WorldWideScience

Sample records for alpha-gal knockout mice

  1. Alpha-GalCer Administration after Allogeneic Bone Marrow Transplantation Improves Immune Reconstitution in Mice

    Institute of Scientific and Technical Information of China (English)

    Jing-hua Liu; Li-ping Dou; Li-xin Wang; Li-li Wang; Fan Zhou; Li Yu

    2011-01-01

    Objective To explore the effect of a-galactosyleramide (α-GalCer) on immune recovstitution un der acute graft-versus-host disease (aGVHD). Methods BALB/c mice were transplanted with allogeneic C57BL/6 bone marrow cells and spleno cytes (both 1 × 107) after receiving lethal total-body irradiation, a-GalCer (100 ug/kg) or vehicle (dimethylsulfoxide) was administered intraperitoneally immediately after transplantation. The effects of α-GalCer on immune reconstitution, proliferation of T cells and B cells, hematopoiesis, and thymic microenvironment were assessed.Results The α-GalCer group exhibited higher percentages of CD3+, CD4+, CD8+, B220+, CD40+,and CD86+ cells compared with the vehicle group. The number of colony forming unit per 1000 CD34+cells in the α-GalCer group was higher than in the vehicle group (P=0.0012). In vitro proliferation assays showed that the α-GalCer group had higher percentages of CD3+, CD4+, CD8+, and B220+ cells compared with the vehicle group. As for the results of in vivo proliferation assays, the numbers of CD3+, CD4+, CD8+,and B220+ cells were higher in the α-GalCer group than in the normal group, especially the number of B220+ cells (P=0.007). Significant difference was not found in thymocyte count between the α-GalCer group and the vehicle group, nor in the percentages of CD3+, CD4+, and CD8+ cells. Conclusion Administration of α-GalCer after allogeneic bone marrow transplantation may promote immune reconstitution in the presence of aGVHD.

  2. Leukemogenesis in heterozygous PU.1 knockout mice.

    Science.gov (United States)

    Genik, Paula C; Vyazunova, Irina; Steffen, Leta S; Bacher, Jeffery W; Bielefeldt-Ohmann, Helle; McKercher, Scott; Ullrich, Robert L; Fallgren, Christina M; Weil, Michael M; Ray, F Andrew

    2014-09-01

    Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.

  3. Pleiotropic effects in Eya3 knockout mice

    Directory of Open Access Journals (Sweden)

    Naton Beatrix

    2008-12-01

    Full Text Available Abstract Background In Drosophila, mutations in the gene eyes absent (eya lead to severe defects in eye development. The functions of its mammalian orthologs Eya1-4 are only partially understood and no mouse model exists for Eya3. Therefore, we characterized the phenotype of a new Eya3 knockout mouse mutant. Results Expression analysis of Eya3 by in-situ hybridizations and β-Gal-staining of Eya3 mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos. The phenotype of young adult Eya3 mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of Eya3 mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed Nup155 being down regulated in both organs. Conclusion The loss of Eya3 in the mouse has no apparent effect on eye development. The wide-spread expression of Eya3 in mouse and zebrafish embryos is in contrast to the restricted expression pattern in Xenopus embryos. The loss of Eya3 in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of Eya3 function should focus on

  4. Sleep in Kcna2 knockout mice

    Directory of Open Access Journals (Sweden)

    Messing Albee

    2007-10-01

    Full Text Available Abstract Background Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system. Results Continuous (24 h electroencephalograph (EEG, electromyogram (EMG, and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ and wild-type (WT pups (P17 and HZ and WT adult mice (P67. Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0–20 Hz were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups ( Conclusion Kv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep.

  5. Impaired conditioned taste aversion learning in spinophilin knockout mice.

    Science.gov (United States)

    Stafstrom-Davis, C A; Ouimet, C C; Feng, J; Allen, P B; Greengard, P; Houpt, T A

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning. PMID:11584074

  6. IgE antibodies to alpha-gal in the general adult population

    DEFF Research Database (Denmark)

    Gonzalez-Quintela, A; Dam Laursen, A S; Vidal, C;

    2014-01-01

    BACKGROUND: The carbohydrate alpha-gal epitope is present in many animal proteins, including those of red meat and animal immunoglobulins, such as cat IgA. Systemic anaphylaxis to the alpha-gal epitope has recently been described. OBJECTIVE: To investigate and compare the prevalence of alpha.......1% in the Danish and Spanish series, respectively. The prevalence of sIgE ≥ 0.35 kUA /L was 1.8% and 2.2% in Denmark and Spain, respectively. Alpha-gal sIgE positivity was associated with pet ownership in both series and, particularly, cat ownership (data available in the Danish series). Alpha-gal sIgE positivity...... was associated with atopy (SPT positivity) in both series, although it was not associated with SPT positivity to cat or dog dander. Alpha-gal sIgE positivity was strongly associated with a history of tick bites. CONCLUSIONS AND CLINICAL RELEVANCE: The prevalence of alpha-gal sIgE antibodies in these general...

  7. Functional deficits in PAK5, PAK6 and PAK5/PAK6 knockout mice.

    Directory of Open Access Journals (Sweden)

    Melody A Furnari

    Full Text Available The p21-activated kinases are effector proteins for Rho-family GTPases. PAK4, PAK5, and PAK6 are the group II PAKs associated with neurite outgrowth, filopodia formation, and cell survival. Pak4 knockout mice are embryonic lethal, while Pak5, Pak6, and Pak5/Pak6 double knockout mice are viable and fertile. Our previous work found that the double knockout mice exhibit locomotor changes and learning and memory deficits. We also found some differences with Pak5 and Pak6 single knockout mice and the present work further explores the potential differences of the Pak5 knockout and Pak6 knockout mice in comparison with wild type mice. The Pak6 knockout mice were found to weigh significantly more than the other genotypes. The double knockout mice were found to be less active than the other genotypes. The Pak5 knockout mice and the double knockout mice performed worse on the rotorod test. All the knockout genotypes were found to be less aggressive in the resident intruder paradigm. The double knockout mice were, once again, found to perform worse in the active avoidance assay. These results indicate, that although some behavioral differences are seen in the Pak5 and Pak6 single knockout mice, the double knockout mice exhibit the greatest changes in locomotion and learning and memory.

  8. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice[S

    OpenAIRE

    Slätis, Katharina; Gåfvels, Mats; Kannisto, Kristina; Ovchinnikova, Olga; Paulsson-Berne, Gabrielle; Parini, Paolo; Jiang, Zhao-Yan; Eggertsen, Gösta

    2010-01-01

    To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced inte...

  9. Invited Commentary: Alpha-Gal Allergy: Tip of the Iceberg to a Pivotal Immune Response.

    Science.gov (United States)

    Commins, Scott P

    2016-09-01

    The syndrome of delayed allergic reactions to the carbohydrate galactose-alpha-1,3-galactose ("alpha-gal") has become increasingly recognized in allergy and immunology clinics regionally throughout the southeastern USA. Due to the increasing awareness of this unique food allergy, cases have been identified in the northeastern and central USA as well as in Central and South America, Europe, Asia, Scandinavia, and Australia. Clinically, alpha-gal allergy is characterized by reactions to non-primate mammalian meat (e.g., beef, pork, lamb) that occur 3-6 h following exposure. The IgE response to alpha-gal is thought to develop after tick bites and can result in the loss of tolerance to foods that have been safely consumed for years. Although the initial description of alpha-gal allergy in 2009 was limited to red meat, this epitope is now identified in an expanded number of products, medications and foods-both labeled and unlabeled. Moreover, we are beginning to recognize that alpha-gal food allergy is the tip of the iceberg for this immune response. PMID:27520937

  10. Binding studies of alpha-GalNAc-specific lectins to the alpha-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments.

    Science.gov (United States)

    Dam, Tarun K; Gerken, Thomas A; Cavada, Benildo S; Nascimento, Kyria S; Moura, Tales R; Brewer, C Fred

    2007-09-21

    Isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements demonstrate that a chemically and enzymatically prepared form of porcine submaxillary mucin that possesses a molecular mass of approximately 10(6) daltons and approximately 2300 alpha-GalNAc residues (Tn-PSM) binds to the soybean agglutinin (SBA) with a K(d) of 0.2 nm, which is approximately 10(6)-fold enhanced affinity relative to GalNAcalpha1-O-Ser (Tn), the pancarcinoma carbohydrate antigen. The enzymatically derived 81 amino acid tandem repeat domain of Tn-PSM containing approximately 23 alpha-GalNAc residues binds with approximately 10(3)-fold enhanced affinity, while the enzymatically derived 38/40 amino acid cleavage product(s) of Tn-PSM containing approximately 11-12 alpha-GalNAc residues shows approximately 10(2)-fold enhanced affinity. A natural carbohydrate decorated form of PSM (Fd-PSM) containing 40% of the core 1 blood group type A tetrasaccharide, and 58% peptide-linked GalNAcalpha1-O-Ser/Thr residues, with 45% of the peptide-linked alpha-GalNAc residues linked alpha-(2,6) to N-glycolylneuraminic acid, shows approximately 10(4) enhanced affinity for SBA. Vatairea macrocarpa lectin (VML), which is also a GalNAc binding lectin, displays a similar pattern of binding to the four forms of PSM, although there are quantitative differences in its affinities as compared with SBA. The higher affinities of SBA and VML for Tn-PSM relative to Fd-PSM indicate the importance of carbohydrate composition and epitope density of mucins on their affinities for lectins. The higher affinities of SBA and VML for Tn-PSM relative to its two shorter chain analogs demonstrate that the length of a mucin polypeptide and hence total carbohydrate valence determines the affinities of the three Tn-PSM analogs. The results suggest a binding model in which lectin molecules "bind and jump" from alpha-GalNAc residue to alpha-GalNAc residue along the polypeptide chain of Tn-PSM before dissociating

  11. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning;

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  12. Dentin Dysplasia in Notum Knockout Mice.

    Science.gov (United States)

    Vogel, P; Read, R W; Hansen, G M; Powell, D R; Kantaputra, P N; Zambrowicz, B; Brommage, R

    2016-07-01

    Secreted WNT proteins control cell differentiation and proliferation in many tissues, and NOTUM is a secreted enzyme that modulates WNT morphogens by removing a palmitoleoylate moiety that is essential for their activity. To better understand the role this enzyme in development, the authors produced NOTUM-deficient mice by targeted insertional disruption of the Notum gene. The authors discovered a critical role for NOTUM in dentin morphogenesis suggesting that increased WNT activity can disrupt odontoblast differentiation and orientation in both incisor and molar teeth. Although molars in Notum(-/-) mice had normal-shaped crowns and normal mantle dentin, the defective crown dentin resulted in enamel prone to fracture during mastication and made teeth more susceptible to endodontal inflammation and necrosis. The dentin dysplasia and short roots contributed to tooth hypermobility and to the spread of periodontal inflammation, which often progressed to periapical abscess formation. The additional incidental finding of renal agenesis in some Notum (-/-) mice indicated that NOTUM also has a role in kidney development, with undiagnosed bilateral renal agenesis most likely responsible for the observed decreased perinatal viability of Notum(-/-) mice. The findings support a significant role for NOTUM in modulating WNT signaling pathways that have pleiotropic effects on tooth and kidney development. PMID:26926082

  13. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Hansson, Nicolaj Christopher; Rodriguez-Rodriguez, Rosalia;

    2011-01-01

    Oleanolic acid (OA) is a plant triterpenoid steroid with potentially antiatherogenic properties. We investigated whether OA affected atherosclerosis development and vascular function in apolipoprotein E knockout (ApoE(-/-)) mice. ApoE(-/-) mice were fed a high cholesterol Western-type diet...... in combination with OA (100 mg/kg/day), fluvastatin (5 mg/kg/day) or vehicle, with wild type (WT) mice serving as controls. After 8 weeks of treatment atherosclerotic plaque areas in the aortic arch and plasma lipid concentrations were determined. Vasoconstriction and relaxation of the proximal part of aorta...... were investigated in vitro. Inducible nitric oxide synthase (iNOS) was visualized using immunoblotting. As opposed to WT and fluvastatin- and vehicle-treated mice, OA-fed ApoE(-/-) mice gained no weight during the treatment period. Plasma concentrations of total-cholesterol and triglyceride were...

  14. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  15. Impaired Conditioned Taste Aversion Learning in Spinophilin Knockout Mice

    OpenAIRE

    Stafstrom-Davis, Carrie A.; Ouimet, Charles C.; Feng, Jian; Allen, Patrick B; Greengard, Paul; Houpt, Thomas A.

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is...

  16. Lessons from hepatocyte-specific cyp51 knockout mice

    OpenAIRE

    Keber, Rok; Lorbek, Gregor; Lewinska, Monika; Juvan, Peter; Perše, Martina; Bjorkhem, Ingemar; Rozman, Damjana; Horvat, Simon; Jeruc, Jera; Gutiérrez Mariscal, Francisco Miguel; Gebhardt, Rolf

    2016-01-01

    We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14 a -demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arres...

  17. Screening Methods to Identify TALEN-Mediated Knockout Mice

    OpenAIRE

    Nakagawa, Yoshiko; Yamamoto, Takashi; Suzuki, Ken-Ichi; Araki, Kimi; Takeda, Naoki; Ohmuraya, Masaki; Sakuma, Tetsushi

    2014-01-01

    Genome editing with site-specific nucleases, such as zinc-finger nucleases or transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases, such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, is becoming the new standard for targeted genome modification in various organisms. Application of these techniques to the manufacture of knockout mice would be greatly aided by simple and easy methods for genotyping of mutant...

  18. Helicobacter pylori arginase mutant colonizes arginase Ⅱ knockout mice

    Institute of Scientific and Technical Information of China (English)

    Songhee H Kim; Melanie L Langford; Jean-Luc Boucher; Traci L Testerman; David J McGee

    2011-01-01

    AIM: To investigate the role of host and bacterial argi-nases in the colonization of mice by Helicobacter pylori (H. Pylori).METHODS: H. Pylori produces a very powerful urease that hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Urease is absolutely essential to H. Pylori pathogenesis; therefore, the urea substrate must be in ample supply for urease to work efficiently. The urea substrate is most likely provided by arginase activity, which hydrolyzes L-arginine to L-ornithine and urea. Previous work has demonstrated that H. Pylori arginase is surprisingly not required for colonization of wild-type mice. Hence, another in vivo source of the critical urea substrate must exist. We hypothesized that the urea source was provided by host arginase Ⅱ, since this enzyme is expressed in the stomach, and H. Pylori has previously been shown to induce the expres-sion of murine gastric arginase Ⅱ. To test this hypoth-esis, wild-type and arginase (rocF) mutant H. Pylori strain SS1 were inoculated into arginase Ⅱ knockout mice. RESULTS: Surprisingly, both the wild-type and rocF mutant bacteria still colonized arginase Ⅱ knock-out mice. Moreover, feeding arginase Ⅱ knockout mice the host arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC), while inhibiting > 50% of the host arginase Ⅰactivity in several tissues, did not block the ability of the rocF mutant H. Pylori to colonize. In con-trast, BEC poorly inhibited H. Pylori arginase activity. CONCLUSION: The in vivo source for the essential urea utilized by H. Pylori urease is neither bacterial arginase nor host arginase Ⅱ; instead, either residual host arginase Ⅰor agmatinase is probably responsible.

