysis with an Artificial Neural Network (ANN) we investigate new network designs. To study this an extended pulse simulation is necessary and is therefore explained in this talk. Furthermore, we introduce ideas to increase the overall performance of the nets. First results concerning the cut efficiency and the purity of the signal with these new ANNs are shown.

  15. Pulse shape analysis in cryogenic detectors for rare event search

    International Nuclear Information System (INIS)

    Based on an established pulse shape analysis with an Artificial Neural Network (ANN) we investigate new network designs. To study this an extended pulse simulation is necessary and is therefore explained in this talk. Furthermore, we introduce ideas to increase the overall performance of the nets. First results concerning the cut efficiency and the purity of the signal with these new ANNs are shown.

  16. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres

    Institute of Scientific and Technical Information of China (English)

    SUI Zhan; LIN Hong-Huan; WANG Jian-Jun; ZHAO Hong-Ming; LI Ming-Zhong; QIAN Lie-Jia; ZHU He-Yuan; FAN Dian-Yuan

    2006-01-01

    @@ We demonstrate a compact pulse shaping system based on temporal stacking of pulses in fibres, by which synchronized pulses of ultrashort and nanosecond lasers can be obtained. The system may generate shape-controllable pulses with a fast rise time and high-resolution within a time window of ~2.2 ns by adjusting variable optical attenuators in the 32 fibre channels independently. With the help of optical amplifiers, the system delivers mJ-level pulses with a signal-to-noise ratio of~35 dB.

  17. Shaping quantum pulses of light via coherent atomic memory

    CERN Document Server

    Eisaman, M D; André, A; Massou, F; Zibrov, A S; Lukin, M D

    2004-01-01

    We describe a technique for generating pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. The technique is based on preparation of an atomic ensemble in a state with a desired number of atomic spin excitations, which is later converted into a photon pulse. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Using photon counting experiments we observe generation and shaping of few-photon sub-Poissonian light pulses. We discuss prospects for controlled generation of high-purity n-photon Fock states using this technique.

  18. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    International Nuclear Information System (INIS)

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures

  19. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    Science.gov (United States)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  20. Pulse shaping mechanism in mode-locked lasers

    Science.gov (United States)

    Horikis, Theodoros P.; Bakırtaş, İlkay; Antar, Nalan

    2016-06-01

    A pulse shaping mechanism applied to mode-locked lasers is proposed. By adding a linear (forcing) term in the power energy saturation model, we are able to control the resulting pulses in both energy and shape. In fact, this term also provides a focusing effect keeping most of the pulse’s energy confined within the width of the forcing. The appropriate condition for which mode-locking occurs is also derived and links the physical parameters of the system (gain, loss, filtering) to those of the pulse (amplitude, width, energy). Thus, given the desired pulse one only needs to fix the laser’s parameters accordingly, so as to obey this condition, and mode-locking will occur.

  1. Pulse shape analysis using CsI(Tl) Crystals

    International Nuclear Information System (INIS)

    The decay time of CsI(Tl) scintillating material consists of more than a single exponential component. The ratio between the intensity of these components varies as a function of the ionizing power of the absorbed particles, such as γ -rays or protons, and the temperature. This property can therefore be used for particle discrimination and for temperature monitoring, using pulse shape analysis. An unsupervised method that uses fuzzy clustering algorithms for particle identification based on pulse shape analysis is presented. The method is applied to discriminate between photon and proton-induced signals in CsI(Tl) scintillator detectors. The first results of a method that uses pulse shape analysis for correcting the temperature-dependent gain effect of the detector are also presented. The method aims at conserving a good energy resolution in a temperature varying environment without the need to measure the temperature of the detector externally (authors)

  2. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  3. Resonant pulse-shaping power supply for radar transmitters

    OpenAIRE

    Bell Rodriguez, Miguel Victoria Ramo; Roberg, Michael; Pack, Riley; Garcia Fernandez, Pablo; Alarcón Cot, Eduardo José; Popoviç, Zoya; Maksimovic, Dragan

    2012-01-01

    The final radiofrequency power amplifier (PA) of a radar transmitter module is a large factor in system efficiency. Typical radar transmitter signals are frequency-modulated with constant-amplitude pulse envelopes in order to optimize efficiency, resulting in spectral broadening and power radiated outside of the radar frequency band. This paper demonstrates a PA with a dynamic power supply which enables high efficiency while reducing the spectral emissions. The resonant pulse-shaping power su...

  4. Pulse-shaping assisted multidimensional coherent electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Yuseff; Frei, Franziska; Cannizzo, Andrea, E-mail: andrea.cannizzo@iap.unibe.ch; Feurer, Thomas [Institute of Applied Physics, University of Bern, Sidlerstasse 5, CH-3012 Bern (Switzerland)

    2015-06-07

    Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems.

  5. Pulse-shaping assisted multidimensional coherent electronic spectroscopy

    International Nuclear Information System (INIS)

    Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems

  6. Human C81 (alpha-gamma) polymorphism: detection in the alpha-gamma subunit on SDS-PAGE, formal genetics and linkage relationship.

    OpenAIRE

    Rittner, C; Hargesheimer, W; Stradmann, B; Bertrams, J; Baur, M P; Petersen, B H

    1986-01-01

    The molecular basis of human C81 (alpha-gamma) polymorphism could be elucidated by immunoprecipitation of human C81 allotypes and separation of the alpha-gamma and beta subunits on sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions. If the C8 molecules were completely reduced, C81 polymorphism was no longer detectable on SDS-PAGE. It is concluded that C81 variation depends on charge rather than molecular weight differences. Four C81 allotypes, the...

  7. Current pulse shaping of the load current on PTS

    Science.gov (United States)

    Xia, Minghe; Li, Fengping; Ji, Ce; Wei, Bing; Feng, Shuping; Wang, Meng; Xie, Weiping

    2016-02-01

    The typical rise time of PTS machine is ˜110 ns with about 10 MA peak current under short pulse mode when all 24 modules discharge simultaneously. By distributing the trigger times of 12 laser beams logically and adjusting the statues of the pulse output switches, longer rise-time pulse can be obtained on the PTS facility. Based on the required pulse shape, whole circuit simulations will be used to calculate the trigger times of each laser triggering gas switch and the status of the pulse output switches. The rise time of the current is determined by the time difference between the first and last trigged laser triggering gas switches. In order to trigger the laser triggering gas switch, sufficient laser power is needed to be sent into the gap of the gas switches. The gas pressure and voltage difference on the two electrodes of the gas switches also affect the triggering of the gas switches, and the voltage added on the gas switch is determined by its transition time. Traditionally the trigger time difference should be less than the transition time of the two neighboring modules. A new simulation model of PTS shows one can break this transition time limits. Series of current pulse shaping experiments have been investigated on the PTS (Primary Test Stand). As results, more than 5 MA peak current were successfully achieved on the load with a rise time of 600 ns. This study and experiments of the pulse shaping on PTS demonstrate the adaptable ability of the PTS for offering different waveform of mega ampere current pulse for different research purpose.

  8. Current pulse shaping of the load current on PTS

    Directory of Open Access Journals (Sweden)

    Minghe Xia

    2016-02-01

    Full Text Available The typical rise time of PTS machine is ∼110 ns with about 10 MA peak current under short pulse mode when all 24 modules discharge simultaneously. By distributing the trigger times of 12 laser beams logically and adjusting the statues of the pulse output switches, longer rise-time pulse can be obtained on the PTS facility. Based on the required pulse shape, whole circuit simulations will be used to calculate the trigger times of each laser triggering gas switch and the status of the pulse output switches. The rise time of the current is determined by the time difference between the first and last trigged laser triggering gas switches. In order to trigger the laser triggering gas switch, sufficient laser power is needed to be sent into the gap of the gas switches. The gas pressure and voltage difference on the two electrodes of the gas switches also affect the triggering of the gas switches, and the voltage added on the gas switch is determined by its transition time. Traditionally the trigger time difference should be less than the transition time of the two neighboring modules. A new simulation model of PTS shows one can break this transition time limits. Series of current pulse shaping experiments have been investigated on the PTS (Primary Test Stand. As results, more than 5 MA peak current were successfully achieved on the load with a rise time of 600 ns. This study and experiments of the pulse shaping on PTS demonstrate the adaptable ability of the PTS for offering different waveform of mega ampere current pulse for different research purpose.

  9. The shaping of a national ignition campaign pulsed waveform

    International Nuclear Information System (INIS)

    Highlights: ► NIF pulse is generated using an electro-optic modulator to vary the intensity of light. ► Electrical impulse generators, each with a 300 ps pulse Gaussian signal are utilized. ► Adjusting the impulse amplitude for 140 impulses, produces a pulsed waveform. ► System auto shapes 48 waveforms with to 275:1 contrast ratio with 3% absolute error. - Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192 beam, 1.8 MJ, 500 TW ultraviolet laser system used for inertial confinement fusion research. For each experimental shot, NIF must deliver a precise amount of laser power on the target for successful and efficient target ignition, and these characteristics vary depending on the physics of the particular campaign. The precise temporal shape, energy and timing characteristics of a pulsed waveform target interaction are key components in meeting the experimental goals. Each NIF pulse is generated in the Master Oscillator Room (MOR) using an electro-optic modulator to vary the intensity of light in response to an electrical input. The electrical drive signal to the modulator is produced using a unique, high-performance arbitrary waveform generator (AWG). This AWG sums the output of 140 electrical impulse generators, each producing a 300 ps pulse width Gaussian signal separated in time by 250 ps. By adjusting the amplitudes and summing the 140 impulses, a pulsed waveform can be sculpted from a seed 45 ns square pulse. Using software algorithms written for NIF's Integrated Computer Control System (ICCS), the system is capable of autonomously shaping 48 unique experimental pulsed waveforms for each shot that have demonstrated up to 275:1 contrast ratio with ±3% absolute error averaged over any 2 ns interval, meeting the stringent pulse requirements needed to achieve ignition. In this paper, we provide an overview of the pulse shaping system, software algorithms and associated

  10. Compton continuum suppression by digital pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aspacher, B. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States)); Coldwell, R.L. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States)); Rester, A.C. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States))

    1993-06-10

    We present experimental results on a technique for flattening the Compton edges and suppressing the Compton continuum in gamma ray spectra with digital pulse shape analysis. The peak-to-Compton ratio can be improved by more than a factor 2. (orig.)

  11. Compton continuum suppression by digital pulse shape analysis

    International Nuclear Information System (INIS)

    We present experimental results on a technique for flattening the Compton edges and suppressing the Compton continuum in gamma ray spectra with digital pulse shape analysis. The peak-to-Compton ratio can be improved by more than a factor 2. (orig.)

  12. Pulse shape discrimination in non-aromatic plastics

    International Nuclear Information System (INIS)

    Recently it has been demonstrated that plastic scintillators have the ability to distinguish neutrons from gamma rays by way of pulse shape discrimination (PSD). This discovery has lead to new materials and new capabilities. Here we report our work with the effects of aromatic, non-aromatic, and mixed aromatic/non-aromatic matrices have on the performance of PSD plastic scintillators

  13. A fully integrated 16 channel digitally trimmed pulse shaping amplifier

    International Nuclear Information System (INIS)

    A fully integrated CMOS pulse shaping amplifier has been developed at LBL. All frequency dependent networks are included on the chip. Provision is made for tuning to compensate for process variations. The overall architecture and details of the circuitry are discussed. Test results are presented

  14. Digital pulse-shape processing for CdTe detectors

    International Nuclear Information System (INIS)

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency

  15. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  16. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    Energy Technology Data Exchange (ETDEWEB)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  17. Partial discharge pulse shape recognition using an inductive loop sensor

    International Nuclear Information System (INIS)

    Partial discharges (PD) are a clear ageing agent on insulating materials used in high-voltage electrical machines and cables. For this reason, there is increasing interest in measuring this phenomenon in an effort to forecast unexpected failures in electrical equipment. In order to focus on harmful discharges, PD pulse shape analysis is being used as an insulation defect identification technique. In this paper, a simple, inexpensive and high-frequency inductive loop sensor will be used to detect and acquire PD pulses. Several measurements will be made on some controlled test cell geometries in order to characterize PD pulse shapes for different discharge sources. The sensor identification capability has been checked in an insulation system where two simultaneous PD sources were active

  18. Digital pulse-shape processing for CdTe detectors

    Science.gov (United States)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.; Wachtmeister, S.

    2001-09-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  19. Digital pulse-shape processing for CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bargholtz, Chr.; Fumero, E.; Maartensson, L. E-mail: martensson@physto.se; Wachtmeister, S

    2001-09-21

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  20. Design of nuclear pulse shaped circuit based on proportional counter

    International Nuclear Information System (INIS)

    Use the self-developed proportional to sample gas tritium in environment and make the measurement. For this detector, a kind of pulse shape circuit based on second order active low pass filtering circuit realized filtering and shaping nuclear pulse by high-speed operational amplifier, with less stages that has been approved for filter Gaussian wave. Use Multisim 10.0 to simulate the different parameters of the filter circuit. The simulation result was consistent with the theoretical results. The experiments proved the feasibility of this circuit, and at the same time provided a convenient and reliable method for analysis and optimization of the nuclear pulse waveform in order for discriminating by MCA. (authors)

  1. Nonlinear polarization rotation-induced pulse shaping in a stretched-pulse ytterbium-doped fiber laser

    Science.gov (United States)

    Bai, Dong-Bi; Li, Wen-Xue; Yang, Kang-Wen; Shen, Xu-Ling; Chen, Xiu-Liang; Zeng, He-Ping

    2014-10-01

    We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of ~ 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.

  2. Swift Observations of Gamma-Ray Burst Pulse Shapes: GRB Pulse Spectral Evolution Clarified

    Science.gov (United States)

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori; Morris, David; Neff, James E.; Giblin, Timothy W.

    2015-12-01

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila & Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long, soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.

  3. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  4. Pulse Shape Simulation for a GERDA Phase II Prototype Detector

    International Nuclear Information System (INIS)

    The Germanium Detector Array Experiment, GERDA, is designed for the search for ''neutrinoless double beta decay'' (0νββ) of 76Ge. Germanium detectors enriched in the isotope 76Ge are used. Since 0νββ has a very long half-live, very few signal events are expected and an extremely low background rate is crucial. Signal events have two electrons in the final state which deposit their energy predominantly locally. A large fraction of background events deposit their energy in multiple interactions at different positions inside the detector. Pulse Shape Analysis is used to distinguish between background-like, multi site events (MSE) and signal-like events, single site events (SSE). To verify the analysis a Pulse Shape Simulation (PSS) was developed. The methods to calculate the internal electric field of the detector and the corresponding weighting-fields needed to simulate pulse shapes are discussed. Furthermore it is shown how mirror pulses in segmented detectors can be used to reconstruct the location of interactions.

  5. Electronic system for recording proportional counter rare pulses with the pulse shape analysis

    International Nuclear Information System (INIS)

    The anutomated system for recording proportional counter rare pulses is described. The proportional counters are aimed at identification of 37Ar and H71Gr decays in chemical radiation detectors of solar neutrino. Pulse shape recording by means of a storage oscilloscope and a TV display is performed in the system considered besides two-parametric selection of events (measurement of pulse amplitude in a slow channel and the amplitude of pulse differentiated with time constant of about 10 ns in a parallel fast channel). Pulse discrimination by a front rise rate provides background decrease in the 55Fe range (5.9 keV) by 6 times; the visual analysis of pulse shapes recorded allows to decrease the background additionally by 25-30%. The background counting rate in the 55Fe range being equal to 1 pulse per 1.5 days, is obtained when using the installation described above, as well as the passive Pb shield 5 cm thick, and the active shield based on the anticoincidence NaI(Tl) detector with the cathode 5.6 mm in-diameter made of Fe fabircated by zone melting. The installation described allows to reach the background level of 0.6 pulse/day (the total coefficient of background attenuation is 400). Further background decrease is supposed to be provided by installation allocation in the low-noise underground laboratory of the Baksan Neutrino Observatory

  6. Scintillation time dependence and pulse shape discrimination in liquid argon

    International Nuclear Information System (INIS)

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10-7 between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence

  7. Pulse-shape discrimination in NE213 liquid scintillator detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, M., E-mail: manuela.cavallaro@lns.infn.it [INFN-Laboratori Nazionali del Sud, Catania (Italy); CSFNSM, Catania (Italy); Tropea, S. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Agodi, C. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Assié, M.; Azaiez, F. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Boiano, C. [INFN - Sezione di Milano, Milano (Italy); Bondì, M.; Cappuzzello, F.; Carbone, D. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); De Napoli, M. [INFN - Sezione di Catania, Catania (Italy); Séréville, N. de [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN - Sezione di Catania, Catania (Italy); Linares, R. [Instituto de Física da Universidade Federal Fluminense, Rio de Janeiro, Niterói, RJ (Brazil); Nicolosi, D. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Scarpaci, J.A. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France)

    2013-02-01

    The 16-channel fast stretcher BaFPro module, originally developed for processing signals of Barium Fluoride scintillators, has been modified to make a high performing analog pulse-shape analysis of signals from the NE213 liquid scintillators of the EDEN neutron detector array. The module produces two Gaussian signals, whose amplitudes are proportional to the height of the fast component of the output light and to the total energy deposited into the scintillator, respectively. An in-beam test has been performed at INFN-LNS (Italy) demonstrating a low detection threshold, a good pulse-shape discrimination even at low energies and a wide dynamic range for the measurement of the neutrons energy.

  8. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    Science.gov (United States)

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch. PMID:26722884

  9. Preliminary results of Digital Pulse Shape Acquisition from Chimera

    Energy Technology Data Exchange (ETDEWEB)

    Alderighi, D.M.; Sechi, G. [INFN Milano and IASF, CNR, Milano (France); Anzalone, A.; Cavallaro, S.; Giustolisi, F.; Laguidara, E.; Lanzalone, G.; Porto, F. [Catania Univ., LNS and Dipartimento di Fisica (France); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN and Dipartimento di Fisica (Italy); Cardella, G.; Defilippo, S.E.; Lanzano, G.; Paganod, A.; Papa, M.; Pirrone, S.; Politi, G. [Catania Univ., INFN and Dipartimento di Fisica (Italy); Geraci, E. [Bologna Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A 100 MS/s 14-bit Sampling Analog-to-Digital converter has been used to perform digital pulse-shape acquisition of signals collected from CHIMERA telescopes. The signals from a typical CHIMERA detection cell have been collected using both a standard CHIMERA electronic chain up to the amplifier, and a very simple analog front end, basically reduced to the preamplifier. The preliminary on-beam results are presented. (authors)

  10. Preliminary results of Digital Pulse Shape Acquisition from Chimera

    International Nuclear Information System (INIS)

    A 100 MS/s 14-bit Sampling Analog-to-Digital converter has been used to perform digital pulse-shape acquisition of signals collected from CHIMERA telescopes. The signals from a typical CHIMERA detection cell have been collected using both a standard CHIMERA electronic chain up to the amplifier, and a very simple analog front end, basically reduced to the preamplifier. The preliminary on-beam results are presented. (authors)

  11. Swift Observations of Gamma-Ray Burst Pulse Shapes: GRB Pulse Spectral Evolution Clarified

    CERN Document Server

    Hakkila, Jon; Sakamoto, Takanori; Morris, David; Neff, James E; Giblin, Timothy W

    2015-01-01

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. (2005) empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by an empirical wave-like function (Hakkila and Preece, 2014): the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long, soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied...

  12. Fourier synthesis of radiofrequency nanomechanical pulses with different shapes

    Science.gov (United States)

    Schülein, Florian J. R.; Zallo, Eugenio; Atkinson, Paola; Schmidt, Oliver G.; Trotta, Rinaldo; Rastelli, Armando; Wixforth, Achim; Krenner, Hubert J.

    2015-06-01

    The concept of Fourier synthesis is heavily used in both consumer electronic products and fundamental research. In the latter, pulse shaping is key to dynamically initializing, probing and manipulating the state of classical or quantum systems. In NMR, for instance, shaped pulses have a long-standing tradition and the underlying fundamental concepts have subsequently been successfully extended to optical frequencies and even to the implementation of quantum gate operations. Transferring these paradigms to nanomechanical systems requires tailored nanomechanical waveforms. Here, we report on an additive Fourier synthesizer for nanomechanical waveforms based on monochromatic surface acoustic waves. As a proof of concept, we electrically synthesize four different elementary nanomechanical waveforms from a fundamental surface acoustic wave at f1 ≈ 150 MHz using a superposition of up to three discrete harmonics. We use these shaped pulses to interact with an individual sensor quantum dot and detect their deliberately and temporally modulated strain component via the optomechanical quantum dot response. Importantly, and in contrast to direct mechanical actuation by bulk piezoactuators, surface acoustic waves provide much higher frequencies (>20 GHz ref. 10) to resonantly drive mechanical motion. Thus, our technique uniquely allows coherent mechanical control of localized vibronic modes of optomechanical crystals, even in the quantum limit when cooled to the vibrational ground state.

  13. Interactive modeling of scintillation pulses by visual overlay of computed pulse shapes with the raw data

    International Nuclear Information System (INIS)

    The modeling technique described in this paper was developed to aid in interpretation of the effects of various changes in scintillator formulations on the shape of scintillation pulses. For example, addition of quenchers to single-solute systems can quench either the solute or excited solvent, or both, and it is useful to understand these effects in tailoring a scintillator for optimum brightness or speed for a specific application. In multisolute scintillators, an understanding of the detailed energy transfer steps is also desirable. Inspection of pulse rise and decay times often give general information on these effects, but a more detailed interpretation is complicated by several factors. First of all, many scintillators are fast enough (1-2 ns FWHM) so that empirically determined pulse parameters, especially rise times, are significantly affected by the response time of the measuring system. In addition, decay times are difficult to determine until the signal has decayed considerably past the peak where noise can become a problem. It occurred to us that it might be possible to understand the effects of additives on the rise and decay constants that determine the true pulse shape if we synthesized theoretical pulse shapes, folded in the system response function, and overlaid the resulting curves on the raw data arrays. The results have been gratifying in that in most cases it has been possible to distinguish relatively unambiguously between quenching of the solvent and the solute when various heavy-atom quenchers were added to solutions of a series of substituted terphenyls

  14. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  15. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  16. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Science.gov (United States)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  17. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  18. Pulse-shape discrimination technique in radioanalytical methods

    International Nuclear Information System (INIS)

    Several successful techniques have been developed to eliminate unwanted background level in experimental radiation spectra. One of the background-reduction techniques is pulse-shape discrimination (PSD) which is based on the fact that different particles or quanta give rise to different spectrometer response, i.e. to different signal shapes. The shapes can be recognized and analyzed by appropriate electronic circuits which can measure either the rise time or the fall time of the pulses. The PSD technique has been suggested for different particle/background separations (such as n/γ, α/γ, α/proton or αa/electron separations). It has been successfully applied i.e. in separation of (fast) neutrons from intensive gamma background or charged particles from gammas. Recently the principle of the PSD has been applied in the construction of special ORTEC and CANBERRA spectroscopic modules. In this study we have employed the principle of PSD in two different radioanalytical methods developed in the Nuclear Research and Nuclear Physics Institutes in Rez. One of the methods concerns with the determination of uranium by delayed neutron counting (DNC), the second method is known as neutron depth profiling (NDP). An effective elimination of unwanted background signals in measured radiation spectra has been proved. At least two orders of magnitude of background level suppression has been achieved independently of employed PSD circuits. The PSD technique has substantially improved detection limits of the DNC and NDP facilities. (author)

  19. A compact pulse shape discriminator electronics for large neutron arrays

    International Nuclear Information System (INIS)

    A cost-effective high performance single width dual channel NIM standard integrated electronics module has been developed to process signals from organic liquid scintillator neutron detector. This module is especially designed for the large modular neutron detector array used for studies on fusion-fission dynamics at Inter University Accelerator Centre (IUAC). It incorporates, all the necessary pulse processing circuits required for a neutron spectroscopy and adopts zero-cross technique for neutron-gamma (n-γ) pulse shape discrimination. The detailed layout of the circuit and different functionality of the module are described. The test results obtained with this module are compared with similar set ups available at other laboratories. The improvements made in the latest design and efforts made to commercialisation of this module is also discussed. (author)

  20. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    Science.gov (United States)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  1. Innovative uses for conventional radiation detectors via pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beckedahl, D; Blair, J; Friensehner, A; Kammeraad, J E; Schmid, G

    1999-03-03

    In this report we have discussed two applications for digital pulse shape analysis in Ge detectors: Compton suppression and {gamma}-ray imaging. The Compton suppression aspect has been thoroughly studied during the past few years, and a real-time, laboratory-prototype system has been fielded. A summary of results from that set up have been discussed here. The {gamma}-ray imaging aspect, while not yet developed experimentally, looks very promising theoretically as the simulations presented here have shown. Experimental work currently underway at Berkeley (as discussed in section 4.3) should help further guide us towards the proper developmental path.

  2. Polystyrene-based scintillator with pulse-shape discrimination capability

    International Nuclear Information System (INIS)

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter – figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background

  3. Matching the parameters of shaping lines and pulse transformers in the circuits of pulse modulators for supplying power klystrons

    International Nuclear Information System (INIS)

    This work is devoted to selecting the shaping lines (SL) and pulse transformers parameters in the pulse modulators circuits for supplying power klystrons. It is shown, that single SL contribute lesser distortions by the assigned parameters of the commutators, contained in the pulse modulators. It is noted also, that the pulse transformer time constant unambiguously determines the number of cells in the SL, whereby the pulse characteristics are the best ones

  4. Inter-carrier Interference Mitigation in OFDM System Using a New Pulse Shaping Approach

    OpenAIRE

    Nor Adibah Ibrahim; Razali Ngah; Hamza M. R. Al-Khafaji

    2014-01-01

    In this paper, we suggest a new pulse shaping method namely scale alpha for orthogonal frequency-division multiplexing (OFDM) system. The proposed pulse shape is designed and simulated using Matlab software. Results and discussions are made to analyze the performance of the new pulse shape, particularly regarding two parameters that are inter-carrier interference (ICI) power reduction, and eye diagrams. It is shown that the new pulse is better in ICI power reduction performance than Franks...

  5. A Novel Pulse Shaping for UWB Impulse Radio IEEE 802.15.4a Communications Systems

    OpenAIRE

    BARRAJ Imen; TRABELSI Hatem; Masmoudi, Mohamed

    2014-01-01

    This paper presents a novel pulse shape which we call modified triangular pulse (MTri) for Impulse Radio-Ultra Wide Band (IR-UWB) IEEE 802.15.4a systems. The MTri pulse and UWB shapes previously proposed for low power IR-UWB transceivers topologies are studied and compared. The performance measures considered are compliance with required spectral emission constrains, Mask Loss (ML) power and pulse energy. Our theoretical and simulations results show the advantages of the MTri pulse over studi...

  6. Plastic scintillator for pulse shape neutrons and gamma quanta discrimination

    International Nuclear Information System (INIS)

    This study describes a new plastic scintillator for pulse shape n-γ discrimination. The scintillator contains two activation centers with different life spans. The first activator collects the singlet excitation energy of a polymer base, and the second activator utilizes triplet excitation states. We utilized 1,4-dimethyl-9,10-diphenylanthracene (DMDPA) and tris(dibenzoylmethide) (1,10-phenanthroline)Europium(III) (Eu[DBM]3Phen) as activators. The figure of merit for this scintillator is 1.37, which is sufficient for reliable n-γ discrimination. - Highlights: • Plastic scintillator for efficient n/γ discrimination is described. • Pulse shape discrimination is occurred due to direct transformation of triplet excitation energy. • The scintillator contains two activation centers with different lifetimes. • Eu-containing complexes were used as activators. • With 3.0 wt% of Eu[DBM]3Phen, this PS provides reliable discrimination with FOM = 1.37

  7. Spatial resolution attainable in germanium detectors by pulse shape analysis

    International Nuclear Information System (INIS)

    There are several applications for which it is desirable to calculate the locations and energies of individual gamma-ray interactions within a high purity germanium (HPGe) detector. These include gamma-ray imaging and Compton suppression. With a segmented detector this can be accomplished by analyzing the pulse shapes of the signals from the various segments. We examine the fundamental limits to the spatial resolution attainable with this approach. The primary source of error is the series noise of the field effect transistors (FETs) at the inputs of the charge amplifiers. We show how to calculate the noise spectral density at the output of the charge amplifiers due to an optimally selected FET. This calculation is based only on the detector capacitance and a noise constant for the FET technology. We show how to use this spectral density to calculate the uncertainties in parameters, such as interaction locations and energies, that are derived from pulse shape analysis using maximum likelihood estimation (MLE) applied to filtered and digitized recordings of the charge signals. Example calculations are given to illustrate our approach. Experimental results are given that demonstrate that one can construct complete systems, from detector through data analysis, that come near the theoretical limits

  8. Effect of Optical Pulse Shape on the Performance of OCDMA in Presence of GVD and Pulse Linear Chirp

    Directory of Open Access Journals (Sweden)

    Md. Jahedul Islam

    2010-07-01

    Full Text Available In this paper, the effect of optical pulse shape on the performance of direct sequence optical code division multiple access in presence of fiber group velocity dispersion (GVD and pulse linear chirp is analyzed. In our analysis, chirp-Gaussian shape and chirp-Hyperbolic-Secant shape optical orthogonal codes are employed as address sequence. Avalanche photodiode (APD is used in an optical correlator receiver. The signal to noise power for the proposed system is evaluated on account of APD short noise, bulk dark current, surface leakage current, thermal noise current, and multiuser access interference noises. The system BER performance is determined as a function of received signal power, number of simultaneous users, fiberlength, pulse linear chirp, and pulse-shape. The power penalty suffered by the system is evaluated at BER of 10-9. The numericalresults show that the BER performance of the proposed system ishighly dependent on the number of simultaneous user, fiber length, pulse linear chirp, and pulse-shape. It is found that, if the effect of GVD is considered, the proposed system performance i.e., BER is degraded. The BER performance of the proposed system also aggravated due to presence of pulse linear chirp. It is also found that the proposed system suffers minimum penalty when chirp-Hyperbolic-Secant shape optical pulse is used instead of chirp-Gaussian shape pulse.

  9. Laboratory transferability of optimally shaped laser pulses for quantum control

    International Nuclear Information System (INIS)

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed

  10. Pulse shape discrimination for Gerda Phase I data

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-10-01

    The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0 νββ) decay of 76Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched 76Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV γ rays from 208Tl decays as well as two-neutrino double beta (2 νββ) decays of 76Ge are used as proxies for 0 νββ decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92±0.02 of signal-like events while about 80 % of the background events at Q ββ =2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 νββ decay. It retains 90 % of DEP events and rejects about half of the events around Q ββ . The 2 νββ events have an efficiency of 0.85±0.02 and the one for 0 νββ decays is estimated to be . A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 νββ decays.

  11. Pulse shape discrimination for Gerda Phase I data

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Pandola, L.; Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Baudis, L.; Benato, G.; Ferella, A.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Liao, H.Y.; Liu, X.; Majorovits, B.; O' Shaughnessy, C.; Schulz, O.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (IT); INFN Milano, Dipartimento di Fisica, Milano (IT); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (RU); National Research Centre ' ' Kurchatov Institute' ' , Moscow (RU); Sturm, K. von [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (IT); INFN Padova, Padova (IT); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE)

    2013-10-15

    The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched {sup 76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV {gamma} rays from {sup 208}Tl decays as well as two-neutrino double beta (2{nu}{beta}{beta}) decays of {sup 76}Ge are used as proxies for 0{nu}{beta}{beta} decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92{+-}0.02 of signal-like events while about 80 % of the background events at Q{sub {beta}{beta}} =2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 {nu}{beta}{beta} decay. It retains 90 % of DEP events and rejects about half of the events around Q{sub {beta}{beta}}. The 2 {nu}{beta}{beta} events have an efficiency of 0.85 {+-}0.02 and the one for 0 {nu}{beta}{beta} decays is estimated to be 0.90{sup +0.05}{sub -0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2{nu}{beta}{beta} decays. (orig.)

  12. Effect of Optical Pulse Shape on the Performance of OCDMA in Presence of GVD and Pulse Linear Chirp

    OpenAIRE

    Md. Jahedul Islam; Kalyan Kumar Halder; Md Rafiqul Islam

    2010-01-01

    In this paper, the effect of optical pulse shape on the performance of direct sequence optical code division multiple access in presence of fiber group velocity dispersion (GVD) and pulse linear chirp is analyzed. In our analysis, chirp-Gaussian shape and chirp-Hyperbolic-Secant shape optical orthogonal codes are employed as address sequence. Avalanche photodiode (APD) is used in an optical correlator receiver. The signal to noise power for the proposed system is evaluated on account of APD s...

  13. Pulse shape analysis of liquid scintillators for neutron studies

    CERN Document Server

    Marrone, S; Colonna, N; Domingo, C; Gramegna, F; González, E M; Gunsing, F; Heil, M; Kaeppeler, F; Mastinu, P F; Milazzo, P M; Papaevangelou, T; Pavlopoulos, P; Plag, R; Reifarth, R; Tagliente, G; Taín, J L; Wisshak, K

    2002-01-01

    The acquisition of signals from liquid scintillators with Flash ADC of high sampling rate (1 GS/s) has been investigated. The possibility to record the signal waveform is of great advantage in studies with gamma's and neutrons in a high count-rate environment, as it allows to easily identify and separate pile-up events. The shapes of pulses produced by gamma-rays and neutrons have been studied for two different liquid scintillators, NE213 and C sub 6 D sub 6. A 1-parameter fitting procedure is proposed, which allows to extract information on the particle type and energy. The performance of this method in terms of energy resolution and n/gamma discrimination is analyzed, together with the capability to identify and resolve pile-up events.

  14. Photon/neutron discrimination with digital pulse shape analysis

    International Nuclear Information System (INIS)

    The discrimination of photons against neutrons is a long-standing issue in nuclear instrumentation. The availability of powerful digital hardware makes it possible to use self learning algorithms to find signal classes. The research in this field is a fundamental necessity for a wide range of experimental applications. In this work digital pulse shape discrimination is implemented based on a Fuzzy C-Means Clustering algorithm. This way the determination of signal classes is achieved offline in an automated and universally applicable manner. The implementation was used to determine the minimum ADC hardware requirements for (n,γ) discrimination of signals obtained from neutron scintillation detectors of the type BC501A. The suitability of this algorithm for discrimination was validated using TOF measurements. The dependence of the Figure of Merit on external parameters such as detector high voltage, ADC sampling rate and bit resolution was investigated.

  15. Application of Bayes' theorem for pulse shape discrimination

    International Nuclear Information System (INIS)

    A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am–Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing

  16. Application of Bayes' theorem for pulse shape discrimination

    Science.gov (United States)

    Monterial, Mateusz; Marleau, Peter; Clarke, Shaun; Pozzi, Sara

    2015-09-01

    A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am-Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.

  17. High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    CERN Document Server

    Baudis, L; Klapdor-Kleingrothaus, H V; Ramachers, Y; Hammer, J W; Mayer, A

    1998-01-01

    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We have measured ionization efficiencies as well and found an excellent agreement with the theory of Lindhard. In a further experiment we measured pulse shapes of a radioactive gamma-source and found no difference to nuclear recoil pulse shapes. Pulse shapes originating from microphonics of a HPGe-detector are presented for the first time. A microphonic noise suppression method, crucial for dark matter direct detection experiments, can therefore be calibrated with pulse shapes from gamma-sources.

  18. Optical micromanipulation using dispersion-compensated and phase-shaped ultrashort pulsed lasers

    OpenAIRE

    Shane, Janelle

    2009-01-01

    Ultrashort pulsed lasers offer high peak powers at low average powers, making them ideal for maximising the efficiency of nonlinear excitation. Their broad bandwidths make it possible to tailor the pulse's temporal profile for advanced control of multiphoton excitation, techniques known as pulse shaping. This thesis represents the first combination of ultrashort pulse shaping with optical trapping and axicon dispersion compensation. We construct an optical trapping system which incorpora...

  19. Pulsed Laser Interactions with Space Debris: Target Shape Effects

    CERN Document Server

    Liedahl, D A; Libby, S B; Nikolaev, S; Phipps, C R

    2013-01-01

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon p...

  20. New capabilities in spectroscopy on pulsed sources: adjustable pulse repetition rate, resolution and line shape

    International Nuclear Information System (INIS)

    Spectroscopy with cold neutrons is one of the most important areas of current superiority of reactor based instruments over those at spallation sources. This is particularly due to the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection rate in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. We present a set of novel techniques making up the IN500 project at Los Alamos, which is based on the combined use of extended pulse length, coupled moderator, disc chopper system and advanced neutron optical beam delivery. This development will enable Lujan center to surpass the best reactor sources in cold neutron spectroscopy by realizing for the first time all of the above key capabilities of steady state instruments on a pulsed spallation source. (author)

  1. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    CERN Document Server

    Yan, Daikang; Gades, Lisa; Jacobsen, Chris; Madden, Timothy; Miceli, Antonino

    2016-01-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  2. Automatic detection and elimination of periodic pulse shaped interferences in partial discharge measurements

    OpenAIRE

    Nagesh, V.; Gururaj, BI

    1994-01-01

    The interferences present in partial discharge (PD) measurement can be classified as narrow-band and broad-band, the latter being pulsed shaped. The pulse shaped interferences can be periodic or random with respect to power frequency, the former being very common and strong. The paper describes an algorithm for automatic detection and elimination of periodic pulse shaped interferences in PD measurements. The algorithm is developed on lines similar to that used in decomposing an electromyogram...

  3. Towards highest spectral efficiency: Optical sinc-shaped Nyquist pulses generation from rectangular frequency comb

    OpenAIRE

    Brès, Camille Sophie; Soto, Marcelo A.; Alem, Mehdi; Shoaie, Mohammad Amin; Vedadi, Armand; Schneider, Thomas; Thévenaz, Luc

    2014-01-01

    In this paper, we review a method to produce optical sinc-shaped Nyquist pulses with unprecedented quality. The method is based on the synthesis of a rectangular shaped and phase-locked frequency comb from a combination of intensity modulators. The result is a highly flexible pulse generator that can easily be integrated in already installed communication systems. All-optical pulse shaping methods for highest spectral efficiencies are attractive since high-bitrate spectrally efficient channel...

  4. Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers

    Science.gov (United States)

    Barua, Suchi; Das, Narottam; Nordholm, Sven; Razaghi, Mohammad

    2016-01-01

    This paper presents the pulse propagation and gain saturation characteristics for different input optical pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. From this simulation, we obtained the output waveforms and spectra for different input pulse shapes considering different input energy levels. It has shown that the output pulse shape has changed due to the variation of input parameters, such as input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak position of the output waveforms are shifted toward the leading edge which is due to the gain saturation of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse shapes.

  5. Advantages of solitonic shape pulses for full-optical wireless communication links

    Institute of Scientific and Technical Information of China (English)

    José María Garrido Balsells; Antonio Jurado-Navas; Miguel Castillo-Vázquez; Ana Belén Moreno-Garrido; Antonio Puerta-Notario

    2012-01-01

    We propose the use of a power pulse shape of the widely known optical soliton,corresponding to the hyperbolic secant square function,for both conventional atmospheric optical communication systems and,especially,for new full-optical wireless communications.We analyze the performance of the proposed pulse in terms of peak-to-average optical power ratio (PAOPR) and bit error rate (BER).During the analysis,we compare the proposed pulse shape against conventional rectangular and Gaussian pulse shapes with reduced duty cycle.Results show the noticeable superiority of the proposed pulse for atmospheric optical links.

  6. Inter-carrier Interference Mitigation in OFDM System Using a New Pulse Shaping Approach

    Directory of Open Access Journals (Sweden)

    Nor Adibah Ibrahim

    2014-12-01

    Full Text Available In this paper, we suggest a new pulse shaping method namely scale alpha for orthogonal frequency-division multiplexing (OFDM system. The proposed pulse shape is designed and simulated using Matlab software. Results and discussions are made to analyze the performance of the new pulse shape, particularly regarding two parameters that are inter-carrier interference (ICI power reduction, and eye diagrams. It is shown that the new pulse is better in ICI power reduction performance than Franks, raised cosine, and double-jump pulses.

  7. The C-14(alpha, gamma)O-18 reaction at astrophysical energies

    International Nuclear Information System (INIS)

    The C-14(alpha, gamma)O-18 reaction rate is estimated for temperatures important for He flashes in white dwarfs and for nonhomogeneous big-bang nucleosynthesis. If available, the resonant contributions to the rate are derived using recent experimental data. The direct capture rate is evaluated on the basis of a microscopic multichannel calculation of the C-14(alpha, gamma)O-18 reaction. Possible interference contributions are discussed. The present rate is compared to previous estimates of Hashimoto et al. (1986) and of Buchmann et al. (1988). 23 refs

  8. The C-14(alpha, gamma)O-18 reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Langanke, K. (Muenster Universitaet (Germany, F.R.))

    1989-09-01

    The C-14(alpha, gamma)O-18 reaction rate is estimated for temperatures important for He flashes in white dwarfs and for nonhomogeneous big-bang nucleosynthesis. If available, the resonant contributions to the rate are derived using recent experimental data. The direct capture rate is evaluated on the basis of a microscopic multichannel calculation of the C-14(alpha, gamma)O-18 reaction. Possible interference contributions are discussed. The present rate is compared to previous estimates of Hashimoto et al. (1986) and of Buchmann et al. (1988). 23 refs.

  9. Optical fibre digital pulse-position-modulation assuming a Gaussian received pulse shape

    OpenAIRE

    Cryan, R.A.; Unwin, Rodney T.; Garrett, Ian; Sibley, Martin J.N.; Calvert, N.M.

    1990-01-01

    The abundance in bandwidth available in the best monomode fibres may be exchanged for improved receiver sensitivity by employing digital PPM. The paper presents a performance and optimisation analysis for a digital PPM coding scheme operating over a fibre channel employing a PIN-BJT receiver and assuming a Gaussian received pulse shape. The authors present original results for a 50 Mbit/s, 1.3 μm wavelength digital PPM system and conclude that, provided the fibre bandwidth is several times th...

  10. Neutron, proton and gamma-ray event identification with a HPGe detector through pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bamford, G.J.; Rester, A.C.; Coldwell, R.L. (Inst. for Astrophysics and Planetary Exploration, Univ. of Florida, Alachua, FL (US)); Castaneda, C.M. (California Univ., Davis, CA (United States). Crocker Nuclear Lab.)

    1991-04-01

    In this paper the authors report on a series of preliminary experiments performed to investigate the current pulse shapes produced by gamma-ray, neutron and proton interactions in a high purity germanium detector (HPGe). The authors characterize the pulse shapes on the basis of their time-to-peak (leading) and time-from-peak (trailing) edges. Each particle type generates a distinct range of current pulse shapes; this information can be used on a pulse by pulse basis to indicate which particle interacted in the detector. There is also an indication that current pulse shape information can be used to reduce the Compton background, which generally contributes to the background of any gamma-ray spectrum, but placing timing cuts on the leading and trailing edges of the current pulses.

  11. Neutron, proton and gamma-ray event identification with a HPGe detector through pulse shape analysis

    International Nuclear Information System (INIS)

    In this paper the authors report on a series of preliminary experiments performed to investigate the current pulse shapes produced by gamma-ray, neutron and proton interactions in a high purity germanium detector (HPGe). The authors characterize the pulse shapes on the basis of their time-to-peak (leading) and time-from-peak (trailing) edges. Each particle type generates a distinct range of current pulse shapes; this information can be used on a pulse by pulse basis to indicate which particle interacted in the detector. There is also an indication that current pulse shape information can be used to reduce the Compton background, which generally contributes to the background of any gamma-ray spectrum, but placing timing cuts on the leading and trailing edges of the current pulses

  12. Generation of orthogonal UWB shaping pulses based on compressed chirp signal

    Institute of Scientific and Technical Information of China (English)

    CHE Shu-liang; ZHANG Hong-xin; LU Ying-hua; HE Peng-fei

    2007-01-01

    This study investigates a novel method to numerically generate orthogonal ultrawide band (UWB) shaping pulses based on compressed chirp signal. First, a pulse template with less than 1 ns duration time, which is used to construct a Hermitian matrix, is produced with a compressed chirp pulse. Sub-nanosecond orthogonal pulses are then generated for UWB by using the Hermitian matrix eigenvectors. The simulation results show that the power spectral density distribution of the UWB shaping pulses met the constraint of Federal communications commissions (FCC) spectral mask. The shaping pulses not only have higher spectrum utilization ratio and very short time duration but also have excellent autocorrelation and cross-correlation properties, which is an advantage to reduce the interference between multiusers. Especially, a method to produce sub-nanosecond orthogonal UWB shaping pulses by using a relatively longer duration chirp signal is presented.

  13. Pulse shaping method to compensate for antenna distortion in ultra-wideband communications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the ultra-wideband (UWB) communication systems, a critical spectral mask is released to restrict the allowable interference to other wireless devices by the Federal Communications Commission (FCC), and then some pulse shaping methods have been presented to fulfil the mask. However, most pulse shaping methods do not consider the antenna distortion which cannot be neglected in the UWB communication systems compared with the conventional systems. To this end, an orthogonal wavelet based pulse shaping method is proposed in this paper to integrate compensation of antenna distortion into pulse shaping. Simulation results show that the novel pulse shaping method can be used to achieve compensation for antenna distortion, optimization of transmission power spectrum, and simplification of the algorithm, as well as simple implementation of the pulse generator.

  14. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  15. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  16. Pulse shape analysis optimization with segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institute for Nuclear Physics, University of Cologne (Germany); Bruyneel, Bart [CEA, Saclay (France); Collaboration: AGATA-Collaboration

    2014-07-01

    Measurements with the position sensitive, highly segmented AGATA HPGe detectors rely on the gamma-ray-tracking GRT technique which allows to determine the interaction point of the individual gamma-rays hitting the detector. GRT is based on a pulse shape analysis PSA of the preamplifier signals from the 36 segments and the central electrode of the detector. The achieved performance and position resolution of the AGATA detector is well within the specifications. However, an unexpected inhomogeneous distribution of interaction points inside the detector volume is observed as a result of the PSA even when the measurement is performed with an isotropically radiating gamma ray source. The clustering of interaction points motivated a study in order to optimize the PSA algorithm or its ingredients. Position resolution results were investigated by including contributions from differential crosstalk of the detector electronics, an improved preamplifier response function and a new time alignment. Moreover the spatial distribution is quantified by employing different χ{sup 2}-minimization procedures.

  17. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    Science.gov (United States)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  18. 100W fully-fiberised Ytterbium doped master oscillator power amplifier incorporating adaptive pulse shaping

    OpenAIRE

    Lin, Dejiao; Alam, Shaif-ul; Chen, Kangkang; Malinowski, Andrew; Norman, Steve; Richardson, David

    2009-01-01

    We report a pulsed, fully-fiberised, Yb-doped MOPA with a maximum average output power of 100W. Adaptive pulse shaping was incorporated to reduce the impact of nonlinearities, delivering 2mJ flat-topped pulses with 20kW peak power.

  19. Second-order shaped pulsed for solid-state quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Pinaki [Los Alamos National Laboratory

    2008-01-01

    We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site and nearest-neighbor couplings.

  20. Study of temporal pulse shape effects on W using simulations and laser heating

    Science.gov (United States)

    Yu, J. H.; De Temmerman, G.; Doerner, R. P.; van den Berg, M. A.

    2016-02-01

    Transient heat pulses with triangular, square, and ELM-like temporal shapes are investigated in order to further understand how transient plasma instabilities will affect plasma facing components in tokamaks. A solution to the 1D heat equation for triangular pulses allows the peak surface temperature to be written analytically for arbitrary rise times. The solution as well as ANSYS simulations reveal that a positive ramp (maximum rise time) triangular pulse has a higher peak surface temperature by a factor of \\sqrt{2} compared to that from a negative ramp (rise time = 0) pulse shape with equal energy density, peak power, and pulse width. Translating the results to ITER, an ELM or disruption pulse with the shortest rise time is the most benign compared to other pulse shapes with the same peak heat flux and same energy density.

  1. Band-selective shaped pulse for high fidelity quantum control in diamond

    OpenAIRE

    Chang, Yan-Chun; Xing, Jian; Zhang, Fei-Hao; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Gu, Chang-Zhi; Long, Gui-Lu; Pan, Xin-Yu

    2014-01-01

    High fidelity quantum control over qubits is of crucial importance for realistic quantum computing, and it turns to be more challenging when there are inevitable interactions among qubits. By employing a bandselective shaped pulse, we demonstrate a high fidelity flip over electron spin of nitrogen-vacancy (NV) centers in diamond. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect among a sharply edged region (in frequency domain). So the three...

  2. Pulse-shape discrimination of low energy scintillation signals from photomultiplier noises

    International Nuclear Information System (INIS)

    Pulse shape analysis technique for discrimination of low energy scintillation signals from the photomultiplier noises was developed. Samples of low-energy signals, free from photomultiplier noise admixture, were measured in special calibration runs. The algorithm of preliminary signal processing to determine beginning and base line of the pulses was developed. Comparison of different pulse shape discrimination methods was done. Among them are the methods of 'average time', optimal digital filter, least squares and artificial neural networks

  3. Numerical simulations for parabolic pulse shaping in non-linear media

    Science.gov (United States)

    Nora, R. C.; Durfee, C. G.; Carr, L. D.

    2007-03-01

    Pulses with parabolic temporal profiles have the property that they can propagate through non-linear media in a self similar manner. Parabolic pulses have been generated experimentally in fiber amplifiers. Input pulses develop into parabolic pulses by the combined action of group velocity dispersion, non-linear refractive index, and gain. In this work, we are exploring the feasibility of generating ultrafast parabolic pulses in laser resonators. We have successfully numerically simulated the generation of parabolic pulses in fiber amplifiers using two different algorithms, the Cayley method, and fourth order Runge-Kutta, to solve the Nonlinear Schrodinger equation with gain and periodic boundary conditions. In contrast to fiber amplifiers, pulses in laser resonators must maintain a stable pulse shape on each round trip through the optical cavity. We are exploring the prediction that a time dependent saturable gain will stabilize the pulse in the oscillator and yield parabolic pulses.

  4. Isolated short attosecond pulse produced by using an intense few-cycle shaped laser and an ultraviolet attosecond pulse

    Science.gov (United States)

    Zhao, Song-Feng; Zhou, Xiao-Xin; Li, Peng-Cheng; Chen, Zhangjin

    2008-12-01

    An efficient method to generate a short attosecond pulse is presented by using intense few-cycle shaped infrared (ir) laser in combination with an ultraviolet (uv) attosecond (as) pulse. We show that high-order harmonic generation (HHG) plateau near the cutoff is enhanced by one order of magnitude compared with the shaped laser case and the HHG supercontinuum spectrum is generated by adding a uv attosecond pulse to the few-cycle shaped ir laser at a proper time. By enhancing the long quantum path and suppressing the short one corresponding to one major return, an isolated 57-as pulse with a bandwidth of 62eV is obtained directly. The time-frequency characteristics of the HHG are analyzed in detail by means of the wavelet transform of the time-dependent induced dipole acceleration. In addition, we also perform classical trajectory simulation of the strong-field electron dynamics and electron return map.

  5. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  6. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  7. 2-Dimension pulse shape discriminator for phoswich detector based on FPGA

    International Nuclear Information System (INIS)

    It improves the data acquire system for the pulse signal based on digital front-rear pulse shape discrimination system. It adds pulse width information into the pulse's data package. Base on this, we divide the pulse event process into two process, on line coast process and offline accurate process: the online process sets a big threshold, just save the data of the event below this threshold; the offline process uses the acquired data, get the pulse amplitude and pulse width, and then according the spectrum's real shape, set the accurate threshold. this design resolves the problem that the detector's decay time change with the temperature; at the same time, it can correct the system's distortion when the input signal at small amplitude, improves the discrimination system's accuracy. (authors)

  8. The pulse shape of a passively Q-switched microchip laser

    Science.gov (United States)

    Erneux, T.; Peterson, P.; Gavrielides, A.

    The shape of the intensity pulse of a passively Q-switched microchip laser is investigated numerically and analytically. Our analysis is motivated by independent microchip laser experiments exhibiting nearly symmetric pulses in the case of a semiconductor saturable absorber and asymmetric pulses in the case of a solid state saturable absorber. Asymptotic methods are used to determine limiting behaviors of the pulse shape for both symmetric and asymmetric pulses. In the first case, we determine a sech2 solution parametrized by one parameter which can be determined by solving two coupled nonlinear algebraic equations. In the second case, the pulse solution is decomposed into two distinct approximations exhibiting different amplitude and time scales properties. We review earlier approximations of the repetition rate and the pulse width.

  9. A Novel Pulse Shaping for UWB Impulse Radio IEEE 802.15.4a Communications Systems

    Directory of Open Access Journals (Sweden)

    BARRAJ Imen

    2014-05-01

    Full Text Available This paper presents a novel pulse shape which we call modified triangular pulse (MTri for Impulse Radio-Ultra Wide Band (IR-UWB IEEE 802.15.4a systems. The MTri pulse and UWB shapes previously proposed for low power IR-UWB transceivers topologies are studied and compared. The performance measures considered are compliance with required spectral emission constrains, Mask Loss (ML power and pulse energy. Our theoretical and simulations results show the advantages of the MTri pulse over studies UWB pulses. It presents the lower ML power about 0.45dB and the higher pulse energy of 0.45nJ/p.

  10. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    International Nuclear Information System (INIS)

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions

  11. RF pulse shape control using a recurrent algorithm for a FEL RF-gun cavity

    International Nuclear Information System (INIS)

    FEL application requires a very constant RF accelerating field during the pulse. A classical feedback regulation loop cannot be very efficient when pulse duration is just a few times longer than the filling time of the cavity as the loop gain cannot be high enough. For that reason, the authors decided to control the RF shape along the macropulse in a recurrent way: the pulse profile is corrected step by step by computation from the measurement of previous pulses and the desired shape. The control algorithm is given and its performances are presented

  12. Shaping the output pulse of a linear-transformer-driver module

    International Nuclear Information System (INIS)

    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in (Phys. Rev. ST Accel. Beams 10, 030401 (2007)) provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers (Phys. Rev. ST Accel. Beams 11, 030401 (2008))

  13. Formation of a Mesa Shaped Phonon Pulse in Superfluid 4He

    Science.gov (United States)

    Adamenko, I. N.; Nemchenko, K. E.; Slipko, V. A.

    2010-05-01

    We present a theory for the formation of a mesa shaped phonon pulse in superfluid 4He. Starting from the hydrodynamic equations of superfluid helium, we obtain the system of equations which describe the evolution of strongly anisotropic phonon systems. Such systems can be created experimentally. The solution of the equations are simple waves, which correspond to second sound in the moving phonon pulse. Using these exact solutions, we describe the expansion of phonon pulses in superfluid helium at zero temperature. This theory gives an explanation for the mesa shape observed in the measured phonon angular distributions. Almost all dependencies of the mesa shape on the system parameters can be qualitatively understood.

  14. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    OpenAIRE

    Andreas Hoffmann; Michael Zürch; Christian Spielmann

    2015-01-01

    In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6) for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV) spectrum, where total yie...

  15. Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2015-12-01

    Full Text Available It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distributions within the burst by pre-shaping the seed pulse burst with a Pockels cell. Furthermore, this technique allows for the precompensation of any static modulations across the burst, which may be introduced during the subsequent amplification process. Therefore, a pulse burst with a uniform energy distribution can also be generated. The method is tested with an ultra-short pulse burst mode laser amplifier system producing bursts of a 1 ms duration with a pulse repetition rate of 1 MHz and a maximum output power of 800 W during the burst. Furthermore, a method to predict the influence of the amplifier on a non-uniformly shaped burst is presented and successfully tested to produce a pre-defined pulse shape after amplification.

  16. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    Energy Technology Data Exchange (ETDEWEB)

    Chaplin, Vandiver, E-mail: chapliv@uah.edu [CSPAR, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Bhat, Narayana [CSPAR, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Briggs, Michael S.; Connaughton, Valerie [CSPAR, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Department of Physics, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States)

    2013-07-21

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's shaping and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: ‘peak’ and ‘tail’ pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to increased complexity. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup including high order effects. We use the pulse shape of the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by expressing exposure time with a state-space expansion of overlapping pileup states and is valid up to very high rates. The model correctly predicts deadtime and pileup losses, and energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss total losses in terms of the true rate of photon detections versus the recorded count rate. -- Highlights: • A derivation of pulse-pileup spectral and intensity distortion is presented. • Applies to bipolar shaping instruments in general, but is calculated for Fermi-GBM. • Exposure time is partitioned with pulse widths as states of a Poisson process. • Each state has an associated energy distribution function for peak and tail pileup. • The total spectrum is the union of pulse states and their associated spectra.

  17. Development of real-time pulse shaping technology in solid-state lasers

    International Nuclear Information System (INIS)

    We developed real-time pulse shaping technology in solid-state lasers for special cutting and welding applications. Our real-time pulse shaping unit has the capabilities of 20 steps variation in laser intensity, 200 steps in laser pulse width, and 16 pulse shape patterns with MOSFET Pulse Width Modulation method. Also, we improved our previous 250 W class Nd:YAG laser system by using this new technology. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accellerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Two Nd:YAG lasers have been assembled and will be tested in industrial manufacturing processes to prove the capability of developed Nd:YAG laser with potential users. (Author)

  18. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Anass Benjebbour

    2008-02-01

    Full Text Available In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  19. Identification alpha and gamma quantum at the pulse shape of the scintillates splash

    Directory of Open Access Journals (Sweden)

    V. I. Kornaga

    2008-05-01

    Full Text Available The methods of different scintillates splash alpha and gamma quantum at the pulse shape have been considered in experiment researches of the core's structure and mechanisms of the nuclear reaction.

  20. State-to-State Collisional Dynamics by Coherent Laser Pulse Phase, Shape, and Frequency Modification

    OpenAIRE

    Banash, Mark A.; Warren, Warren S.

    1986-01-01

    Conventional coherent pulse sequences such as photon echoes measure only highly averaged relaxation rates in complex multilevel systems, such as molecules undergoing state-changing collisions. Pulse frequency, phase, and shape control lets us generate sequences which give a more detailed understanding of the dynamics. Results of dual frequency, crafted shape sequences on I2 are presented which show that the "coherence dephasing" time T2 is primarily due to population redistribution (energy ch...

  1. High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    OpenAIRE

    Baudis, L.; Hellmig, J.; Klapdor-Kleingrothaus, H. V.; Ramachers, Y.; Hammer, J. W.; Mayer, A.

    1999-01-01

    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We ha...

  2. Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses

    Science.gov (United States)

    Constant, E.; Dubrouil, A.; Hort, O.; Petit, S.; Descamps, D.; Mével, E.

    2012-04-01

    We generate high-order harmonics with a spatially shaped TW laser beam. We present and analyse in detail a new approach for shaping an intense laser field to a flat-top intensity profile near focus. We show that this approach is well adapted for high harmonic generation with high-energy fundamental pulses and highlight the possibilities for generating high-energy attosecond pulses.

  3. Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses

    International Nuclear Information System (INIS)

    We generate high-order harmonics with a spatially shaped TW laser beam. We present and analyse in detail a new approach for shaping an intense laser field to a flat-top intensity profile near focus. We show that this approach is well adapted for high harmonic generation with high-energy fundamental pulses and highlight the possibilities for generating high-energy attosecond pulses. (paper)

  4. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  5. Ionization of H Rydberg atoms by microwaves: Pulse-shape influence on the algebraic decay

    Energy Technology Data Exchange (ETDEWEB)

    Gebarowski, R.; Zakrzewski, J. (Instytut Fizyki Uniwersytetu Jagiellonskiego, ulica Reymonta 4, 30-059 Krakow (Poland))

    1994-11-01

    A classical study is performed of the ionization of hydrogen Rydberg atoms by [ital circularly] polarized microwaves. It is shown that the electron survival probability may decay algebraically for long microwave pulses. The character of the decay is sensitive to the initial atomic state as well as to the assumed shape of the microwave pulse.

  6. Robust coherent superposition of states by single-shot shaped pulse

    Science.gov (United States)

    Ndong, Mamadou; Djotyan, Gagik; Ruschhaupt, Andreas; Guérin, Stéphane

    2015-09-01

    We adapt a single-shot shaped pulse technique to produce robust coherent superpositions of quantum states with a high fidelity of control. We derive simple pulses of low areas for the corresponding Rabi frequency which are robust with respect to pulse area imperfections. Such features of robustness, high-fidelity, and low Rabi frequency area are crucial steps towards the experimental implementation of scalable quantum gates.

  7. Theoretical framework for mapping pulse shapes in semiconductor radiation detectors

    CERN Document Server

    Prettyman, T H

    1999-01-01

    An efficient method for calculating of charge pulses produced by semiconductor detectors is presented. The method is based on a quasi-steady-state model for semiconductor detector operation. A complete description of the model and underlying assumptions is given. Mapping of charge pulses is accomplished by solving an adjoint carrier continuity equation. The solution of the adjoint equation yields Green's function, a time- and position-dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations (e.g., by gamma-ray interactions). Because the map is generated by solving a single, time-dependent problem, the potential for reduction in computational effort over direct mapping methods is significant, particularly for detectors with complex electrode structures. In this paper, the adjoint equation is presented and the mapping method is validated for a benchmark problem.

  8. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  9. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  10. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  11. Development of pulse-shape analysis for discrimination of low energy scintillation signals from photomultiplier noises

    International Nuclear Information System (INIS)

    Pulse shape analysis technique for discrimination of low-energy scintillation signals from the photomultiplier noises was developed. Samples of low-energy signals, free from photomultiplier noise admixture were measured in special calibration runs. The algorithm of preliminary signal processing to determine beginning and base line of the pulses was developed. Comparison of different pulse shape discrimination methods was done. Among them are the methods of 'average time', optimal digital filter, least squares and artificial neural networks. The 100 % discrimination efficiency for CdWO4 scintillation signals with energies of ≥ 15 keV from photomultiplier noises was achieved

  12. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  13. Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System

    OpenAIRE

    Jörg Körner; Jürgen Reiter; Joachim Hein; Kaluza, Malte C.

    2015-01-01

    It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distr...