  19. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  20. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin;

    2015-01-01

    inflammation in an experimental colitis model. METHODS: Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone...... microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. RESULTS: PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia...... and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P

  1. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  2. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  3. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Science.gov (United States)

    Wu, Xudong; Indzhykulian, Artur A; Niksch, Paul D; Webber, Roxanna M; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A; Corey, David P

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  4. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Xudong Wu

    Full Text Available Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction.

  5. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice.

    Directory of Open Access Journals (Sweden)

    Hisatsugu Koshimizu

    Full Text Available Cluster of differentiation 47 (CD47 is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα, a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS, such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.

  6. Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice

    Science.gov (United States)

    Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…

  7. SNARE function analyzed in synaptobrevin/VAMP knockout mice.

    Science.gov (United States)

    Schoch, S; Deák, F; Königstorfer, A; Mozhayeva, M; Sara, Y; Südhof, T C; Kavalali, E T

    2001-11-01

    SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased approximately 10-fold, but fast Ca2+-triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.

  8. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice.

    Science.gov (United States)

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  9. Generation and behavior characterization of CaMKIIβ knockout mice.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available The calcium/calmodulin-dependent protein kinase II (CaMKII is abundant in the brain, where it makes important contributions to synaptic organization and homeostasis, including playing an essential role in synaptic plasticity and memory. Four genes encode isoforms of CaMKII (α, β, δ, γ, with CaMKIIα and CaMKIIβ highly expressed in the brain. Decades of molecular and cellular research, as well as the use of a large number of CaMKIIα mutant mouse lines, have provided insight into the pivotal roles of CaMKIIα in brain plasticity and cognition. However, less is known about the CaMKIIβ isoform. We report the development and extensive behavioral and phenotypic characterization of a CaMKIIβ knockout (KO mouse. The CaMKIIβ KO mouse was found to be smaller at weaning, with an altered body mass composition. The CaMKIIβ KO mouse showed ataxia, impaired forelimb grip strength, and deficits in the rotorod, balance beam and running wheel tasks. Interestingly, the CaMKIIβ KO mouse exhibited reduced anxiety in the elevated plus maze and open field tests. The CaMKIIβ KO mouse also showed cognitive impairment in the novel object recognition task. Our results provide a comprehensive behavioral characterization of mice deficient in the β isoform of CaMKII. The neurologic phenotypes and the construction of the genotype suggest the utility of this KO mouse strain for future studies of CaMKIIβ in brain structure, function and development.

  10. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Hanneke Korsten

    Full Text Available Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m developed at older age (>10m into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC, adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK, and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1 and tumor class 2 (TC2. TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor

  11. Effects of Chronic Mild Stress in Female Bax Inhibitor-1-Gene Knockout Mice

    OpenAIRE

    Sui, Zhi-Yan; Chae, Han-Jung; Huang, Guang-Biao; Zhao, Tong; Shrestha Muna, Sushma; Chung, Young-Chul

    2012-01-01

    Objective The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress, and BI-1-/- mice exhibit increased sensitivity to tissue damage. The purpose of this study was to investigate the role of BI-1 in the pathogenesis of chronic mild stress (CMS)-induced depression-like behaviors in BI-1-/- mice. Methods We delivered CMS for 2 or 6 weeks in BI-1-knockout and wild-type mice. Control groups of BI-1-knockout and wild-type mice were le...

  12. Distribution of the alphaGal- and the non-alphaGal T-antigens in the pig kidney: potential targets for rejection in pig-to-man xenotransplantation

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Mikkelsen, Hanne B

    2008-01-01

    xenoantigens in organs contemplated for xenotransplantation. Here we compare the distribution in pig kidney of antigens important in xenograft destruction, namely the Galalpha1-3Gal (alphaGal) glycans, with the localization of the T-antigen (Galbeta1-3GalNAc). The alpha-galactose-specific lectin Griffonia...

  13. Tendon fascicle gliding in wild type, heterozygous, and lubricin knockout mice.

    Science.gov (United States)

    Kohrs, Ross T; Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D; Zhang, Ling; Warman, Matthew L; An, Kai-Nan; Amadio, Peter C

    2011-03-01

    The objective of this study was to investigate the role of lubricin in the lubrication of tendon fascicles. Lubricin, a glycoprotein, lubricates cartilage and tendon surfaces, but the function of lubricin within the tendon fascicle is unclear. We developed a novel method to assess the gliding resistance of a single fascicle in a mouse tail model and used it to test the hypothesis that gliding resistance would be increased in lubricin knockout mice. Thirty-six mouse tails were used from 12 wild type, 12 heterozygous, and 12 lubricin knockout mice. A 15 mm long fascicle segment was pulled proximally after being divided distally. The peak resistance during fascicle pullout and the fascicle perimeter were measured. Lubricin expression was evaluated by immunohistochemistry. The peak gliding resistance in the lubricin knockout mice was significantly higher than in the wild type (p < 0.05). Fascicles from heterozygous mice were intermediate in value, but not significantly different from either wild type or lubricin knockout fascicles in peak gliding resistance. No significant difference was found in fascicle perimeter among the three groups. No correlation was observed between fascicle perimeter and gliding resistance. While lubricin was detected by immunostaining on the fascicle surface in wild type and heterozygous mice, lubricin was not detectable in the tendons of knockout mice. We conclude that the absence of lubricin is associated with increased interfascicular friction and that lubricin may play an important role in interfascicular lubrication.

  14. Immunopathologic effects associated with Sarcocystis neurona-infected interferon-gamma knockout mice

    OpenAIRE

    Witonsky, S. G.; Gogal, R. M.; Duncan, R. B.; Lindsay, D S

    2003-01-01

    Interferon-gamma knockout (IFN-gamma KO) mice were infected with Sarcocystis neurona merozoites to characterize the immunopathology associated with infection. By day 14 postinfection (PI), mice developed splenomegaly and lymphadenopathy, characterized by marked lymphoid hyperplasia with increased numbers of germinal centers. Additional histopathologic changes included increased extramedullary hematopoiesis, multifocal mixed inflammatory infiltrates in the liver, perivascular infiltrate of the...

  15. Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Hijzen, T.H.; Oosting, R.S.; Maes, R.A.A.; Gugten, J. van der; Olivier, B.

    2002-01-01

    5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-

  16. MR histology of advanced atherosclerotic lesions of ApoE- knockout mice

    Science.gov (United States)

    Naumova, A.; Yarnykh, V.; Ferguson, M.; Rosenfeld, M.; Yuan, C.

    2016-02-01

    The purposes of this study were to examine the feasibility of determining the composition of advanced atherosclerotic plaques in fixed ApoE-knockout mice and to develop a time-efficient microimaging protocol for MR histological imaging on mice. Five formalin-fixed transgenic ApoE-knockout mice were imaged at the 9.4T Bruker BioSpec MR scanner using 3D spoiled gradient-echo sequence with an isotropic field of view of 24 mm3; TR 20.8 ms; TE 2.6 ms; flip angle 20°, resulted voxel size 47 × 63 × 94 pm3. MRI examination has shown that advanced atherosclerotic lesions of aorta, innominate and carotid arteries in ApoE-knockout mice are characterized by high calcification and presence of the large fibrofatty nodules. MRI quantification of atherosclerotic lesion components corresponded to histological assessment of plaque composition with a correlation coefficient of 0.98.

  17. A simplified method to prepare PCR template DNA for screening of transgenic and knockout mice.

    Science.gov (United States)

    Ren, S; Li, M; Cai, H; Hudgins, S; Furth, P A

    2001-03-01

    Polymerase chain reaction (PCR) amplification of DNA is the most widely used technique for screening of large numbers of genetically engineered transgenic or knockout mice (Mus musculus). In this report, we present a new DNA preparation procedure for running diagnostic PCR. In this procedure, mouse ear tissue was used directly for PCR after the tissue underwent brief digestion in a solution containing only proteinase K. Using this method, we have successfully screened several lines of single, double, and triple transgenic and knockout mice. The results are reliable and reproducible. The advantage of this new method is that DNA purification by organic extraction or isolation kit was omitted. DNA purification is the limiting factor in terms of time and money when screening transgenic and knockout mice by PCR. In addition, using ear instead of tail tissue can reduce distress of animals because the samples can be obtained when the mice are labeled by ear punch.

  18. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  19. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  20. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Jensen, Anders Asbjørn;

    2009-01-01

    . Analogously to the closely related calcium-sensing receptor, GPRC6A has been proposed to function as a metabolic sensor of Ca2+ and amino acids in bone and other tissues. In the present study, we have generated the first GPRC6A knockout mice and studied their phenotype with particular focus on bone...... homeostasis. The generated GPRC6A knockout mice are viable and fertile, develop normally and exhibit no significant differences in body weight compared to wild type littermates. Assessment of bone mineral density, histomorphometry and bone metabolism demonstrated no significant differences between 13-week......-old knockout and wild type mice. In conclusion, our data do not support a role for GPRC6A in normal bone physiology....

  1. True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase (QPRT) Knockout Mice.

    Science.gov (United States)

    Shibata, Katsumi

    2015-01-01

    Pyridine nucleotide coenzymes (PNCs) are involved in over 500 enzyme reactions. PNCs are biosynthesized from the amino acid L-tryptophan (L-Trp), as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-) or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and the qprt(+/-) mice. On the other hand, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (pniacin such as blood and liver NAD concentrations were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of quinolinic acid was greater in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice (pniacin-deficient mice.

  2. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    2004-01-01

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  3. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H;

    2011-01-01

    Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT...

  4. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.

    NARCIS (Netherlands)

    Renkema, K.Y.R.; Nijenhuis, T.; Eerden, B.C. van der; Kemp, J.W.C.M. van der; Weinans, H.; Leeuwen, J.P.P.M. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2005-01-01

    Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalc

  5. Key Regulators of Mitochondrial Biogenesis are Increased in Kidneys of Growth Hormone Receptor Knockout (GHRKO) Mice

    OpenAIRE

    Gesing, Adam; Bartke, Andrzej; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Masternak, Michal M.

    2011-01-01

    The growth hormone (GH) receptor knockout mice (GHRKO) are remarkably long-lived and highly insulin sensitive. Alterations in mitochondrial biogenesis are associated with aging and various metabolic derangements. We have previously demonstrated increased gene expression of key regulators of mitochondriogenesis in kidneys, hearts and skeletal muscles of GHRKO mice. The aim of the present study was to quantify the protein levels of the following regulators of mitochondriogenesis: peroxisome pro...

  6. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice

    OpenAIRE

    Wojtaszewski, Jørgen F. P.; Higaki, Yasuki; Hirshman, Michael F.; Michael, M. Dodson; Dufresne, Scott D.; Kahn, C. Ronald; Goodyear, Laurie J.

    1999-01-01

    Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no si...

  7. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  8. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  9. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    Energy Technology Data Exchange (ETDEWEB)

    Antonson, P., E-mail: per.antonson@ki.se [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Omoto, Y.; Humire, P. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Gustafsson, J.-A. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established a new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  10. Gliosis after traumatic brain injury in conditional ephrinB2-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIU Ling; CHEN Xiao-lin; YANG Jian-kai; REN Ze-guang; WANG Shuo

    2012-01-01

    Background In response to the injury of the central nervous system (CNS),the astrocytes upregulate the expression of glial fibrillary acidic protein (GFAP),which largely contributes to the reactive gliosis after brain injury.The regulatory mechanism of this process is still not clear.In this study,we aimed to compare the ephrin-B2 deficient mice with the wild type ones with regard to gliosis after traumatic brain injury.Methods We generated ephrin-B2 knockout mice specifically in CNS astrocytes.Twelve mice from this gene-knockout strain were randomly selected along with twelve mice from the wild type littermates.In both groups,a modified controlled cortical impact injury model was applied to create a closed traumatic brain injury.Twenty-eight days after the injury,Nissl staining and GFAP immunofluorescence staining were used to compare the brain atrophy and GFAP immunoreactivity between the two groups.All the data were analyzed by t-test for between-group comparison.Results We successfully set up the conditional ephrin-B2 knockout mice strain,which was confirmed by genotyping and ephrin-B2/GFAP double staining.These mice developed normally without apparent abnormality in general appearance.Twenty-eight days following brain injury,histopathology revealed by immunohistochemistry showed different degrees of cerebral injuries in both groups.Compared with wild-type group,the ephrin-B2 knockout group exhibited less brain atrophy ratio for the injured hemispheres (P=0.005) and hippocampus (P=0.027).Also the wild-type group demonstrated greater GFAP immunoreactivity increment within hippocampal regions (P=0.008).Conclusions The establishment of conditional ephrin-B2 knockout mice provides us with a new way to explore the role of ephrin-B2 in astrocytes.Our findings revealed less atrophy and GFAP immunoreactivity in the knockout mice strain after traumatic brain injury,which implied ephrin-B2 could be one of the promoters to upregulate gliosis following brain injury.

  11. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available BACKGROUND: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5. METHODS AND FINDINGS: To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS: This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the

  12. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  13. Memory formation and retention are affected in adult miR-132/212 knockout mice.

    Science.gov (United States)

    Hernandez-Rapp, Julia; Smith, Pascal Y; Filali, Mohammed; Goupil, Claudia; Planel, Emmanuel; Magill, Stephen T; Goodman, Richard H; Hébert, Sébastien S

    2015-01-01

    The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.

  14. Generation and characterisation of keratin 7 (K7 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aileen Sandilands

    Full Text Available Keratin 7 (K7 is a Type II member of the keratin superfamily and despite its widespread expression in different types of simple and transitional epithelia, its functional role in vivo remains elusive, in part due to the lack of any appropriate mouse models or any human diseases that are associated with KRT7 gene mutations. Using conventional gene targeting in mouse embryonic stem cells, we report here the generation and characterisation of the first K7 knockout mouse. Loss of K7 led to increased proliferation of the bladder urothelium although this was not associated with hyperplasia. K18, a presumptive type I assembly partner for K7, showed reduced expression in the bladder whereas K20, a marker of the terminally differentiated superficial urothelial cells was transcriptionally up-regulated. No other epithelia were seen to be adversely affected by the loss of K7 and western blot and immunofluorescence microscopy analysis revealed that the expression of K8, K18, K19 and K20 were not altered in the absence of K7, with the exception of the kidney where there was reduced K18 expression.

  15. Antidepressant-like effect of venlafaxine is abolished in µ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Fujiwara, Shunsuke; Fujiwara, Masayuki; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2010-01-01

    Although the opioid system is known to modulate depression-like behaviors, its role in the effects of antidepressants is not yet clear. We investigated the role of µ-opioid receptors (MOPs) in the effects of venlafaxine, a serotonin and norepinephrine reuptake inhibitor, in the forced swim test using MOP-knockout (KO) mice. Venlafaxine reduced immobility time in wildtype mice (C57BL/6J), but not in MOP-KO mice, although no significant effects were observed on locomotor activity. These results...

  16. Reduced Bone Mineral Density and Bone Metabolism in Aquaporin-1 Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    WU Qing-tian; MA Qing-jie; HE Cheng-yan; WANG Cai-xia; GAO Shi; HOU Xia; MA Tong-hui

    2007-01-01

    An overt phenotype of aquaporin-1 knockout(AQP1 ko) mice is growth retardation, suggesting possible defects in bone development and metabolism. In the present study, we analyzed the bone mineral density(BMD), bone calcium and phosphorus contents, and bone metabolism in an AQP1 ko mouse model. The BMD of femurs in AQP1 ko mice was significantly lower than that of litter-matched wildtype mice as measured by dual energy X-ray absorptiometry. Consistently, the contents of bone total calcium and phosphorus were also significantly lower in AQP1 ko mice. The reduced BMD caused by AQP1 deficiency mainly affect male mice. Bone metabolic activity, as indicated by 99mTc-MDP absorption measurements, was remarkably reduced in AQP1 ko mice. These results provide the first evidence that AQP1 play an important role in bone structure and metabolism.

  17. Tetranectin Knockout Mice Develop Features of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Er-song Wang

    2014-07-01

    Full Text Available Background/Aims: Aggregation of insoluble α-synuclein to form Lewy bodies (LBs may contribute to the selective loss of midbrain dopaminergic neurons in Parkinson disease (PD. Lack of robust animal models has impeded elucidation of the molecular mechanisms of LB formation and other critical aspects of PD pathogenesis. Methods: We established a mouse model with targeted deletion of the plasminogen-binding protein tetranectin (TN gene (TN-/- and measured the behavioral and histopathological features of PD. Results: Aged (15-to 20-month-old TN-/- mice displayed motor deficits resembling PD symptoms, including limb rigidity and both slower ambulation (bradykinesia and reduced rearing activity in the open field. In addition, these mice exhibited more numerous α-synuclein-positive LB-like inclusions within the substantia nigra pars compacta (SNc and reduced numbers of SNc dopaminergic neurons than age-matched wild type (WT mice. These pathological changes were also accompanied by loss of dopamine terminals in the dorsal striatum. Conclusion: The TN-/- mouse exhibits several key features of PD and so may be a valuable model for studying LB formation and testing candidate neuroprotective therapies for PD and other synucleinopathies.

  18. Role of connexin 32 in acetaminophen toxicity in a knockout mice model.

    Science.gov (United States)

    Igarashi, Isao; Maejima, Takanori; Kai, Kiyonori; Arakawa, Shingo; Teranishi, Munehiro; Sanbuissho, Atsushi

    2014-03-01

    Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.

  19. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    Science.gov (United States)

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  20. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  1. Time course degeneration and expression of glial fibrillary acidic protein in mer-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-ying; WANG Huai-zhou; WANG Ning-li

    2010-01-01

    Background Muller cells in the mammalian retina normally express low levels of glial fibrillary acidic protein (GFAP); however, its expression is upregulated in response to the loss of retinal neurons. The change in expression of GFAP is one of the earliest indicators of retinal damage and is correlated with the time course of disease. The aim of this study was to investigate the time course of degeneration and the expression of GFAP in the retina of mer knockout mice. Methods A total of 30 mer knockout mice, aged from 15-20 days to 1 year and 32 age-matched wild type mice as controls were tested. Immunohistochemistry was used to show the expression of GFAP in the central and peripheral retina of mer knockout and control mice at postnatal age of 15 days (P15d), 20 days (P20d), 4 weeks (P4w), 6 weeks (P6w), 8 weeks (P8w), 3 months (P3m), 6 months (P6m) and 1 years (P1y).Results The expression of GFAP in the central and peripheral retina of wild type mice was limited to the retinal ganglion cell and nerve fiber layers. In the central retina of mer knockout mice, GFAP expression was upregulated at P4w and GFAP immunolabelling penetrates across the entire thickness of the retina at P8w; whereas in the peripheral retina, the GFAP expression was upregulated at P20d and GFAP immunolabelling penetrates the entire retina after P4w. Conclusions Increased expression of GFAP in Muller cells of mer knockout mice occur at P20d in the peripheral retina and P4w in the central retina. GFAP expression in Muller cells appears to be a secondary response to the loss of retinal neurons. Increased expression of GFAP may occur prior to any detectable morphological changes in the retina. This study suggests that the loss of retinal neurons may begin in the early stages of retinitis pigmentosa, prior to the discovery of any morphological changes in the retina.

  2. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice.

    Directory of Open Access Journals (Sweden)

    Cecilia M Shing

    Full Text Available Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p0.05. Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p0.05. Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.

  3. Outcome of urogenital infection with Chlamydia muridarum in CD-14 gene knockout mice

    Directory of Open Access Journals (Sweden)

    Ramsey Kyle H

    2006-09-01

    Full Text Available Abstract Background CD14 has been postulated to play a role in chlamydial immunity and immunopathology. There is evidence to support this role in human infections but its function in a mouse model has not been investigated. Methods Female CD14 gene knockout and C57BL/6J wild type mice were infected intravaginally with Chlamydia muridarum. The infection course was monitored by detection of viable chlamydiae from serially collected cervical-vaginal swabs. The sequela of tubal factor infertility was assessed using hydrosalpinx formation as a surrogate marker. Results A significantly abbreviated infection course was observed in the CD14 gene knockout mice but hydrosalpinx formation occurred at similar rates between the two groups. Conclusion Involvement of CD14 during chlamydial infection impedes infection resolution but this does not affect the sequela of infertility as assessed by hydrosalpinx formation.

  4. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    OpenAIRE

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. H...

  5. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2009-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. M...

  6. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition

    OpenAIRE

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-01-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ tha...

  7. Voluntary Exercise Decreases Atherosclerosis in Nephrectomised ApoE Knockout Mice

    OpenAIRE

    Shing, Cecilia M.; Fassett, Robert G.; Peake, Jonathan M.; Coombes, Jeff S.

    2015-01-01

    Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Anima...

  8. Lack of stress responses to long-term effects of corticosterone in Caps2 knockout mice

    OpenAIRE

    MISHIMA, Yuriko; Shinoda, Yo; Sadakata, Tetsushi; Kojima, Masami; Wakana, Shigeharu; Furuichi, Teiichi

    2015-01-01

    Chronic stress is associated with anxiety and depressive disorders, and can cause weight gain. Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in insulin release. Caps2 knockout (KO) mice exhibit decreased body weight, reduced glucose-induced insulin release, and abnormal psychiatric behaviors. We chronically administered the stress hormone corticosterone (CORT), which induces anxiety/depressive-like behavior and normally increases plasma insulin levels, via the drinking ...

  9. Cocaine Self-Administration in Dopamine D3 Receptor Knockout Mice

    OpenAIRE

    Caine, S. Barak; Thomsen, Morgane; Barrett, Andrew C.; Collins, Gregory T.; Butler, Paul; Grundt, Peter; Newman, Amy Hauck; Xu, Ming

    2012-01-01

    The dopamine D3 receptor has received attention over the last two decades as a target for medications development for substance abuse disorders. Results have remained mixed. Despite emergence of more D3-selective ligands, possible attribution of observed effects to D2 receptors remains a concern. Knockout mice may help shed light on mechanisms. Here we evaluated the effect of constitutive D3 receptor inactivation (“knockout”) on the reinforcing effects of cocaine. We tested D3 wild-type (WT),...

  10. What Have We Learned from Glycosyltransferase Knockouts in Mice?

    Science.gov (United States)

    Stanley, Pamela

    2016-08-14

    There are five major classes of glycan including N- and O-glycans, glycosaminoglycans, glycosphingolipids, and glycophosphatidylinositol anchors, all expressed at the molecular frontier of each mammalian cell. Numerous biological consequences of altering the expression of mammalian glycans are understood at a mechanistic level, but many more remain to be characterized. Mouse mutants with deleted, defective, or misexpressed genes that encode activities necessary for glycosylation have led the way to identifying key functions of glycans in biology. However, with the advent of exome sequencing, humans with mutations in genes involved in glycosylation are also revealing specific requirements for glycans in mammalian development. The aim of this review is to summarize glycosylation genes that are necessary for mouse embryonic development, pathway-specific glycosylation genes whose deletion leads to postnatal morbidity, and glycosylation genes for which effects are mild, but perturbation of the organism may reveal functional consequences. General strategies for generating and interpreting the phenotype of mice with glycosylation defects are discussed in relation to human congenital disorders of glycosylation (CDG). PMID:27040397

  11. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain.

    Directory of Open Access Journals (Sweden)

    Jacinthe Gingras

    Full Text Available Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP: compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund's adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.

  12. Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain

    OpenAIRE

    Jacinthe Gingras; Sarah Smith; Matson, David J.; Danielle Johnson; Kim Nye; Lauren Couture; Elma Feric; Ruoyuan Yin; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Annika B Malmberg; McDonough, Stefan I.

    2014-01-01

    Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knock...

  13. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa;

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotection...... and neuroproliferation. In this work, we aimed at evaluating TTR neuroprotective effect against an excitotoxic insult that is known to be prevented by NPY action. We show that despite a putative neuroprotective role of TTR, hippocampal slice cultures from TTR KO mice display a decreased susceptibility to AMPA......-induced neurodegeneration. We also suggest that increased NPY levels in TTR KO mice are not associated with increased cell proliferation in the dentate gyrus or subventricular zone. In summary, the alleged neuroprotective role of TTR in the nervous system should be regarded with caution and should not be generalized to all...

  14. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  15. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice.

    Science.gov (United States)

    Ii, Hiromi; Yokoyama, Naoki; Yoshida, Shintaro; Tsutsumi, Kae; Hatakeyama, Shinji; Sato, Takashi; Ishihara, Keiichi; Akiba, Satoshi

    2009-12-01

    Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A(2) (IVA-PLA(2)), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA(2)-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA(2)-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA(2)-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA(2)-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA(2)-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E(2), which has a fat storage effect, was lower in IVA-PLA(2)-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA(2) alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA(2) metabolites, such as prostaglandin E(2). IVA-PLA(2) could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.

  16. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis.

    Science.gov (United States)

    Iff, Joël; Wang, Wei; Sajic, Tatjana; Oudry, Nathalie; Gueneau, Estelle; Hopfgartner, Gérard; Varesio, Emmanuel; Szanto, Ildiko

    2009-10-01

    Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis. PMID:19663508

  17. The mechanical properties of tail tendon fascicles from lubricin knockout, wild type and heterozygous mice.

    Science.gov (United States)

    Reuvers, John; Thoreson, Andrew R; Zhao, Chunfeng; Zhang, Ling; Jay, Gregory D; An, Kai-Nan; Warman, Matthew L; Amadio, Peter C

    2011-10-01

    The purpose of this study was to analyze the effects of lubricin on tendon stiffness and viscoelasticity. A total of 36 mice were tested with 12 mice in each of the following groups: lubricin knock-out ⁻/⁻, heterozygous ⁺/⁻ and wild-type ⁺/⁺. A ramp test was used to determine the elastic modulus by pulling the fascicles to 2.5% strain amplitude at a rate of 0.05 mm/s. Then, followed by a relaxation test that pulled the fascicles to 5% strain amplitude at a rate of 2 mm/s. The fascicles were allowed to relax for 2 min at the maximum strain and a single-cycle relaxation ratio was used to characterize viscoelastic properties. There was no significant difference in the Young's modulus between the three groups (p > 0.05), but the knockout mice had a significantly (p < 0.05) lower relaxation ratio than the wild type mice. Based on these data, we concluded that lubricin expression has an effect on the viscoelastic properties of tendon fascicles. The clinical significance of this finding, if any, remains to be demonstrated.

  18. Acid sphingomyelinase gene knockout ameliorates hyperhomocysteinemic glomerular injury in mice lacking cystathionine-β-synthase.

    Directory of Open Access Journals (Sweden)

    Krishna M Boini

    Full Text Available Acid sphingomyelinase (ASM has been implicated in the development of hyperhomocysteinemia (hHcys-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs and Asm mouse gene by cross breeding Cbs(+/- and Asm(+/- mice. Given that the homozygotes of Cbs(-/-/Asm(-/- mice could not survive for 3 weeks. Cbs(+/-/Asm(+/+, Cbs(+/-/Asm(+/- and Cbs(+/-/Asm(-/- as well as their Cbs wild type littermates were used to study the role of Asm(-/- under a background of Cbs(+/- with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs(+/- mice with different copies of Asm gene compared to Cbs(+/+ mice with different Asm gene copies. Cbs(+/-/Asm(+/+ mice had significantly increased renal Asm activity, ceramide production and O(2.(- level compared to Cbs(+/+/Asm(+/+, while Cbs(+/-/Asm(-/- mice showed significantly reduced renal Asm activity, ceramide production and O(2.(- level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs(+/-/Asm(-/- mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O(2.(- production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme

  19. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    Science.gov (United States)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  20. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Koshimizu Hisatsugu

    2012-04-01

    Full Text Available Abstract Background In the central nervous system (CNS, the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. Results In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. Conclusions These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.

  1. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  2. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B;

    2013-01-01

    GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions...... in energy metabolism are largely unexplored. Based on GPRC6A's expression pattern and ligand preferences, we hypothesize that the receptor may impact energy metabolism via regulating physical activity levels. Thus, in the present study, we exposed GPRC6A receptor KO mice and their wild-type (WT) littermates...... running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A...

  3. The Effect of Different Photoperiods in Circadian Rhythms of Per3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    D. S. Pereira

    2014-01-01

    Full Text Available The aim of this study was to analyse the circadian behavioural responses of mice carrying a functional knockout of the Per3 gene (Per3−/− to different light : dark (L : D cycles. Male adult wild-type (WT and Per3−/− mice were kept under 12-hour light : 12-hour dark conditions (12L : 12D and then transferred to either a short or long photoperiod and subsequently released into total darkness. All mice were exposed to both conditions, and behavioural activity data were acquired through running wheel activity and analysed for circadian characteristics during these conditions. We observed that, during the transition from 12L : 12D to 16L : 8D, Per3−/− mice take approximately one additional day to synchronise to the new L : D cycle compared to WT mice. Under these long photoperiod conditions, Per3−/− mice were more active in the light phase. Our results suggest that Per3−/− mice are less sensitive to light. The data presented here provides further evidence that Per3 is involved in the suppression of behavioural activity in direct response to light.