  14. On output circuit's pulse shape of scintillation detector based on MATLAB

    International Nuclear Information System (INIS)

    The paper performs mathematical calculations for output circuit's pulse shape of scintillation detector its. Based on MATLAB the output pulse of scintillation detector, it can be included that if a scintillation detector is of 1ns transition time, 1ns discrete transition time,once its scintillation's light decay Coefficient is more than 3ns, the influence of discrete transition time may neglected. Thorough analysis is given to the relation between the RC time constant of output circuit and pulse shape, which is helpful with choosing proper RC constant for signal discrimination. (authors)

  15. Coherent control of bond making: The performance of rationally phase-shaped femtosecond laser pulses

    CERN Document Server

    Levin, Liat; Kosloff, Ronnie; Koch, Christiane P; Amitay, Zohar

    2015-01-01

    The first step in the coherent control of a photoinduced binary reaction is bond making or photoassociation. We have recently demonstrated coherent control of bond making in multi-photon femtosecond photoassociation of hot magnesium atoms, using linearly chirped pulses [Levin et al., arXiv:1411.1542]. The detected yield of photoassociated magnesium dimers was enhanced by positively chirped pulses which is explained theoretically by a combination of purification and chirp-dependent Raman transitions. The yield could be further enhanced by pulse optimization resulting in pulses with an effective linear chirp and a sub-pulse structure, where the latter allows for exploiting vibrational coherences. Here, we systematically explore the efficiency of phase-shaped pulses for the coherent control of bond making, employing a parametrization of the spectral phases in the form of cosine functions. We find up to an order of magnitude enhancement of the yield compared to the unshaped transform-limited pulse. The highly per...

  16. Generation, shaping, compression, characterization and application of intense ultrashort laser pulses

    CERN Document Server

    Cheng, Z

    2001-01-01

    Recently, the development of intense ultrashort laser pulses has attracted much interest because of their significant applications in many fields of science and technology. This thesis contributes to the generation, shaping, compression, characterization and application of intense ultrashort laser pulses as follows: 1. Laser pulses of 17.5-fs with a peak power of 0.1-TW at 1-kHz repetition rate have been generated by a compact single-stage ten-pass Ti:sapphire amplifier system with a high-order-dispersion-mirror compensator and a spectral shaping for the first time. The experimental results are in reasonable agreement with numerical calculations. 2. The first experimental study on arbitrary shaping of intense ultrashort pulses has been conducted in a kHz amplifier system capable of generating 27 fs pulses by using an acousto-optic programmable dispersive filter (AOPDF). 17-fs transform-limited pulses have been achieved and arbitrary shaping of these 17-fs pulses has been demonstrated both in the temporal and ...

  17. Microstructuring of soft organic matter by temporally shaped femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebollar, Esther, E-mail: e.rebollar@iqfr.csic.es [Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid (Spain); Mildner, Jutta; Götte, Nadine; Otto, Dirk; Sarpe, Cristian; Köhler, Jens; Wollenhaupt, Matthias; Baumert, Thomas [Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Castillejo, Marta [Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid (Spain)

    2014-05-01

    Thin films of the biopolymers gelatine and chitosan were treated using femtosecond pulse shaping techniques combined with a microscope-based setup for material processing. The polymer films were irradiated with laser pulses of 35 fs and a central wavelength of 790 nm provided by an amplified Ti:Sapphire system. The effect of temporal pulse shaping, with quadratic and cubic spectral phases, on the induced morphology was analyzed by characterization of the created surface structures via scanning electron microscopy. We observed different material modification thresholds and different structure sizes for temporally asymmetric pulse shapes. The results indicate the possibility of control of the generated microstructures and are discussed in relation to the formation of free electrons and the different contributions of multi-photon and avalanche ionization processes.

  18. Microstructuring of soft organic matter by temporally shaped femtosecond laser pulses

    International Nuclear Information System (INIS)

    Thin films of the biopolymers gelatine and chitosan were treated using femtosecond pulse shaping techniques combined with a microscope-based setup for material processing. The polymer films were irradiated with laser pulses of 35 fs and a central wavelength of 790 nm provided by an amplified Ti:Sapphire system. The effect of temporal pulse shaping, with quadratic and cubic spectral phases, on the induced morphology was analyzed by characterization of the created surface structures via scanning electron microscopy. We observed different material modification thresholds and different structure sizes for temporally asymmetric pulse shapes. The results indicate the possibility of control of the generated microstructures and are discussed in relation to the formation of free electrons and the different contributions of multi-photon and avalanche ionization processes.

  19. Femtosecond laser microchannels fabrication based on electrons dynamics control using temporally or spatially shaped pulses

    Science.gov (United States)

    Yan, Xueliang; Hu, Jie; Li, Xiaowei; Xia, Bo; Liu, Pengjun; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    With ultrashort pulse durations and ultrahigh power densities, femtosecond laser presents unique advantages of high precision and high quality fabrication of microchannels in transparent materials. In our study, by shaping femtosecond laser pulse energy distribution in temporal or spatial domains, localized transient electrons dynamics and the subsequent processes, such as phase changes, can be controlled, leading to the dramatic increases in the capability of femtosecond laser microchannels fabrication. The temporally shaped femtosecond laser pulse trains can significantly enhance the material removal rate in both water-assisted femtosecond laser drilling and femtosecond laser irradiation followed by chemical etching. Besides, high-aspect-ratio and small-diameter microchannels are drilled by spatially shaped femtosecond laser pulses.

  20. Band-selective shaped pulse for high fidelity quantum control in diamond

    International Nuclear Information System (INIS)

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  1. Band-selective shaped pulse for high fidelity quantum control in diamond

    Science.gov (United States)

    Chang, Yan-Chun; Xing, Jian; Zhang, Fei-Hao; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Gu, Chang-Zhi; Long, Gui-Lu; Pan, Xin-Yu

    2014-06-01

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  2. Band-selective shaped pulse for high fidelity quantum control in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Fei-Hao [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Gu, Chang-Zhi; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Long, Gui-Lu [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-30

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  3. Application of wave-shape functions and Synchrosqueezing transform to pulse signal analysis

    CERN Document Server

    Wu, Hau-tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang

    2015-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and study the pulse wave signal. Based on the wave shape function model and SST, we extract features, called the spectral pulse signature, based on the functional regression technique, to characterize the hemodynamics from the pulse wave signals. To demonstrate how the algorithm and the extracted features work, we study the radial pulse wave signal recorded by the sphygmomanometer from normal subjects and patients with congestive heart failure. The analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. In addition, it shows that different positions of the radial artery contain significant different information, which is compatible with the empirical conclusion of the pulse diagnosis in the traditional Chinese medicine.

  4. Coherent control with shaped femtosecond laser pulses applied to ultracold molecules

    International Nuclear Information System (INIS)

    We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photoinduced processes in molecular quantum gases

  5. Coherent control with shaped femtosecond laser pulses applied to ultracold molecules

    CERN Document Server

    Salzmann, W; Wester, R; Weidemüller, M; Merli, A; Weber, S M; Sauer, F; Plewicki, M; Weise, F; Esparza, A M; Wöste, L; Lindinger, A; Salzmann, Wenzel; Poschinger, Ulrich; Wester, Roland; Weidemueller, Matthias; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Plewicki, Mateusz; Weise, Fabian; Esparza, Aldo Mirabal; Woeste, Ludger; Lindinger, Albrecht

    2005-01-01

    We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photo-induced processes in molecular quantum gases.

  6. Systematic uncertainties of artificial neural-network pulse-shape discrimination for $0\

    CERN Document Server

    Abt, I; Cossavella, F; Majorovits, B; Palioselitis, D; Volynets, O

    2014-01-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate the systematic uncertainties of the method. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like samples from calibration measurements is estimated to be 5\\%. This uncertainty is due to differences between signal and calibration samples.

  7. Enhancement of laser induced Au nanoparticle formation by femtosecond pulse shaping

    Science.gov (United States)

    Ferreira, P. H. D.; Silva, D. L.; Siqueira, J. P.; Balogh, D. T.; Canuto, S.; Misoguti, L.; Mendonca, C. R.

    2013-07-01

    We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

  8. The Trichel pulse corona in N2 + CCl2F2 mixtures: the shape of pulses

    International Nuclear Information System (INIS)

    The formation of regular Trichel pulses in electronegative gaseous mixtures is studied experimentally, with emphasis on the consequences of different electron attachment mechanisms in the used gas mixtures on the behavior of the discharge. Negative ions are believed to be responsible for excitation of the Trichel pulses. The experimental data presented in the paper give evidence that the origin of the negative ions does not play any substantial role in the formation of the initial part of the Trichel pulses. (J.U.)

  9. Generation of a Super Strong Attosecond Pulse from an Atomic Superposition State Irradiated by a Shape-Optimized Short Pulse

    International Nuclear Information System (INIS)

    Using a linearly polarized, phase-stabilized 3-fs driving pulse of 800 nm central wavelength shape-optimized on its ascending edge by its an amplitude-reduced pulse irradiating on a superposition state of the helium atom, we demonstrate theoretically the generation of a super strong isolated 176-attosecond pulse in the spectral region of 93–124 eV. The unusually high intensity of this attosecond pulse is marked by the Rabi-like oscillations emerging in the time-dependent populations of the ground state and the continuum during the occurrence of the electron recombination, which is for the first time observed in this work. (atomic and molecular physics)

  10. Simulation of neutrons and gamma pulse signal and research on the pulse shape discrimination technology

    International Nuclear Information System (INIS)

    In neutrons detection, it is important to discriminate the neutron signals from the gamma-ray background. In this article, simulation of neutrons and gamma pulse signals is developed based on the LabVIEW platform. Two digital algorithms of the charge comparison method and the pulse duration time method are realized using 10000 simulation signals. Experimental results show that neutron and gamma pulse signals can be discriminated by the two methods, and the pulse duration time method is better than the charge comparison method. (authors)

  11. Analysis of pulse shape from a high-resolution superconducting tunnel junction X-ray spectrometer

    International Nuclear Information System (INIS)

    Superconducting-insulating-superconducting (SIS) tunnel junctions coupled to superconducting absorbers may be used as high-resolution, high-efficiency X-ray spectrometers. Until recently, the X-ray-induced current pulse from such devices has been measured using FET-based negative-feedback charge or current amplifiers. The limited bandwidth and feed-back nature of these amplifiers have made it difficult to deduce the true shape of the X-ray induced current pulse. Recently, we have begun to use high-bandwidth amplifiers based on Superconducting Quantum Interference Devices (SQUIDS) to measure the current pulses from our tunnel junction X-ray spectrometers. We have measured pulses from devices with niobium X-ray absorbing layers coupled to aluminum layers that serve as quasiparticle traps. We present here a study of pulse shape as a function of bias voltage. In general, the X-ray induced pulses increase in amplitude and become longer as we increase the bias voltage. We found that it is possible to differentiate pulses produced by X-ray absorption in the top niobium film from those produced in the bottom niobium film by measuring the rise time of the current pulses. This allows us to produce a high resolution spectrum using only pulses produced in the bottom niobium film. The measured energy resolution of this spectrum is 29 eV FWHM at 5.89 keV, about 5 times better than that obtainable using semiconductor ionization detectors. (orig.)

  12. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2015-11-01

    Full Text Available In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6 for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV spectrum, where total yield and spectral selectivity in the XUV are the targets of the optimization approach. The effect of using sulfur hexafluoride for pulse-shaping the XUV yield can be doubled compared to pulse compression and pulse-shaping using argon and the spectral range for selective optimization of a single harmonic can be extended. The obtained results are of interest for extending the range of ultrafast science applications drawing on tailored XUV fields.

  13. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...

  14. Improved methods for modeling pulse shapes of accreting millisecond pulsars

    CERN Document Server

    Leahy, D; Cadeau, C

    2006-01-01

    Raytracing computations for light emitted from the surface of a rapidly rotating neutron star are carried out in order to construct light curves for accreting millisecond pulsars. These calculations are for realistic models of rapidly rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect, comparing the full raytracing computations with simpler approximations currently in use, arises from the oblate shape of the rotating star. Approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, for lower rotation rates acceptable mass and radius values can be obtained using the spherical approximation.

  15. First direct measurement of resonance strengths in 17O({\\alpha}, {\\gamma})21Ne

    CERN Document Server

    Best, A; Couder, M; deBoer, R; Falahat, S; Kontos, A; LeBlanc, P J; Li, Q; O'Brien, S; Sonnabend, K; Talwar, R; Uberseder, E; Wiescher, M

    2011-01-01

    The reaction 17O({\\alpha},{\\gamma})21Ne has been measured by in-beam gamma spectroscopy for the first time in the energy range E{\\alpha} = 750 keV to 1650 keV using highly enriched anodized Ta2(17O)5 targets. Resonances were found at E({\\alpha}) = 1002 keV, 1386 keV and 1619 keV. Their strengths and primary gamma-ray branchings are given. The new results exclude the low reaction rate of Descouvemont and support the rate of Caughlan and Fowler. Implications for the neutron poisoning efficiency of 16O in the weak s process are discussed.

  16. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    Science.gov (United States)

    Tóth, György; Tibai, Zoltán; Nagy-Csiha, Zsuzsanna; Márton, Zsuzsanna; Almási, Gábor; Hebling, János

    2016-02-01

    In this article, we investigate the temporal shape of one- or few-cycle, 20-180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier-envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  17. Neutron pulse discrimination of BF3 detector through pulse shape analysis

    International Nuclear Information System (INIS)

    In the nuclear non-proliferation and safeguards, reliable detection and verification of nuclear materials is very important. An assay by passive or active neutron detection is the preferred technique when the sample is too dense to measure the accurate energies of γ-rays from its inside. For accurate neutron measurement, neutrons should be discriminated from γ-rays and other background radiations. In this study, neutron pulses of a BF3 detector were discriminated against other pulses including γ-rays and background radiations by using a CAMAC based pulse processing system to record the distribution of detection events over two-dimension

  18. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    Science.gov (United States)

    Preston, R. M.; Eberhardt, J. E.; Tickner, J. R.

    2013-12-01

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities.

  19. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities

  20. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    Energy Technology Data Exchange (ETDEWEB)

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  1. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    International Nuclear Information System (INIS)

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs

  2. Study of neutron-gamma pulse shape discrimination algorithms for scintillation detector

    International Nuclear Information System (INIS)

    Differentiating pulse of neutron and gamma is one of the important problem in measurements neutron spectrometry using the scintillation detector. This paper presents the research results of neutron-gamma pulse shape discrimination for an NE213 liquid scintillation detectors. From the data simulation software MatLab, four algorithms neutron-gamma pulse shape discrimination were studied. The results obtained show that method for rise-time discrimination has quality factor (Figure of-Merits: FOM=1.09), pulsed gradient analysis method (FOM=0.66), charge comparison method (FOM =2.21), and correlation pattern method (FOM = 1.97). This result is the basis for building systems used measurements neutron by scintillation detectors. (author)

  3. Key technology research of nuclear signal digitized pulse shaping in real time

    International Nuclear Information System (INIS)

    The computer simulation and analysis were carried out for the ideal nuclear pulse signal and the actual detector output signals, and the determination method of digital trapezoidal shape parameter for different nuclear pulse shaping time was summarized. At high count rate measurement occasion, the effective count rate is increased, some pile-up pulses are eliminated and the accumulation of dead time of the system is reduced. Meanwhile, Si-PIN semiconductor detector performance was tested by 256 points and 512 points digital triangle forming methods and the analog circuit forming methods for comparative tests. Test results show that the pulse forming treatment method increases the count rate performance and the resolution of detector. (authors)

  4. Pulse Shape Analysis with a Broad-Energy Germanium Detector for the GERDA experiment

    CERN Document Server

    Budjá?, Du?an; Chkvorets, Oleg; Schönert, Stefan; Khanbekov, Nikita

    2008-01-01

    To reduce background in experiments looking for rare events, such as the GERDA double beta decay experiment, it is necessary to employ active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. Analysis of the time-development of the impulses can distinguish between an interaction of an electron and an interaction of a multiple-scattered photon inside the detector. This information can be used to eliminate background events from the recorded data. Results of pulse-shape analysis of signals from a commercially available broad-energy germanium detector are presented and the pulse-shape discrimination capability of such detector configuration for use in low-background experiments is discussed.

  5. Shaping the output pulse of a linear-transformer-driver module.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Finis W.; McKee, G. Randall; Stoltzfus, Brian Scott; Woodworth, Joseph Ray; McKenney, John Lee; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John L.; Stygar, William A.; Savage, Mark Edward; LeChien, Keith, R.; Van De Valde, David M. (EG& G, Albuquerque, NM)

    2008-11-01

    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

  6. PAPR reduction based on improved Nyquist pulse shaping technology in OFDM-RoF systems

    Science.gov (United States)

    Liu, Jian-fei; Li, Ning; Lu, Jia; Zeng, Xiang-ye; Li, Jie; Wang, Meng-jun

    2013-01-01

    High peak-to-average power ratio (PAPR) is the main disadvantage in orthogonal frequency-division multiplexing (OFDM) communication systems, which also exists in OFDM-radio over fiber (RoF) systems. In this paper, we firstly analyze the impact of high PAPR on a 40 GHz OFDM-RoF system, and then describe the theory of Nyquist pulse shaping technology for reducing PAPR. To suppress PAPR further, an improved Nyquist pulse shaping technology is proposed, in which the distribution of original-data amplitude is changed by properly selecting the time-limited waveforms of the different subcarriers. We firstly apply the improved Nyquist pulse shaping technology to an OFDM-RoF system. The simulation results show that PAPR is effectively reduced by more than 2 dB with the bit error rate (BER) declining by about 0.125%.

  7. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker [Mainz Univ. (Germany). Inst. fuer Kernchemie; Omtvedt, Jon-Petter [Oslo Univ. (Norway). Dept. of Chemistry; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2015-05-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s{sup -1} (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  8. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    International Nuclear Information System (INIS)

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s-1 (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  9. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  10. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    International Nuclear Information System (INIS)

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  11. Pulse shaping via forward second harmonic generation in nonlinear photonic crystals

    International Nuclear Information System (INIS)

    We have theoretically designed a method for obtaining short laser pulses by second harmonic generation in periodically and aperiodically poled quadratic nonlinear photonic crystals. An efficient algorithm is developed to construct quasi-phase matching gratings which allow one to shape the required amplitude and phase of second-harmonic pulses considering energy exchange. Developed method could be applied for designing of nonlinear photonic crystals. (authors)

  12. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  13. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    International Nuclear Information System (INIS)

    This paper describes a rep-rated multibeam KrF laser driver design for the 500 kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ∼4 MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ∼1 ns. For the chosen pulse, which gives a predicted fusion energy gain of ∼120, the simulations predict the FTF can deliver a total on-target energy of 428 kJ, a peak spike power of 385 TW, and amplified spontaneous emission prepulse contrast ratios IASE/I-7 in intensity and FASE/F-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248 nm light and a 1 μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  14. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity. PMID:24913424

  15. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  16. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60Co source. The background signal of BF3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  17. Pulse-shape effects in ionization of atomic hydrogen by short-pulse XUV intense laser radiation: A sensitivity study

    Science.gov (United States)

    Bartschat, Klaus; Venzke, Joel; Grum-Grzhimailo, Alexei N.

    2015-05-01

    The displacement effect studied in a recent paper [Ivanov et al., Phys. Rev. A 90, 043401 (2014), 10.1103/PhysRevA.90.043401] in atomic ionization by a short XUV pulse is investigated in more detail. It is shown that achieving a significant displacement critically depends on the assumption of a plateau in the envelope function of the electric field, and that the ramp-on is fine-tuned in such a way that a drift velocity generated during the ramp-on phase can increase this displacement further. Seemingly minor variations in the electric fields defined in slightly different ways cause significant changes in the final results, in particular regarding the angular-momentum distribution of the ejected electron. In light of such a strong sensitivity seen in the predictions made with idealized pulse shapes and the likely difficulties of preparing such pulses experimentally, an experimental realization of the displacement effect will likely be a major challenge.

  18. Application of the Recursive Subtraction Pulse Shape Analysis algorithm to in-beam HPGe signals

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Bracco, A.; Million, B.; Wieland, O.; Vandone, V. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Recchia, F.; Gadea, A.; Kroell, Th. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Mengoni, D.; Farnea, E.; Ur, C.A.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova and INFN Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The Pulse Shape Analysis algorithm 'Recursive Subtraction' has been applied to data acquired during the in-beam tests of two different highly segmented HPGe detectors. This algorithm processes the net charge signal, determining the number of interactions per segment and their radial coordinates. The RS algorithm performances are evaluated by comparing the results obtained following its application to experimental pulse shapes with those obtained with specific GEANT simulations. Excellent agreement is found between the experimental distribution of the number of interactions per segment and the simulated one. Deviations between experimental radial distribution and the calculated ones are discussed.

  19. Model-based pulse shape correction for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L

    1999-01-01

    We present a systematic method to improve energy resolution of CdTe-detector systems with full control of the efficiency. Sampled pulses and multiple amplifier data are fitted by a model of the pulse shape including the deposited energy and the interaction point within the detector as parameters. We show the decisive improvements of spectral resolution and photo-peak efficiency that is obtained without distortion of spectral shape. The information concerning the interaction depth of individual events can be used to discriminate between beta particles and gamma quanta. (author)

  20. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability

    International Nuclear Information System (INIS)

    Development of the plastic scintillator with neutron sensitivity from thermal to multi-MeV and pulse shape discrimination (PSD) has been demonstrated. Incorporation of 10B-containing compounds into the plastic scintillator with PSD capability leads to detector improvement in regard to neutron detection efficiency while preserving the discrimination between neutrons and γ-rays. Effects of boron loading on scintillation and pulse shape discrimination properties are discussed. A PSD figure-of-merit value of 1.4±0.03 has been achieved for events in a thermal neutron energy domain, 50–100 keVee, for PSD plastic loaded with 5 wt.% of m-carborane

  1. Pulse shape effects on photon-photon interactions in non-linear optical quantum gates

    OpenAIRE

    Hofmann, Holger F.; Nishitani, Hitoshi

    2009-01-01

    Ideally, strong non-linearities could be used to implement quantum gates for photonic qubits by well controlled two photon interactions. However, the dependence of the non-linear interaction on frequency and time makes it difficult to preserve a coherent pulse shape that could justify a single mode model for the time-frequency degree of freedom of the photons. In this paper, we analyze the problem of temporal multi-mode effects by considering the pulse shape of the average output field obtain...

  2. Model-based pulse shape correction for CdTe detectors

    Science.gov (United States)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.

    1999-02-01

    We present a systematic method to improve energy resolution of CdTe-detector systems with full control of the efficiency. Sampled pulses and multiple amplifier data are fitted by a model of the pulse shape including the deposited energy and the interaction point within the detector as parameters. We show the decisive improvements of spectral resolution and photo-peak efficiency that is obtained without distortion of spectral shape. The information concerning the interaction depth of individual events can be used to discriminate between beta particles and gamma quanta.

  3. Software realization of real-time neutrons and {gamma}-rays pulse shape discrimination using CUDA platform

    Energy Technology Data Exchange (ETDEWEB)

    Kolbasin, V. A.; Ivanov, A. I.; Pedash, V. Y. [Inst. for Scintillation Materials NAS of Ukraine, Kharkov (Ukraine)

    2011-07-01

    The two pulse shape discrimination methods were implemented in real-time. The pulse gradient analysis method was implemented programmatically on PC. The method based on artificial neural network was programmatically implemented using CUDA platform. It is shown that both implementations can provide up to 10{sup 6} pulses per second processing performance. The results for pulse shape discrimination using polycrystalline stilbene and LiF detectors were shown. (authors)

  4. Simulation of gamma-ray current pulse shapes produced in a high purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Bambford, G.J.; Rester, A.C.; Coldwell, R.L. (Inst. for Astrophysics and Planetary Exploration, Univ. of Florida, Alachua, FL (United States))

    1992-08-01

    In this paper, the authors present results of a simulation of gamma-ray interactions in a high purity germanium detector (HPGe). Gamma-ray interactions have been divided into Compton events which leave only part of their energy in the detector and full energy events which leave all their energy in the detector. The current pulse shapes from the detector were examined on a pulse by pulse basis. the simulation shows that rejecting all waveforms with trailing edges less than 50 ns improves the peak to Compton ratio by a factor of two and in addition, flattens the remaining Compton edges.

  5. Simulation of gamma-ray current pulse shapes produced in a high purity germanium detector

    International Nuclear Information System (INIS)

    In this paper, the authors present results of a simulation of gamma-ray interactions in a high purity germanium detector (HPGe). Gamma-ray interactions have been divided into Compton events which leave only part of their energy in the detector and full energy events which leave all their energy in the detector. The current pulse shapes from the detector were examined on a pulse by pulse basis. the simulation shows that rejecting all waveforms with trailing edges less than 50 ns improves the peak to Compton ratio by a factor of two and in addition, flattens the remaining Compton edges

  6. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  7. Note: Picosecond impulse generator driven by cascaded step recovery diode pulse shaping circuit.

    Science.gov (United States)

    Choi, Gil Wong; Choi, Jin Joo; Han, Seung Hoon

    2011-01-01

    In this paper, a picosecond impulse generator using step recovery diodes (SRDs) is presented. In order to reduce the pulse width of an impulse generator, we employed a cascaded SRD pulse-shaping circuit. A short impulse generation is confirmed in numerical simulation of a time-transient circuit simulator. Measurements show that the measured pulse width of the cascaded SRD impulse generator is 250 ps at 10% of the peak amplitude, which is improved by 85 ps compared with a conventional SRD impulse generator. PMID:21280869

  8. Instantaneous nonvertical electronic transitions with shaped femtosecond laser pulses: Is it possible?

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2003-01-01

    In molecular electronic transitions, a vertical transition can be induced by an ultrashort laser pulse. That is, a replica of the initial nuclear state-times the transition dipole moment of the electronic transition-can be created instantaneously (on the time scale of nuclear motion) in the excited...... electronic state. Now, applying pulse shaping via the modulation of the phases of each spectral component of an ultrashort pulse, it is tempting to ask whether it is also possible to induce instantaneous nonvertical transitions to bound electronic states, provided that the phases of each spectral component...

  9. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    Science.gov (United States)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  10. Controlling pathway dynamics of a four-level quantum system with pulse shaping

    Science.gov (United States)

    Cao, Dewen; Yang, Ling; Wang, Yaoxiong; Shuang, Feng; Gao, Fang

    2016-07-01

    The dynamics of two two-photon absorption (TPA) pathways in a four-level quantum system driven by a laser pulse is investigated in this work. An analytical solution for pulse shaping is proposed to be globally optimal for constructive interference between the two pathways, and accurate spectral boundaries for phase modulation are obtained. The TPA rate can be enhanced by a factor of 8.33 with the optimal pulse instead of the transform limited pulse (TL pulse). Simple control strategies modulating both amplitudes and phases are also designed to increase the TPA amplitude along one pathway while decreasing that along the other simultaneously. The strategies are intuitive and the two pathway amplitudes can differ by two orders of magnitude.

  11. Excitation of a single atom with a temporaly shaped light pulses

    Science.gov (United States)

    Maslennikov, Gleb; Aljunid, Syed; Hoang Lan, Dao; Durak, Kadir; Leong, Victor; Kurtsiefer, Christian

    2012-06-01

    We investigate the interaction between a single atom and coherent optical pulses with a controlled temporal envelope. By switching the temporal shape from rising exponential to square profile, we show that the rising exponential envelope leads to higher excitation probability using lower photon number in a pulse. The atomic transition saturates for 100 photons in a pulse. Rabi oscillations with 100,Hz frequency are visible in detected fluorescence for excitations powers of 1300 photons in a 15,s pulse. A possibility to excite the atom with pulses in a Fock states is discussed and the theoretical treatment is presented. [4pt] [1] Yimin Wang et al., Phys. Rev. A. 83 063842 (2011)[0pt] [2] M. Stobinska et al., EPL 86 14007 (2009)[0pt] [3] I. Gerhardt et al., Phys. Rev. A 79 011402(R) (2009)

  12. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    International Nuclear Information System (INIS)

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser

  13. Comparison of various scintillation detectors with n-γ pulse shape discrimination

    International Nuclear Information System (INIS)

    The possibility of using liquid scintillators and stilbene for digital n-? discrimination using CAEN Waveform Digitizer is examined. The charge-integration and the charge-decay methods was employed to compare the pulse shape discrimination properties of four scintillators: EJ-301, EJ-315 (C6D6), NE-213 and stilbene. It is proposed to use the new shape-parameters to improve the n-γ discrimination

  14. Second harmonic generation and pulse shaping in positively and negatively spatially dispersive nanowaveguides: comparative analysis

    CERN Document Server

    Popov, Alexander K

    2015-01-01

    Comparative analysis of second harmonic generation in ordinary and backward-wave settings is presented. Extraordinary properties of frequency doubling nonlinear optical reflectivity and pulse shaping through phase matching of ordinary and backward electromagnetic waves in the nanowaveguides with mixed negative/positive spatial dispersion is demonstrated with numerical simulations.