  4. CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Manicassamy, Santhakumar; Ramesh, Ganesan

    2013-11-15

    Organ cross talk exists in many diseases of the human and animal models of human diseases. A recent study demonstrated that inflammatory mediators can cause acute kidney injury and neutrophil infiltration in a mouse model of dextran sodium sulfate (DSS)-colitis. However, the chemokines and their receptors that may mediate distant organ effects in colitis are unknown. We hypothesized that keratinocyte chemoattractant (KC)/IL-8 receptor chemokine (C-X-C motif) ligand 2 (CXCL2) mediates DSS-colitis-induced acute kidney injury. Consistent with our hypothesis, wild-type (WT) mice developed severe colitis with DSS treatment, which was associated with inflammatory cytokine and chemokine expression and neutrophil infiltration in the colon. DSS-colitis in WT was accompanied by acute kidney injury and enhanced expression of inflammatory cytokines in the kidney. However, CXCR2 knockout mice were protected against DSS-colitis as well as acute kidney injury. Moreover, the expression of cytokines and chemokines and neutrophil infiltration was blunted in CXCR2 knockout mice in the colon and kidney. Administration of recombinant KC exacerbated DSS-colitis-induced acute kidney injury. Our results suggest that KC/IL-8 and its receptor CXCR2 are critical and major mediators of organ cross talk in DSS colitis and neutralization of CXCR2 will help to reduce the incidence of acute kidney injury due to ulcerative colitis and Crohn's disease in humans.

  5. Increased adipose tissue in male and female estrogen receptor-α knockout mice

    OpenAIRE

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  6. Impaired spine formation and learning in GPCR kinase interacting protein-1 (GIT1) knockout mice

    OpenAIRE

    Menon, Prashanthi; Deane, Rashid; Sagare, Abhay; Lane, Steven M.; Zarcone, Troy J; O’Dell, Michael R.; Yan, Chen; Zlokovic, Berislav V.; Berk, Bradford C.

    2010-01-01

    The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells (VSMC). GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that deletion o...

  7. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background

    OpenAIRE

    Ding, Qi; Sethna, Ferzin; Wang, Hongbing

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 K...

  8. Neuronal conditional knockout of NRSF decreases vulnerability to seizures induced by pentylenetetrazol in mice

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Zhejin Sheng; Lei Cai; Kai Zhao; Yu Tian; Jian Fei

    2012-01-01

    Neuron restrictive silencer factor (NRSF),also known as repressor element-1 silencing transcription factor,has been reported to modulate neuronal excitability and acts as endogenous anticonvulsant in kainic acid-induced or kindling-evoked seizure activity.However,whether NRSF functions in pentylenetetrazol (PTZ)-induced seizure activity has never been studied.To investigate the role of endogenous NRSF in the epileptogenesis induced by PTZ,in our experiment,NRSF neuronal conditional knockout mice (NRSF cKO) were adopted,in which NRSF was specifically deleted in neurons by the Cre-loxP system.Seizure threshold for PTZ,including the dose-response convulsions and the threshold dose,was compared between NRSF cKO and control mice.The threshold dose of PTZ that induced clonic and tonic seizures was significantly higher in NRSF cKO mice compared with the control.Similarly,the median lethal dose (LD50) of PTZ in NRSF cKO mice was also considerably higher than that of the control mice.These results revealed that NRSF cKO mice are of higher resistance to convulsions induced by PTZ.Our work first demonstrated the function of NRSF in PTZ-induced seizure and provided new evidence for differential pathways in diverse types of seizure.

  9. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects.

    Directory of Open Access Journals (Sweden)

    Johanne Germain

    Full Text Available Mutations in the human X-linked doublecortin gene (DCX cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.

  10. Schmallenberg virus infection of adult type I interferon receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Schmallenberg virus (SBV, a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/- mice are a suitable small animal model for SBV. Twenty IFNAR(-/- mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/- mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.

  11. Hmga1/Hmga2 double knock-out mice display a “superpygmy” phenotype

    Directory of Open Access Journals (Sweden)

    Antonella Federico

    2014-04-01

    Full Text Available The HMGA1 and HMGA2 genes code for proteins belonging to the High Mobility Group A family. Several genes are negatively or positively regulated by both these proteins, but a number of genes are specifically regulated by only one of them. Indeed, knock-out of the Hmga1 and Hmga2 genes leads to different phenotypes: cardiac hypertrophy and type 2 diabetes in the former case, and a large reduction in body size and amount of fat tissue in the latter case. Therefore, to better elucidate the functions of the Hmga genes, we crossed Hmga1-null mice with mice null for Hmga2. The Hmga1−/−/Hmga2−/− mice showed reduced vitality and a very small size (75% smaller than the wild-type mice; they were even smaller than pygmy Hmga2-null mice. The drastic reduction in E2F1 activity, and consequently in the expression of the E2F-dependent genes involved in cell cycle regulation, likely accounts for some phenotypic features of the Hmga1−/−/Hmga2−/− mice.

  12. Decreased pulmonary inflammation after ethanol exposure and burn injury in intercellular adhesion molecule-1 knockout mice.

    Science.gov (United States)

    Bird, Melanie D; Morgan, Michelle O; Ramirez, Luis; Yong, Sherri; Kovacs, Elizabeth J

    2010-01-01

    Clinical and laboratory evidence suggests that alcohol consumption dysregulates immune function. Burn patients who consume alcohol before their injuries demonstrate higher rates of morbidity and mortality, including acute respiratory distress syndrome, than patients without alcohol at the time of injury. Our laboratory observed higher levels of proinflammatory cytokines and leukocyte infiltration in the lungs of mice after ethanol exposure and burn injury than with either insult alone. To understand the mechanism of the increased pulmonary inflammatory response in mice treated with ethanol and burn injury, we investigated the role of intercellular adhesion molecule (ICAM)-1. Wild-type and ICAM-1 knockout (KO) mice were treated with vehicle or ethanol and subsequently given a sham or burn injury. Twenty-four hours postinjury, lungs were harvested and analyzed for indices of inflammation. Higher numbers of neutrophils were observed in the lungs of wild-type mice after burn and burn with ethanol treatment. This increase in pulmonary inflammatory cell accumulation was significantly lower in the KO mice. In addition, levels of KC, interleukin-1beta, and interleukin-6 in the lung were decreased in the ICAM-1 KO mice after ethanol exposure and burn injury. Interestingly, no differences were observed in serum or lung tissue content of soluble ICAM-1 24 hours postinjury. These data suggest that upregulation of adhesion molecules such as ICAM-1 on the vascular endothelium may play a critical role in the excessive inflammation seen after ethanol exposure and burn injury.

  13. Complexin 1 knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal.

    Science.gov (United States)

    Drew, Cheney J G; Kyd, Rachel J; Morton, A Jennifer

    2007-10-01

    Complexins are presynaptic proteins that modulate neurotransmitter release. Abnormal expression of complexin 1 (Cplx1) is seen in several neurodegenerative and psychiatric disorders in which disturbed social behaviour is commonplace. These include Parkinsons's disease, Alzheimer's disease, schizophrenia, major depressive illness and bipolar disorder. We wondered whether changes in Cplx1 expression contribute to the psychiatric components of the diseases in which Cplx1 is dysregulated. To investigate this, we examined the cognitive and social behaviours of complexin 1 knockout mice (Cplx1(-/-)) mice. Cplx1(-/-) mice have a profound ataxia that limits their ability to perform co-ordinated motor tasks. Nevertheless, when we taught juvenile Cplx1(-/-) mice to swim, they showed no evidence of cognitive impairment in the two-choice swim tank. In contrast, although olfactory discrimination in Cplx1(-/-) mice was normal, Cplx1(-/-) mice failed in the social transmission of food preference task, another cognitive paradigm. This was due to abnormal social interactions rather than cognitive impairments, increased anxiety or neophobia. When we tested social behaviour directly, Cplx1(-/-) mice failed to demonstrate a preference for social novelty. Further, in a resident-intruder paradigm, male Cplx1(-/-) mice failed to show the aggressive behaviour that is typical of wild-type males towards an intruder mouse. Together our results show that in addition to the severe motor and exploratory deficits already described, Cplx1(-/-) mice have pronounced deficits in social behaviours. Abnormalities in complexin 1 levels in the brain may therefore contribute to the psycho-social aspects of human diseases in which this protein is dysregulated.

  14. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  15. Local immunosuppressive microenvironment enhances migration of melanoma cells to lungs in DJ-1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chien

    Full Text Available DJ-1 is an oncoprotein that promotes survival of cancer cells through anti-apoptosis. However, DJ-1 also plays a role in regulating IL-1β expression, and whether inflammatory microenvironment built by dysregulated DJ-1 affects cancer progression is still unclear. This study thus aimed to compare the metastatic abilities of melanoma cells in wild-type (WT and DJ-1 knockout (KO mice, and to check whether inflammatory microenvironment built in DJ-1 KO mice plays a role in migration of cancer cells to lungs. First, B16F10 melanoma cells (at 6 × 10(4 were injected into the femoral vein of mice, and formation of lung nodules, levels of lung IL-1β and serum cytokines, and accumulation of myeloid-derived suppressor cells (MDSCs were compared between WT and DJ-1 KO mice. Second, the cancer-bearing mice were treated with an interleukin-1 beta (IL-1β neutralizing antibody to see whether IL-1β is involved in the cancer migration. Finally, cultured RAW 264.7 macrophage and B16F10 melanoma cells were respectively treated with DJ-1 shRNA and recombinant IL-1β to explore underlying molecular mechanisms. Our results showed that IL-1β enhanced survival and colony formation of cultured melanoma cells, and that IL-1β levels were elevated both in DJ-1 KO mice and in cultured macrophage cells with DJ-1 knockdown. The elevated IL-1β correlated with higher accumulation of immunosuppressive MDSCs and formation of melanoma module in the lung of DJ-1 KO mice, and both can be decreased by treating mice with IL-1β neutralizing antibodies. Taken together, these results indicate that immunosuppressive tissue microenvironment built in DJ-1 KO mice can enhance lung migration of cancer, and IL-1β plays an important role in promoting the cancer migration.

  16. Mood and memory-associated behaviors in neuropeptide Y5 knockout mice.

    Science.gov (United States)

    Ito, Masanobu; Dumont, Yvan; Quirion, Remi

    2013-04-01

    Recent data led to suggest that in addition to Y1 and Y2 subtypes, Y5 receptors may be involved in mood-related behaviors (Morales-Medina et al., 2010). In the present study, using a battery of behavioral tests to assess anxiety and depression-like paradigms, as well as memory function, we evaluated the potential behavioral changes induced in mice devoid of Y5 receptors. Those paradigms were assessed using the open field (OF), elevated plus maze (EPM), forced swim test (FST), social interaction test (SI), object recognition test (ORT) and Morris water maze (MWM) in Y5 knockout (KO) mice and wild type (WT) animals. In the tests associated to anxiety related behaviors (OF, EPM and SI), no difference for locomotion and time spent in the lateral area of open field were observed between Y5 KO and WT mice. Similar results were observed for time and number of entries in open arms in EPM. Additionally, in SI test, Y5 KO mice spent same amount of time and number of entries in the stranger chamber as compared to WT animals. In the FST, as compared to WT mice, Y5 KO mice had similar immobility time on day 1. No memory dysfunction was observed in the MWM and ORT in Y5 KO mice, as compared to WT. Altogether these data suggest that under basal conditions Y5 KO and WT mice display similar mood behaviors and memory functions. However, as compared to WT, Y5 KO mice display increased grooming and rearing in the OF, lower ratio entries in open arms in the EPM and increased immobility time on the second day of the FST.

  17. Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice.

    Science.gov (United States)

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2013-09-15

    Ethyl tertiary butyl ether (ETBE) is biofuel additive recently used in Japan and some other countries. Limited evidence shows that ETBE has low toxicity. Acetaldehyde (AA), however, as one primary metabolite of ETBE, is clearly genotoxic and has been considered to be a potential carcinogen. The aim of this study was to evaluate the effects of ALDH2 gene on ETBE-induced genotoxicity and metabolism of its metabolites after inhalation exposure to ETBE. A group of wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice were exposed to 500ppm ETBE for 1-6h, and the blood concentrations of ETBE metabolites, including AA, tert-butyl alcohol and 2-methyl-1,2-propanediol, were measured. Another group of mice of WT and KO were exposed to 0, 500, 1750, or 5000ppm ETBE for 6h/day with 5 days per weeks for 13 weeks. Genotoxic effects of ETBE in these mice were measured by the alkaline comet assay, 8-hydroxyguanine DNA-glycosylase modified comet assay and micronucleus test. With short-term exposure to ETBE, the blood concentrations of all the three metabolites in KO mice were significantly higher than the corresponding concentrations of those in WT mice of both sexes. After subchronic exposure to ETBE, there was significant increase in DNA damage in a dose-dependent manner in KO male mice, while only 5000ppm exposure significantly increased DNA damage in male WT mice. Overall, there was a significant sex difference in genetic damage in both genetic types of mice. These results showed that ALDH2 is involved in the detoxification of ETBE and lack of enzyme activity may greatly increase the sensitivity to the genotoxic effects of ETBE, and male mice were more sensitive than females. PMID:23810710

  18. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  19. Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Sungchil Yang

    Full Text Available Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1 gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP is impaired in the developing auditory cortex of the Fmr1 knockout (KO mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.

  20. Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice.

    Science.gov (United States)

    Zhou, Xiang; Wang, Ying; Ongaro, Luisina; Boehm, Ulrich; Kaartinen, Vesa; Mishina, Yuji; Bernard, Daniel J

    2016-06-01

    Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro Here, we used a Cre-lox approach to assess BMPR1A's role in FSH synthesis in mice in vivo Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells. PMID:27029473

  1. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Tadafumi Yokoyama

    Full Text Available The Wiskott-Aldrich syndrome (WAS is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg obtained from Was gene knockout (WKO mice and found that their numbers were significantly lower in these mice compared to wild type (WT controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.

  2. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    Science.gov (United States)

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general. PMID:16740645

  3. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  4. Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor α knockout mice

    Institute of Scientific and Technical Information of China (English)

    Ming Chen; Chiuan-Ren Yeh; Chih-Rong Shyr; Hsiu-Hsia Lin; Jun Da; Shuyuan Yeh

    2012-01-01

    Early studies suggested that estrogen receptor alpha (ERα) is involved in estrogen-mediated imprinting effects in prostate development.We recently reported a more complete ERα knockout (KO) mouse model via mating β-actin Cretransgenic mice with floxed ERα mice.These ACTB-ERαKO male mice showed defects in prostatic branching morphogenesis,which demonstrates that ERα is necessary to maintain proliferative events in the prostate.However,within which prostate cell type ERα exerts those important functions remains to be elucidated.To address this,we have bred floxed ERα mice with either fibroblast-specific protein (FSP)-Cre or probasin-Cre transgenic mice to generate a mouse model that has deleted ERα gene in either stromal fibroblast (FSP-ERαKO) or epithelial (pes-ERαKO) prostate cells.We found that circulating testosterone and fertility were not altered in FSP-ERαKO and pes-ERαKO male mice.Prostates of FSP-ERαKO mice have less branching morphogenesis compared to that of wild.type littermates.Further analyses indicated that loss of stromal ERα leads to increased stromal apoptosis,reduced expression of insulin-like growth factor-1 (IGF-1) and FGF10,and increased expression of BMP4,Collectively,we have established the first in vivo prostate stromal and epithelial selective ERαKO mouse models and the results from these mice indicated that stromal fibroblast ERα plays important roles in prostatic branching morphogenesis via a paracrine fashion.Selective deletion of the ERα gene in mouse prostate epithelial cells by probasin-Cre does not affect the regular prostate development and homeostasis.

  5. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    Directory of Open Access Journals (Sweden)

    José Belizário

    2015-01-01

    Full Text Available Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents or intracellular (DNA damage and Ca2+ overload stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER, cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1, RIPK3, and the mixed kinase domain-like (MLKL for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.

  6. B lymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice

    OpenAIRE

    Montrasio, Fabio; Cozzio, Antonio; Flechsig, Eckhard; Rossi, Daniela; Klein, Michael A.; Rülicke, Thomas; Raeber, Alex J.; Vosshenrich, Christian A.J.; Proft, Juliane; Aguzzi, Adriano; Weissmann, Charles

    2001-01-01

    Prion replication in spleen and neuroinvasion after i.p. inoculation of mice is impaired in forms of immunodeficiency where mature B lymphocytes are lacking. In spleens of wild-type mice, infectivity is associated with B and T lymphocytes and stroma but not with circulating lymphocytes. We generated transgenic prion protein knockout mice overexpressing prion protein in B lymphocytes and found that they failed to accumulate prions in spleen after i.p. inoculation. W...

  7. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst

    2013-01-01

    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  8. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    Science.gov (United States)

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  9. Acute behavioral effects of nicotine in male and female HINT1 knockout mice.

    Science.gov (United States)

    Jackson, K J; Wang, J B; Barbier, E; Chen, X; Damaj, M I

    2012-11-01

    Human genetic association and brain expression studies, and mouse behavioral and molecular studies implicate a role for the histidine triad nucleotide-binding protein 1 (HINT1) in schizophrenia, bipolar disorder, depression and anxiety. The high comorbidity between smoking and psychiatric disorders, schizophrenia in particular, is well established. Associations with schizophrenia and HINT1 are also sex specific, with effects more predominant in males; however, it is unknown if sex differences associated with the gene extend to other phenotypes. Thus, in this study, using a battery of behavioral tests, we elucidated the role of HINT1 in acute nicotine-mediated behaviors using male and female HINT1 wild-type (+/+) and knockout (-/-) mice. The results show that male HINT1 -/- mice were less sensitive to acute nicotine-induced antinociception in the tail-flick, but not hot-plate test. At low nicotine doses, male and female HINT1 -/- mice were less sensitive to nicotine-induced hypomotility, although the effect was more pronounced in females. Baseline differences in locomotor activity observed in male HINT1 +/+ and -/- mice were absent in females. Nicotine did not produce an anxiolytic effect in male HINT1 -/- mice, but rather an anxiogenic response. Diazepam also failed to induce an anxiolytic response in these mice, suggesting a general anxiety phenotype not specific to nicotine. Differences in anxiety-like behavior were not observed in female mice. These results further support a role for HINT1 in nicotine-mediated behaviors and suggest that alterations in the gene may have differential effects on phenotype in males and females. PMID:22827509

  10. Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice

    Directory of Open Access Journals (Sweden)

    Mikiko eKayakabe

    2014-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological charactereistics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin and postsynaptic (GABA-A receptor α1 subunit (GABAARα1 and gephyrin molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar Purkinje cells is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of Purkinje cells in cognition and emotion.

  11. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine.

    Science.gov (United States)

    Schank, Jesse R; Ventura, Rossella; Puglisi-Allegra, Stefano; Alcaro, Antonio; Cole, Charlene D; Liles, L Cameron; Seeman, Philip; Weinshenker, David

    2006-10-01

    Multiple lines of evidence demonstrate that the noradrenergic system provides both direct and indirect excitatory drive onto midbrain dopamine (DA) neurons. We used DA beta-hydroxylase (DBH) knockout (Dbh-/-) mice that lack norepinephrine (NE) to determine the consequences of chronic NE deficiency on midbrain DA neuron function in vivo. Basal extracellular DA levels were significantly attenuated in the nucleus accumbens (NAc) and caudate putamen (CP), but not prefrontal cortex (PFC), of Dbh-/- mice, while amphetamine-induced DA release was absent in the NAc and attenuated in the CP and PFC. The decrease in dopaminergic tone was associated with a profound increase in the density of high-affinity state D1 and D2 DA receptors in the NAc and CP, while DA receptors in the PFC were relatively unaffected. As a behavioral consequence of these neurochemical changes, Dbh-/- mice were hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, as measured by locomotor activity and conditioned place preference. Antagonists of DA, but not 5-HT, receptors attenuated the locomotor hypersensitivity to cocaine in Dbh-/- mice. As DBH activity in humans is genetically controlled and the DBH inhibitor disulfiram has shown promise as a pharmacotherapy for cocaine dependence, these results have implications for the influence of genetic and pharmacological DBH inhibition on DA system function and drug addiction. PMID:16395294

  12. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease.

  13. Uncoupling between inflammatory and fibrotic responses to silica: evidence from MyD88 knockout mice.

    Directory of Open Access Journals (Sweden)

    Sandra Lo Re

    Full Text Available The exact implication of innate immunity in granuloma formation and irreversible lung fibrosis remains to be determined. In this study, we examined the lung inflammatory and fibrotic responses to silica in MyD88-knockout (KO mice. In comparison to wild-type (WT mice, we found that MyD88-KO animals developed attenuated lung inflammation, neutrophil accumulation and IL-1β release in response to silica. Granuloma formation was also less pronounced in MyD88-KO mice after silica. This limited inflammatory response was not accompanied by a concomitant attenuation of lung collagen accumulation after silica. Histological analyses revealed that while pulmonary fibrosis was localized in granulomas in WT animals, it was diffusely distributed throughout the parenchyma in MyD88-KO mice. Robust collagen accumulation was also observed in mice KO for several other components of innate immunity (IL-1R, IL-1, ASC, NALP3, IL-18R, IL-33R, TRIF, and TLR2-3-4,. We additionally show that pulmonary fibrosis in MyD88-KO mice was associated with the accumulation of pro-fibrotic regulatory T lymphocytes (T regs and pro-fibrotic cytokine expression (TGF-β, IL-10 and PDGF-B, not with T helper (Th 17 cell influx. Our findings indicate that the activation of MyD88-related innate immunity is central in the establishment of particle-induced lung inflammatory and granuloma responses. The development of lung fibrosis appears uncoupled from inflammation and may be orchestrated by a T reg-associated pathway.

  14. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hannah Mary Grayton

    Full Text Available BACKGROUND: Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α knockout (KO mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS: We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex. RESULTS: In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS: These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.

  15. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation.

    Science.gov (United States)

    Zielinski, Mark R; Taishi, Ping; Clinton, James M; Krueger, James M

    2012-06-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.

  16. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice

    Directory of Open Access Journals (Sweden)

    Cheng Deyun

    2008-12-01

    Full Text Available Abstract Background CD8+ T cells may participate in cigarette smoke (CS induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10 and CXCL9/Mig (monokine induced by IFN-γ are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO mice. Methods Mice (n = 8 per group were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT mice. Results Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10. Conclusion Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS.

  17. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition.

    Science.gov (United States)

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-12-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  18. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  19. CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse.

    Science.gov (United States)

    Bischoff, David S; Sakamoto, Taylor; Ishida, Kenji; Makhijani, Nalini S; Gruber, Helen E; Yamaguchi, Dean T

    2011-02-01

    The potential role of CXC chemokines bearing the glu-leu-arg (ELR) motif in bone repair was studied using a cranial defect (CD) model in mice lacking the CXC receptor (mCXCR(-/-) knockout mice), which is homologous to knockout of the human CXC receptor 2 (CXCR2) gene. During the inflammatory stage of bone repair, ELR CXC chemokines are released by inflammatory cells and serve as chemotactic and angiogenic factors. mCXCR(-/-) mice were smaller in weight and length from base of tail to nose tip, compared to WT littermates. DEXA analysis indicated that bone mineral density (BMD), bone mineral content (BMC), total area (TA), bone area (BA), and total tissue mass (TTM) were decreased in the mCXCR(-/-) mice at 6, 12, and 18 weeks of age. Trabecular bone characteristics in mCXCR(-/-) (% bone, connectivity, number, and thickness) were reduced, and trabecular spacing was increased as evidenced by μCT. There was no difference in bone formation or resorption indices measured by bone histomorphometry. Trabecular BMD was not altered. Cortical bone volume, BMD, and thickness were reduced; whereas, bone marrow volume was increased in mCXCR(-/-). Decreased polar moment of inertia (J) in the tibias/femurs suggested that the mCXCR(-/-) long bones are weaker. This was confirmed by three-point bending testing of the femurs. CDs created in 6-week-old male mCXCR(-/-) and WT littermates were not completely healed at 12 weeks; WT animals, however, had significantly more bone in-growth than mCXCR(-/-). New bone sites were identified using polarized light and assessed for numbers of osteocyte (OCy) lacunae and blood vessels (BlV) around the original CD. In new bone, the number of BlV in WT was >2× that seen in mCXCR(-/-). Bone histomorphometry parameters in the cranial defect did not show any difference in bone formation or resorption markers. In summary, studies showed that mCXCR(-/-) mice have (1) reduced weight and size; (2) decreased BMD and BMC; (3) decreased amounts of trabecular

  20. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    International Nuclear Information System (INIS)

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a

  1. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice

    Science.gov (United States)

    Roman, Brian B.; Meyer, Ronald A.; Wiseman, Robert W.

    2002-01-01

    Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P creatine kinase, and adenylate kinase fluxes during stimulation was consistent with the observed PCr depletion in MMKO muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.

  2. Genetic Background Strongly Influences the Bone Phenotype of P2X7 Receptor Knockout Mice

    DEFF Research Database (Denmark)

    Syberg, Susanne; Petersen, Solveig; Beck Jensen, Jens-Erik;

    2012-01-01

    The purinergic P2X7 receptor is expressed by bone cells and has been shown to be important in both bone formation and bone resorption. In this study we investigated the importance of the genetic background of the mouse strains on which the P2X7 knock-out models were based by comparing bone status...... of a new BALB/cJ P2X7(-/-) strain with a previous one based on the C57BL/6 strain. Female four-month-old mice from both strains were DXA scanned on a PIXImus densitometer; femurs were collected for bone strength measurements and serum for bone marker analysis. Bone-related parameters that were altered only...... littermates. In conclusion, we have shown that the genetic background of P2X7(-/-) mice strongly influences the bone phenotype of the P2X7(-/-) mice and that P2X7 has a more significant regulatory role in bone remodeling than found in previous studies....

  3. Benefits of a "vulnerability gene"? A study in serotonin transporter knockout mice.

    Science.gov (United States)

    Kästner, Niklas; Richter, S Helene; Lesch, Klaus-Peter; Schreiber, Rebecca S; Kaiser, Sylvia; Sachser, Norbert

    2015-04-15

    Over the past years, certain "vulnerability genes" have been identified that play a key role in the development of mood and anxiety disorders. In particular, a low-expressing variant of the human serotonin transporter (5-HTT) gene has been described that renders individuals more susceptible to adverse experience and hence to the development of psychiatric diseases. However, some authors have recently argued that lower 5-HTT expression not only increases vulnerability to adverse experiences, but also enhances susceptibility to beneficial experiences, thus promoting phenotypic plasticity. The aim of the present study was to assess the effects of 5-HTT expression on susceptibility to beneficial experience in a hypothesis-driven experimental approach. Using a well-established rodent model for the human polymorphism, male heterozygous 5-HTT knockout (HET) and 5-HTT wildtype (WT) mice were either provided with the beneficial experience of cohabitation with a female (mating experience) or kept as naïve controls in single-housing conditions. Following the experimental treatment, they were tested for their anxiety-like behaviour and exploratory locomotion in three widely used behavioural tests. Interestingly, while cohabitation reduced anxiety-like behaviour and increased exploratory locomotion in the open field test in HET mice, it did not affect WT mice, pointing to a genotype-dependent susceptibility to the beneficial experience. Thus, our results might support the view of the low expressing version of the 5-HTT gene as a "plasticity" rather than a "vulnerability" variant. PMID:25629942

  4. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de; Kehlbach, Rainer, E-mail: rainer.kehlbach@uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Mehra, Tarun, E-mail: tarun.mehra@med.uni-tuebingen.de [University of Tuebingen, Department of Dermatology (Germany); Claussen, Claus, E-mail: gerd.groezinger@med.uni-tuebingen.de; Wiesinger, Benjamin, E-mail: benjamin.wiesinger@med.uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  5. Autism spectrum disorder traits in Slc9a9 knock-out mice.

    Science.gov (United States)

    Yang, Lina; Faraone, Stephen V; Zhang-James, Yanli

    2016-04-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which begin in childhood and persist into adulthood. They cause lifelong impairments and are associated with substantial burdens to patients, families, and society. Genetic studies have implicated the sodium/proton exchanger (NHE) nine gene, Slc9a9, to ASDs and attention-deficit/hyperactivity disorder(ADHD). Slc9a9 encodes, NHE9, a membrane protein of the late recycling endosomes. The recycling endosome plays an important role in synapse development and plasticity by regulating the trafficking of membrane neurotransmitter receptors and transporters. Here we tested the hypothesis that Slc9a9 knock-out (KO) mice would show ADHD-like and ASD-like traits. Ultrasonic vocalization (USV) recording showed that Slc9a9 KO mice emitted fewer calls and had shorter call durations, which suggest communication impairment. Slc9a9 KO mice lacked a preference for social novelty, but did not show deficits in social approach; Slc9a9 KO mice spent more time self-grooming, an indicator for restricted and repetitive behavior. We did not observe hyperactivity or other behavior impairments which are commonly comorbid with ASDs in human, such as anxiety-like behavior. Our study is the first animal behavior study that links Slc9a9 to ASDs. By eliminatingNHE9 activity, it provides strong evidence that lack of Slc9a9leads to ASD-like behaviors in mice and provides the field with a new mouse model of ASDs. PMID:26755066

  6. Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice.