  15. Design of the nuclear pulse shaping circuit in nuclear spectrum signal amplifier

    International Nuclear Information System (INIS)

    Through the analysis of the characteristics of the nuclear pulse signal, a filter shaping circuit based on active filter network of Sallen-Key is designed, with the schematic circuit diagrams given, and the best filter parameters are determined by software simulation. The circuit is successfully applied to the X-ray spectrum analyzer, to prove the feasibility of the circuit and versatility. (authors)

  16. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    Science.gov (United States)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  17. A compact pulse shape discriminator module for large neutron detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, S. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India)], E-mail: rjpmraja@gmail.com; Gupta, Arti; Golda, K.S. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Singh, Hardev [Department of Physics, Panjab University, Chandigarh 160 014 (India); Kumar, Rakesh; Singh, R.P.; Bhowmik, R.K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n-{gamma}) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n-{gamma} separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  18. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    International Nuclear Information System (INIS)

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume

  19. Investigation of pulse voltage shape effects on electrohydrodynamic jets using a vision measurement technique

    International Nuclear Information System (INIS)

    In this paper, we present a vision measurement technique to evaluate electrohydrodynamic (EHD) inkjet behavior, and discuss the effects of the pulse voltage shape on the EHD jets for drop-on-demand printing, including the falling and rising time in the pulse voltage. Sequential images acquired by a charge-coupled device (CCD) camera with a strobe light-emitting diode (LED) were used to visualize EHD jet behavior with respect to time. A vision algorithm was implemented in an EHD jet system to enable in situ measurement and analysis of EHD jets. A guideline for selecting pulse shape parameters is also presented, to enable the achievement of high-frequency reliable jets for drop-on-demand printing. Printing results are presented to demonstrate the drop consistency of jets. (paper)

  20. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  1. Average pulse shape model for leading edge timing with Ge(Li) coaxial detector

    International Nuclear Information System (INIS)

    A model is presented for prompt time-response from leading-edge triggering, where calculations are rendered simpler for uniform γ-irradiation of coaxial Ge(Li) detector. Pulse shapes are formed at the timing filter amplifier output, from direct detector pulse. Average pulse-shape method is found responsible for some sort of walk compensation and by drawing time-resolution vs triggering fraction, one can predict the best FWHM with detector of RC-filtered signal. It also shows the effect of mixed filter time-constant on r.m.s. noise. Taking account of both statistical and noise effects on FWHM, the statistical contribution increases to 7% at 3 MeV of the detected energy

  2. Multi-shape pulse pile-up correction: The MCPPU code

    International Nuclear Information System (INIS)

    In spectroscopic measurements with high counting rate, pulse pile-up (PPU) is a common distortion of the spectrum. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a purely physical model. Since PPU occurs after the transport inside the detector, this is the first correction to perform in case of spectrum unfolding. Many producers include electronic rejection circuits to limit the appearance of PPU, but it is never suppressed completely. Therefore, it is always necessary to correct PPU distortions after the measurement. In the present work, it is described the post-processing tool MCPPU (Monte Carlo Pulse Pile-Up), based on the MC algorithm developed by Guo et al. (2004, 2005). MCPPU automatically determines the dead time of the counting system and corrects for PPU effects even in the presence of electronic suppression. The capability of allowing a user defined pulse shape makes the code suitable to be used with any kind of detector. The features of MCPPU are illustrated with some examples. - Highlights: • Pulse pile-up (PPU) is a common distortion in radiation detection. • MCPPU is a Monte Carlo code to perform post-processing PPU correction. • MCPPU evaluates automatically the dead time to use in the pile-up recovery. • The measured pulse shape can be introduced as a normalized discrete distribution. • MCPPU is compatible with detectors using electronic rejection circuitry

  3. On the applicability of arbitrarily shaped nanosecond laser pulses for high-quality, high-efficiency micromachining

    Science.gov (United States)

    Eiselen, Sasia; Riedel, Sebastian; Schmidt, Michael

    2014-05-01

    Progressive developments in temporal shaping of short laser pulses offer entirely new approaches at influence and investigate laser-matter-interactions. Commonly used parameters for describing the behavior of short or ultrashort pulses or pulse trains are fluence and intensity. However, fluence does not imply any information about the temporal behavior of energy input during specific pulse duration τ while using the pulse intensity as describing parameter is more meaningful. Nevertheless it still is an averaging over pulse duration and no change in intensity can be determined if the temporal pulse shape changes within a certain combination of pulse duration and pulse energy. Using a flexible programmable MOPA fiber laser experimental studies on the impact of temporal energy distribution within one single laser pulse in micro machining applications were therefore carried out. With this laser source a direct modulation of the temporal pulse shape in the nanosecond regime can easily be controlled. Experiments were carried out with moved as well as with un-moved beam resulting in areas and dimples respectively drilling holes. The presented results clearly show that any averaging over pulse duration results in missing information about time-dependent interactions but can at the same time lead to significant differences in ablation results. Thus, resulting surface roughness Sa can be decreased up to 25 % when changing the pulse shape at constant parameters of fluence and pulse peak power at a pulse duration of 30 ns. It can be observed that the combination of an intensity peak and a lower edge within one pulse can lead to increasing ablation efficiency as well as higher ablation quality compared to the commonly used Gaussian-like temporal pulse shape.

  4. Distortions in frequency spectra of signals associated with sampling-pulse shapes

    International Nuclear Information System (INIS)

    A method developed earlier by the author [IC/82/44; IC/82/45] is used to investigate distortions introduced into frequency spectra of signals by the shapes of the sampling pulses involved. Conditions are established under which the use of trapezoid or exponentially-edged pulses to digitize signals can make the frequency spectra of the resultant data samples devoid of the main features of the signals. This observation does not, however, apply in any way to cosinusoidally-edged pulses or to pulses with cosine-squared edges. Since parts of the Earth's surface and atmosphere receive direct solar energy in discrete samples (i.e. only from sunrise to sunset) we have extended the technique and attempted to develop a theory that explains the observed solar terrestrial relationships. A very good agreement is obtained between the theory and previous long-term and short-term observations. (author)

  5. Detection of coincident radiations in a single transducer by pulse shape analysis

    Science.gov (United States)

    Warburton, William K.

    2008-03-11

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  6. Spectro-temporal shaping of seeded free-electron laser pulses

    CERN Document Server

    Gauthier, David; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-01-01

    We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  7. A high fidelity Rydberg blockade entangling gate using shaped, analytic pulses

    CERN Document Server

    Theis, L S; Wilhelm, F K; Saffmann, M

    2016-01-01

    We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Removal by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50\\;{\\rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.

  8. Study on Writing Transmission Metal Grating with Pulse Shaping of Femtosecond Laser

    International Nuclear Information System (INIS)

    Pulse shaping in femtosecond(fs) laser micromachining is different from that of traditional laser, whose main purpose is to reduce focal scale size, wipe off fluorescence around laser beam, decrease pulse distortion, and fabricate all kinds of figures. To describe the spatial form of laser pulse around focal scale, the synchronous moving of focal objective and accepting material is presented. When a pinhole mask is placed in front of focal objective, the changing trend of laser spatial form around focal point with the laser beam diameter will be obtained by the diameter changing of the hole mask. Experimental results show that the diameter of laser pulse around focal point trends smoothly when the pinhole diameter is modulated to smaller, even the position of beam waist is changed. These phenomena can be explained by optical imaging theory. Finally, the transmission metal grating is written successfully with a selected parameter

  9. Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance

    International Nuclear Information System (INIS)

    A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (∼1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc. (technical design note)

  10. Ultrashort laser pulse shaping for novel light fields and experimental biophysics

    Science.gov (United States)

    Rudhall, Andrew Peter

    Broadband spectral content is required to support ultrashort pulses. However this broadband content is subject to dispersion and hence the pulse duration of corresponding ultrashort pulses may be stretched accordingly. I used a commercially-available adaptive ultrashort pulse shaper featuring multiphoton intrapulse interference phase scan technology to characterise and compensate for the dispersion of the optical system in situ and conducted experimental and theoretical studies in various inter-linked topics relating to the light-matter interaction. Firstly, I examined the role of broadband ultrashort pulses in novel light-matter interacting systems involving optically co-trapped particle systems in which inter-particle light scattering occurs between optically-bound particles. Secondly, I delivered dispersion-compensated broadband ultrashort pulses in a dispersive microscope system to investigate the role of pulse duration in a biological light-matter interaction involving laser-induced cell membrane permeabilisation through linear and nonlinear optical absorption. Finally, I examined some of the propagation characteristics of broadband ultrashort pulse propagation using a computer-controlled spatial light modulator. The propagation characteristics of ultrashort pulses is of paramount importance for defining the light-matter interaction in systems. The ability to control ultrashort pulse propagation by using adaptive dispersion compensation enables chirp-free ultrashort pulses to be used in experiments requiring the shortest possible pulses for a specified spectral bandwidth. Ultrashort pulsed beams may be configured to provide high peak intensities over long propagation lengths, for example, using novel beam shapes such as Bessel-type beams, which has applications in biological light-matter interactions including phototransfection based on laser-induced cell membrane permeabilisation. The need for precise positioning of the beam focus on the cell membrane becomes

  11. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  12. Precision neutron flux measurements and applications using the Alpha Gamma device

    Science.gov (United States)

    Anderson, Eamon

    2016-03-01

    The Alpha Gamma device is a totally-absorbing 10 B neutron detector designed to measure the absolute detection efficiency of a thin-film lithium neutron monitor on a monoenergetic neutron beam. The detector has been shown to measure neutron fluence with an absolute accuracy of 0.06%. This capability has been used to perform the first direct, absolute measurement of the 6Li(n,t) 4He cross section at sub-thermal energy, improve the neutron fluence determination in a past beam neutron lifetime measurement by a factor of five, and is being used to calibrate the neutron monitors for use in the upcoming beam neutron lifetime measurement BL2 (NIST Beam Lifetime 2). The principle of the measurement method will presented and the applications will be discussed. We would like to acknowledge support of this research through the NSF-PHY-1068712 Grant as well as the NIST Precision Measurement Grant program.

  13. Comparison of model fitting and gated integration for pulse shape discrimination and spectral estimation of digitized lanthanum halide scintillator pulses

    Science.gov (United States)

    McFee, J. E.; Mosquera, C. M.; Faust, A. A.

    2016-08-01

    An analysis of digitized pulse waveforms from experiments with LaBr3(Ce) and LaCl3(Ce) detectors is presented. Pulse waveforms from both scintillator types were captured in the presence of 22Na and 60Co sources and also background alone. Two methods to extract pulse shape discrimination (PSD) parameters and estimate energy spectra were compared. The first involved least squares fitting of the pulse waveforms to a physics-based model of one or two exponentially modified Gaussian functions. The second was the conventional gated integration method. The model fitting method produced better PSD than gated integration for LaCl3(Ce) and higher resolution energy spectra for both scintillator types. A disadvantage to the model fitting approach is that it is more computationally complex and about 5 times slower. LaBr3(Ce) waveforms had a single decay component and showed no ability for alpha/electron PSD. LaCl3(Ce) was observed to have short and long decay components and alpha/electron discrimination was observed.

  14. A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen;

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby en...

  15. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses

    International Nuclear Information System (INIS)

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  16. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    International Nuclear Information System (INIS)

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0–20 MeV and 0.511–1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination. -- Highlights: • New capabilities enable the modeling of organic scintillation detectors in Geant4. • Detector modeling of complex scintillators, geometries, and light readout. • Enables particle- and energy-dependent production of scintillation photons. • Provides ability to generate response functions with precise optical physics. • Provides ability to computationally evaluate pulse shape discrimination

  17. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses.

    Science.gov (United States)

    Klini, A; Loukakos, P A; Gray, D; Manousaki, A; Fotakis, C

    2008-07-21

    Temporally shaped, femtosecond laser pulses have been used for controlling the size and the morphology of micron-sized metallic structures obtained by using the Laser Induced Forward Transfer (LIFT) technique. We report the effect of pulse shaping on the size and morphology of the deposited structures of Au, Zn, Cr on a function of the pulse separation time ??t (from 0 to 10 ps) of double pulses of variable intensities generated by using a liquid crystal spatial light modulator (SLM). The observed differences in size and morphology are correlated with the outcome of pump-probe experiments for the study of electron-phonon scattering dynamics and subsequent energy transfer processes to the bulk in the different metals employed. We propose that in metals with weak electron-lattice coupling, the electron ballistic motion and the resulting fast electron scattering at the film surface, as well as the internal electron thermalization process are crucial to the morphology and size of the transferred material. Therefore, temporal shaping within the corresponding time scales of these processes may be used for tailoring the features of the metallic structures obtained by LIFT. PMID:18648449

  18. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    International Nuclear Information System (INIS)

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, ∼600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  19. Shock Pulse Shaping in a Small-Form Factor Velocity Amplifier

    Directory of Open Access Journals (Sweden)

    Gerard Kelly

    2010-01-01

    Full Text Available This theme of this paper is the design and characterisation of a velocity amplifier (VAMP machine for high-acceleration shock testing of micro-scale devices. The VAMP applies multiple sequential impacts to amplify velocity through a system of three progressively smaller masses constrained to move in the vertical axis. Repeatable, controlled, mechanical shock pulses are created through the metal-on-metal impact between pulse shaping test rods, which form part of the penultimate and ultimate masses. The objectives are to investigate the controllable parameters that affect the shock pulses induced on collision, namely; striker and incident test rod material; test rod length; pulse shaping mechanisms; and impact velocity. The optimum VAMP configuration was established as a 60 mm long titanium striker test rod and a 120 mm long titanium incident rod. This configuration exhibited an acceleration magnitude and a primary pulse duration range of 5,800–23,400 g and 28.0–44.0 μs respectively. It was illustrated that the acceleration spectral content can be manipulated through control of the test rod material and length. This is critical in the context of practical applications, where it is postulated that the acceleration signal can be controlled to effectively excite specific components in a multi-component assembly affixed to the VAMP incident test rod.

  20. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    Science.gov (United States)

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. PMID:26851823

  1. Study of time-domain digital pulse shaping algorithms for nuclear signals

    International Nuclear Information System (INIS)

    With the development on high-speed integrated circuit, fast high resolution sampling ADC and digital signal processors are replacing analog shaping amplifier circuit. This paper firstly presents the numerical analysis and simulation on R-C shaping circuit model and C-R shaping circuit model. Mathematic models are established based on 1st order digital differential method and Kirchhoff Current Law in time domain, and a simulation and error evaluation experiment on an ideal digital signal are carried out with Excel VBA. A digital shaping test for a semiconductor X-ray detector in real time is also presented. Then a numerical analysis for Sallen-Key(S-K) low-pass filter circuit model is implemented based on the analysis of digital R-C and digital C-R shaping methods. By applying the 2nd order non-homogeneous differential equation,the authors implement a digital Gaussian filter model for a standard exponential-decaying signal and a nuclear pulse signal. Finally, computer simulations and experimental tests are carried out and the results show the possibility of the digital pulse processing algorithms. (authors)

  2. Research on digital gauss shaping algorithm of Gamma-ray pulse based on FPGA

    International Nuclear Information System (INIS)

    Digital nuclear spectrum measurement technology has become a trend, and how to achieve digital filter-shaping algorithm on the digital processing chip is one of the key technologies. Base on S-K filter model, digital Gauss shaping algorithm of digital gamma spectrum measurement is deduced and analyzed in this article, and simulated the nuclear pulse by the use of Matlab. In order to apply the algorithm in FPGA chip, this article improves and optimizes it with SD coding method. And through the experiments the correctness and feasibility of the method are verified, and the effect is good. (authors)

  3. Pulse shape analysis with a broad-energy germanium detector for the gerda experiment

    International Nuclear Information System (INIS)

    To reduce background in experiments looking for rare events, such as the GERDA double beta decay experiment, it is necessary to employ active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. Analysis of the time-development of the impulses can distinguish between an interaction of an electron and an interaction of a multiple-scattered photon inside the detector. This information can be used to eliminate unwanted events from the recorded data. In this talk, results of a pulse-shape analysis of signals from a commercially available broad-energy germanium detector will be presented. The background rejection capability of such detector configuration and the potential for its use in ultralow-background experiments are discussed.

  4. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    International Nuclear Information System (INIS)

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  5. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, P.M., E-mail: pmdighe@barc.gov.in; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10{sup 4} neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  6. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Science.gov (United States)

    Bruyneel, B.; Birkenbach, B.; Reiter, P.

    2016-03-01

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

  7. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    International Nuclear Information System (INIS)

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a 6Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of 6Li(n,T)4He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in 6Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector

  8. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability

    Energy Technology Data Exchange (ETDEWEB)

    Pawełczak, I.A., E-mail: pawelczak1@llnl.gov; Glenn, A.M.; Martinez, H.P.; Carman, M.L.; Zaitseva, N.P.; Payne, S.A.

    2014-07-01

    Development of the plastic scintillator with neutron sensitivity from thermal to multi-MeV and pulse shape discrimination (PSD) has been demonstrated. Incorporation of {sup 10}B-containing compounds into the plastic scintillator with PSD capability leads to detector improvement in regard to neutron detection efficiency while preserving the discrimination between neutrons and γ-rays. Effects of boron loading on scintillation and pulse shape discrimination properties are discussed. A PSD figure-of-merit value of 1.4±0.03 has been achieved for events in a thermal neutron energy domain, 50–100 keV{sub ee}, for PSD plastic loaded with 5 wt.% of m-carborane.

  9. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Science.gov (United States)

    Kavrigin, P.; Finocchiaro, P.; Griesmayer, E.; Jericha, E.; Pappalardo, A.; Weiss, C.

    2015-09-01

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a 6Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of 6Li(n,T)4He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in 6Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  10. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  11. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 1016 W/cm2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  12. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors

    International Nuclear Information System (INIS)

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides (3H-241Am or 90Sr/90Y-241Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste.

  13. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  14. Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect

    Science.gov (United States)

    Linder, Malte F.; Schneider, Christian; Sicking, Joachim; Szpak, Nikodem; Schützhold, Ralf

    2015-10-01

    While the Sauter-Schwinger effect describes nonperturbative electron-positron pair creation from vacuum by a strong and slowly varying electric field Estrong via tunneling, the dynamically assisted Sauter-Schwinger effect corresponds to a strong (exponential) enhancement of the pair-creation probability by an additional weak and fast electric or electromagnetic pulse Eweak. Using the WKB and worldline instanton method, we find that this enhancement mechanism strongly depends on the shape of the fast pulse. For the Sauter profile 1 /cosh2(ω t ) considered previously, the threshold frequency ωcrit (where the enhancement mechanism sets in) is basically independent of the magnitude Eweak of the weak pulse—whereas for a Gaussian pulse exp (-ω2t2), an oscillating profile cos (ω t ) or a standing wave cos (ω t )cos (k x ) , the value of ωcrit does depend (logarithmically) on Eweak/Estrong.

  15. Trapped field and temperature rise in rectangular-shaped HTSC bulk magnetized by pulse fields

    International Nuclear Information System (INIS)

    A rectangular-shaped GdBaCuO bulk (33 x 33 x 20 mm3) has been magnetized by pulse fields with various strengths from Bex = 3 T to 7 T at 44 K and 20 K. The time dependences of the local fields and temperatures have been measured at five positions on the bulk surface. The flux movement, flux trapping and the heat generation are closely related for lower applied fields, i.e., the temperature rise is larger at the specified positions, where a large number of magnetic fluxes are trapped. The heat generation is mainly due to the pinning loss in this condition. The maximum trapped field BT = 4.0 T can be realized on the bulk surface by a modified multi-pulse technique with stepwise cooling (MMPSC) method, on which BT reaches only 2.5 T at 20 K for a single pulse application

  16. Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon

    OpenAIRE

    Ueshima, K.; Abe, K; Hiraide, K.; Hirano, S; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.

    2011-01-01

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the...

  17. Analysis of Exponentially Decaying Pulse Shape DACs in Continuous-Time Sigma-Delta Modulators

    OpenAIRE

    Tao, Sha; Garcia, Julian; Rodriguez Duenas, Saul; Rusu, Ana

    2012-01-01

    The performance of continuous-time (CT) sigma-delta (ΣΔ) modulators is severely degraded by the clock jitter induced timing variation in their feedback digital-to-analog converters (DACs). To mitigate this non-ideality, jitter sensitivity reduction techniques that employ exponentially decaying pulse shape DACs have been recently reported. In this paper, exponentially decaying DACs are investigated and generalized expressions are derived. In addition, another exponentially decaying DAC propose...

  18. Pulse shape of the self quenching streamer counter in the coexistence region

    International Nuclear Information System (INIS)

    The pulse shape of the electrical signal out of the counter operating in the self-quenching streamer (SQS) mode is obtained and the time correlation between the primary avalanche and the SQS avalanche is measured and studied. The results yield more information in the coexistence region about the time jitters in the process of the SQS avalanche than that shown in our last paper. (orig.)

  19. Bayesian signal processing of pulse shapes for background rejection in the Majorana Demonstrator

    Science.gov (United States)

    Shanks, Benjamin; Majorana Collaboration

    2015-10-01

    The Majorana Demonstrator uses high purity germanium (HPGe) detectors in the p-type point contact (PPC) geometry to search for neutrinoless double-beta decay (0 νββ) in 76Ge. Due to the unique electric potential created within the PPC geometry, the detailed pulse shape depends on the number of energy depositions contained within a given event. Pulse shape analysis (PSA) techniques can be used to estimate the number of separate depositions which combine to form a single pulse. This information can be used to discriminate between 0 νββ candidate events, which deposit energy at a single detector site, and gamma ray background, which can scatter and deposit energy in multiple locations. The problem of determining whether a pulse is single- or multi-site is well suited to Bayesian classifiers. Once trained via supervised machine learning, these algorithms can perform nonlinear cuts against multi-site events using the estimated probability function as a discriminator. The Bayesian approach can also be naturally extended to incorporate a model of the physical process responsible for signal generation within the detector. Presented here is an overview of the Bayesian classifier developed for use on the Demonstrator. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  20. Growth Inhibition and Membrane Permeabilization of Candida lusitaniae Using Varied Pulse Shape Electroporation

    Directory of Open Access Journals (Sweden)

    V. Novickij

    2015-01-01

    Full Text Available Candida lusitaniae is an opportunistic yeast pathogen, which can readily develop resistance to antifungal compounds and result in a complex long-term treatment. The efficient treatment is difficult since structure and metabolic properties of the fungal cells are similar to those of eukaryotic host. One of the potential methods to improve the inhibition rate or the cell permeability to inhibitors is the application of electroporation. In this work we investigated the dynamics of the growth inhibition and membrane permeabilization of C. lusitaniae by utilizing the various pulse shape and duration electric field pulses. Our results indicated that single electroporation procedure using 8 kV/cm electric field may result in up to 51±5% inhibition rate. Also it has been experimentally shown that the electroporation pulse shape may influence the inhibitory effect; however, the amplitude of the electric field and the pulse energy remain the most important parameters for definition of the treatment outcome. The dynamics of the cell membrane permeabilization in the 2–8 kV/cm electric field were overviewed.

  1. Reducing error rates in straintronic multiferroic nanomagnetic logic by pulse shaping

    Science.gov (United States)

    Munira, Kamaram; Xie, Yunkun; Nadri, Souheil; Forgues, Mark B.; Salehi Fashami, Mohammad; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo; Ghosh, Avik W.

    2015-06-01

    Dipole-coupled nanomagnetic logic (NML), where nanomagnets (NMs) with bistable magnetization states act as binary switches and information is transferred between them via dipole-coupling and Bennett clocking, is a potential replacement for conventional transistor logic since magnets dissipate less energy than transistors when they switch in a logic circuit. Magnets are also ‘non-volatile’ and hence can store the results of a computation after the computation is over, thereby doubling as both logic and memory—a feat that transistors cannot achieve. However, dipole-coupled NML is much more error-prone than transistor logic at room temperature (\\gt 1%) because thermal noise can easily disrupt magnetization dynamics. Here, we study a particularly energy-efficient version of dipole-coupled NML known as straintronic multiferroic logic (SML) where magnets are clocked/switched with electrically generated mechanical strain. By appropriately ‘shaping’ the voltage pulse that generates strain, we show that the error rate in SML can be reduced to tolerable limits. We describe the error probabilities associated with various stress pulse shapes and discuss the trade-off between error rate and switching speed in SML.The lowest error probability is obtained when a ‘shaped’ high voltage pulse is applied to strain the output NM followed by a low voltage pulse. The high voltage pulse quickly rotates the output magnet’s magnetization by 90° and aligns it roughly along the minor (or hard) axis of the NM. Next, the low voltage pulse produces the critical strain to overcome the shape anisotropy energy barrier in the NM and produce a monostable potential energy profile in the presence of dipole coupling from the neighboring NM. The magnetization of the output NM then migrates to the global energy minimum in this monostable profile and completes a 180° rotation (magnetization flip) with high likelihood.

  2. Study on Digital Pulse Shape Discrimination System in BF3 Detector

    International Nuclear Information System (INIS)

    In this study, we develop the digital PSD system and discriminate the background signal of BF3. Spectrum shapes are different according to the tstart setting method, and it is favorable to set it as the certain ratio of maximum height. In future, it will be performed to vary tstart point to optimize the pulse discrimination. To quantify the performance, Figure Of Merit (FOM) will be determined. For the nuclear non-proliferation and safeguards, an accurate and reliable measurement of nuclear material is essential. The nuclear material emits neutron and γ-ray, simultaneously. For the accurate detection of the nuclear material, neutron should be discriminated from γ-ray or background radiation. In previous study, N. S. Jung developed pulse shape analysis method based on NIM and CAMAC system. However, applications of other discrimination methods based on different detection modules or changing parameters are time-and-money consuming procedures in analogue systems. Today, the performance of digitizers is improved and it replaces some radiation measurement systems which require simple and portable equipment. Digital Pulse Shape Discrimination (PSD) method by using a digital oscilloscope is developed and applied to a neutron detection system by using BF3 detector in this study

  3. Study on Digital Pulse Shape Discrimination System in BF{sub 3} Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhyeong; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, we develop the digital PSD system and discriminate the background signal of BF{sub 3}. Spectrum shapes are different according to the t{sub start} setting method, and it is favorable to set it as the certain ratio of maximum height. In future, it will be performed to vary t{sub start} point to optimize the pulse discrimination. To quantify the performance, Figure Of Merit (FOM) will be determined. For the nuclear non-proliferation and safeguards, an accurate and reliable measurement of nuclear material is essential. The nuclear material emits neutron and γ-ray, simultaneously. For the accurate detection of the nuclear material, neutron should be discriminated from γ-ray or background radiation. In previous study, N. S. Jung developed pulse shape analysis method based on NIM and CAMAC system. However, applications of other discrimination methods based on different detection modules or changing parameters are time-and-money consuming procedures in analogue systems. Today, the performance of digitizers is improved and it replaces some radiation measurement systems which require simple and portable equipment. Digital Pulse Shape Discrimination (PSD) method by using a digital oscilloscope is developed and applied to a neutron detection system by using BF{sub 3} detector in this study.

  4. Pulse shape analysis of enriched BEGe detectors in vacuum cryostat and liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. Germanium diodes of BEGe type (Canberra, Belgium) made from isotopically modified material have been procured for Phase II of Gerda. They will improve the sensitivity of the experiment by additional target mass, improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. The PSD efficiencies of the new enriched BEGe detectors were studied in vacuum cryostats as part of the characterization campaign at the HADES underground laboratory. For a deeper understanding of the pulse shape performance of the enriched BEGe detectors, detailed {sup 241}Am surface scans were performed. Unexpectedly high position-dependence of the pulse shape parameter Amplitude-over-Energy was found for some of the detectors. With further investigation this effect was traced to surface charge effects specific to the operational configuration of the detectors inside the vacuum cryostats. The standard behavior is restored when they are operated in liquid argon in the configuration intended for Gerda Phase II. Finally, five of the enriched BEGe diodes were installed in the Gerda liquid argon cryostat prior to the full upgrade. They show a good performance and are able to reject efficiently multi-site-events as well as β- and α-particles.

  5. Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems

    Science.gov (United States)

    Cubukcu, Erkin

    2012-01-01

    This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched upon. Additionally the concept of the RRC filtering and some facts about the RRC filters will be presented

  6. Nanosecond Pulse Shaping with Fiber-Based Electro-Optical Modulators and a Double-Pass Tapered Amplifier

    CERN Document Server

    Rogers, Charles E

    2015-01-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  7. Alpha–gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG):Ce3+ crystal scintillator using shape indicator

    International Nuclear Information System (INIS)

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method

  8. SBS management in Yb-fiber-amplifiers using multimode seeds and pulse-shaping.

    Science.gov (United States)

    Jolly, Alain; Gokhan, Fikri Serdar; Bello, Ramatou; Dupriez, Pascal

    2014-08-25

    We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic Master-Oscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10 µm-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of µJ. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics. PMID:25321242

  9. Determination of the 242Pu Branching Ratio via Alpha-Gamma Coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T F

    2012-05-24

    When the burn-up is high, the {sup 242}Pu isotopic content becomes more important. The traditional correlation method will fail. The {sup 242}Pu isotopic content in the sample plays an essential role if the neutron coincidence method is used to quantify the total amount of plutonium. In one of the earlier measurements we had a chance to measure an isotopic pure (> 99.95 %) {sup 242}Pu thick sample and realized that the difference in the branching ratio (BR) value among current nuclear data3) for the two important gamma-rays at 103.5-keV and 158.8-keV. In this study, the thick sample was counted on a 15% ORTEC safeguards type HPGe to further improve BR determination of the 159-keV gamma-ray. Furthermore, we have made a thin {sup 242}Pu sample from the thick sample and performed alpha-gamma coincidence measurements. Our preliminary gamma-ray BR results are 4.37(6) E-4, 2.79(8) E-5, and 2.25(8) E-6 for 44.9-keV, 103.5-keV, and 158.9-keV, respectively.

  10. Determination of the 242Pu Branching Ratio via Alpha-Gamma Coincidence

    International Nuclear Information System (INIS)

    When the burn-up is high, the 242Pu isotopic content becomes more important. The traditional correlation method will fail. The 242Pu isotopic content in the sample plays an essential role if the neutron coincidence method is used to quantify the total amount of plutonium. In one of the earlier measurements we had a chance to measure an isotopic pure (> 99.95 %) 242Pu thick sample and realized that the difference in the branching ratio (BR) value among current nuclear data3) for the two important gamma-rays at 103.5-keV and 158.8-keV. In this study, the thick sample was counted on a 15% ORTEC safeguards type HPGe to further improve BR determination of the 159-keV gamma-ray. Furthermore, we have made a thin 242Pu sample from the thick sample and performed alpha-gamma coincidence measurements. Our preliminary gamma-ray BR results are 4.37(6) E-4, 2.79(8) E-5, and 2.25(8) E-6 for 44.9-keV, 103.5-keV, and 158.9-keV, respectively.

  11. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Recently, RMD has investigated the use of CLYC (Cs2LiYCl6:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCamTM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging with

  12. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Kaihola, L. [Wallac Oy, Turku (Finland)

    1997-03-01

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  13. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    International Nuclear Information System (INIS)

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  14. Fiber optic based heart-rate and pulse pressure shape monitor

    Science.gov (United States)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  15. Martensitic inelasticity of TiNi-shape memory alloy under pulsed loading

    International Nuclear Information System (INIS)

    Some inelastic properties of TiNi shape memory alloy in martensitic state under pulsed loading were investigated. Two millimeter-diameter TiNi wire specimens were subjected to deformation by a magneto-pulsing installation under three-point bending conditions. The dependencies of residual strain on the force amplitude applied to the strikers during eight test series using different mechanical pulse durations from 400 to 1300 μs, were obtained. For each test series the threshold (minimal) value of force impulse amplitude which causes appearance of residual strain was found. Also, the threshold value of stress in each case was calculated using the elastic beam method, the value found to be within the range of 300-900 MPa. In order to describe dynamic mechanical behavior of TiNi shape memory alloy in martensitic state an attempt was made to apply the principles of yielding based on the concept of the so called incubation time. For inelastic deformation the incubation time was calculated based on the data resulting from the above-mentioned experiments. Its value of about 2 ms characterizes the range of occurrence of dynamic properties

  16. A new method for charge-loss correction of room-temperature semiconductor detectors using digital trapezoidal pulse shaping

    International Nuclear Information System (INIS)

    It is well known that semiconductor detectors operating at room temperature can be read out at high rate, with good noise performance and low sensitivity to ballistic deficit, by using trapezoidal (flat-topped) pulse shaping. Nevertheless, the energy resolution of these detectors is also affected by chargetrapping inside the detector crystal, which can not be compensated by the standard trapezoidal pulse shaping. A new digital algorithm based on trapezoidal pulse shaping, to compensate for the charge-trapping effect while minimizing the electronic noise, has been developed. The application of the pulse processing algorithm to a 5 × 5 × 1 mm3 planar Schottky CdTe detector leads to an energy resolution of 1.15% FWHM at 662 keV at room temperature, which is considerably superior to the results of the standard pulse filters.

  17. Numerical optimization approaches of single-pulse conduction laser welding by beam shape tailoring

    Science.gov (United States)

    Sundqvist, J.; Kaplan, A. F. H.; Shachaf, L.; Brodsky, A.; Kong, C.; Blackburn, J.; Assuncao, E.; Quintino, L.

    2016-04-01

    While circular laser beams are usually applied in laser welding, for certain applications tailoring of the laser beam shape, e.g. by diffractive optical elements, can optimize the process. A case where overlap conduction mode welding should be used to produce a C-shaped joint was studied. For the dimensions studied in this paper, the weld joint deviated significantly from the C-shape of the single-pulse laser beam. Because of the complex heat flow interactions, the process requires optimization. Three approaches for extracting quantitative indicators for understanding the essential heat flow contributions process and for optimizing the C-shape of the weld and of the laser beam were studied and compared. While integral energy properties through a control volume and temperature gradients at key locations only partially describe the heat flow behaviour, the geometrical properties of the melt pool isotherm proved to be the most reliable method for optimization. While pronouncing the C-ends was not sufficient, an additional enlargement of the laser beam produced the desired C-shaped weld joint. The approach is analysed and the potential for generalization is discussed.

  18. Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect

    CERN Document Server

    Linder, Malte F; Sicking, Joachim; Szpak, Nikodem; Schützhold, Ralf

    2015-01-01

    While the Sauter-Schwinger effect describes non-perturbative electron-positron pair creation from vacuum by a strong and slowly varying electric field $E_{\\mathrm{strong}}$ via tunnelling, the dynamically assisted Sauter-Schwinger effect corresponds to a strong (exponential) enhancement of the pair creation probability by an additional weak and fast electric or electromagnetic pulse $E_{\\mathrm{weak}}$. Using the WKB and worldline instanton method, we find that this enhancement mechanism strongly depends on the shape of the fast pulse. For the Sauter profile $1/\\cosh^2(\\omega t)$ considered previously, the threshold frequency $\\omega_{\\mathrm{crit}}$ (where the enhancement mechanism sets in) is basically independent of the magnitude $E_{\\mathrm{weak}}$ of the weak pulse -- whereas for a Gaussian pulse $\\exp(-\\omega^2t^2)$, an oscillating profile $\\cos(\\omega t)$ or a standing wave $\\cos(\\omega t)\\cos(kx)$, the value of $\\omega_{\\mathrm{crit}}$ does depend (logarithmically) on $E_{\\mathrm{weak}}/E_{\\mathrm{str...

  19. Surface treatment of screw shaped titanium dental implants by high intensity laser pulses

    Science.gov (United States)

    Pető, G.; Karacs, A.; Pászti, Z.; Guczi, L.; Divinyi, T.; Joób, A.

    2002-01-01

    Machined and Al 2O 3 blasted surfaces of screw shaped Ti dental implants were irradiated by 30 ns pulses of Nd:glass laser at 1064 nm wavelength with 0.5-3 J pulse energy. The laser treatment increased the temperature of the Ti surface well above the melting temperature. The resulting ablation of some surface layers was followed by a very rapid solidification. These thermal processes strongly modified the original morphology of the surface and removed the contaminations. The new morphology was characterized by features mostly in ten micron and partly in submicron ranges. The surface composition was the same as the bulk titanium without any segregation. Animal experiments demonstrated that this surface treatment seems to be promising for the improvement of the osseointegration of dental implants.

  20. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    Science.gov (United States)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  1. Pulse shape selection in very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Very high energy gamma-ray astronomers using the atmospheric Cerenkov technique must contend with a large background of light pulses due to cosmic ray-initiated cascades. Significant advances have been made in developing techniques to reduce this background: the imaging technique can have a figure of merit, q, in excess of 6 near the zenith. However, q decreases as the zenith angle increases. In this paper we describe a new technique based on the temporal Cerenkov pulse shape and show that the use of rise time and FWHM cuts are effective discriminators at all zenith angles. For flat-spectrum sources at large zenith angles q∼2.5. Measured parameter distributions are compared with simulations and the methods of making the cuts are discussed. A sensitivity to cosmic-ray composition is also suggested. (author)

  2. Pulse shaping effect on two-photon excitation efficiency of α-perylene crystals and perylene in chloroform solution

    International Nuclear Information System (INIS)

    We demonstrated that the two-photon excitation efficiency of perylene in chloroform solution as well as that of crystalline perylene was dramatically increased by optimizing the shape of intense femtosecond laser pulses of a regenerative amplifier output. The efficiency was three times higher than for an unshaped single femtosecond pulse with the pulse width of shorter than 50 fs. The pulse shape optimized for the solution sample was a pulse train with a repetition frequency of about 340 cm-1, and the pulse shape optimized for crystalline perylene was very similar. These results supported our previous findings on α-perylene crystals using weak femtosecond pulses from a mode-locked laser oscillator [T. Okada et al. J. Chem. Phys. 121, 6385 (2004)]. Furthermore, it was confirmed that the shaped pulse optimized for the liquid sample could also increase the two-photon excitation efficiency of α-perylene crystals and vice versa. We concluded that the mechanism for the increase in excitation efficiency of perylene in chloroform was almost the same as that for α-perylene crystal, and that the efficiency increased mainly through intramolecular dynamical processes. Processes involving intermolecular interactions and/or energy states delocalized over the crystal cannot play the major role

  3. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    DEFF Research Database (Denmark)

    Azaña, J.; Oxenløwe, Leif Katsuo; Palushani, Evarist;

    2012-01-01

    We review recent work on all-fiber (long-period fiber grating) devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing) of optical time-division multiplexed (OTDM) data signals in fibe...

  4. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    International Nuclear Information System (INIS)

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for methylnaphthalenein a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233U and 90Sr/90Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233U and 90Sr/90Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions

  5. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    OpenAIRE

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S K; Kim, Y.D.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea)

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $\\gamma$-rays from a $^{137}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate ...

  6. Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Stevanato, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Viesti, G. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2014-01-21

    We have studied the prototype of a new plastic scintillator material (EJ-299-33) engineered for gamma-neutron discrimination. Energy and time resolutions as well as pulse shape discrimination capability have been compared with those of standard plastic and liquid scintillators. EJ-299-33 characteristics are somewhat poorer compared to standard scintillators. However, results obtained with the new plastic material suggest its possible use in basic research (time-of-flight measurements) as well as in Homeland Security applications (neutron/gamma monitoring device)

  7. Temperature gain correction for CsI(Tl) detection systems based on digital pulse shape analysis

    International Nuclear Information System (INIS)

    In this paper we propose a pulse shape based method for monitoring the interior temperature of a CsI(Tl) crystal in order to correct the temperature dependence in the energy calibration of the corresponding detector system. The gain dependence on temperature of the CsI(Tl) detector was measured using both, a photomultiplier tube (PMT) and an avalanche photodiode (APD) readout photosensor. The analysis shows that the gain shifts due to temperature variations can be corrected to a precision of better than 1% with both the PMT and the APD, well below the CsI(Tl) intrinsic energy resolution for ~1 MeV γ-rays

  8. Performance evaluation of a high-sensitivity tritium gas monitor using a pulse-shaping analyzer

    International Nuclear Information System (INIS)

    A tritium gas monitor was developed by applying several techniques including pulse shape analysis. The optimum analyzer values were determined for parameters such as the bias (voltage) applied to the detector, counting gas flow rate, and mixing ratio of sample air to counting gas using an enclosed tritium reference source. After applying these optimized parameters, the factor for converting counting rate to tritium concentration was determined by conducting an experiment using tritiated methane gas. Finally, the detection limit of the monitor for air samples containing tritium was determined based on the conversion factor. (authors)

  9. Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes

    Science.gov (United States)

    Thiele, Illia; Skupin, Stefan; Nuter, Rachel

    2016-09-01

    Investigation of laser matter interaction with electromagnetic codes requires to implement sources for the electromagnetic fields. A way to do so is to prescribe the fields at the numerical box boundaries in order to achieve the desired fields inside the numerical box. Here we show that the often used paraxial approximation can lead to unexpected field profiles with strong impact on the laser matter interaction results. We propose an efficient numerical algorithm to compute the required laser boundary conditions consistent with the Maxwell's equations for arbitrarily shaped, tightly focused laser pulses.

  10. Application of pulse shape discrimination in Si detector for fission fragment angular distribution measurements

    Indian Academy of Sciences (India)

    B K Nayak; E T Mirgule; R K Choudhury

    2005-12-01

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is compared with the other conventional methods adopted to identify fission fragments with solid-state detectors such as - telescope and single thin detector and the data for the 10B + 232Th fission reaction are presented. Results demonstrate the usefulness of a single transmission-type surface barrier detector for the identification of fission fragments and projectiles like heavy ions.

  11. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    Science.gov (United States)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-12-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd3Al2Ga3O12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios-Ce-doped Gd3Al2.6Ga2.4O12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI detectors with the two

  12. Comparative analysis of pulse shape discrimination methods in a 6Li loaded plastic scintillator

    International Nuclear Information System (INIS)

    Three algorithms for discriminating between fast neutrons, thermal neutrons and gamma rays in a 6Li loaded plastic scintillator have been compared. Following a literature review of existing pulse shape discrimination techniques, the performance of the charge comparison method, triangular filtering and frequency gradient analysis were investigated in this work. The scintillator was exposed to three different mixed gamma/neutron radiation fields. The figure of merit of neutron/gamma separation was investigated over a broad energy range, as well as for the neutron capture energy region. After optimisation, all three methods were found to perform similarly in terms of neutron/gamma separation

  13. Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33

    International Nuclear Information System (INIS)

    We have studied the prototype of a new plastic scintillator material (EJ-299-33) engineered for gamma-neutron discrimination. Energy and time resolutions as well as pulse shape discrimination capability have been compared with those of standard plastic and liquid scintillators. EJ-299-33 characteristics are somewhat poorer compared to standard scintillators. However, results obtained with the new plastic material suggest its possible use in basic research (time-of-flight measurements) as well as in Homeland Security applications (neutron/gamma monitoring device)

  14. Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator

    International Nuclear Information System (INIS)

    The scintillation properties of a novel plastic scintillator loaded with an organolead compound are presented. Under X-ray and gamma-ray excitation, emission is observed peaking at 435 nm. The scintillation light output is 9000 ph/MeV. An energy resolution (full width at half maximum over the peak position) of about 16% was observed for the 662 keV full absorption peak. Excellent pulse shape discrimination between neutrons and gamma-rays with a Figure of Merit of 2.6 at 1 MeVee was observed

  15. Temperature gain correction for CsI(Tl) detection systems based on digital pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J., E-mail: j.silva@gsi.de [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Fiori, E.; Isaak, J.; Löher, B.; Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Vencelj, M. [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Wamers, F. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)

    2015-03-11

    In this paper we propose a pulse shape based method for monitoring the interior temperature of a CsI(Tl) crystal in order to correct the temperature dependence in the energy calibration of the corresponding detector system. The gain dependence on temperature of the CsI(Tl) detector was measured using both, a photomultiplier tube (PMT) and an avalanche photodiode (APD) readout photosensor. The analysis shows that the gain shifts due to temperature variations can be corrected to a precision of better than 1% with both the PMT and the APD, well below the CsI(Tl) intrinsic energy resolution for ~1 MeV γ-rays.

  16. Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa

    International Nuclear Information System (INIS)

    Experiments on shock compression of diamond foils with intense laser are reported. In order to explore high-pressure and low-temperature region of the carbon phase-diagram, we irradiate single-crystal (Type-Ib) crystal foils with a shaped (ramp) pulse at the pressure of over 1TPa. We observed time-resolved reflectivity from the rear surface of the diamond during the shock compression with velocity interferometer system for any reflector (VISAR). Simultaneous observation of optical measurements and x-ray diffraction has been tested. Preliminary results on decompression of the diamond crystal due to x-ray heating were observed

  17. Specific heat capacity and emissivity measurements of ribbon-shaped graphite using pulse current heating

    International Nuclear Information System (INIS)

    A measurement method for specific heat capacity and hemispherical total emissivity of electrically conductive materials with pulse current heating is investigated, in which a ribbon-shaped sample is heated up to 3000 K in a subsecond-duration experiment. Specific heat capacity and hemispherical total emissivity of the sample are calculated from the time variations of heat generation and surface temperature of the sample measured during heating and cooling phases. The true surface temperature of the ribbon-shaped sample is obtained with a radiation thermometer, the directional spectral emissivity of the sample surface is measured using a hemispherical mirror centered at the sample surface. Measurements are performed for POCO AXM-5Q1 graphite in the temperature range from 1500 to 3000 K

  18. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    International Nuclear Information System (INIS)

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring. - Highlights: • Two new algorithms for pulse-shape discrimination were developed. • The performances of the algorithms were experimentally examined. • The suitability of the algorithms for use in field instruments is discussed

  19. Investigation of pulse shape characteristics on the laser ablation dynamics of TiN coatings in the ns regime

    International Nuclear Information System (INIS)

    In this work, the ablation dynamics of TiN coating with a ns-pulsed fibre laser in a wide range of pulse durations were studied. Critical time instances within the pulse duration were assessed by reflected pulse analysis. Digital holography was employed to investigate the shock wave expansion dynamics within and beyond the pulse duration. The results depict that the absorption behaviour changes as a function of the pulse rise time. Moreover, planar expansion of the shock wave is observed, which is generally linked to higher machining quality and absence of excessive plasma. The results of the study are interpreted to depict the required characteristics of optimized pulse shapes in the ns-region for improved micromachining performance. (paper)

  20. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses. PMID:19475076

  1. 83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining.

    Science.gov (United States)

    Ozgören, Kivanç; Oktem, Bülent; Yilmaz, Sinem; Ilday, F Ömer; Eken, Koray

    2011-08-29

    We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 μm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations. PMID:21935132

  2. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    International Nuclear Information System (INIS)

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10-3 cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  3. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  4. Validation of pulse shape simulation for GERDA Phase II prototype detectors

    International Nuclear Information System (INIS)

    The GERDA (GERmanium Detector Array) Experiment is designed to search for the neutrinoless double beta (0νββ) decay of 76Ge. The 0νββ decay events have two electrons in the final state which deposit their energy predominantly locally, hence are called single-site events. Most of the background events deposit their energy at several different positions inside the detector, hence are called multi-site events. It has been shown that the 18-fold segmented germanium detector designed for GERDA Phase II is quite capable to distinguish between single- and multi- site events. Pulse shape analysis based on signals from the prototype detector has also been carried out recently to further improve the discrimination power. A pulse shape simulation package has been developed to estimate the efficiency of the analysis. The simulation has been compared to different sets of data taken from several GERDA Phase II prototype detectors. It shows that the effects from the crystal structure on the drift of charge carriers can be properly simulated.

  5. Shape tailoring of hexagonally ordered triangular gold nanoparticles with nanosecond-pulsed laser light

    International Nuclear Information System (INIS)

    In this contribution recent results on selective and precise tailoring of triangular gold nanoparticles (NPs) using ns-pulsed laser light are presented. The NPs were prepared by nanosphere lithography and subsequently tailored with ns-pulsed laser light using different fluences and wavelengths. The method is based on the size and shape dependent localized surface plasmon polariton resonance (SPR) of the NPs. We will demonstrate that the gap size between triangular NPs can be tuned from approximately 102±14 nm to 122±11 nm, due to a shape change of the NP from triangular to oblate. These morphological changes are accompanied by a significant shift of the surface plasmon resonance from λSPR=730 nm to λSPR=680 nm. Most importantly if the laser wavelength is chosen such that the dipolar SPR is excited, the hexagonal order of the NPs remains intact after irradiation, in contrast to excitation via the quadrupole SPR or within the interband transition. A tuneable gap size and the conservation of the hexagonal order of the NP array is the precondition for applications, where the NPs should serve as anchor points, e.g. for functional molecular nanowires, which can be used to utilize molecular devices.

  6. Shape-dependent magnetic properties of Co nanostructure arrays synthesized by pulsed laser melting

    Science.gov (United States)

    Shirato, N.; Sherrill, S.; Gangopadhyay, A. K.; Kalyanaraman, R.

    2016-06-01

    One dimensional (1D) magnetic nanowires show unique magnetic behaviors, such as large coercivity and high remanence, in comparison to the bulk and thin film materials. Here, planar arrays of Co nanowires, nanorods and nanoparticles were fabricated from thin Co films by a nanosecond pulsed laser interference irradiation technique. Magnetic force microscopy (MFM) and surface magneto-optic Kerr effect (SMOKE) techniques were used to study the individual and average magnetic properties of the nanostructures. Magnetic domain orientation was found to depend on the in-plane aspect ratio of the nanostructure. The magnetic orientation was out-of-plane for in-plane aspect ratio ranging from 1 to 1.4 and transitioned to an in-plane orientation for aspect ratios greater than 1.4 (such as in nanorods and nanowires). Our results also showed that polycrystalline Co nanowires showed much higher coercivity and remanence as compared to bulk and thin film materials, as well as shapes with smaller aspect ratio. This result was attributed mainly to the shape anisotropy. This study demonstrated that nanosecond pulsed laser synthesis is capable of fabricating various nanostructures in a simple, robust and rapid manner and SMOKE is a reliable technique to rapidly characterize such magnetic nanostructures.

  7. High fluence 1.05 μm performance tests using 20 ns shaped pulses on the Beamlet prototype laser

    International Nuclear Information System (INIS)

    Beamlet is a single beamline, nearly full scale physics prototype of the 192 beam Nd:Glass laser driver of the National Ignition Facility. It is used to demonstrate laser performance of the NIF multipass amplifier architecture. Initial system characterization tests have all been performed at pulse durations less than 10 ns. Pinhole closure and modulation at the end of long pulses are a significant concern for the operation of NIF. We recently demonstrated the generation, amplification and propagation of high energy pulses temporally shaped to mimic 20 ns long ignition pulse shapes at fluence levels exceeding the nominal NIF design requirements for Inertial Confinement Fusion by Indirect Drive. We also demonstrated the effectiveness of a new conical pinhole design used in the transport spatial filter to mitigate plasma closure effects and increase closure time to exceed the duration of the 20 ns long pulse

  8. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Science.gov (United States)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai; Lasse H., Lillevang; Götte, Nadine; Zielinski, Bastian; Balling, Peter; Senftleben, Arne; Baumert, Thomas

    2016-06-01

    In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  9. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.

    Directory of Open Access Journals (Sweden)

    Graeme Mitchison

    2015-10-01

    Full Text Available Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this 'spreading rate' is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is 'dragged along' by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin.

  10. Electromagnetic pulse reflection at self-generated plasma mirrors: laser pulse shaping and high order harmonic generation

    CERN Document Server

    Bulanov, S S; Maksimchuk, A; Matsuoka, T; Nees, J; Pegoraro, F

    2007-01-01

    A thin layer of overdense plasma is created when an electromagnetic pulse interacts with a rapidly ionizing thin foil. This layer will reflect the incoming pulse, forming a so-called plasma mirror. A simple realistic model based on paired kinetic and wave equations is used to describe analytically the process of mirror formation and the reflection and transmission of the incident pulse. The model incorporates the exact description of the ionization process in the foil and the polarization and conduction currents that follow. The analytical description of the reflected and transmitted pulses as well as their dependence on foil parameters, and initial pulse amplitude and form are presented. Possible application and effectiveness of this process to improve laser pulse contrast are discussed. In the case of the linearly polarized incident pulse, there harmonic generation occurs, that is absent in the case of the circular polarization. The spectra of the reflected pulses for different initial forms and amplitudes ...

  11. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting

    Science.gov (United States)

    Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.

    2016-05-01

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh–Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  12. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    International Nuclear Information System (INIS)

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of γ-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple γ-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This is

  13. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  14. Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce

    International Nuclear Information System (INIS)

    For a multi-layer depth-of-interaction (DOI) detector using different decay times, pulse shape analysis based on two different integration times is often used to distinguish scintillators in DOI direction. This method measures a partial integration and a full integration, and calculates the ratio of these two to obtain the pulse shape distribution. The full integration time is usually set to integrate full width of the scintillation pulse. However, the optimum partial integration time is not obvious for obtaining the best separation of the pulse shape distribution. To make it clear, a theoretical analysis and experiments were conducted for pulse shape analysis by changing the partial integration time using a scintillation detector of GSOs with different amount of Ce. A scintillation detector with 1-in. round photomultiplier tube (PMT) optically coupled GSO of 1.5 mol% (decay time: 35 ns) and that of 0.5 mol% (decay time: 60 ns) was used for the experiments. The signal from PMT was digitally integrated with partial (50-150 ns) and full (160 ns) integration times and ratio of these two was calculated to obtain the pulse shape distribution. In the theoretical analysis, partial integration time of 50 ns showed largest distance between two peaks of the pulse shape distribution. In the experiments, it showed maximum at 70-80 ns of partial integration time. The peak to valley ratio showed the maximum at 120-130 ns. Because the separation of two peaks is determined by the peak to valley ratio, we conclude the optimum partial integration time for these combinations of GSOs is around 120-130 ns, relatively longer than the expected value

  15. Frequency effects on the electron density and {alpha}-{gamma} mode transition in atmospheric radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuantao [Shandong Provincial Key Lab of UHV Technology and Gas Discharge Physics, School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250061 (China); Cui Shaoyan [School of Mathematics and Information, Ludong University, Yantai, Shandong Province 264025 (China)

    2011-08-15

    In this paper, a one-dimensional model is explored to investigate the frequency effects on the characteristics of atmospheric radio frequency discharges at a given power. The simulation data and analytical results show that the improvement of electron density can be observed with better discharge stability by increasing excitation frequency in an appropriate range. Using the analytical equations deduced from the model, the mean electron density could be inferred by means of the measured parameters. The {alpha}-{gamma} mode transition especially in high frequency discharges is also analytically discussed based on the theoretical equations.

  16. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  17. Study of pulse shape discrimination for beta events on the n+ contact with BEGe detectors

    International Nuclear Information System (INIS)

    For the second phase of the GERDA experiment, bare BEGe detectors will be deployed in liquid argon. In the GERDA commissioning runs it was observed that the 42Ar progeny (42K) can create background at Qββ, if the ions are attracted on the detector surface. Beta particles from 42K decays (Qβ∼3.5 MeV) can penetrate the thick Li layer of the detectors n+ contact surface and generate signals also at Qββ. With BEGe detectors these events can be identified and discriminated via pulse shape analysis. In this talk we present a study of surface beta events discrimination, using measurements of Sr and Ru sources with detectors in vacuum cryostats and the derived expected background suppression factor for 42K in LAr.

  18. Blind Separation of Two Users Based on User Delays and Optimal Pulse-Shape Design

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2010-01-01

    Full Text Available A wireless network is considered, in which two spatially distributed users transmit narrow-band signals simultaneously over the same channel using the same power. User separation is achieved by oversampling the received signal and formulating a virtual multiple-input multiple-output (MIMO system based on the resulting polyphase components. Because of oversampling, high correlations can occur between the columns of the virtual MIMO system matrix which can be detrimental to user separation. A novel pulse-shape waveform design is proposed that results in low correlation between the columns of the system matrix, while it exploits all available bandwidth as dictated by a spectral mask. It is also shown that the use of successive interference cancelation in combination with blind source separation further improves the separation performance.

  19. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  20. Coherent transition radiation-based diagnosis of electron beam pulse shape

    International Nuclear Information System (INIS)

    The bunch shapes of an electron beams is increasingly difficult to measure, as the time-scales of interest are now sub-picosecond. We discuss here the use of coherent transition radiation CTR for such measurements. Two types of measurements are presented: the deduction of macroscopic (0.3 psec resolution) pulse profile using interferometry, and the examination of microbunch (50 fsec) structure from an FEL-bunched beam using spectral characteristics of the CTR. For the macrobunch measurement we discuss the problem of missing low frequency radiation and one solution for extracting meaningful data with this problem present. For microbunch CTR, we examing initial spectrally resolved measurements, and some interesting deviations in the CTR spectrum from the standard theoretical predictions. copyright 1999 American Institute of Physics

  1. Effective pulse resolution algorithms for detectors with Gaussian-like signal shape

    International Nuclear Information System (INIS)

    Due to an extremely high multiplicity of central ultrarelativistic nucleus-nucleus collisions the crucial point of vertex tracking systems is the demand for the highest accuracy and speed of any algorithm intended to determine the position of each charge particle detected by these systems. We propose effective pulse resolution algorithms for the detectors with Gaussian-like signal shape, for example, a vertex tracking system based on silicon drift detectors (SiDD). We present some new algorithms of overlapping peak resolution, which finally enables us to cope with the high charged multiplicity environment in nucleus collisions taking into account both such factors as SiDD signal asymmetry and the noise correlation

  2. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  3. A Model for the Secondary Scintillation Pulse Shape from a Gas Proportional Scintillation Counter

    CERN Document Server

    Kazkaz, Kareem

    2015-01-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in currents detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric fi...

  4. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  5. Application of pulse-shape discrimination to coplanar CdZnTe detectors

    Science.gov (United States)

    Nakhostin, M.; Podolyak, Zs.; Sellin, P. J.

    2013-11-01

    A digital pulse-shape discrimination algorithm for the identification of multi-site γ-ray interactions in coplanar CdZnTe detectors has been developed. The algorithm is used to suppress the Compton continuum in γ-ray spectroscopy measurements by rejecting the single-site events. The results of our study with a 15×15×7.5 mm3 detector demonstrate the effectiveness of this approach for revealing low intensity γ-ray peaks in the examined energy range (511-1274 keV), which is of importance for environmental and security applications. The method is also very useful for background reduction in the neutrinoless double beta-decay experiments for which coplanar CdZnTe detectors are of interest.

  6. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...... multiplexing (OTDM). Most of the thesis is focused on the utilization of spacetime dualities for temporal pulse shaping and Fourier transformation. The space-time duality led to the implementation of the optical Fourier transform (OFT) technique which was used as a crossing bridge between the temporal and...... spectral domain. By using the frequency-totime OFT technique or optical temporal differentiators based on long-period gratings (LPGs), it was possible to generate narrow at-top pulses in the picosecond regime, and use them for mitigation of timing jitter or polarization dependence effects in OTDM...

  7. X-ray pulse shaping in experiments with planar wire arrays at the 1.6 MA Zebra generator

    International Nuclear Information System (INIS)

    The shaping of the x-ray radiation pulse is very important in both radiation physics research and Inertial Confinement Fusion studies. The novel planar wire array (PWA) was found to be the effective radiator tested at the university-scale 1.6 MA, 100 ns Zebra generator. The single PWA consists of a single row of wires that are parallel to each other, while the double planar wire array (DPWA) and triple planar wire array (TPWA) include two or three parallel plane wire rows, respectively. All multi-planar geometries resulted in a cascade-type array implosion with a complicated multi-step precursor formation before plasma stagnation. The PWAs (without additional core foam target) feature a dynamic precursor evolution that is a powerful tool for x-ray pulse shaping. The shape and timing of the x-ray pulse from different PWAs were theoretically predicted and experimentally analyzed for a variety of planar wire arrays.

  8. Shaping of intensive secondary pulsed molecular beam and production of accelerated molecules and radicals in it

    CERN Document Server

    Makarov, G N

    2001-01-01

    The method is described for shaping the intensive secondary pulsed molecular beam, wherein the molecules kinetic energy may be controlled through the powerful IR laser radiation by means of the molecules oscillatory excitation in the source itself. The thickening jump (the shock wave), which is formed by interaction of the intensive pulsed supersonic molecular beam (or flux) with a solid surface, is used as the secondary beam source. The intensive (>= 10 sup 2 sup 0 molecules/stere. s) beams of the SF sub 6 and CF sub 3 I molecules with the kinetic energy correspondingly equal to approximately 1.5 eV and 1.2 eV without gas-carrier and molecular SF sub 6 beams with kinetic energy approx = 2.5 eV are obtained. The spectral and energy characteristics of the SF sub 6 molecules acceleration in the secondary beam are studied. The possibility of obtaining the accelerated radicals in the secondary molecular beam is indicated

  9. Limitations in timing precision due to single-pulse shape variability in millisecond pulsars

    CERN Document Server

    Shannon, R M; Dai, S; Bailes, M; Hobbs, G; Manchester, R N; van Straten, W; Raithel, C A; Ravi, V; Toomey, L; Bhat, N D R; Burke-Spolaor, S; Coles, W A; Keith, M J; Kerr, M; Levin, Y; Sarkissian, J M; Wang, J -B; Wen, L; Zhu, X -J

    2014-01-01

    High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broadband, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar timing observations; understanding the properties of this noise is of particular importance for the effort to detect gravitational waves with pulsar timing arrays. We assess the short-term profile and timing stability of 22 millisecond pulsars that are part of the Parkes Pulsar Timing Array sample by examining intra-observation arrival time variability and single-pulse phenomenology. In 7 of the 22 pulsars, in the band centred at approximately 1400MHz, we find that the brightest observations are limited by intrinsic jitter. We find consistent results, either detections or upper limits, for jitter noise in other frequency bands. PSR J1909-3744 shows the lowest levels of jitter noise, which we estimate to contribute $\\sim$10 ns root mean square error to the arrival times for hour-duration observati...

  10. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  11. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    International Nuclear Information System (INIS)

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels

  12. Factorization of numbers with the temporal Talbot effect: optical implementation by a sequence of shaped ultrashort pulses.

    Science.gov (United States)

    Bigourd, Damien; Chatel, Béatrice; Schleich, Wolfgang P; Girard, Bertrand

    2008-01-25

    We report on the successful operation of an analogue computer designed to factor numbers. Our device relies solely on the interference of classical light and brings together the field of ultrashort laser pulses with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors of a number. PMID:18232947

  13. Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses

    OpenAIRE

    Bigourd, Damien; Chatel, Béatrice; Schleich, Wolfgang,; Girard, Bertrand

    2008-01-01

    International audience We report on the successful operation of an analogue computer designed to factor numbers. Our device relies solely on the interference of classical light and brings together the field of ultrashort laser pulses with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors of a number.

  14. Electromagnetic pulse reflection at self-generated plasma mirrors: laser pulse shaping and high order harmonic generation

    OpenAIRE

    Bulanov, S. S.; Macchi, A.; Maksimchuk, A.; Matsuoka, T.; Nees, J.; Pegoraro, F.

    2007-01-01

    A thin layer of overdense plasma is created when an electromagnetic pulse interacts with a rapidly ionizing thin foil. This layer will reflect the incoming pulse, forming a so-called plasma mirror. A simple realistic model based on paired kinetic and wave equations is used to describe analytically the process of mirror formation and the reflection and transmission of the incident pulse. The model incorporates the exact description of the ionization process in the foil and the polarization and...

  15. New opportunities for secure communication networks using shaped femtosecond laser pulses inducing filamentation processes in the atmosphere

    International Nuclear Information System (INIS)

    The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver

  16. Studies of neutron–γ pulse shape discrimination in EJ-309 liquid scintillator using charge integration method

    International Nuclear Information System (INIS)

    Pulse shape discrimination capability based on the charge integration has been investigated for liquid scintillator EJ-309. The effectiveness of neutron–γ discrimination in 4-in. diameter and 3-in. thick EJ-309 cells coupled with 3-in. photomultiplier tubes has been carefully studied in the laboratory environment and compared to the commonly used EJ-301 liquid scintillator formulation. Influences of distortions in pulse shape caused by 13.7-m long cables necessary for some remote operations have been examined. The parameter space for an effective neutron–γ discrimination for these assays, such as position and width of a gate used for integration of the delayed light, has been explored

  17. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    International Nuclear Information System (INIS)

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component

  18. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    Science.gov (United States)

    Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.

    2014-06-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.