    Directory of Open Access Journals (Sweden)

    Peiyan Wong

    Full Text Available Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS, which has been suggested to enhance cognitive functions through GABA(A receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO. DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.

  7. Expression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice

    Directory of Open Access Journals (Sweden)

    Chan Catherine B

    2007-03-01

    Full Text Available Abstract Aims/hypothesis In uncoupling protein-2 (UCP2 knockout (KO mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-α (PPARα. Methods PPARα expression was reduced in isolated islets from UCP2KO and wild-type (WT mice with siRNA for PPARα (siPPARα overnight. Some islets were also cultured with oleic or palmitic acid, then glucose stimulated insulin secretion (GSIS was measured. Expression of genes was examined by quantitative RT-PCR or immunoblotting. PPARα activation was assessed by oligonucleotide consensus sequence binding. Results siPPARα treatment reduced PPARα protein expression in KO and WT islets by >85%. In siPPARα-treated UCP2KO islets, PA but not OA treatment significantly decreased the insulin response to 16.5 mM glucose. In WT islets, siPPARα treatment did not modify GSIS in PA and OA exposed groups. In WT islets, PA treatment significantly increased UCP2 mRNA and protein expression. Both PA and OA treatment significantly increased PPARα expression in UCP2KO and WT islets but OA treatment augmented PPARα protein expression only in UCP2KO islets (p Conclusion These data show that the negative effect of saturated fatty acid on GSIS is mediated by PPARα/UCP2. Knockout of UCP2 protects beta-cells from PA exposure. However, in the absence of both UCP2 and PPARα even a short exposure (24 h to PA significantly impairs GSIS.

  8. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  9. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Tandrup, Trine; Koltzenburg, Martin;

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...... disector techniques. At birth, the total number of DRG neurons was 10,000 ±2,600 in control mice compared with 5,100 ±1,300 in p75 knockout mice. During postnatal development, 1,400 neuronal B-cell bodies were lost in p75 knockouts (2P ± 0.±05) and 1,100 in controls (NS), whereas the A-cell population...... remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% ±3.5% (2P ±0.05) and 22.7% 5.1% (2P knockout mice. Neuronal A-cell number was unchanged after...

  10. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    DEFF Research Database (Denmark)

    Honoré, Bent; Buus, Søren; Claësson, Mogens H

    2008-01-01

    ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two...

  11. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  12. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice

    OpenAIRE

    Cubells, Joseph F.; Schroeder, Jason P; Barrie, Elizabeth S.; Manvich, Daniel F.; Wolfgang Sadee; Tiina Berg; Kristina Mercer; Stowe, Taylor A.; L Cameron Liles; Katherine E Squires; Andrew Mezher; Patrick Curtin; Dannie L Perdomo; Patricia Szot; David Weinshenker

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in s...

  13. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    Science.gov (United States)

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  14. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Williams, Stuart [Biomedical Engineering Program, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Chen, Qin M., E-mail: qchen@email.arizona.edu [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States)

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  15. Hydrogen sulfide regulates vascular endoplasmic reticulum stress in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-fang; ZHAO Bin; TANG Xiu-ying; LI Wei; ZHU Lu-lu; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Background Atherosclerosis is an important cardiovascular disease,becoming a major and increasing health problem in developed countries.However,the possible underlying mechanisms were not completely clear.In 2009,our research group first discovered that hydrogen sulfide (H2S) as a novel gastrotransmitter played an important anti-atherosclerotic role.The study was designed to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress (ERS) in apolipoprotein E knockout (apoE(-/-)) mice fed a Western type diet.Methods C57BL/6 mice and homozygous apoE(-/-) mice were fed a Western type diet.C57BL/6 mice were injected intraperitoneally with normal saline (5 ml/kg per day) as control group.The apoE+ mice were treated with the same dose of normal saline as the apoE(-/-) group,injected intraperitoneally with sodium hydrosulfide (NaHS,an H2S donor,56μmol/kg per day) as the apoE(-/-)+NaHS group and injected intraperitoneally with DL-propargylglycine (PPG,a cystathionine-y-lyase inhibitor,50 mg/kg,per day) as the apoE/ +PPG group.After 10 weeks,the mice were sacrificed and the plasma lipids were detected.Sections of aortic root from these animals were examined for atherosclerotic lesions by HE and oil red O staining.The aortic ultrastructure and microstructure were analyzed with the help of light and electronic microscope.Glucose-regulated protein 78 (GRP78),caspase-12,copper-andzinc-containing superoxide dismutase (Cu/ZnSOD) and Mn-containing superoxide dismutase (MnSOD) protein expression in aortic tissues were detected with immunohistochemistry.The level of intracellular reactive oxygen species (ROS) were measured by using a commercial assay kit.Results Compared with control mice,apoE(-/-) mice showed increased plasma levels of total cholesterol (TC),triglyceride (TG) and low density lipoprotein (LDL),decreased high density lipoprotein (HDL),increased aortic plaque size,destroyed ultra-structure of aortic tissue,and increased expression of GRP

  16. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  17. Effects of activation of central nervous histamine receptors in cardiovascular regulation; studies in H1 and H2 receptor gene knockout mice

    OpenAIRE

    Suzuki, Hideaki; Mobarakeh, Jalal Izadi; Nunoki, Kazuo; Sukegawa, Jun; Watanabe, Haruo; Kuramasu, Atsuo; Watanabe, Takeshi; Yanai, Kazuhiko; Yanagisawa, Teruyuki

    2006-01-01

    To elucidate the central roles of histamine receptors in cardiovascular regulatory system, systolic, mean, and diastolic blood pressures (BPs) and heart rate (HR) were examined in conscious H-1 receptor gene knockout (H1KO) mice, H-2 receptor gene knockout (H2KO) mice, H-1 and H-2 receptor gene double knockout (DKO) mice, and their respective control mice by the tail-cuff system. Histamine, histamine-trifluoromethyl-toluidine derivative (HTMT, an H-1 agonist), dimaprit (an H-2 agonist), and i...

  18. Experimental evidence for the involvement of PDLIM5 in mood disorders in hetero knockout mice.

    Directory of Open Access Journals (Sweden)

    Yasue Horiuchi

    Full Text Available BACKGROUND: Reports indicate that PDLIM5 is involved in mood disorders. The PDLIM5 (PDZ and LIM domain 5 gene has been genetically associated with mood disorders; it's expression is upregulated in the postmortem brains of patients with bipolar disorder and downregulated in the peripheral lymphocytes of patients with major depression. Acute and chronic methamphetamine (METH administration may model mania and the evolution of mania into psychotic mania or schizophrenia-like behavioral changes, respectively. METHODS: To address whether the downregulation of PDLIM5 protects against manic symptoms and cause susceptibility to depressive symptoms, we evaluated the effects of reduced Pdlim5 levels on acute and chronic METH-induced locomotor hyperactivity, prepulse inhibition, and forced swimming by using Pdlim5 hetero knockout (KO mice. RESULTS: The homozygous KO of Pdlim5 is embryonic lethal. The effects of METH administration on locomotor hyperactivity and the impairment of prepulse inhibition were lower in Pdlim5 hetero KO mice than in wild-type mice. The transient inhibition of PDLIM5 (achieved by blocking the translocation of protein kinase C epsilon before the METH challenge had a similar effect on behavior. Pdlim5 hetero KO mice showed increased immobility time in the forced swimming test, which was diminished after the chronic administration of imipramine. Chronic METH treatment increased, whereas chronic haloperidol treatment decreased, Pdlim5 mRNA levels in the prefrontal cortex. Imipramine increased Pdlim5 mRNA levels in the hippocampus. CONCLUSION: These findings are partially compatible with reported observations in humans, indicating that PDLIM5 is involved in psychiatric disorders, including mood disorders.

  19. Safrole-2',3'-oxide induces atherosclerotic plaque vulnerability in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Su, Le; Zhang, Haiyan; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2013-02-27

    Safrole-2',3'-oxide (SFO) is the major electrophilic metabolite of safrole (4-allyl-1, 2-methylenedioxybenzene), a natural plant constituent found in essential oils of numerous edible herbs and spices and in food containing these herbs, such as pesto sauce, cola beverages and bologna sausages. The effects of SFO in mammalian systems, especially the cardiovascular system, are little known. Disruption of vulnerable atherosclerotic plaques in atherosclerosis, a chronic inflammatory disease, is the main cause of cardiovascular events. In this study, we investigated SFO-induced atherosclerotic plaque vulnerability (possibility of rupture) in apolipoprotein E-knockout (apoE(-/-)) mice. Lipid area in vessel wall reached 59.8% in high dose SFO (SFO-HD) treated group, which is only 31.2% in control group. SFO treatment changed the lesion composition to an unstable phenotype, increased the number of apoptotic cells in plaque and the endothelium in plaques was damaged after SFO treatment. Furthermore, compared with control groups, the plaque endothelium level of p75(NTR) was 3-fold increased and the liver level of p75(NTR) was 17.4-fold increased by SFO-HD. Meanwhile, the serum level of KC (a functional homolog of IL-8 and the main proinflammatory alpha chemokine in mice) in apoE(-/-) mice was up to 357pg/ml in SFO-HD treated group. Thus, SFO contributes to the instability of atherosclerotic plaque in apoE(-/-) mice through activating p75(NTR) and IL-8 and cell apoptosis in plaque.

  20. Enhanced glucose tolerance in pancreatic-derived factor (PANDER knockout C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shari L. Moak

    2014-11-01

    Full Text Available Pancreatic-derived factor (PANDER; also known as FAM3B is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D. Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57 model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.

  1. Enhanced glucose tolerance in pancreatic-derived factor (PANDER) knockout C57BL/6 mice.

    Science.gov (United States)

    Moak, Shari L; Dougan, Grace C; MarElia, Catherine B; Danse, Whitney A; Fernandez, Amanda M; Kuehl, Melanie N; Athanason, Mark G; Burkhardt, Brant R

    2014-11-01

    Pancreatic-derived factor (PANDER; also known as FAM3B) is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D). Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57) model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D. PMID:25217499

  2. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    Science.gov (United States)

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity. PMID:27316341

  3. Establishment of liver specific glucokinase gene knockout mice:a new animal model for screening anti-diabetic drugs

    Institute of Scientific and Technical Information of China (English)

    Ya-li ZHANG; Xiao-hong TAN; Mei-fang XIAO; Hui LI; Yi-qing Mao; Xiao YANG; Huan-ran TAN

    2004-01-01

    AIM: To characterize the liver-specific role of glucokinase in maintaining glucose homeostasis and to create an animal model for diabetes. METHODS: We performed hepatocyte-specific gene knockout of glucokinase in mice using Cre-loxP gene targeting strategy. First, two directly repeated loxP sequences were inserted to flank the exon 9 and exon 10 of glucokinase in genomic DNA. To achieve this, linearized targeting vector was electroporated into ES cells. Then G418- and Gancyclovir-double-resistant clones were picked and screened by PCR analysis and the positives identified by PCR were confirmed by Southern blot. A targeted clone was selected for microinjection into C57BL/6J blastocysts and implanted into pseudopregnant FVB recipient. Chimeric mice and their offspring were analyzed by Southern blot. Then by intercrossing the Alb-Cre transgenic mice with mice containing a conditional gk allele, we obtained mice with liver-specific glucokinase gene knockout. RESULTS: Among 161 double resistant clones 4 were positive to PCR and Southern blot and only one was used for further experiments. Eventually we generated the liver specific glucokinase knockout mice. These mice showed increased glucose level with age and at the age of 6 weeks fasting blood glucose level was significantly higher than control and they also displayed impaired glucose tolerance. CONCLUSION: Our studies indicate that hepatic glucokinase plays an important role in glucose homeostasis and its deficiencies contribute to the development of diabetes. The liver glucokinase knockout mouse is an ideal animal model for MODY2, and it also can be applied for screening anti-diabetic drugs.

  4. Dose-dependent effects of UVB-induced skin carcinogenesis in hairless p53 knockout mice

    International Nuclear Information System (INIS)

    Exposure to (solar) UVB radiation gives rise to mutations in the p53 tumor suppressor gene that appear to contribute to the earliest steps in the molecular cascade towards human and murine skin cancer. To examine in more detail the role of p53, we studied UVB-induced carcinogenesis in hairless p53 knock-out mice. The early onset of lymphomas as well as early wasting of mice interfered with the development of skin tumors in p53 null-mice. The induction of skin tumors in the hairless p53+/- mice was accomplished by daily exposure to two different UV-doses of approximately 450 J/m2 and 900 J/m2 from F40 lamps corresponding to a fraction of about 0.4 and 0.8 of the minimal edemal dose. Marked differences in skin carcinogenesis were observed between the p53+/- mice and their wild type littermates. Firstly, at 900 J/m2, tumors developed significantly faster in the heterozygotes than in wild types, whereas at 450 J/m2 there was hardly any difference, suggesting that only at higher damage levels loss of one functional p53 allele is important. Secondly, a large portion (25%) of skin tumors in the heterozygotes were of a more malignant, poorly differentiated variety of squamous cell carcinomas, i.e. spindle cell carcinomas, a tumor type that was rarely observed in daily UV exposed wild type hairless mice. Thirdly, the p53 mutation spectrum in skin tumors in heterozygotes is quite different from that in wild types. Together these results support the notion that a point mutation in the p53 gene impacts skin carcinogenesis quite differently than allelic loss: the former is generally selected for in early stages of skin tumors in wild type mice, whereas the latter enhances tumor development only at high exposure levels (where apoptosis becomes more prevalent) and appears to increase progression (to a higher grade of malignancy) of skin tumors

  5. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Leary

    Full Text Available BACKGROUND: Williams-Beuren Syndrome (WBS is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. CONCLUSIONS/SIGNIFICANCE: We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.