  19. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    International Nuclear Information System (INIS)

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  20. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  1. Applications of laser pulse shaping to state-selective excitation and measurement of gas phase collisional dynamics

    International Nuclear Information System (INIS)

    The authors' research involves the application of sophisticated laser pulse sequences to extract dynamic information on gas phase collisional and relaxation processes not measurable by other means. The authors discuss the use of shaped pulses that improve sensitivity by exciting a molecule regardless of its Rabi frequency as well as providing a uniform inversion over the pulse bandwidth. Applications to monitoring velocity-changing collisional dynamics and generating large vibrational population inversions are presented, as are experimental methods to extend these sequences to more complex molecules, where velocity selection and frequency resolution are not equivalent

  2. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Science.gov (United States)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  3. Discussion on importance of e+e- pair emission in the 12C(alpha, gamma)16O capture reaction below 1.9 MeV energy

    International Nuclear Information System (INIS)

    The cross section of the direct E0 pair emission has meaningful contribution to the total cross section of the 12C(alpha, gamma)16O reaction at low energy <= 1.9 MeV . E0 resonance emission and internal pair conversion have significant effect to the total cross section of the 12C(alpha, gamma)16O reaction. In this paper e+e- paired emission has been focused on taking into account the angular correlation. E0 contribution is also significant in a presence of E1 and E2 transition, therefore e+e- pair emission may not be neglected and has a significant effect on the total cross section in the case of the 12C(alpha, gamma)16O reaction.

  4. The effect of femtosecond pulse shapes on generating of the optimum wake-field and dissociations of methane molecule

    International Nuclear Information System (INIS)

    The optimum convolution of dual short pulse for producing the maximum wake-field and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal shapes respectively, the resultant wake-field amplitude is the highest. Based on the quantum mechanics principles, calculation of time dependent Schrödinger equation with split-operator method is carried out where this model is producing more accurate results in comparison to the earlier Quasi-classical calculations. These results show that there is an excellent match with experimental data, this opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of polyatomic molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. (author)

  5. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    International Nuclear Information System (INIS)

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed

  6. Pulse Shape Analysis of the Proportional Counter Data from the Third Phase of the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    This poster presented a pulse shape-based analysis of the proportional counter data from the third phase of the Sudbury Neutrino Observatory. It was shown that the neutron signal from the 3He-filled proportional counters could be maintained at about 75% for a suppression of 98% for the alpha background signal.

  7. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    Science.gov (United States)

    Moongweluwan, M.

    2016-02-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.

  8. Pulse shape discrimination performance of stilbene coupled to low-noise silicon photomultipliers

    International Nuclear Information System (INIS)

    Pulse shape discrimination (PSD) techniques can be used to discern between neutron and gamma-ray interactions in certain organic scintillators. Traditionally, photomultiplier tubes (PMTs) have been used in organic-scintillator assemblies. However, silicon photomultipliers (SiPMs) have great potential to be used in many applications in which PMTs have been predominantly used, including those utilizing PSD techniques. To evaluate the current state of the art of the SiPM technology, SensL's 6-mm B-Series and C-Series SiPMs were compared to a fast Hamamatsu PMT in conjunction with a 6×6×6-mm3 stilbene organic scintillator to assess the PSD performance of the detector assemblies. Measurements with a Cf-252 source were performed and a figure of merit (FOM) for discriminating between neutron and gamma-ray pulses between 100 keVee and 200 keVee was calculated for each assembly. A digital charge-integration PSD technique was used to process all measured data. The FOM for the B-Series SiPM, PMT, and C-Series SiPM was 1.37, 1.93, and 2.13, respectively. The C-Series SiPM was shown to perform as well as the PMT in the experiments. - Highlights: • Silicon photomultipliers show potential for use in applications that employ PMTs. • SensL C-Series SiPMs have 21% reduction in RMS noise compared to B-Series. • PSD using stilbene coupled to SiPM has improved significantly with low-noise SiPMs. • Such SiPMs can be used to perform PSD as well as PMTs using simple PSD algorithms

  9. Pulse shape discrimination performance of stilbene coupled to low-noise silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Marc Lavi, E-mail: mruch@umich.edu; Flaska, Marek; Pozzi, Sara A

    2015-09-01

    Pulse shape discrimination (PSD) techniques can be used to discern between neutron and gamma-ray interactions in certain organic scintillators. Traditionally, photomultiplier tubes (PMTs) have been used in organic-scintillator assemblies. However, silicon photomultipliers (SiPMs) have great potential to be used in many applications in which PMTs have been predominantly used, including those utilizing PSD techniques. To evaluate the current state of the art of the SiPM technology, SensL's 6-mm B-Series and C-Series SiPMs were compared to a fast Hamamatsu PMT in conjunction with a 6×6×6-mm{sup 3} stilbene organic scintillator to assess the PSD performance of the detector assemblies. Measurements with a Cf-252 source were performed and a figure of merit (FOM) for discriminating between neutron and gamma-ray pulses between 100 keVee and 200 keVee was calculated for each assembly. A digital charge-integration PSD technique was used to process all measured data. The FOM for the B-Series SiPM, PMT, and C-Series SiPM was 1.37, 1.93, and 2.13, respectively. The C-Series SiPM was shown to perform as well as the PMT in the experiments. - Highlights: • Silicon photomultipliers show potential for use in applications that employ PMTs. • SensL C-Series SiPMs have 21% reduction in RMS noise compared to B-Series. • PSD using stilbene coupled to SiPM has improved significantly with low-noise SiPMs. • Such SiPMs can be used to perform PSD as well as PMTs using simple PSD algorithms.

  10. Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, S.A., E-mail: pozzisa@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Bourne, M.M.; Dolan, J.L.; Polack, K.; Lawrence, C.; Flaska, M.; Clarke, S.D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, A.; Peerani, P. [European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen Via Enrico Fermi, 2749 21027 Ispra VA (Italy)

    2014-12-11

    Neutron measurements can be used to distinguish plutonium in metal or oxide form, a capability that is of great interest in nuclear nonproliferation, treaty verification, and other applications. This paper describes measurements performed on well-characterized samples of plutonium oxide and plutonium metal using the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Results are compared to those obtained with a same-sized detector cell using the liquid scintillator EJ-309. The same optimized, digital pulse shape discrimination technique is applied to both detectors and the neutron pulse height distributions are compared. Results show that the EJ-299-33 plastics can be successfully used for plutonium measurements, where the gamma ray to neutron detection ratio is much higher than for typical radioactive sources. Results also show that EJ-299-33 detectors can be used to characterize plutonium samples, specifically to discriminate between plutonium metal and oxide.

  11. Study on Nd:YAG laser welding of zircaloy-4 using temporal pulse shaping for nuclear applications

    International Nuclear Information System (INIS)

    Zirconium alloys are mainly used in nuclear power plants. It is used for structural parts in the core as pressure tubes, fuel tubes, plug material and garter spring in Pressurized Heavy Water Reactors (PHWR). A study on keyhole mode of laser welding has been performed for the optimization of process parameters for joining of zircaloy-4. Using different temporal pulse shapes of Nd:YAG laser with centre-up shaped pulses, the zircaloy-4 samples were welded successfully with 3.7 mm deep weld depth at 70 J of pulse energy. The analysis and investigation of weld zone in terms of penetration depth, aspect ratio and heat affected zone have also been carried out. (author)

  12. Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33

    International Nuclear Information System (INIS)

    Neutron measurements can be used to distinguish plutonium in metal or oxide form, a capability that is of great interest in nuclear nonproliferation, treaty verification, and other applications. This paper describes measurements performed on well-characterized samples of plutonium oxide and plutonium metal using the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Results are compared to those obtained with a same-sized detector cell using the liquid scintillator EJ-309. The same optimized, digital pulse shape discrimination technique is applied to both detectors and the neutron pulse height distributions are compared. Results show that the EJ-299-33 plastics can be successfully used for plutonium measurements, where the gamma ray to neutron detection ratio is much higher than for typical radioactive sources. Results also show that EJ-299-33 detectors can be used to characterize plutonium samples, specifically to discriminate between plutonium metal and oxide

  13. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  14. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    International Nuclear Information System (INIS)

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  15. Gamma-ray burst pulse shapes: Evidence for embedded shock signatures?

    International Nuclear Information System (INIS)

    A study of a set of well-isolated pulses in long and intermediate gamma-ray burst (GRB) light curves indicates that simple pulse models having smooth and monotonic pulse rise and decay regions are inadequate. Examining the residuals of fits of pulses to such models suggests the following patterns of departure from smooth pulses: three separate wavelike peaks found in the residuals of each pulse (the precursor peak, the central peak, and the decay peak) combine with the underlying Norris et al. pulse model to produce five distinct regions in the temporal evolution of each pulse. The Precursor Shelf occurs prior to or concurrent with the exponential Rapid Rise. The pulse reaches maximum intensity at the Peak Plateau, then undergoes a Rapid Decay. The decay gradually slows into an Extended Tail. Despite these distinct temporal segments, the pulses studied are almost universally characterized by hard-to-soft spectral evolution, arguing that the new pulse features reflect a single evolution, rather than being artifacts of pulse overlap. The fluctuations can give a single pulse the appearance of having up to three distinct localized peaks, leading to ambiguities in pulse-fitting if an incorrect pulse model is used. The approach demonstrates that complex GRBs may be composed of fewer pulses than indicated by the number of peaks. The large degree of similar spectro-temporal behavior within GRB pulses indicates that a single process is responsible for producing pulses spanning a tremendous range of durations, luminosities, and spectral hardnesses, and the correlated characteristics of the wavelike peaks are related to the pulse asymmetry, suggesting kinematic origins that seem supportive of relativistic shocks.

  16. Pulse shape analysis for the gamma-ray tracking detector Agata

    International Nuclear Information System (INIS)

    Agata is the European project for a 4π gamma-ray tracking array of 180 Ge detectors and is expected to have a detection sensitivity higher by 3 orders of magnitude than that of the present generation of gamma spectrometers. The trajectories of the photons inside a Ge crystal are reconstituted, which allows the determination of the initial energy of the incident photons as the total energy deposited along the track. The sequence of a γ-ray scattering process is too fast compared with the time resolution of the detector to be measured electronically, so tracking algorithms are necessary. Gamma-ray tracking detectors are operating in position sensitive mode it means that Ge crystal are segmented in order to facilitate the localization of the gamma interactions. It is possible to improve the position resolution by using the information conveyed by the shape of the detector signal. The task of the PSA (Pulse Shape Analysis) algorithm is to analyze this signal and extract the number of interactions, the position and the energy of each interaction. PSA algorithms rely on a basis of reference signals given by single interactions and that are obtained through an experimental characterization of the detector with scanning systems. The matrix method is a new PSA algorithm that consists in fitting linearly the detector signal with a set of calculated signals. We have tested this method with both simulated and measured signals. In the case of simulated single interactions the position resolution is 1.4 mm which is within Agata's specifications. For measured signals we have obtained mean positional errors of 3.2 mm at the front end of the detector an 4.8 mm at the back end

  17. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  18. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    International Nuclear Information System (INIS)

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies

  19. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses - I. Experiment

    CERN Document Server

    Salzmann, Wenzel; Götz, Simone; Albert, Magnus; Eng, Judith; Wester, Roland; Weidemüller, Matthias; Weise, Fabian; Merli, Andrea; Weber, Stefan M; Sauer, Franziska; Wöste, Ludger; Lindinger, Albrecht

    2009-01-01

    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D1 or D2 asymptote. Time-resolved pump-probe spectra reveal coherent oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detun-ing of the spectral cut position to the asymptotic transition frequency of the rubidium D1 or D2 lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a non-linear dependence and indicate a non-perturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electr...

  20. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Dehé-Pittance, Chrystèle; Rocha, Licinio [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Pansu, Robert B. [Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-06-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared.

  1. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    International Nuclear Information System (INIS)

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared

  2. The pulse shape of cosmic-ray ground-level enhancements

    CERN Document Server

    Moraal, H; Caballero-Lopez, R A

    2016-01-01

    Enhancements of the comic-ray intensity as observed by detectors on the ground have been observed 71 times since 1942. They are due to solar energetic particles accelerated in the regions of solar flares deep in the corona, or in the shock front of coronal mass ejections (CMEs) in the solar wind. The latter is the favoured model for the classical gradual ground-level enhancement (GLE). In several papers since the one of McCracken et al. (2008), we pointed out, however, that some GLEs are too impulsive to be accelerated in the CME shocks. With this hypothesis in mind we study the time profiles of all the available GLEs. The main results are that there is a continuous range from gradual to impulsive, that the fastest risers are concentrated at heliolongitudes that are magnetically well-connected to Earth, and that the shape of the pulse is a powerful indicator of propagation conditions between Sun and Earth. This ranges from relatively quiet to highly disturbed.

  3. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  4. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    International Nuclear Information System (INIS)

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial

  5. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Science.gov (United States)

    Liao, Can; Yang, Haori

    2015-07-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  6. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Can; Yang, Haori, E-mail: haori.yang@oregonstate.edu

    2015-07-21

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  7. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    CERN Document Server

    Wahl, Christopher G; Lippincott, W Hugh; Nikkel, James A; Shin, Yunchang; McKinsey, Daniel N

    2014-01-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 +/- 5 ppm to 1100 +/- 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 +/- 0.1 photoelectrons/keV improved to 5.0 +/- 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 +/- 0.2)% ({\\sigma}) to (3.5 +/- 0.2)% ({\\sigma}) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopa...

  8. A model for the secondary scintillation pulse shape from a gas proportional scintillation counter

    Science.gov (United States)

    Kazkaz, K.; Joshi, T. H.

    2016-03-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in current detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric field uniformity. We present a comparison of this model with experimental data collected with an argon gas proportional scintillation counter (GPSC), operated at 20 C and 1 bar, and irradiated with an internal, collimated 55Fe source. Additionally we discuss how the model may be incorporated in Monte Carlo simulations of both GPSCs and dual-phase detectors, increasing the reliability of the simulation results and allowing for tests of the experimental data analysis algorithms.

  9. Proton energy quenching and pulse shape discrimination in organic liquid scintillator for LENA

    International Nuclear Information System (INIS)

    LENA is a proposed 50 kt neutrino observatory based on liquid scintillator. Due to its low energy threshold, liquid scintillator allows measurements in the MeV range and below. The Maier-Leibnitz-Laboratorium in Garching provides excellent conditions for studying energy dependent quenching of protons and particle discrimination via pulse-shape analysis in liquid scintillator. The tandem-accelerator provides a source of mono-energetic neutrons to which a scintillator sample is exposed. To provide a good energy scale careful calibration with gamma-sources of the setup is required. For this, Monte-Carlo simulations have been performed to understand the physical processes inside the detector. The simulated data has then been compared to the real measurements and a good agreement has been found. Further understanding of the calibration is achieved by using a secondary HPGe-detector which measured the gammas backscattered within the scintillator. This work has been supported by the Maier-Leibnitz-Laboratorium and the cluster of excellence 'Origin and Structure of the Universe'.

  10. A real-time n/γ digital pulse shape discriminator based on FPGA

    International Nuclear Information System (INIS)

    A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time. - Highlights: ► Discriminator has excellent n/γ resolution capability for fission chamber detection. ► It is real-time, so the neutron flux measured by it can be used for real-time feedback or control. ► Use of the pipeline architecture in this discriminator facilitates a zero dead time. ► It is flexible, and users can set different thresholds according to different detection methods.

  11. Determination of light yield and pulse-shape-discrimination abilities of LAB-based liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, Toni; Schramm, Georg [Technische Universitaet Dresden, 01062 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Zuber, Kai [Technische Universitaet Dresden, 01062 Dresden (Germany); Junghans, Arnd; Beyer, Roland; Hannaske, Roland; Hartmann, Andreas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2011-07-01

    Linear alkyl benzene (LAB, C{sub 6}H{sub 5}C{sub n}H{sub 2n+1},n=10-13) is the proposed solvent for the SNO+ experiment. In solution with the commonly used scintillator PPO it is a colourless, odourless and cheap liquid scintillator with a high flashpoint and low health hazard compared to toluene based ones. LAB does not react with the acrylic vessel of the SNO experiment and makes it an ideal solvent. The properties of LAB also makes this scintillator interesting for nELBE, the neutron time-of-flight facility at Helmholtz-Zentrum Dresden-Rossendorf. A new approach to measure the light yield in the low energy range using a combination of ''monoenergetic'' photon sources and a Compton-spectrometer is described. The latter one allows measuring the light yield down to 5 keVee (electron equivalent). The Birks-Parameter was determined for a homemade solution (LAB + 3g/l PPO) and for NE-213. The light yield (relative to this standard scintillator) was confirmed by fluorescence measurement using a fluorescence spectrometer. The ability of pulse-shape-discrimination in a mixed neutron-gamma field of a {sup 252}Cf source was tested using different digital and analogue techniques.

  12. Development of adaptive optical system of both spatial and temporal beam shaping for UV-laser pulse

    International Nuclear Information System (INIS)

    We have been developing a stable and highly qualified UV-laser pulse as a light source of an rf gun for an injector candidate of future light sources. The CPA (chirped pulse amplification) Ti:Sapphire laser system is operated at a repetition rate of 10 Hz. At the third-harmonic generation (central wavelength: 263 nm), the laser pulse energy after a 45-cm silica rod is up to 850 mJ/pulse. In its present status, the laser's pulse energy stability has been improved down to 0.2-0.3% at the fundamental and 0.7-1.4% (rms; 10pps; 33,818 shots) at the third-harmonic generation, respectively. This stability has been held for one month continuously, 24 hours a day. The improvements we had passively implemented were to stabilize the laser system as well as the environmental conditions. We introduced a humidity-control system kept at 50-60% in a clean room to reduce damage to the optics. In addition, we prepared a deformable mirror for spatial shaping and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying both of the adaptive optics to automatic optimization of the electron beam bunch to produce lower emittance with the feedback routine. After the improvements, we can now freely form any arbitrary laser intensity distribution on the surface of the cathode. A fiber bundle was used to passively shape the laser spatial and temporal profile for the backward cathode illumination. The profile was spatially shaped into a perfectly homogeneous one with a 90-cm long fiber bundle. This shaping technique is based in practice on pulse stacking with 1,300 different optical paths. The 80-fs laser is shaped as a quasi-Gaussian profile with a pulse duration of 16 ps (FWHM). Combining with the computer-aided deformable mirror, the fiber bundle laser homogenizer can realize the ideal ellipsoidal laser profile to suppress emittance growing due to the space charge effect. (author)

  13. Arbitrarily-shaped bursts of picosecond pulses from a fiber laser source for high-throughput applications

    Science.gov (United States)

    Desbiens, Louis; Drolet, Mathieu; Roy, Vincent; Sisto, Marco M.; Taillon, Yves

    2011-02-01

    Increasing the ablation efficiency of picosecond laser sources can be performed by bunching pulses in bursts1 and benefit from heat accumulation effects2-5 in the target. Pulsed fiber lasers are well suited for such a regime of operation, as the single pulse energy in a fiber is limited by the onset of nonlinear effects (SPM, SRS). Increasing the number of pulses to form a burst of pulses allows for average power scaling of picosecond fiber lasers. We are presenting in this paper a high-power fiber laser emitting arbitrarily-shaped bursts of picosecond pulses at 20 W of average output power. Burst duration can be varied from 2.5 ns to 80 ns. The burst repetition rate is externally triggered and can be varied from 100 kHz to 1 MHz. The single pulse duration is 60 ps and the repetition rate within a burst is 1.8 GHz. The output beam is linearly polarized (PER > 20 dB) and its M2 value is smaller than 1.15. The laser source has a tunable central wavelength around 1064 nm and a spectral linewidth compatible with frequency conversion. Conversion efficiency higher than 60% has been obtained at 10 W of 1064-nm output power.

  14. Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape

    OpenAIRE

    Novitsky, Denis

    2012-01-01

    We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA) and slowly-varying-envelope approximations. The method of solution is based on the Maxwell--Bloch equations represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a single period of field oscillations) on the two-level medium was anal...

  15. Broadband multilayer mirror and diffractive optics for attosecond pulse shaping in the 280-500 eV photon energy range

    Directory of Open Access Journals (Sweden)

    Schmidt J.

    2013-03-01

    Full Text Available Chirped broadband multilayer mirrors are key components to shape attosecond pulses in the XUV range. Compressing high harmonic pulses to their Fourier limit is the major goal for attosecond physics utilizing short pulse pump-probe experiments. Here, we report about the first implementation of multilayers and diffractive optics fulfilling these requirements in the “water-window” spectral range.

  16. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    International Nuclear Information System (INIS)

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa

  17. Impact of alpha-, gamma-, and delta-tocopherol on the radiation induced oxidation of rapeseed oil triacylglycerols

    Energy Technology Data Exchange (ETDEWEB)

    Braunrath, Robert; Isnardy, Bettina; Solar, Sonja, E-mail: sonja.solar@univie.ac.at; Elmadfa, Ibrahim

    2010-07-15

    Gamma-irradiation (doses: 2, 4, 7, and 10 kGy) was used as oxidation tool to study the antioxidant effects of alpha-, gamma-, and delta-tocopherol (enrichments 500-5000 ppm) in purified rapeseed oil triacylglycerols (RSOTG). Fatty acid composition, tocopherol degradation, primary (conjugated dienes (CD) and peroxide value (POV)) and secondary (p-anisidine value) oxidation products were chosen as test parameters. Fatty acid composition did not change. While secondary oxidation products could not be found in the irradiated samples, the POVs and CDs showed a significant, dose-dependent increase. alpha-Tocopherol did not inhibit the formation of peroxides, whereas gamma- and delta-tocopherol reduced the POVs by more than 30%. No uniform effect of the different tocopherol concentrations at the particular doses could be established. The influence of the individual tocopherols on the CD formation was not pronounced. The degradation of the tocopherols decreased with increasing concentration. None of the tocopherols showed a prooxidant effect.

  18. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  19. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  20. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses.

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided. PMID:26618522

  1. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  2. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Science.gov (United States)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  3. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    Directory of Open Access Journals (Sweden)

    J. Azaña

    2012-01-01

    Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.

  4. VHE gamma-ray observation of the Crab Nebula with pulse shape discrimination to reduce the cosmic-ray background

    International Nuclear Information System (INIS)

    The twin 11 m solar collectors at Sandia National Laboratories in Albuquerque, New Mexico were used to study the atmospheric Cherenkov light from VHE gamma rays emitted by the Crab Nebula. During the Fall of 1987 data were taken over a period of four weeks. Of these three nights of usuable data were obtained from the Crab Nebula consisting of 100 minutes of on-source data and 190 minutes off-source. Pulse shapes of the Cherenkov light images were recorded. During analysis, pulse shape discrimination involving rejection of all of the Cherenkov light images displaying kinks or long tails was applied. A signal of 4.3 sigma from the direction of the Crab Nebula gave an integral flux of (6.3±1.5) x 10-11 photons/cm2 sec with a threshold energy of 400(+200-167) GeV. (orig.)

  5. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas;

    2014-01-01

    A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using...... a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i...... considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway...

  6. Effects of Laser Intensities and Target Shapes on Attosecond Pulse Generation from Irradiated Solid Surfaces

    Science.gov (United States)

    Zheng, Jun; Sheng, Zheng-Ming; Zhang, Jie; Chen, Min; Ma, Yan-Yun

    2006-02-01

    Single attosecond pulses can be generated when an intense laser pulse focused in a volume of a few cubic wavelengths (λ3) is reflected from a solid plasma surface. With relativistic two-dimensional particle-in-cell simulations, we investigate the effects of the incident laser intensity and the target surface profiles on attosecond pulse generation. Usually the width of the reflected attosecond pulse decreases and its electromagnetic energy density increases with increasing laser intensity, while the energy conversion efficiency to the attoseond pulse decreases. By changing the target surface profile, such as using a convex surface or adding proper preplasma, one can further shorten the attosecond pulse duration and meanwhile increase its energy density.

  7. Spin lock composite and shaped pulses for efficient and robust pumping of dark states in magnetic resonance

    CERN Document Server

    Theis, Thomas; Wu, Tung-Lin; Warren, Warren S

    2013-01-01

    Long-lived (symmetry protected) hyperpolarized spin states offer important new opportunities (for example, in clinical MR imaging), but existing methods for producing these states are limited by either excess energy dissipation or high sensitivity to inhomogeneities. We extend recent work on continuous-wave irradiation of nearly-equivalent spins (spin-lock induced crossing) by designing composite pulse and adiabatic shaped-pulse excitations which overcome the limitations. These composite and adiabatic pulses differ drastically from the traditional solutions in two-level systems. We also show this works in chemically equivalent spin pairs, which has the advantage of allowing for polarization transfer from and to remote spins. The approach is broadly applicable to systems where varying excitation strength induces an avoided crossing to a dark state, and thus to many other spectroscopic regimes.

  8. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guillaume H.V. [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Normand, Stéphane [CEA, DAM, Le Ponant, 25 rue Leblanc, F-75015 Paris (France); Sguerra, Fabien [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-03-11

    We would like to present here with the eyes of the chemist the most recent developments of plastic scintillators (PS) for neutron detection. This review covers the period from 2000 to August 2014, and is fragmented in two main chapters. The first chapter deals with the chemical modifications for thermal neutron capture, whereas the second chapter presents the various strategies used to enhance the response to fast neutrons via pulse shape discrimination. For each chapter the theory is also explained.

  9. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art

    International Nuclear Information System (INIS)

    We would like to present here with the eyes of the chemist the most recent developments of plastic scintillators (PS) for neutron detection. This review covers the period from 2000 to August 2014, and is fragmented in two main chapters. The first chapter deals with the chemical modifications for thermal neutron capture, whereas the second chapter presents the various strategies used to enhance the response to fast neutrons via pulse shape discrimination. For each chapter the theory is also explained

  10. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Polack, J.K., E-mail: kpolack@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Flaska, M. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Enqvist, A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sosa, C.S.; Lawrence, C.C.; Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-09-21

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.

  11. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    International Nuclear Information System (INIS)

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values

  12. Pulse-shape analysis of Cs2LiYCl6:Ce scintillator for neutron and gamma-ray discrimination

    International Nuclear Information System (INIS)

    Cs2LiYCl6:Ce (CLYC) is one of the most promising new scintillators for detecting both neutrons and gamma-rays. Its neutron and gamma-ray discrimination capability using pulse-shape analysis has drawn much attention, and there is significant interest in its use in field applications. For such applications, compact and low-power readout electronics capable of exploiting the pulse-shape discrimination (PSD) capabilities of CLYC will be essential. A readout system centered around a PSD-capable application specific integrated circuit (ASIC) that is well-suited for use with CLYC has been characterized, tested, and validated. As part of this study, automated analysis of CLYC data collected with a fast waveform digitizer extracted optimized charge integration windows for PSD. Additionally, several different CLYC samples were studied in order to gain understanding of the dependance of pulse shapes on parameters such as crystal size, 6Li enrichment level, crystal packaging, and choice of PMT. Extremely good PSD performance was obtained from CLYC scintillator and the ASIC-based readout system.

  13. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli.

    Directory of Open Access Journals (Sweden)

    Igor Delvendahl

    Full Text Available A full-sine (biphasic pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS, but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1. In young healthy volunteers, we (i compared monophasic, half-sine, and full-sine pulses, (ii applied two-segment pulses consisting of two identical half-sines, and (iii manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.

  14. Laser-pulse-shape control of photofragmentation in the weak-field limit

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Dey, Diptesh; Henriksen, Niels Engholm

    2014-01-01

    phase-modulated pulse can persist for some time after the pulse is over. This is illustrated for the nonadiabatic process: I+Br*←IBr→I+Br, where the relative yield of excited Br* can be changed by pure phase modulation. It is shown that the phase is able to influence wave-packet spreading in the...

  15. Temporal shaping of nanosecond CO2 laser pulses in multiphoton saturable absorbers

    International Nuclear Information System (INIS)

    It was shown that substantial temporal distortion of nanosecond 10.6 μm laser pulses occurs in traversing multiphoton saturable absorbers. The risetime and pulse delay effects appear to depend both on fluence and wavelength, and to be qualitatively consistent with predictions of a simple two-level absorption model

  16. All-Optical Wavelength Conversion with Amplitude Equalization and Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    C.W.Chow; C.S.Wong; H.K.Tsang

    2003-01-01

    A dual-wavelength-injection-locked (DWIL) Fabry-Perot (FP) laser is used as an all-optical wavelength converter and regenerator. Regenerated pulses have narrower pulse-width of 37ps. Power penalty and extinction-ratio improvement of 1.5dB and 4dB respectively were achieved.

  17. Impact of digitization for timing and pulse shape analysis of scintillator detector signals

    International Nuclear Information System (INIS)

    In this paper we investigate the effects of full digitization of scintillator signals. The requirements on the analog to digital converter (ADC), in terms of sampling rate (fs) and bit resolution, are investigated. Two applications for scintillator detectors are studied, pulse timing and particle species identification. We find that signal reconstruction using sinc interpolation can be used e.g. for high-precision timing of a sampled electric pulse. Timing performances better than 6 ps (FWHM) were obtained if fs equals or exceeds twice the maximum frequency of the scintillator pulse. Failing to meet this criterion deteriorates both the performance of pulse timing and particle identification. We find that the bit resolution of the ADC is very important also for timing of pulses

  18. MEASUREMENT OF RADIONUCLIDES USING ION CHROMATOGRAPHY AND FLOW-CELL SCINTILLATION COUNTING WITH PULSE SHAPE DISCRIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Fjeld; T.A. DeVol; J.D. Leyba

    2000-03-30

    Radiological characterization and monitoring is an important component of environmental management activities throughout the Department of Energy complex. Gamma-ray spectroscopy is the technology most often used for the detection of radionuclides. However, radionuclides which cannot easily be detected by gamma-ray spectroscopy, such as pure beta emitters and transuranics, pose special problems because their quantification generally requires labor intensive radiochemical separations procedures that are time consuming and impractical for field applications. This project focused on a technology for measuring transuranics and pure beta emitters relatively quickly and has the potential of being field deployable. The technology combines ion exchange liquid chromatography and on-line alpha/beta pulse shape discriminating scintillation counting to produce simultaneous alpha and beta chromatograms. The basic instrumentation upon which the project was based was purchased in the early 1990's. In its original commercial form, the instrumentation was capable of separating select activation/fission products in ionic forms from relatively pure aqueous samples. We subsequently developed the capability of separating and detecting actinides (thorium, uranium, neptunium, plutonium, americium, and curium) in less than 30 minutes (Reboul, 1993) and realized that the potential time savings over traditional radiochemical methods for isolating some of these radionuclides was significant. However, at that time, the technique had only been used for radionuclide concentrations that were considerably above environmental levels and for aqueous samples of relatively high chemical purity. For the technique to be useful in environmental applications, development work was needed in lowering detection limits; to be useful in applications involving non-aqueous matrices such as soils and sludges or complex aqueous matrices such as those encountered in waste samples, development work was needed

  19. Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering

    Science.gov (United States)

    Geddes, Joseph B., III; Marks, Daniel L.; Boppart, Stephen A.

    2009-02-01

    Coherent anti-Stokes Raman scattering (CARS) can be used to identify biological molecules from their vibrational spectra in tissue. A single double-chirped broadband optical pulse can excite a broad spectrum of resonant molecular vibrations in the fingerprint spectral region. Such a pulse also excites nonresonant CARS, particularly from water. We describe a theoretical technique to design an optical pulse to selectively excite coherent vibrations in a target molecular species so that the CARS signal generated is increased. The signal from other molecules is reduced, since the incident pulse does not excite them to have coherent vibrations. As an example, we apply the technique to design pulses to elicit increased CARS signal from a mixture of one or more of the alcohols methanol, ethanol, and isopropanol. We also show how such pulse designs can be used to selectively excite one member of closely related complex biological species. As measured interferometrically, the CARS signal from three phosphodiester stretch modes of DNA can be increased to more than ten times that of the analogous signal from RNA when the pulse design technique is used.

  20. Isolated atto-second pulse generated by spatial shaping of femtosecond laser beam

    International Nuclear Information System (INIS)

    We study numerically the time-dependent HHG phase-matching in the laser beam having a flat-top radial intensity profile. A flat-top profile is the key to produce similar ionization degree at the axis and at the periphery and thus to achieve simultaneous phase-matched generation. Such a profile can be obtained experimentally by using two concentric phase plates that introduce a specific phase shift between the central and the outer part of a focused Gaussian beam. We find realistic laser field parameters and medium density that allow obtaining (after spectral filtering) single atto-second pulse using 10 fs driving laser pulse. Our technique provides isolated atto-second pulse emission almost insensitive on the CEP of the laser pulse. Moreover, the technique is effective both for the mid-plateau and the cut-off spectral range. In particular, the XUV from Ar target in the cut-off spectral range (compatible with the Zr filter) provides isolated atto-second pulse with 185 as duration at a central energy of 92 eV. Using achievable multi mJ 10 fs laser pulses this technique could provide atto-second pulses approaching the μJ energy range. (authors)

  1. Is there an Optimal Shape of the Defibrillation Shock: Constant Current vs. Pulsed Biphasic Waveforms

    OpenAIRE

    Ivan Dotsinsky; Tsvetan Mudrov; Vessela Krasteva; Jecho Kostov

    2013-01-01

    Three waveforms for transthoracic defibrillation are assessed and compared: the Pulsed Biphasic Waveform (PBW), the Rectilinear Biphasic Waveform (RBW), and the "lossless" constant current (LLCC) pulses. Two indices are introduced: 1) kf = W/W0 - the ratio between the delivered energy W and the energy W0 of a rectangular pulse with the same duration and electric charge; 2) ηC = W/WC0 - the level of utilizing the initially loaded capacitor energy WC0. The envisioned comparative study shows tha...

  2. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    Science.gov (United States)

    Richardson, Norman E., IV

    nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique

  3. Multilayer Mirrors for Attosecond Pulse Shaping between 30 and 200 eV

    OpenAIRE

    Hofstetter, Michael

    2011-01-01

    Attosecond (as) physics has become a wide spreaded and still growing research field over the last decades. It allows for probing and controlling core- and outer shell electron dynamics with never before achieved temporal precision. High harmonic generation in gases in combination with advanced extreme ultraviolet (XUV ) optical components enable the generation of isolated attosecond pulses as required for absolute time measurements. But until recently, single attosecond pulse generation ha...

  4. Mast Pulses Shape Trophic Interactions between Fluctuating Rodent Populations in a Primeval Forest

    OpenAIRE

    Nuria Selva; Keith A Hobson; Ainara Cortés-Avizanda; Andrzej Zalewski; José Antonio Donázar

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ(13)C, δ(15)N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rod...

  5. Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila

    2010-01-01

    Background In order to reduce the side-effects of chemotherapy, combined chemotherapy-electroporation (electrochemotherapy) has been suggested. Electroporation, application of appropriate electric pulses to biological cells, can significantly enhance molecular uptake of cells due to formation of transient pores in the cell membrane. It was experimentally demonstrated that the efficiency of electroporation is under the control of electric pulse parameters. However, the theoretical basis for th...

  6. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF{sub 3} detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF{sub 3} detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring {sup 60}Co source. The background signal of BF{sub 3} detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring {sup 60}Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field.

  7. Performance Analysis of Ultra Wideband Multiple Access Time Hopping – Pulse Shape Modulation in Presence of Timing Jitter

    Directory of Open Access Journals (Sweden)

    D. Adhikari

    2014-09-01

    Full Text Available In short-range networks such as wireless personal area networks (WPAN, multiple user wireless connectivity for surveillance would require a wireless technology that supports multiple streams of high-speed data and consumes very little power. Ultra wideband (UWB technology enables wireless connectivity across multiple devices (users addressing the need for high-speed WPAN. Apart from having a distinct advantage of higher data rate over Bluetooth v4.0 (24 Mbps, the UWB technology is also found to be tolerant to frequency-selective multipath fading. In this paper authors discuss a time-hopping pulse shape modulation UWB signalling scheme for ad-hoc high bit rate wireless connectivity for defence applications. Authors analyse multiple access interference for both Gaussian channel and frequency selective multipath fading channel to compare the effects of timing jitter on two types of pulse shapes, namely modified Hermite pulse (MHP and prolate spheroidal wave functions (PSWF. Authors make a comparative analysis of the system performance with respect to PSWF and MHP to ascertain robustness to timing jitter. In the process, authors introduced a new metric of decision factor in timing jitter analysis.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.464-470, DOI:http://dx.doi.org/10.14429/dsj.64.5787

  8. Shaping frequency correlations of ultrafast pulse-pumped modulational instability in gas-filled hollow-core PCF

    CERN Document Server

    Finger, Martin A; Russell, Philip St J; Chekhova, Maria V

    2016-01-01

    We vary the time-frequency mode structure of ultrafast pulse-pumped modulational instability (MI) in an argon-filled hollow-core kagom\\'e-style PCF by adjusting the pressure, pump pulse chirp, fiber length and parametric gain. Compared to solid-core systems, the pressure dependent dispersion landscape brings increased flexibility to the tailoring of frequency correlations. The resulting mode content is characterized by measuring the multimode second-order correlation function g(2) and by directly observing frequency correlations in single-shot MI spectra. We show that, from such measurements, the shapes and weights of time-frequency Schmidt (TFS) modes can be extracted and that the number of modes directly influences the shot-to-shot pulse-energy and spectral-shape fluctuations in MI. Using this approach we are able to change the number of TFS modes from 1.3 (g(2) = 1.75) to 4 (g(2) = 1.25) using only a single fiber.

  9. Absolute hydrogen depth profiling using the resonant $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C nuclear reaction

    CERN Document Server

    Reinhardt, Tobias P; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-01-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C reaction, resonant at 6.4\\,MeV $^{15}$N beam energy. Here, the strongly anisotropic angular distribution of the emitted $\\gamma$-rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38$\\pm$0.04) and (0.80$\\pm$0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0$\\pm$1.5)\\,eV, 10\\% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known $\\gamma$-ray detection efficiency. Finally, the absolute approach i...

  10. Astrophysical S factor of {$^{12}$C($\\alpha,\\gamma$)$^{16}$O} Calculated with the Reduced R-matrix Theory

    CERN Document Server

    An, Zhen-Dong; Ma, Yu-Gang; Yu, Jian-Kai; Sun, Ye-Ying; Fan, Gong-Tao; Li, Yong-Jiang; Xu, Hang-Hua; Huang, Bo-Song; Wang, Kan

    2015-01-01

    Determination of the accurate astrophysical S factor of {$^{12}$C($\\alpha,\\gamma$)$^{16}$O} reaction has been regarded as a holy grail of nuclear astrophysics for decades. In current stellar models, a knowledge of that value to better than 10\\% is desirable. Due to the practical issues, tremendous experimental and theoretical efforts over nearly 50 years are not able to reach this goal, and the published values contradicted with each other strongly and their uncertainties are 2 times larger than the required precision. To this end we have developed a Reduced R-matrix Theory, based on the classical R-matrix theory of Lane and Thomas, which treats primary transitions to ground state and four bound states as the independent reaction channels in the channel spin representation. With the coordination of covariance statistics and error propagation theory, a global fitting for almost all available experimental data of $^{16}$O system has been multi-iteratively analyzed by our powerful code. A reliable, accurate and ...

  11. Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array

    OpenAIRE

    Weber, Stefan M.; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; Rooij, Nico F. de; Wolf, Jean-Pierre

    2010-01-01

    We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400nm pulses. Because of the device’s surface flatness, stroke, and stroke resolution, phase shaping over an unpr...

  12. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses. I. Experiment

    International Nuclear Information System (INIS)

    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses as an detailed extension of previous work [W. Salzmann et al., Phys. Rev. Lett. 100, 233003 (2008)]. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D1 or D2 asymptote. Time-resolved pump-probe spectra reveal oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detuning of the spectral cut position to the asymptotic transition frequency of the rubidium D1 or D2 lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a nonlinear dependence and indicate a nonperturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electronic ground state is found, which is attributed to molecule formation by femtosecond photoassociation followed by spontaneous decay. In a subsequent article [A. Merli et al., Phys. Rev. A 80, 063417 (2009)] quantum mechanical calculations are presented, which compare well with the experimental data and reveal further details about the observed coherent transient dynamics.

  13. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  14. E2 contribution to the /sup 12/C(. cap alpha. ,. gamma. )/sup 16/O reaction at stellar energies in a coupled channel approach

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Langanke, K.; Weiguny, A.

    1985-02-28

    The E2 part of the /sup 12/C(..cap alpha..,..gamma..)/sup 16/O capture process at stellar energies is calculated in a microscopically founded coupled channel approach based on the rotational model of Tamura. At the astrophysically most effective energy we obtain an S-factor for E2 capture of Ssub(E2)(300 keV)=0.10 MeV b.

  15. E2 contribution to the /sup 12/C(. alpha. ,. gamma. )/sup 16/O reaction at stellar energies in a coupled channel approach

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Langanke, K.; Weiguny, A.

    1985-02-28

    The E2 part of the /sup 12/C(..alpha..,..gamma..)/sup 16/O capture process at stellar energies is calculated in a microscopically founded coupled channel approach based on the rotational model of Tamura. At the astrophysically most effective energy we obtain an S-factor for E2 capture of Ssub(E2)(300 keV) = 0.10 MeV b. (orig.).

  16. Digital pulse shape analysis for charged particle identification with a nTD silicon detector and 1 GHz sampling digitizer

    International Nuclear Information System (INIS)

    As a result, the pulse shape depends on the charge, mass and energy of the incident ion. If the particles are injected from the rear side, where the electric field is low, the heavier ions will be stopped nearer to the entrance creating denser plasma there as compared to the lighter ions. As a result both the plasma erosion time and the drift time will be larger for heavier ions as compared to the lighter ions. Thus the rear side injection make the PSA technique more sensitive. However, particle identification using PSA required highly uniform resistivity Si crystal and fast pulse processing. Earlier we have reported PI for 6,7Li using PSA technique with a nTD Si detector and a indigenously developed FPGA based digitizer. In the present experiment we have extended the measurement for heavier ions

  17. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    Science.gov (United States)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  18. Light yield and n–γ pulse-shape discrimination of liquid scintillators based on linear alkyl benzene

    Energy Technology Data Exchange (ETDEWEB)

    Kögler, T., E-mail: t.koegler@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Technical University Dresden, Postfach 100 920, 01076 Dresden (Germany); Beyer, R.; Birgersson, E. [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Technical University Dresden, Postfach 100 920, 01076 Dresden (Germany); Junghans, A.R., E-mail: a.junghans@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Massarczyk, R. [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Technical University Dresden, Postfach 100 920, 01076 Dresden (Germany); Matic, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510 119, 01314 Dresden (Germany); Zuber, K. [Technical University Dresden, Postfach 100 920, 01076 Dresden (Germany)

    2013-02-11

    The relative light yields of NE-213 and linear alkyl benzene (LAB) based liquid scintillators from electrons were determined in the electron energy range 13–1600 keV using a combination of monoenergetic γ sources and a Compton spectrometer. The light yield was found to be proportional to energy for both types of scintillator and expected deviations below 100 keV were described successfully applying Birks’ law. A description of the Cherenkov light contribution to the total light yield was achieved for both detectors and is in agreement with the electromagnetic theory of fast particles in matter. Digital pulse-shape discrimination in a mixed n–γ field from a {sup 252}Cf source was investigated for LAB+PPO and LAB+PPO+bis-MSB and compared to NE-213. In combination with these two solutes, LAB shows poorer abilities to separate neutron-induced pulses from γ-induced ones.

  19. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribut...

  20. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    CERN Document Server

    Liu, Mingzhe; Cheng, Yi; Yang, Jianbo; Wang, Lei; Zan, Guibin

    2015-01-01

    There is a key research issue to accurately select out neutron signals and discriminate gamma signals from a mixed radiation field in the neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectrum characteristics of neutron and gamma. Figure of merit and average discriminant error ratio are adopted together to evaluate the discriminant effects. Different neutron and gamma signals with various noises and pulse pile-ups are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discriminant performance among three methods. The fractal spectrum approach is not sensitive to the high frequency noises and pulse pile-ups. It means that the proposed approach takes the advantages of anti-noises and high discriminant ability, and can be used to better discriminate neutron and gamma in neutron detection.

  1. Spectral shaping of attosecond pulses using two-colour laser fields

    International Nuclear Information System (INIS)

    We use a strong two-colour laser field composed of the fundamental (800 nm) and the second harmonic (400 nm) of an infrared (IR) laser field to generate attosecond pulses with controlled spectral and temporal properties. With a second-harmonic intensity equal to 15% of the IR intensity the second-harmonic field is strong enough to significantly alter and control the electron trajectories in the generation process. This enables us to tune the central photon energy of the attosecond pulses by changing the phase difference between the IR and the second-harmonic fields. In the time domain the radiation is emitted as a sequence of pulses separated by a full IR cycle. We also perform calculations showing that the effect of even stronger second-harmonic fields leads to an extended tunable range under conditions that are experimentally feasible

  2. Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films

    CERN Document Server

    Lakhtakia, A

    2006-01-01

    The durations and average speeds of ultrashort optical pulses transmitted through chiral sculptured thin films (STFs) were calculated using a finite-difference time-domain algorithm. Chiral STFs are a class of nanoengineered materials whose microstructure comprises parallel helicoidal nanowires grown normal to a substrate. The nanowires are $\\sim$10-300~nm in diameter and $\\sim1-10 \\mu$m in length. Durations of transmitted pulses tend to increase with decreasing (free-space) wavelength of the carrier plane wave, while average speeds tend to increase with increasing wavelength. An increase in nonlinearity, as manifested by an intensity-dependent refractive index in the frequency domain, tends to increase durations of transmitted pulses and decrease average speeds. The circular Bragg phenomenon exhibited by a chiral STFs manifests itself in the frequency domain as high reflectivity for normally incident carrier plane waves whose circular polarization state is matched to the structural handedness of the film and...

  3. Resonance strengths in the 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions

    CERN Document Server

    Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Fülöp, Zsolt; Grosse, Eckart; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Menegazzo, Roberto; Nair, Chithra; Schwengner, Ronald; Szücs, Tamás; Vezzú, Simone; Wagner, Andreas; Yakorev, Dmitry

    2010-01-01

    The 14N(p,gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p,alpha gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p,gamma)15O and at Ep = 897 and 430 keV in 15N(p,alpha gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p,gamma)15O. The new recommended values are \\omega\\gamma = 0.352$\\pm$0.018, 362$\\pm$20, and 22.0$\\pm$0.9\\,eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p,gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resona...

  4. The key reactions in Stellar helium burning: {sup 12}C({alpha},{gamma}){sup 16}O and {sup 22}Ne({alpha},n){sup 25}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Fey, M. E-mail: fey@ifs.physik.uni-stuttgart.de; Kunz, R.; Hammer, J.W.; Jaeger, M.; Mayer, A.; Krmpotic, E.; Bauer, C.; Meyer, C.; Harissopulos, S.; Paradellis, T.; Staudt, G.; Haas, F.; Papka, P.; Kratz, K.-L.; Pfeiffer, B

    2003-05-05

    The excitation functions of {sup 12}C({alpha},{gamma}){sup 16}O and {sup 22}Ne({alpha},n){sup 25}Mg have been determined with a yet unequaled experimental sensitivity of 10{sup -11} b. From {gamma}-angular distributions the S{sub E1}-and S{sub E2}-factors for {sup 12}C({alpha},{gamma}){sup 16}O have been deduced and extrapolated into the range of helium burning temperatures using the R-matrix method. An improved reaction rate has been calculated: N{sub A}<{sigma}{nu}>=(7.9{+-}2.5)x10{sup -15}cm{sup 3}(mols){sup -1} at T{sub 9} = 0.2. For a more precise extrapolation the excitation function has to be measured with better statistics. Therefore a new experiment on {sup 12}C({alpha},{gamma}){sup 16}O with a better suited setup has been started recently. The accuracy of the {sup 22}Ne({alpha},n){sup 25}Mg reaction rate could be improved considerably compared to previous compilations: N{sub A}<{sigma}{nu}> = (0.88{sub -0.3}{sup +2.6}) x 10{sup -16}cm{sup 3}(mols){sup -1} at T{sub 9} = 0.2.

  5. Spin and temperature dependence of nuclear deformation using alpha-gamma angular correlations

    International Nuclear Information System (INIS)

    Alpha-particle angular distributions with respect to the spin direction of residual nuclei have been measured in heavy-ion fusion reactions. The spin direction was determined by measuring the γ-ray angular distributions, for each event, using the spin spectrometer. α-particle anisotropies have been extracted for the compound nuclear systems: 110Sn*(94 MeV), 114Sn*(80 MeV), 138Nd*(82 MeV), 164Yb*(67 MeV) and 170Yb*(135 MeV) as a function of the α-particle energy and γ-ray multiplicity. The results are compared with statistical model calculations using transmission coefficients from a spherically symmetric optical model potential. The trend of the anisotropy coefficients below the evaporation Coulomb barrier is consistent with spherical emitting shapes in the case of the Sn* isotopes. Small deformation effects are suggested by the 138Nd* and 164Yb* data. The 170Yb* data indicate a large deformation which increases considerably with increasing spin. These results are in agreement with findings for similar systems in which the decay of the giant resonances built on excited states have been studied. 16 refs., 5 figs

  6. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    OpenAIRE

    Lee, H. S.; Bhang, H.; Choi, J.H.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, K. W.; Kim, S.C.; Kim, S K; Kim, Y.D.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Kim, Y H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) be...

  7. A Monte Carlo simulation of the fission chambers neutron-induced pulse shape using the GARFIELD suite

    Science.gov (United States)

    Filliatre, P.; Jammes, C.; Geslot, B.; Veenhof, R.

    2012-06-01

    A computation route that simulates the neutron-induced charge spectrum and pulse shape of a fission chamber is presented. It is based on the GARFIELD suite, and makes use of the MAGBOLTZ and SRIM codes. It allows the simulation of the signal in the current and Campbelling modes. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the scarce experimental data available to date. After a further experimental qualification, this route will improve the design of fission chambers by assessing its overall sensitivity.

  8. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    International Nuclear Information System (INIS)

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified

  9. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    CERN Document Server

    Ashenfelter, J; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bowes, A; Brodsky, J P; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Commeford, K; Davee, D; Dean, D; Deichert, G; Diwan, M V; Dolinski, M J; Dolph, J; Dwyer, D A; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Goddard, B W; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Langford, T J; Littlejohn, B R; Caicedo, D A Martinez; McKeown, R D; Mendenhall, M P; Mueller, P; Mumm, H P; Napolitano, J; Neilson, R; Norcini, D; Pushin, D; Qian, X; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Sheets, S; Stemen, N T; Surukuchi, P T; Varner, R L; Viren, B; Wang, W; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zangakis, G; Zhang, C; Zhang, X

    2015-01-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  10. Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment

    CERN Document Server

    Fritts, Matthew; Durst, Jürgen; Ebert, Joachim; Gößling, Claus; Göpfert, Thomas; Gehre, Daniel; Hagner, Caren; Heidrich, Nadine; Homann, Michael; Köttig, Tobias; Neddermann, Till; Oldorf, Christian; Quante, Thomas; Rajek, Silke; Reinecke, Oscar; Schulz, Oliver; Timm, Jan; Wonsak, Björn; Zuber, Kai

    2014-01-01

    Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.

  11. A Novel Ring Shaped Photodiode for Reflectance Pulse Oximetry in Wireless Applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen;

    2007-01-01

    photodiode has an inner-outer radius of 3.29 -4.07 mm and an area of 18 mm2 , however, photodiodes with ring center radii ranging from 2.8 -4.9 mm have been fabricated. Using the pulse oxymetry sensor photoplethysmograms clearly showing the cardiovascular cycle are recorded. An on-chip integrated Au...

  12. Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape

    International Nuclear Information System (INIS)

    This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.

  13. Is there an Optimal Shape of the Defibrillation Shock: Constant Current vs. Pulsed Biphasic Waveforms

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2013-04-01

    Full Text Available Three waveforms for transthoracic defibrillation are assessed and compared: the Pulsed Biphasic Waveform (PBW, the Rectilinear Biphasic Waveform (RBW, and the "lossless" constant current (LLCC pulses. Two indices are introduced: 1 kf = W/W0 - the ratio between the delivered energy W and the energy W0 of a rectangular pulse with the same duration and electric charge; 2 ηC = W/WC0 - the level of utilizing the initially loaded capacitor energy WC0. The envisioned comparative study shows that ηC index is favorable for both PBW and LLCC, while kf of both RBW and LLCC demonstrates advantage over the PBW in the range of small inter-electrode thoracic impedances below 80 Ω. Some design considerations are also discussed. The attractive LLCC concept needs large and heavy inductive coil to support the constant current amplitude, besides it is capable to induce strong electromagnetic influences due to the complex current control. The RBW technology controls the delivery of current through a series of internal resistors which are, however, a source of high heat losses. The PBW implements controlled duty cycle of high-frequency chopped pulses to adapt the energy delivery in respect of the patient impedance measured at the beginning of the shock. PBW technology makes use of small capacitors which allows the construction of light weight and small-size portable devices for transthoracic defibrillation.

  14. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    Science.gov (United States)

    Alharbi, T.

    2015-01-01

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.

  15. Frequency-Based Pulse Shape Analysis for Optimal Digitization and Discrimination

    International Nuclear Information System (INIS)

    This paper introduces a mathematical analysis of scintillation pulses based on their frequency magnitude squares spectrum in order to determine the most discriminated frequency band of two different pulse-types spectrums . The proposed analysis showed that the most discriminated frequency band depends on the two decay-constant values of the pulse-types. Based on this analysis, a digitization criterion is proposed to determine the optimum sampling rate, number of used samples and the anti-aliasing filtering requirements. There fore, the sampling rate , the number of samples and the cutoff of the anti-aliasing filter can be optimally selected to reduce the discrimination complexity . More over, determining the most discriminated frequency band reduces the number of needed frequency components and provides the highest discrimination performance with the lowest number of required computations. The proposed digitization criterion is applied on two pulse - types with different decay - time constants (t1= 20 and t2 = 40 ns) and shows that the most discriminated frequency component is 5.627 MHz and one of optimum digitization selections is sampling rate of 24 MHz, 8-samples, and anti-aliasing filter with 8 MHz cutoff frequency

  16. Africa's Pulse, October 2013 : An Analysis of Issues Shaping Africa's Economic Future

    OpenAIRE

    World Bank

    2013-01-01

    This Africa's pulse newsletter includes the following headings: economic prospects for Sub-Saharan Africa remain strong, but growth is vulnerable to a sharp decline in commodity prices; the region's progress on reducing poverty has been slow, hindered by high inequality; and faster reduction in poverty will require growth with equity.

  17. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    Science.gov (United States)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  18. Shaping SHF train of optical picosecond pulses for generating a photoemission in SHF guns

    International Nuclear Information System (INIS)

    The paper analyses a technique of generating optical picosecond pulses (OPP) through laser beam deflection. The OPP generator consists of a laser, deflection system, optical system and amplifier-converter. The technique of OPP generation through laser beam deflection can be successfully used for triggering photoemission in SHF beams. 8 refs., 2 figs

  19. Characterization of light particles (Z ≤ 2) discrimination performances by pulse shape analysis techniques with high-granularity silicon detector

    International Nuclear Information System (INIS)

    Pulse shape analysis for light particles (Z ≤ 2) is studied in a 500 μm thick Double-Sided Stripped Silicon Detector (DSSSD) of nTD type with a pitch lower than 500 μm. Good separation between the Z = 1 isotopes is achieved irrespective of the side used for signal pick up with the detector biased at depletion voltage. The low energy threshold for discrimination between Z = 1 isotopes is found to be around 2.5 MeV at depletion voltage and the quality of the separation can be slightly improved by using filtering methods. On the other hand, the discrimination performances are enhanced when lowering the bias of the detector at the expense of energy resolution. At nominal bias (i.e. overdepletion) where the energy resolution is the best, no separation between the three hydrogen isotopes is achieved when using the amplitude of the current signal. Discrimination can still be obtained by acquiring the time over a threshold set at 10% of the amplitude after applying a square bipolar filter to the current signal. Besides, in view of the design of the front-end electronics, the effect of the sampling rate needed for pulse shape analysis has been investigated and shows that below 200 MSa/s, the discrimination quality is strongly reduced. (orig.)

  20. The Impact of Photon Flight Path on S1 Pulse Shape Analysis in Liquid Xenon Two-phase Detectors

    CERN Document Server

    Moongweluwan, M

    2015-01-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors ...

  1. n/γ Pulse shape discrimination comparison of EJ301 and EJ339A liquid scintillation detectors

    International Nuclear Information System (INIS)

    Highlights: • We model the optical process in liquid scintillator with Geant4 simulation toolkit. • We combine the optical process and the PMT response to simulate anode signal. • We performed experiments to benchmark the simulation results. • EJ301 and EJ339A are both good for PSD from simulation and experiment results. • EJ301 has a better PSD feature than EJ339A. - Abstract: In this work, we evaluated the neutron-gamma discrimination capability of EJ301 and EJ339A liquid scintillation detectors via the pulse shape discrimination (PSD) method. Both simulation and experimental results are reported. The Geant4 simulation toolkit was used to model the scintillation process inside the scintillator, for neutron and gamma events, respectively. For the experiments, a high-speed digitizer was used to acquire data, which was then processed in MATLAB. This work compared the PSD performance of two liquid scintillation detectors and demonstrated the capability of Geant4 with regard to simulation of pulse shape

  2. Two-way shape memory effect and mechanical properties of Pulse Discharge Sintered Ni2.18Mn0.82Ga

    OpenAIRE

    Takagi, T; Khovailo, V.; Nagatomo, T.; Matsumoto, M.; Ohtsuka, M; T. Abe; Miki, H

    2003-01-01

    Mechanical and shape memory properties of a polycrystalline Ni2.18Mn0.82Ga alloy prepared by a PDS (Pulse Discharge Sintering) method were investigated. It was found that the material demonstrates the two-way shape memory effect after a loading - unloading cycle performed in the martensitic state, i. e. essentially without special training. The samples exhibiting the two-way shape memory effect show a significant enhancement in the magnitude of magnetic-field-induced strain.

  3. Comparison of the analog and digital pulse-shaping methods in signal processing in nuclear detections

    International Nuclear Information System (INIS)

    The goal of this article is to describe the potential applications of the new improved digital techniques and provide a meaningful figure of merit for the comparison of the analog and digital methods. The experimental operation of a typical digital pulse shaper used in a spectrometer with the 23 Na source and a Ge y-ray detector is discussed. The effect of different imposed dead time on the counted pulses is investigated. It is noticed that nuclear events distribution in all ranges of dead time does not obey Poisson's law and deviation from this distribution depends on the counting rate. For a given dead time, deviation from this distribution increases linearly by increasing imposed dead time. For a fixed dead time, when counting rate increases deviation from Poisson's distribution law increases accordingly, and vice versa. (Author)

  4. Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    CERN Document Server

    Popov, Alexander K; Myslivets, Sergey A; Slabko, Vitaly V

    2013-01-01

    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.

  5. Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2010-10-01

    This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

  6. Laser micro-processing of silicon using nanosecond pulse shaped fibre laser at 1 ?m wavelength

    OpenAIRE

    LI, Kun

    2012-01-01

    Processing of Si in the semiconductor and solar cell industry has been dominated by the Diode Pumped Solid State (DPSS) Ultraviolet (UV) laser. Recent advances in laser source technology have produced fibre lasers with Master Oscillator Power Amplifier (MOPA) architectures that offer high repetition rates, high operational efficiencies, and pulse modulation controls exceeding those of typical Q-switched DPSS lasers. The aim of this research is to investigate 1 ?m fibre laser machining of Si w...

  7. Mast pulses shape trophic interactions between fluctuating rodent populations in a primeval forest.

    Science.gov (United States)

    Selva, Nuria; Hobson, Keith A; Cortés-Avizanda, Ainara; Zalewski, Andrzej; Donázar, José Antonio

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ(13)C, δ(15)N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR) mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet), showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (~66% of diet) to mast (~74%). Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse-consumer interactions. PMID:23251475

  8. Mast pulses shape trophic interactions between fluctuating rodent populations in a primeval forest.

    Directory of Open Access Journals (Sweden)

    Nuria Selva

    Full Text Available How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ(13C, δ(15N analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland. Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet, showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (~66% of diet to mast (~74%. Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse-consumer interactions.

  9. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe 0νββ-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2015-07-15

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples. (orig.)

  10. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe 0νββ-decay searches

    International Nuclear Information System (INIS)

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples. (orig.)

  11. Shifting the boundaries: pulse-shape effects in the atom-optics kicked rotor

    OpenAIRE

    Jones, P H; Goonasekera, M.; Saunders-Singer, H. E.; Meacher, D. R.

    2004-01-01

    We present the results of experiments performed on cold caesium in a pulsed sinusoidal optical potential created by counter-propagating laser beams having a small frequency difference in the laboratory frame. Since the atoms, which have average velocity close to zero in the laboratory frame, have non-zero average velocity in the co-moving frame of the optical potential, we are able to centre the initial velocity distribution of the cloud at an arbitrary point in phase-space. In particular, we...

  12. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  13. A Method for Ultrashort Electron Pulse Shape-Measurement Using Coherent Synchrotron Radiation

    CERN Document Server

    Geloni, G A; Schneidmiller, E A; Yurkov, M V

    2003-01-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-Ray Free Electron Lasers (XFELs). The method is based on the detection of the Coherent Synchrotron Radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in or...

  14. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  15. Shaping of shock wave in aerogel irradiated by high-current pulsed electron beam

    International Nuclear Information System (INIS)

    Spread of pressure jumps excited by high-current pulsed electron beam in 0.025-0.25 g/cm3 density SiO2 aerogel was studied using laser differential interferometers and optical techniques. At the aerogel target rear side one recorded splittings-off and measured the rate of splitting fragment scattering. The rate of aerogel scattering towards the electron beam was determined. The parameters of the shock adiabat within aerogel porosity wide range were determined. The depth of the electron beam energy release zone depending on the aerogel density within 0.015-0.25 g/cm3 density range was determined experimentally. A model to describe high-porous materials was developed on the basis of the experimental data

  16. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  17. Application of the A/E pulse shape discrimination method to first Ge-76 enriched BEGe detectors operated in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea; Agostini, Matteo; Budjas, Dusan; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current {sup 76}Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.

  18. Application of the A/E pulse shape discrimination method to first Ge-76 enriched BEGe detectors operated in GERDA

    International Nuclear Information System (INIS)

    In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current 76Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.