  6. Constitutively Expressed αB—Crystallin in Heat Schock Transcription Factor 1 Knockout Mice Myocardium

    Institute of Scientific and Technical Information of China (English)

    刘莉; 张洪慧; 丁国宪; 程蕴琳; 晏良军; BENJAMINIvorJ

    2003-01-01

    Objective:To invesligate the effects of heat shock transcription factor 1(HSF 1) gene on the constitutively expressed aB-Crystallin(αBC)in mice myocardium.Methods:The expression levels of constitutive αBC in HSF1 knockout(hsf1-/-) and HSF1 wild type (hsf1+/+) mice myocardium were evaluated by western blot and immunohistochemistry.Results:The αBC levels in hsf1-/- and hsf1+/_ were 68.42±4.16,100.00±7.58,respectively(P<0.05,cytosolic fraction),and 20.53±1.01,37.55±1.91,respectively(P<0.05,pellet fraction).The αBC signals decreased significantly in hsf1-/- myocardium when compared with those in hsf1+/+ myocardium stained with fluorescence immunohistochemistry.Conclusion.HSF1 is an important,but not the only factor,which mediates the constitutively expressed αBC.

  7. GRK5-Knockout Mice Generated by TALEN-Mediated Gene Targeting.

    Science.gov (United States)

    Nanjidsuren, Tsevelmaa; Park, Chae-Won; Sim, Bo-Woong; Kim, Sun-Uk; Chang, Kyu-Tae; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-10-01

    Transcription activator-like effector nucleases (TALENs) are a new type of engineered nuclease that is very effective for directed gene disruption in any genome sequence. We investigated the generation of mice with genetic knockout (KO) of the G protein-coupled receptor kinase (GRK) 5 gene by microinjection of TALEN mRNA. TALEN vectors were designed to target exons 1, 3, and 5 of the mouse GRK5 gene. Flow cytometry showed that the activity of the TALEN mRNAs targeted to exons 1, 3, and 5 was 8.7%, 9.7%, and 12.7%, respectively. The TALEN mRNA for exon 5 was injected into the cytoplasm of 180 one-cell embryos. Of the 53 newborns, three (5.6%) were mutant founders (F0) with mutations. Two clones from F028 showed a 45-bp deletion and F039 showed the same biallelic non-frame-shifting 3-bp deletions. Three clones from F041 were shown to possess a combination of frame-shifting 2-bp deletions. All of the mutations were transmitted through the germline but not to all progenies (37.5%, 37.5%, and 57.1% for the F028, F039, and F041 lines, respectively). The homozygote GRK5-KO mice for 28 and 41 lines created on F3 progenies and the homozygous genotype was confirmed by PCR, T7E1 assay and sequencing. PMID:27565865

  8. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. PMID:27291517

  9. Localization of NKCC1 in the Cochlea and Morphology of the Cochlea in NKCC1-Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    CHU Hanqi; XIONG Hao; ZHOU Xiaoqin; HUANG Xiaowen; ZHOU Liangqiang; CUI Yonghua

    2006-01-01

    The distribution of the Na-K-2Cl co-transporter (NKCC1) in the cochlear K+ cycling pathway in cochlea and cochlear histological changes in the NKCC1 knockout mice were investigated. By using immunohistochemistry and toluidine blue staining, the localization of NKCC1 in cochlea of the C57BL/6J mice and the cochlear histological changes in the NKCC1 knockout mice were observed. It was found that the NKCC1 was expressed mainly in the stria marginal cells and the fibrocytes in the inferior portion of the spiral ligament in the adult C57BL/6J mice. Subpopulation of the fibrocytes in the suprastrial region and the limbus was also moderately immunoreactive. While in the cochlea of the NKCC1 knockout mice, Reissner's membrane was collapsed and scala media disappeared, accompanied with the loss of inner hair cells, outer hair cells and the support cells.The tunnel of Corti was often absent. All the findings suggested the localization of NKCC1 in the cochlea was closely correlated with cochlear K+ cycling. Loss of NKCC1 led to the destruction of the cochlear structures, and subsequently influenced the physiological function of cochlea.

  10. Sleep-Waking Discharge of Ventral Tuberomammillary Neurons in Wild-Type and Histidine Decarboxylase Knock-Out Mice

    OpenAIRE

    Sakai, Kazuya; Takahashi, Kazumi; Anaclet, Christelle; Lin, Jian-Sheng

    2010-01-01

    Using extracellular single-unit recordings, we have determined the characteristics of neurons in the ventral tuberomammillary nucleus (VTM) of wild-type (WT) and histidine decarboxylase knock-out (HDC-KO) mice during the sleep-waking cycle. The VTM neurons of HDC-KO mice showed no histamine immunoreactivity, but were immunoreactive for the histaminergic (HA) neuron markers adenosine deaminase and glutamic acid decarboxylase 67. In the VTM of WT mice, we found waking (W)-specific, non-W-specif...

  11. Functional deficits in nNOSmu-deficient skeletal muscle: myopathy in nNOS knockout mice.

    Directory of Open Access Journals (Sweden)

    Justin M Percival

    Full Text Available Skeletal muscle nNOSmu (neuronal nitric oxide synthase mu localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG complex, where it synthesizes nitric oxide (NO. Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSmu; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSmu. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1 mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSmu signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSmu expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention.

  12. Increased susceptibility to pulmonary Pseudomonas infection in Splunc1 knockout mice.

    Science.gov (United States)

    Liu, Yanyan; Di, Marissa E; Chu, Hong Wei; Liu, Xinyu; Wang, Ling; Wenzel, Sally; Di, Y Peter

    2013-10-15

    The airway epithelium is the first line of host defense against pathogens. The short palate, lung, and nasal epithelium clone (SPLUNC)1 protein is secreted in respiratory tracts and is a member of the bacterial/permeability increasing (BPI) fold-containing protein family, which shares structural similarities with BPI-like proteins. On the basis of its homology with BPIs and restricted expression of SPLUNC1 in serous cells of submucosal glands and surface epithelial cells of the upper respiratory tract, SPLUNC1 is thought to possess antimicrobial activity in host defense. SPLUNC1 is also reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to determine the in vivo functions of SPLUNC1 following Pseudomonas aeruginosa infection and to elucidate the underlying mechanism by using a knockout (KO) mouse model with a genetic ablation of Splunc1. Splunc1 KO mice showed accelerated mortality and increased susceptibility to P. aeruginosa infection with significantly decreased survival rates, increased bacterial burdens, exaggerated tissue injuries, and elevated proinflammatory cytokine levels as compared with those of their wild-type littermates. Increased neutrophil infiltration in Splunc1 KO mice was accompanied by elevated chemokine levels, including Cxcl1, Cxcl2, and Ccl20. Furthermore, the expression of several epithelial secretory proteins and antimicrobial molecules was considerably suppressed in the lungs of Splunc1 KO mice. The deficiency of Splunc1 in mouse airway epithelium also results in increased biofilm formation of P. aeruginosa. Taken together, our results support that the ablation of Splunc1 in mouse airways affects the mucociliary clearance, resulting in decreased innate immune response during Pseudomonas-induced respiratory infection. PMID:24048904

  13. Molecular characterization and development of Sarcocystis speeri sarcocysts in gamma interferon gene knockout mice.

    Science.gov (United States)

    Dubey, J P; Verma, S K; Dunams, D; Calero-Bernal, R; Rosenthal, B M

    2015-11-01

    The North American opossum (Didelphis virginiana) is the definitive host for at least three named species of Sarcocystis: Sarcocystis falcatula, Sarcocystis neurona and Sarcocystis speeri. The South American opossums (Didelphis albiventris, Didelphis marsupialis and Didelphis aurita) are definitive hosts for S. falcatula and S. lindsayi. The sporocysts of these Sarcocystis species are similar morphologically. They are also not easily distinguished genetically because of the difficulties of DNA extraction from sporocysts and availability of distinguishing genetic markers. Some of these species can be distinguished by bioassay; S. neurona and S. speeri are infective to gamma interferon gene knockout (KO) mice, but not to budgerigars (Melopsittacus undulatus); whereas S. falcatula and S. lindsayi are infective to budgerigars but not to KO mice. The natural intermediate host of S. speeri is unknown. In the present study, development of sarcocysts of S. speeri in the KO mice is described. Sarcocysts were first seen at 12 days post-inoculation (p.i.), and they became macroscopic (up to 4 mm long) by 25 days p.i. The structure of the sarcocyst wall did not change from the time bradyzoites had formed at 50-220 days p.i. Sarcocysts contained unique villar protrusions, 'type 38'. The polymerase chain reaction amplifications and sequences analysis of three nuclear loci (18S rRNA, 28S rRNA and ITS1) and two mitochondrial loci (cox1 and cytb) of S. speeri isolate from an Argentinean opossum (D. albiventris) confirmed its membership among species of Sarcocystis and indicated an especially close relationship to another parasite in this genus that employs opossums as its definitive host, S. neurona. These results should be useful in finding natural intermediate host of S. speeri. PMID:26303093

  14. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Tandrup, Trine; Koltzenburg, Martin;

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...... remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% ±3.5% (2P ±0.05) and 22.7% 5.1% (2P <0.05) at days 14 and 42, respectively. In contrast, there was no loss in total number of neurons after crush in p75 knockout mice. Neuronal A-cell number was unchanged after the...... crush in p75 knockouts as well as in controls at both times. At 14 days, the population of B-cells was reduced by 24.8% 3.6% in controls and by 6.1% ±3.5% in p75 knockouts, this difference being significant (2P ±0.001). At 42 days, the B-cell loss was 29.6% ± 5.5% in controls and 4.2% ±6.4% in p75...

  15. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  16. Repair of dentin defects from DSPP knockout mice by PILP mineralization

    Science.gov (United States)

    Nurrohman, H.; Saeki, K.; Carneiro, K.; Chien, Y.C.; Djomehri, S.; Ho, S.P.; Qin, C.; Marshall, S.J.; Gower, L.B.; Marshall, G.W.; Habelitz, S.

    2016-01-01

    Dentinogenesis imperfecta type II (DGI-II) lacks intrafibrillar mineral with severe compromise of dentin mechanical properties. A Dspp knockout (Dspp−/−) mouse, with a phenotype similar to that of human DGI-II, was used to determine if poly-L-aspartic acid [poly(ASP)] in the “polymer-induced liquid-precursor” (PILP) system can restore its mechanical properties. Dentin from six-week old Dspp−/− and wild-type mice was treated with CaP solution containing poly(ASP) for up to 14 days. Elastic modulus and hardness before and after treatment were correlated with mineralization from Micro x-ray computed tomography (Micro-XCT). Transmission electron microscopy (TEM)/Selected area electron diffraction (SAED) were used to compare matrix mineralization and crystallography. Mechanical properties of the Dspp−/− dentin were significantly less than wild-type dentin and recovered significantly (P < 0.05) after PILP-treatment, reaching values comparable to wild-type dentin. Micro-XCT showed mineral recovery similar to wild-type dentin after PILP-treatment. TEM/SAED showed repair of patchy mineralization and complete mineralization of defective dentin. This approach may lead to new strategies for hard tissue repair. PMID:27239097

  17. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice.

    Science.gov (United States)

    Ohsawa, Ikuroh; Nishimaki, Kiyomi; Yamagata, Kumi; Ishikawa, Masahiro; Ohta, Shigeo

    2008-12-26

    Oxidative stress is implicated in atherogenesis; however most clinical trials with dietary antioxidants failed to show marked success in preventing atherosclerotic diseases. We have found that hydrogen (dihydrogen; H(2)) acts as an effective antioxidant to reduce oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S, Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med. 13 (2007) 688-694]. Here, we investigated whether drinking H(2)-dissolved water at a saturated level (H(2)-water) ad libitum prevents arteriosclerosis using an apolipoprotein E knockout mouse (apoE(-/-)), a model of the spontaneous development of atherosclerosis. ApoE(-/-) mice drank H(2)-water ad libitum from 2 to 6 month old throughout the whole period. Atherosclerotic lesions were significantly reduced by ad libitum drinking of H(2)-water (p=0.0069) as judged by Oil-Red-O staining series of sections of aorta. The oxidative stress level of aorta was decreased. Accumulation of macrophages in atherosclerotic lesions was confirmed. Thus, consumption of H(2)-dissolved water has the potential to prevent arteriosclerosis. PMID:18996093

  18. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Kotaro Azuma

    Full Text Available Steroid and xenobiotic receptor (SXR and its murine ortholog, pregnane X receptor (PXR, are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.

  19. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B;

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity...... and locomotor sensitization were enhanced in M (5) (-/-) mice, while the effects of cocaine were similar in M (5) (-/-) and wild-type mice. RESULTS: Consistent with the behavioral results, amphetamine-, but not cocaine, -elicited dopamine release in nucleus accumbens was enhanced in M (5) (-/-) mice. DISCUSSION...

  20. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Eyal Zcharia

    Full Text Available BACKGROUND: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis. PRINCIPAL FINDINGS: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14 expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231 cells. Immunostaining (kidney tissue and chromatin immunoprecipitation (ChIP analysis (Hpse-KO mouse embryonic fibroblasts suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of beta-catenin. CONCLUSIONS/SIGNIFICANCE: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development.

  1. Levels of Circulating MMCN-151, a Degradation Product of Mimecan, Reflect Pathological Extracellular Matrix Remodeling in Apolipoprotein E Knockout Mice

    DEFF Research Database (Denmark)

    Barascuk, N; Vassiliadis, E; Zheng, Qiuju;

    2011-01-01

    Arterial extracellular matrix (ECM) remodeling by matrix metalloproteinases (MMPs) is one of the major hallmarks of atherosclerosis. Mimecan, also known as osteoglycin has been implicated in the integrity of the ECM. This study assessed the validity of an enzyme-linked immunosorbent assay (ELISA)......) developed to measure a specific MMP12-derived fragment of mimecan, MMCN-151, in apolipoprotein-E knockout (ApoE-KO) mice....

  2. Multiscale Imaging Characterization of Dopamine Transporter Knockout Mice Reveals Regional Alterations in Spine Density of Medium Spiny Neurons

    OpenAIRE

    Berlanga, M.L.; Price, D. L.; Phung, B.S.; Giuly, R.; Terada, M; YAMADA, N.; Cyr, M; Caron, M G; A. Laakso; Martone, M.E.; Ellisman, M.H.

    2011-01-01

    The dopamine transporter knockout (DAT KO) mouse is a model of chronic hyperdopaminergia used to study a wide range of neuropsychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), drug abuse, depression, and Parkinson’s disease (PD). Early studies characterizing this mouse model revealed a subtle, but significant, decrease in the anterior striatal volume of DAT KO mice accompanied by a decrease in neuronal cell body numbers (Cyr et al., 2005). The present...

  3. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.

    OpenAIRE

    Nicolas, Gaël; Bennoun, Myriam; Devaux, Isabelle; Beaumont, Carole; Grandchamp, Bernard; Kahn, Axel; Vaulont, Sophie

    2001-01-01

    We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2(-/-) mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animal...