  19. Single and two-photon fluorescence control of Er{sup 3+} ions by phase-shaped femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shian, E-mail: sazhang@phy.ecnu.edu.cn; Ding, Jingxin; Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong, E-mail: zrsun@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062 (China); Xu, Shuwu [State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062 (China); School of Science, Nantong University, Nantong 226007 (China); Qiu, Jianrong [State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Wushan Road 381, Guangzhou 510640 (China)

    2014-01-06

    We experimentally demonstrate the control of the single and two-photon fluorescence (SPF and TPF) in Er{sup 3+} ions by shaping the femtosecond laser pulse with a π or square phase modulation. With the low laser intensity (8.4 × 10{sup 10} W/cm{sup 2}), SPF keeps a constant while TPF is effectively suppressed by the two control schemes. With the high laser intensity (1.2 × 10{sup 13} W/cm{sup 2}), both SPF and TPF are simultaneously enhanced or suppressed by the π phase modulation, and SPF is enhanced while TPF is effectively suppressed by the square phase modulation. The up/down-conversion fluorescence enhancement, suppression, or tuning by the optical control method can greatly expand its applications in various related fields.

  20. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    Science.gov (United States)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  1. Spatial calibration via imaging techniques of a novel scanning system for the pulse shape characterisation of position sensitive HPGe detectors

    International Nuclear Information System (INIS)

    In this work, a novel imaging technique for the spatial calibration of a gamma camera is presented. The latter is aimed for the characterisation of the charge signals of 3D-position sensitive HPGe detectors. The characterisation method itself is based on pulse shape comparison (PSC) technique. The performance of the device is improved by implementing a gamma camera or position sensitive detector (PSD). This PSD consists of a uniform LYSO scintillating crystal optically glued to a crossed-wire position sensitive photomultiplier tube (PSPMT) from Hamamatsu. The individual multianode readout (IMAR) approach is used to improve its spatial resolution and to enlarge its field of view. A Compton scattering imaging technique is implemented to perform an accurate position calibration of the gamma camera.

  2. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse

    CERN Document Server

    Chen, M; Yu, T P; Sheng, Z M

    2009-01-01

    Using multi-dimensional particle-in-cell (PIC) simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 1022W/cm^2 intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, the center part of the target can be uniformly accelerated for a longer time compared to a usual flat target. Target deformation and undesirable plasma heating are effectively suppressed. The final energy spectrum of the accelerated ion beam is improved dramatically. Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the laser energy are observed in multi-dimensional simulations. Radiation damping effects are also checked in the simulations.

  3. Pulse shape discrimination capability of metal-loaded organic liquid scintillators for a short-baseline reactor neutrino experiment

    Science.gov (United States)

    Kim, B. R.; Han, B. Y.; Jeon, E. J.; Joo, K. K.; Kang, Jeongsoo; Khan, N.; Kim, H. J.; Kim, Hyunsoo; Kim, J. Y.; Siyeon, Kim; Kim, S. C.; Kim, Yeongduk; Ko, Y. J.; Lee, Jaison; Lee, Jeong-Yeon; Lee, J. Y.; Ma, K. J.; Park, Hyeonseo; Park, H. K.; Park, K. S.; Seo, K. M.; Seon, Gwang-Min; Yeo, I. S.; Yeo, K. M.

    2015-05-01

    A new short-baseline (SBL) reactor neutrino experiment is proposed to investigate a reactor anti-neutrino anomaly. A liquid scintillator (LS) is used to detect anti-neutrinos emitted from a Hanaro reactor, and the pulse shape discrimination (PSD) ability of the metal-loaded organic LSs is evaluated on small-scale laboratory samples. PSD can be affected by selecting different base solvents, and several of the LSs used two different organic base solvents, such as linear alkyl benzene and di-isopropylnaphthalene. For the metallic content, gadolinium (Gd) or lithium (6Li) was loaded into a home-made organic LS and into a commercially available liquid scintillation cocktail. A feasibility study was performed for the PSD using several different liquid scintillation cocktails. In this work, the preparation and the PSD characteristics of a promising candidate, which will be used in an above-ground environment, are summarized and presented.

  4. Study of pulse shape discrimination for beta events on the n{sup +} contact with BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department E15, Technische Universitaet Muenchen (Germany); UNIMIB, Milano (Italy); Budjas, Dusan; Agostini, Matteo; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany)

    2012-07-01

    For the second phase of the GERDA experiment, bare BEGe detectors will be deployed in liquid argon. In the GERDA commissioning runs it was observed that the {sup 42}Ar progeny ({sup 42}K) can create background at Q{sub {beta}{beta}}, if the ions are attracted on the detector surface. Beta particles from {sup 42}K decays (Q{sub {beta}}{approx}3.5 MeV) can penetrate the thick Li layer of the detectors n{sup +} contact surface and generate signals also at Q{sub {beta}{beta}}. With BEGe detectors these events can be identified and discriminated via pulse shape analysis. In this talk we present a study of surface beta events discrimination, using measurements of Sr and Ru sources with detectors in vacuum cryostats and the derived expected background suppression factor for {sup 42}K in LAr.

  5. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    CERN Document Server

    Lee, H S; Choi, J H; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, K W; Kim, S C; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, J K; Leonard, D S; Li, J; Myung, S S; Olsen, S L; So, J H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with similar result from a neutron reactor demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source.

  6. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  7. Cooling molecular vibrations with shaped laser pulses: optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    International Nuclear Information System (INIS)

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck–Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative de-excitation steps whose timescales are separated. (paper)

  8. Pulse shape analysis of a two fold clover detector with an EMD based new algorithm: A comparison

    International Nuclear Information System (INIS)

    An investigation of Empirical Mode Decomposition (EMD) based noise filtering algorithm has been carried out on a mirror signal from a two fold germanium clover detector. EMD technique can decompose linear as well as nonlinear and chaotic signals with a precise frequency resolution. It allows to decompose the preamplifier signal (charge pulse) on an event-by-event basis. The filtering algorithm provides the information about the Intrinsic Mode Functions (IMFs) mainly dominated by the noise. It preserves the signal information and separates the overriding noise oscillations from the signals. The identification of noise structure is based on the frequency distributions of different IMFs. The preamplifier noise components which distort the azimuthal co-ordinates information have been extracted on the basis of the correlation between the different IMFs and the mirror signal. The correlation studies have been carried out both in frequency and time domain. The extracted correlation coefficient provides an important information regarding the pulse shape of the γ-ray interaction in the detector. A comparison between the EMD based and state-of-the-art wavelet based denoising techniques has also been made and discussed. It has been observed that the fractional noise strength distribution varies with the position of the collimated gamma-ray source. Above trend has been reproduced by both the denoising techniques

  9. Breakout from the hot CNO cycle: the {sup 15}O({alpha},{gamma}) and {sup 18}Ne({alpha},p) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bradfield-Smith, W.; Laird, A.M.; Davinson, T.; Pietro, A. di; Ostrowski, A.N.; Shotter, A.C.; Woods, P.J. [Dept. of Physics and Astronomy, Univ. of Edinburgh (United Kingdom); Cherubini, S.; Galster, W.; Graulich, J.S.; Leleux, P.; Michel, L.; Ninane, A.; Vervier, J. [Inst. de Physique Nucleaire, UCL, Louvain-la-Neuve (Belgium); Aliotta, M.; Cali, D.; Cappussello, F.; Cunsolo, A.; Spitaleri, C. [INFN, Catania (Italy); Gorres, J.; Wiescher, M. [Notre Dame Univ. (United States); Rahighi, J. [Van de Graaf Lab., Tehran (Iran, Islamic Republic of); Hinnefeld, J. [Indiana Univ., South Bend (United States)

    1998-06-01

    One of the most important reactions which determines the rate of breakout from the hot CNO cycle is the {sup 15}O({alpha},{gamma}){sup 19}Ne. The reaction {sup 18}Ne({alpha},p){sup 21}Na may also provide an alternative breakout route. Experiments are being undertaken at Louvain-La-Neuve using the radioactive {sup 18}Ne beam to study these reactions by measurement of {alpha}({sup 18}Ne,p){sup 21}Na and d({sup 18}Ne,p){sup 19}Ne{sup *} {yields} {sup 15}O + {alpha} (orig.)

  10. Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method

    Directory of Open Access Journals (Sweden)

    Mardiyanto

    2008-07-01

    Full Text Available Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method. Measurement of mixed neutron-gamma radiation is difficult because a neuclear detector is usually sensitive to both radiations. A new attempt of neutron-gamma pulse shape discrimination for a NE-213 liquid scintillator is presented by using digital signal processing combined with an off-line similarity method. The output pulse shapes are digitized with a high speed digital oscilloscope. The n-γ discrimination is done by calculating the index of each pulse shape, which is determined by the similarity method, and then fusing it with its corresponding pulse height. Preliminary results demonstrate good separation of neutron and gamma-ray signals from a NE-213 scintillator with a simple digital system. The results were better than those with a conventional rise time method. Figure of Merit is used to determine the quality of discrimination. The figure of merit of the discrimination using digital signal processing combined with of line similarity method are 1.9; 1.7; 1.1; 1.1; and 0.8 ; on the other hand by using conventional method the rise time are 0.9; 0.9; 0.9; 0.7; and 0.4 for the equivalent electron energy of 800 ; 278 ; 139 ; 69 ; and 30 keV

  11. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    Science.gov (United States)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  12. Pulsed current wave shaping with a transmission line by utilizing superposition of a forward and a backward voltage wave for fast capillary Z-pinch discharge

    International Nuclear Information System (INIS)

    By using a water transmission line, current wave shaping was demonstrated for a fast capillary Z-pinch discharge recombination soft x-ray laser study. The pulsed power system consists of a water capacitor, a gap switch, a transmission line, and a capillary plasma load. A voltage wave initiated at the water capacitor propagates toward the capillary load through the transmission line. Control of the pulse delay that occurred in the transmission line provides the superposition of the forward and the backward voltage waves effectively in order to perform current wave shaping with higher current amplitude and rapid current decay.

  13. Electronic regulation of the SPS extraction quadrupole current pulse shape for improved stability of the extracted beam

    CERN Document Server

    Carlier, E; Vossenberg, Eugène B; CERN. Geneva. SPS and LEP Division

    1996-01-01

    In order to minimise the event pile-up and therefore optimise the detection efficiency, Chorus and Nomad experiments ask for a long and rectangular spill profile. At present the fast-slow extractio n is generated by driving the beam into a quadrupolar-octopolar resonance by exciting a quadrupole magnet with a semi-trapezoidal current [1]. The trapezoidal pulse shape is obtained by dischargin g a capacitor into the magnet coils. After a few milliseconds of undamped discharge a fixed resistor is switched into the circuit. The attenuation is then higher and the sine wave continues with a lower gradient. The two gradients can be adjusted by varying the initial capacitor voltage and the time at which the resistor is switched into the circuit. A further degree of freedom in determini ng the spill shape has been added by allowing the possibility of changing the second slope value independently of the initial conditions. This task is achieved by means of a variable current sour ce added in parallel to the fixed resis...

  14. Excitation of muonic molecules ddμ and dtμ by super-intense attosecond soft X-ray laser pulses: Shaped post-laser-pulse muonic oscillations and enhancement of nuclear fusion

    Science.gov (United States)

    Bandrauk, André D.; Paramonov, Guennaddi K.

    2014-07-01

    The quantum dynamics of muonic molecular ions ddμ and dtμ excited by linearly polarized along the molecular (z)-axis super-intense laser pulses is studied beyond the Born-Oppenheimer approximation by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional model, including the internuclear distance R and muon coordinates z and ρ. The peak-intensity of the super-intense laser pulses used in our simulations is I0 = 3.51 × 1022 W/cm2 and the wavelength is λl = 5 nm. In both ddμ and dtμ, expectation values and of muon demonstrate "post-laser-pulse" oscillations after the ends of the laser pulses. In ddμ post-laser-pulse z-oscillations appear as shaped nonoverlapping "echo-pulses". In dtμ post-laser-pulse muonic z-oscillations appear as comparatively slow large-amplitude oscillations modulated with small-amplitude pulsations. The post-laser-pulse ρ-oscillations in both ddμ and dtμ appear, for the most part, as overlapping "echo-pulses". The post-laser-pulse oscillations do not occur if the Born-Oppenheimer approximation is employed. Power spectra generated due to muonic motion along both optically active z and optically passive ρ degrees of freedom are calculated. The fusion probability in dtμ can be increased by more than 11 times by making use of three sequential super-intense laser pulses. The energy released from the dt fusion in dtμ can by more than 20 GeV exceed the energy required to produce a usable muon and the energy of the laser pulses used to enhance the fusion. The possibility of power production from the laser-enhanced muon-catalyzed fusion is discussed.

  15. The resonance triplet at E_alpha = 4.5 MeV in the 40Ca(alpha,gamma)44Ti reaction

    CERN Document Server

    Schmidt, Konrad; Anders, Michael; Bemmerer, Daniel; Boretzky, Konstanze; Caciolli, Antonio; Degering, Detlev; Dietz, Mirco; Dressler, Rugard; Elekes, Zoltán; Fülöp, Zsolt; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Marta, Michele; Menzel, Marie-Luise; Munnik, Frans; Schumann, Dorothea; Schwengner, Ronald; Szücs, Tamás; Wagner, Andreas; Yakorev, Dmitry; Zuber, Kai

    2013-01-01

    The 40Ca(alpha,gamma)44Ti reaction is believed to be the main production channel for the radioactive nuclide 44Ti in core-collapse supernovae. Radiation from decaying 44Ti has been observed so far for two supernova remnants, and a precise knowledge of the 44Ti production rate may help improve supernova models. The 40Ca(alpha,gamma)44Ti astrophysical reaction rate is determined by a number of narrow resonances. Here, the resonance triplet at E_alpha = 4497, 4510, and 4523 keV is studied both by activation, using an underground laboratory for the gamma counting, and by in-beam gamma spectrometry. The target properties are determined by elastic recoil detection analysis and by nuclear reactions. The strengths of the three resonances are determined to omega gamma = (0.92+-0.20), (6.2+-0.5), and (1.32+-0.24) eV, respectively, a factor of two more precise than before. The strengths of this resonance triplet may be used in future works as a point of reference. In addition, the present new data directly affect the as...

  16. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with incr

  17. A Parametric Shaping Pulse for PAPR Reduction in OFDM System%一种降低OFDM系统PAPR的参数化整形脉冲

    Institute of Scientific and Technical Information of China (English)

    杨宏周; 杨灿美

    2014-01-01

    在应用脉冲整形( PS )技术降低 OFDM 系统 PAPR 的基础上,提出一种新颖的参数化的Nyquist脉冲称之为参数化正切脉冲,此脉冲包含的设计参数k可以根据系统滚降系数β自由调整,从而尽量降低系统的PAPR。仿真结果表明,相比于常见的升余弦脉冲和反转指数脉冲,新提出的脉冲在降低PAPR性能和保证BER性能方面优势明显,是一种灵活低复杂度的降低OFDM系统PA-PR的脉冲整形方案。%A new and parametric Nyquist pulse named as parametric tangent pulse is proposed for peak-to-average power ratio ( PAPR ) reduction in orthogonal frequency division multiplexing ( OFDM ) systems using pulse shaping . The proposed pulse contains a new design parameter, k, giving an additional degree of freedom to minimize PAPR for a given roll-off factor, β . Simulation results indicate that the proposed pulse can achieve better performance in terms of PAPR reduction and bit error rate ( BER) , as compared with the traditional raised cosine pulse and flipped-exponential pulse. It is an effective scheme with low complexity and high flexibility to reduce the PAPR of OFDM system by pulse shaping with the proposed parametric tangent Nyquist pulse.

  18. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    International Nuclear Information System (INIS)

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis

  19. Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping

    Science.gov (United States)

    Dris, Stefanos; Bakopoulos, Paraskevas; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules

    2016-03-01

    Faced with surging datacenter traffic demand, system designers are turning to multi-level optical modulation with direct detection as the means of reaching 100 Gb/s in a single optical lane; a further upgrade to 400 Gb/s is envisaged through wavelength-multiplexing of multiple 100 Gb/s strands. In terms of modulation formats, PAM-4 and PAM-8 are considered the front-runners, striking a good balance between bandwidth-efficiency and implementation complexity. In addition, the emergence of energy-efficient, high-speed CMOS digital-to-analog converters (DACs) opens up new possibilities: Spectral shaping through digital filtering will allow squeezing even more data through low-cost, low-bandwidth electro-optic components. In this work we demonstrate an optical interconnect based on an EAM that is driven directly with sub-volt electrical swing by a 65 GSa/s arbitrary waveform generator (AWG). Low-voltage drive is particularly attractive since it allows direct interfacing with the switch/server ASIC, eliminating the need for dedicated, power-hungry and expensive electrical drivers. Single-wavelength throughputs of 180 and 120 Gb/s are experimentally demonstrated with 60 Gbaud optical PAM-8 and PAM-4 respectively. Successful transmission over 1250 m SMF is achieved with direct-detection, using linear equalization via offline digital signal processing in order to overcome the strong bandwidth limitation of the overall link (~20 GHz). The suitability of Nyquist pulse shaping for optical interconnects is also investigated experimentally with PAM-4 and PAM-8, at a lower symbol rate of 40 Gbaud (limited by the sampling rate of the AWG). To the best of our knowledge, the rates achieved are the highest ever using optical PAM-M formats.

  20. Study on welding power source used in intelligent control system for weld pool shape in pulsed GTAW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20(¨)kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1(¨)ms, the range of the output current is 5~250(¨)A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5A, and have convenient interface with system computer. All above shows this power source is one with high performance.

  1. Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector

    Science.gov (United States)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  2. Study of digital pulse shape discrimination method for n-{\\gamma} separation of EJ-301 liquid scintillation detector

    CERN Document Server

    Wan, Bo; Chen, Liang; Ge, Honglin; Ma, Fei; Zhang, Hongbin; Ju, Yongqin; Zhang, Yanbin; Li, Yanyan; Xu, Xiaowei

    2015-01-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with EJ-301 liquid scintillation detector. The module was operated by means of running programs developed in LabVIEW with the sampling frequency up to 1.6GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function has been obtained. Digital algorithms for charge comparison method and zero-crossing method have been developed. The experimental results showed that both digital signal processing (DSP) algorithms could discriminate neutrons from gamma-rays. Moreover, the zero-crossing method shows better n-{\\gamma} discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) of two different dimension detectors were extracted at 9 energy thresholds, and it was found that the smaller one presented a better n-{\\gamma} separ...

  3. Inducing a sign inversion in one state of a two-state superposition using ultrafast pulse shaping

    International Nuclear Information System (INIS)

    An ultrafast pulse shaping scheme is presented that transiently modifies a two-state superposition on the E 1Σg+ curve of the lithium dimer. At short time delays, the wave-function amplitude of one of the states is forced to undergo a sign change, while the sign of the second state is programmed to remain static, analogous to the operation of a quantum-computational Z gate. This is observed as a π phase shift in the time-dependent wave-packet signal for pump-probe delays <1.5 ps, relative to longer time delays, greater than 2.5 ps. This shift in sign is accomplished by taking advantage of the separability of the resonant and nonresonant light field effects in the creation of the excited-state wave function. The results show that, for a single state, the resonant and nonresonant light field effects can either be added or subtracted to create the total time evolution of the excited-state wave-function coefficient. If the nonresonant contributions are subtracted from the resonant ones at a time delay when the nonresonant term dominates, then for a short time the excited-state coefficient will have a sign opposite to that at long time, where the resonant term dominates. A desired phase function is derived to produce the opposition in sign of resonant versus nonresonant contributions, and the experimental transient Z-gate matrix elements are quantified

  4. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  5. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses. II. Theory

    International Nuclear Information System (INIS)

    Photoassociation of ultracold rubidium atoms with femtosecond laser pulses is studied theoretically. The spectrum of the pulses is cut off in order to suppress pulse amplitude at and close to the atomic resonance frequency. This leads to long tails of the laser pulse as a function of time giving rise to coherent transients in the photoassociation dynamics. They are studied as a function of cut-off position and chirp of the pulse. Molecule formation in the electronically excited state is attributed to off-resonant excitation in the strong-field regime.

  6. A new method for measuring the pulse-front distortion of arbitrary shapes in high-power ultrashort laser systems

    Institute of Scientific and Technical Information of China (English)

    Zuo Yan-Lei; Jiang Dong-Bin; Zhu Qi-Hua; Dong Jun; Zen Xiao-Ming; Huang Xiao-Jun; Huang Zheng

    2012-01-01

    We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district.We demonstrate,for the first time,the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system,which exists in almost all high-power laser systems,and obtain the irregular pulse-front distribution.The method presented does not need any reference light or assumption about the pulse-front distribution,and has an accuracy of several femtoseconds.

  7. Excitation of muonic molecules ddμ and dtμ by super-intense attosecond soft X-ray laser pulses: shaped post-laser-pulse muonic oscillations and enhancement of nuclear fusion

    International Nuclear Information System (INIS)

    The quantum dynamics of muonic molecular ions ddμ and dtμ excited by linearly polarized along the molecular (z)-axis super-intense laser pulses is studied beyond the Born–Oppenheimer approximation by the numerical solution of the time-dependent Schroedinger equation within a three-dimensional model, including the internuclear distance R and muon coordinates z and ρ. The peak-intensity of the super-intense laser pulses used in our simulations is I0 = 3.51 × 1022 W/cm2 and the wavelength is λl = 5 nm. In both ddμ and dtμ, expectation values〈z〉 and 〈ρ〉 of muon demonstrate “post-laser-pulse” oscillations after the ends of the laser pulses. In ddμ post-laser-pulse z-oscillations appear as shaped nonoverlapping “echo-pulses”. In dtμ post-laser-pulse muonic z-oscillations appear as comparatively slow large-amplitude oscillations modulated with small-amplitude pulsations. The post-laser-pulse ρ-oscillations in both ddμ and dtμ appear, for the most part, as overlapping “echo-pulses”. The post-laser-pulse oscillations do not occur if the Born–Oppenheimer approximation is employed. Power spectra generated due to muonic motion along both optically active z and optically passive ρ degrees of freedom are calculated. The fusion probability in dtμ can be increased by more than 11 times by making use of three sequential super-intense laser pulses. The energy released from the dt fusion in dtμ can by more than 20 GeV exceed the energy required to produce a usable muon and the energy of the laser pulses used to enhance the fusion. The possibility of power production from the laser-enhanced muon-catalyzed fusion is discussed. (author)

  8. Pulse shape discrimination of Cs2LiYCl6:Ce3+ scintillator from −30 °C to 180 °C

    International Nuclear Information System (INIS)

    In this study, the scintillation performance of Ce doped Cs2LiYCl6 (CLYC) from −30 °C to 180 °C is presented. Pulse shape discrimination (PSD) of CLYC at various temperatures is investigated. Previously, it had been shown that PSD based on Core-Valence-Luminescence fades away at temperatures >120 °C. However, it has been discovered that there is a secondary mechanism which can be utilized for neutron-gamma Pulse Shape Discrimination in addition to the well-known Core-Valence-Luminescence (CVL). In contrast to CVL, this mechanism is found to be insensitive to temperature change. Temperature dependent PSD algorithms are developed to enable reliable neutron-gamma PSD up to 180 °C

  9. Calibrating the light pulse shape of a hydrogen flashlamp using synchrotron radiation as a standard of excitation.

    Science.gov (United States)

    Andre, J C; Lopez-Delgado, R; Lyke, R L; Ware, W R

    1979-05-01

    Advantage has been taken of the measured pulse width of synchrotron radiation and its independence of wavelength to determine the delta-pulse response of a vacuum uv photomultiplier. This photomultiplier was then used to establish the true time profile of a nanosecond H(2) flashlamp. Two numerical techniques (the exponential series method and the fast Fourier transform method) were used to deconvolute the data arising from these experiments. The results indicate that the H(2) flashlamp probably has the same profile in the many-line region, lambda 2100 A, and the delta-pulse response of the PMT appears consistent with known properties of the Cs-Te photocathode. PMID:20212849

  10. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    International Nuclear Information System (INIS)

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  11. New Aspects of Temporal Dispersion in High Resolution Fourier Pulse Shaping: A Quantitative Description with Virtually Imaged Phased Array Pulse Shapers

    CERN Document Server

    Supradeepa, V R; Leaird, Daniel E; Weiner, Andrew M

    2010-01-01

    We report new aspects of temporal dispersion in Fourier pulse shapers which contain spectral dispersers with a nonlinear frequency to space mapping. These effects are particularly important in high resolution operation since high resolution dispersers typically exhibit pronounced nonlinear angular dispersion over relatively small bandwidths. In this paper we present a general discussion of the new effects followed by quantitative analysis and experimental verification for pulse shapers which utilize a virtually imaged phased array (VIPA) as the spectral disperser. Compared to the well known 4f configuration, our results demonstrate a substantial modification to the placement of the optical components required to obtain zero temporal dispersion. Furthermore, spectral phase variations associated with nonzero dispersion coupled with contributions from multiple diffraction orders are shown to give rise to a dramatic new spectral interference effect, which can be used to monitor temporal dispersion purely in the s...

  12. Real-time, digital pulse-shape discrimination in non-hazardous fast liquid scintillation detectors: Prospects for safety and security

    International Nuclear Information System (INIS)

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)

  13. Influence of sampling properties of fast-waveform digitizers on neutron−gamma-ray, pulse-shape discrimination for organic scintillation detectors

    International Nuclear Information System (INIS)

    One of the most important questions to be answered with regard to digital pulse-shape discrimination (PSD) systems based on organic scintillators is: What sampling properties are required for a fast-waveform digitizer used for digitizing neutron/gamma-ray pulses, while an accurate PSD is desired? Answering this question is the main objective of this paper. Specifically, the paper describes the influence of the resolution and sampling frequency of a waveform digitizer on the PSD performance of organic scintillators. The results presented in this paper are meant to help the reader choosing a waveform digitizer with appropriate bit resolution and sampling frequency. The results presented here show that a 12-bit, 250-MHz digitizer is a good choice for applications that require good PSD performance. However, when more accurate PSD performance is the main requirement, this paper presents PSD figures of merit to qualify the impact of further increasing either sampling frequency or resolution of the digitizer

  14. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A. [Iran University of Science and Technology, Department of Physics (Iran, Islamic Republic of); Morshedian, N. [School of Plasma Physics and Nuclear Fusion (Iran, Islamic Republic of)

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  15. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap

  16. Total and partial cross sections of the $^{112}$Sn($\\alpha,\\gamma$)$^{116}$Te reaction measured via in-beam $\\gamma$-ray spectroscopy

    CERN Document Server

    Netterdon, L; Scholz, P; Zilges, A

    2015-01-01

    An extended database of experimental data is needed to address uncertainties of the nuclear-physics input parameters for Hauser-Feshbach calculations. Especially $\\alpha$+nucleus optical model potentials at low energies are not well known. The in-beam technique with an array of high-purity germanium (HPGe) detectors was successfully applied to the measurement of absolute cross sections of an ($\\alpha$,$\\gamma$) reaction on a heavy nucleus at sub-Coulomb energies. The total and partial cross-section values were measured by means of in-beam $\\gamma$-ray spectroscopy. Total and partial cross sections were measured at four different $\\alpha$-particle energies from $E_\\alpha = 10.5$ MeV to $E_\\alpha = 12$ MeV. The measured total cross-section values are in excellent agreement with previous results obtained with the activation technique, which proves the validity of the applied method. The experimental data was compared to Hauser-Feshbach calculations using the nuclear reaction code TALYS. A modified version of the...

  17. Spectroscopy of $^{19}$Ne for the thermonuclear $^{15}$O($\\alpha,\\gamma$)$^{19}$Ne and $^{18}$F($p,\\alpha$)$^{15}$O reaction rates

    CERN Document Server

    Parikh, A; de Séréville, N; Wimmer, K; Faestermann, T; Hertenberger, R; Seiler, D; Wirth, H -F; Adsley, P; Fulton, B R; Hammache, F; Kiener, J; Stefan, I

    2015-01-01

    Uncertainties in the thermonuclear rates of the $^{15}$O($\\alpha,\\gamma$)$^{19}$Ne and $^{18}$F($p,\\alpha$)$^{15}$O reactions affect model predictions of light curves from type I X-ray bursts and the amount of the observable radioisotope $^{18}$F produced in classical novae, respectively. To address these uncertainties, we have studied the nuclear structure of $^{19}$Ne over $E_{x} = 4.0 - 5.1$ MeV and $6.1 - 7.3$ MeV using the $^{19}$F($^{3}$He,t)$^{19}$Ne reaction. We find the $J^{\\pi}$ values of the 4.14 and 4.20 MeV levels to be consistent with $9/2^{-}$ and $7/2^{-}$ respectively, in contrast to previous assumptions. We confirm the recently observed triplet of states around 6.4 MeV, and find evidence that the state at 6.29 MeV, just below the proton threshold, is either broad or a doublet. Our data also suggest that predicted but yet unobserved levels may exist near the 6.86 MeV state. Higher resolution experiments are urgently needed to further clarify the structure of $^{19}$Ne around the proton thresh...

  18. Coherent control and quantum shaping with the laser pulse%激光脉冲的量子整形与相干控制

    Institute of Scientific and Technical Information of China (English)

    阿布力米提·吾买尔; 任立庆; 张敏华; 许康; 李永放

    2011-01-01

    The interaction between the laser pulse with a small-area and a three-level atomic system is investigated. The formation and characterization of the shaped laser pulse are analyzed and the two-photon transition is studied with the shaped laser pulse. The influence of the relaxation of the excited state and the length of the shaping medium on the two-photon absorption is discussed. Based on the dispersion theory the oscillation of the transient two-photon transition is explained. The result indicates that the transition probability of two-photon absorption evolves regularly with the several values of parameters such as the length of medium (l), relaxation time (t2 ) and bandwidth ( △ω). Meanwhile the transition probability appears in the transient oscillation.%研究了小激光脉冲面积光场与三能级原子系统的相互作用过程,分析了整形脉冲的形成机理与特征,讨论了能级弛豫以及整形介质长度等参量对输出光场的影响.依据色散理论,分析了瞬态双光子跃迁几率的振荡现象.结果表明:随着介质长度(l)、频宽(△w)和弛豫时间(t2)等参量的变化,瞬态双光子跃迁几率发生有规律的变化,同时出现跃迁几率的瞬时振荡现象.

  19. Power nanosecond pulse shaping by means of RCD-generators with peaking circuits based on diode current breakers

    CERN Document Server

    Grekhov, I V; Korotkov, S V; Stepanyants, A L; Khristyuk, D V

    2002-01-01

    One considered the basic principles to design nanosecond region generators based on reverse-connected dynistos (RCD) with diode current breaker base output peaking circuits. Paper presents the results of experimental investigation in intense generator based on RCD, peaking pulsed transformer and high-voltage diode breaker from a set of series-connected drift diodes with abrupt reset. Generator at 1 kHz frequency commutates voltage pulses with approx 45 kV amplitude, approx 50 ns duration and approx 10 ns rise front to 25 ohm load

  20. Power nanosecond pulse shaping by means of RCD-generators with peaking circuits based on diode current breakers

    International Nuclear Information System (INIS)

    One considered the basic principles to design nanosecond region generators based on reverse-connected dynistos (RCD) with diode current breaker base output peaking circuits. Paper presents the results of experimental investigation in intense generator based on RCD, peaking pulsed transformer and high-voltage diode breaker from a set of series-connected drift diodes with abrupt reset. Generator at 1 kHz frequency commutates voltage pulses with ∼ 45 kV amplitude, ∼ 50 ns duration and ∼ 10 ns rise front to 25 ohm load