  4. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance

    OpenAIRE

    McCarthy, J.; O'Mahony, L.; O'Callaghan, L.; Sheil, B; Vaughan, E E; Fitzsimons, N. A.; Fitzgibbon, J.; O' Sullivan, G C; Kiely, B.; Collins, J K; Shanahan, F

    2003-01-01

    Background: Prophylactic efficacy against colitis following lactobacillus consumption in interleukin 10 (IL-10) knockout ( KO) mice has been reported. Whether this applies equally to other probiotic strains is unknown, and the mechanism is unclear. Aims: ( 1) To compare the effect of feeding Lactobacillus salivarius subspecies salivarius 433118 and Bifidobacterium infantis 35624 against placebo on enterocolitis, the intestinal microflora, and ( 2) to compare the systemic immunological respons...

  5. Increased amphetamine-induced locomotor activity, sensitization and accumbal dopamine release in M5 muscarinic receptor knockout mice

    OpenAIRE

    Schmidt, Lene S.; Miller, Anthony D.; Lester, Deranda B.; Bay-Richter, Cecilie; Schülein, Christina; Schmidt, Henriette F.; Wess, Jürgen; Blaha, Charles D.; Woldbye, David P.D.; Fink-Jensen, Anders; Wortwein, Gitta

    2009-01-01

    Muscarinic M5 receptors are the only muscarinic receptor subtype expressed by dopamine-containing neurons of the ventral tegmental area. These cells play an important role for the reinforcing properties of psychostimulants and M5 receptors modulate their activity. Previous studies showed that M5 receptor knockout (M5−/−) mice are less sensitive to the reinforcing properties of addictive drugs. Here we investigate the role of M5 receptors in the effects of amphetamine and cocaine on locomotor ...

  6. Rosiglitazone modulates collagen deposition and metabolism in atherosclerotic plaques of fat-fed ApoE-knockout mice

    OpenAIRE

    Zhou, Mingxue; Xu, Hao; Liu, Weihong; Liu, Hongxu

    2015-01-01

    Abnormal collagen deposition, as well as collagen metabolism, plays a crucial role in the formation and progression of vulnerable atherosclerotic plaques (VAPs), which are susceptible to rupture. According to our previous findings, rosiglitazone, a thiazolidinedione, can promote the stability of atherosclerotic plaques in fat-fed ApoE-knockout mice; however, it is unknown whether it can modulate collagen deposition and metabolism in VAPs. The present study was designed to determine the effect...

  7. Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gonzalo Sanchez

    Full Text Available Parkinson's disease (PD is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6-8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.

  8. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  9. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice

    OpenAIRE

    Wultsch, Thomas; Painsipp, Evelin; Donner, Sabine; Sperk1, Günther; Herzog, Herbert; Peskar, Bernhard A; Holzer, Peter

    2005-01-01

    Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phase is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 a...

  10. Overexpression of NF-κB p65 in macrophages ameliorates atherosclerosis in apoE-knockout mice

    OpenAIRE

    Ye, Xin; Jiang, Xiaoting; Guo, Wei; Clark, Katie; Gao, Zhanguo

    2013-01-01

    The transcription factor NF-κB p65 is a key regulator in the regulation of an inflammatory response and in the pathology of atherosclerosis. However, there is no direct evidence for the role of NF-κB in macrophages in the development of atherosclerosis. We investigated whether macrophage overexpression of p65 in apoE-knockout mice could improve atherosclerosis. Transgenic (Tg) mice overexpressing p65 in macrophages were generated by crossing fatty acid-binding protein 4 (aP2) promoter-control...

  11. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions.

    Science.gov (United States)

    Perona, Maria T G; Waters, Shonna; Hall, Frank Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L; Caron, Marc; Uhl, George R

    2008-09-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these

  12. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.

    Science.gov (United States)

    Nicolas, G; Bennoun, M; Devaux, I; Beaumont, C; Grandchamp, B; Kahn, A; Vaulont, S

    2001-07-17

    We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2(-/-) mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2(-/-) mice, we used suppressive subtractive hybridization between livers from Usf2(-/-) and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2(-/-) hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages. PMID:11447267

  13. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    International Nuclear Information System (INIS)

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE−/− and Fas−/− mice. • The spleen weights and glomerular areas were similar in ApoE−/− and Fas−/− mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE−/− and Fas−/− mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE−/− mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE−/−) mice is a classic model of atherosclerosis. We have found that ApoE−/− mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE−/− mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE−/−, Fas−/− and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas−/− mice, a model of systemic lupus erythematosus (SLE), ApoE−/− mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE−/− mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE−/− mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

  14. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Liaocheng People’s Hospital of Shandong University, Liaocheng, Shandong 252000 (China); Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Huili [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lei, Zhenmin [Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Chen, Xiaoqing [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Gao, Fei; Dong, Mei [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Li, Rongda [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Ling, E-mail: qzlinl@163.com [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China)

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  15. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase).

    Science.gov (United States)

    Perrine, Cynthia; Ju, Tongzhong; Cummings, Richard D; Gerken, Thomas A

    2009-03-01

    Mucin-type protein O-glycosylation is initiated by the addition of alpha-GalNAc to Ser/Thr residues of a polypeptide chain. The addition of beta-Gal to GalNAc by the UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase), forming the Core 1 structure (beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr), is a common and biologically significant subsequent step in O-glycan biosynthesis. What dictates the sites of Core 1 glycosylation is poorly understood; however, the peptide sequence and neighboring glycosylation effects have been implicated. To systematically address the role of the peptide sequence on the specificity of T-synthase, we used the oriented random glycopeptide: GAGAXXXX(T-O-GalNAc)XXXXAGAG (where X = G, A, P, V, I, F, Y, S, N, D, E, H, R, and K) as a substrate. The Core 1 glycosylated product was isolated on immobilized PNA (Arachis hypogaea) lectin and its composition determined by Edman amino acid sequencing for comparison with the initial substrate composition, from which transferase preferences were obtained. From these studies, elevated preferences for Gly at the +1 position with moderately high preferences for Phe and Tyr in the +3 position relative to the acceptor Thr-O-GalNAc were found. A number of smaller Pro enhancements were also observed. Basic residues, i.e., Lys, Arg, and His, in any position were disfavored, suggesting electrostatic interactions as an additional important component modulating transferase specificity. This work suggests that there are indeed subtle specific and nonspecific protein-targeting sequence motifs for this transferase.

  16. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Bentzon, Jacob F; Sondergaard, Claus S; Kassem, Mustafa;

    2007-01-01

    circulating bone marrow-derived progenitor cells. Here, we analyzed the contribution of this mechanism to plaque healing after spontaneous and mechanical plaque disruption in apolipoprotein E knockout (apoE-/-) mice. METHODS AND RESULTS: To determine the origin of SMCs after spontaneous plaque disruption......, irradiated 18-month-old apoE-/- mice were reconstituted with bone marrow cells from enhanced green fluorescent protein (eGFP) transgenic apoE-/- mice and examined when they died up to 9 months later. Plaque hemorrhage, indicating previous plaque disruption, was widely present, but no bone marrow-derived e......GFP+ SMCs were detected. To examine the origin of healing SMCs in a model that recapitulates more features of human plaque rupture and healing, we developed a mechanical technique that produced consistent plaque disruption, superimposed thrombosis, and SMC-mediated plaque healing in apoE-/- mice. Mechanical...

  17. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    Science.gov (United States)

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P rhythms, cognitive functions, and mediating specific pharmacological effects.

  18. Serotonin abnormalities in Engrailed-2 knockout mice: New insight relevant for a model of Autism Spectrum Disorder.

    Science.gov (United States)

    Viaggi, Cristina; Gerace, Claudio; Pardini, Carla; Corsini, Giovanni U; Vaglini, Francesca

    2015-08-01

    Autism spectrum disorder (ASD) is a congenital neurodevelopmental behavioral disorder that appears in early childhood. Recent human genetic studies identified the homeobox transcription factor, Engrailed 2 (EN2), as a possible ASD susceptibility gene. En2 knockout mice (En2-/-) display subtle cerebellar neuropathological changes and reduced levels of tyrosine hydroxylase, noradrenaline and serotonin in the hippocampus and cerebral cortex similar to those ones which have been observed in the ASD brain. Furthermore other similarities link En2 knockout mice to ASD patients. Several lines of evidence suggest that serotonin may play an important role in the pathophysiology of the disease. In the present study we measured, by using an HPLC, the 5-HT levels in different brain areas and at different ages in En2-/- mice. In the frontal and occipital cortex, the content of 5HT was reduced in En2-/- 1 and 3 months old mice; in 6 month old mice, the difference was still present, but it was not statistically significant. The 5-HT content of cerebellar cortex was significantly reduced at 1 month old but significantly high when the KO mice reached 3 months of age. The increase was present even at 6 months of age. A similar trend was highlighted by SERT immunolabeling in En2-/- mice compared to control in the same areas and age analyzed. Our findings, in agreement with the current knowledge on the 5-HT system alterations in ASD, confirm the early neurotransmitter deficit with a late compensatory recovery in En2 KO-mice further suggesting that this experimental animal may be considered a good predictive model for the human disease. PMID:26002543

  19. Prolonging the survival of Tsc2 conditional knockout mice by glutamine supplementation.

    Science.gov (United States)

    Rozas, Natalia S; Redell, John B; McKenna, James; Moore, Anthony N; Gambello, Michael J; Dash, Pramod K

    2015-02-20

    The genetic disease tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by loss of function mutations in either TSC1 (hamartin) or TSC2 (tuberin), which serve as negative regulators of mechanistic target of rapamycin complex 1 (mTORC1) activity. TSC patients exhibit developmental brain abnormalities and tuber formations that are associated with neuropsychological and neurocognitive impairments, seizures and premature death. Mechanistically, TSC1 and TSC2 loss of function mutations result in abnormally high mTORC1 activity. Thus, the development of a strategy to inhibit abnormally high mTORC1 activity may have therapeutic value in the treatment of TSC. mTORC1 is a master regulator of growth processes, and its activity can be reduced by withdrawal of growth factors, decreased energy availability, and by the immunosuppressant rapamycin. Recently, glutamine has been shown to alter mTORC1 activity in a TSC1-TSC2 independent manner in cells cultured under amino acid- and serum-deprived conditions. Since starvation culture conditions are not physiologically relevant, we examined if glutamine can regulate mTORC1 in non-deprived cells and in a murine model of TSC. Our results show that glutamine can reduce phosphorylation of S6 and S6 kinase, surrogate indicators of mTORC1 activity, in both deprived and non-deprived cells, although higher concentrations were required for non-deprived cultures. When administered orally to TSC2 knockout mice, glutamine reduced S6 phosphorylation in the brain and significantly prolonged their lifespan. Taken together, these results suggest that glutamine supplementation can be used as a potential treatment for TSC.

  20. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    Science.gov (United States)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  1. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    Science.gov (United States)

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  2. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia

    OpenAIRE

    Li, Zhimin; Boules, Mona; Williams, Katrina; Gordillo, Andres; Li, Shuhua; Richelson, Elliott

    2010-01-01

    Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1−/−) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present...

  3. Effects of high concentrations of iodide exposure on mitochondrial superoxide production in the thyroid of metallothionein Ⅰ/Ⅱ knockout mice

    Institute of Scientific and Technical Information of China (English)

    张娜

    2014-01-01

    Objective To investigate the effects of high concentrations of iodide exposure on mitochondrial superoxide production,cell viability and cell damage in the thyroid of metallothioneinⅠ/Ⅱknockout(MT-Ⅰ/ⅡKO)mice and corresponding wild type(WT)mice.Methods Thyroid cell suspension of six to eight weeks old healthy male MT-Ⅰ/ⅡKO mice and WT mice were prepared.The

  4. ENA-A actimineral resource A extends lifespan associated with antioxidant mechanism in SMP30 knockout mice.

    Science.gov (United States)

    Han, Jung-Youn; Hwang, Meeyul; Hwa, Sung-Yong; Park, Jin-Kyu; Ki, Mi-Ran; Hong, Il-Hwa; Kim, Ah-Young; Lee, Eun-Mi; Lee, Eun-Joo; Min, Chang-Woo; Kang, Kyung-Ku; Lee, Myeong-Mi; Sung, Soo-Eun; Jeong, Kyu-Shik

    2014-06-01

    ENA-actimineral resource A (ENA-A) is an alkaline mineral water and has a few biological activities such as antioxidant activity. The aim of this study was to examine the effects of ENA-A on lifespan in mice using senescence marker protein-30 knockout mice. The present study had groups of 18-week-old mice (n = 24), 26-week-old mice (n = 12), and 46-week-old mice (n = 20). Each differently aged mice group was divided into three subgroups: a control group, a 5 % ENA-A-treated group, and a 10 % ENA-A-treated group. Mice in the 18-week-old group were treated with vitamin C drinking water 1.5 g/L. However, the mice in the 26-week-old and 46-week-old groups were not treated with vitamin C. The experiments were done for 18 weeks. All vitamin C-treated mice were alive at week 18 (100% survival rate). In the non-vitamin C group, the 10% ENA-A-treated mice were alive at week 18. The control and 5% ENA-A-treated mice died by week 15. As expected, vitamin C was not detected in the non-vitamin C-treated group. However, vitamin C levels were increased in an ENA-A dose-dependent manner in the vitamin C-treated group. In the TUNEL assay, a number of positive hepatocytes significantly decreased in an ENA-A dose-dependent manner. Periodic acid Schiff positive hepatocytes were significantly increased in an ENA-A dose-dependent manner. In addition, the expression level of CuZnSOD was increased by the ENA-A treatment. These data suggest that the intake of ENA-A has a critical role in the anti-aging mechanism and could be applied toward the lifespans of humans.

  5. Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze.

    Science.gov (United States)

    Sultana, Ruby; Ameno, Kiyoshi; Jamal, Mostofa; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Kinoshita, Hiroshi; Nakamura, Yu

    2013-06-01

    Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.

  6. Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Sáez-Torres, I;

    2001-01-01

    The role of interferon-gamma (IFN-gamma) in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still controversial. We have studied the function of IFN-gamma and its receptor in the EAE model using two different IFN-gamma receptor knockout (IFN-gamma R......(-/-)) mouse types: C57Bl/6x129Sv, with a disruption of the IFN-gamma receptor cytoplasmic domain, and 129Sv, homozygous for a disrupted IFN-gamma receptor gene. Mice were immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. A subgroup of mice was treated with anti-IFN-gamma monoclonal...... antibodies (mAb) on day 8 postimmunization. Clinical scoring and both histological and immunohistochemical studies were undertaken for all groups. We hereby show that treatment with anti-IFN-gamma mAb worsened the disease course of 129Sv wild-type mice. However, it decreased the mean daily score in IFN...

  7. Prolonged starvation causes up-regulation of AQP1 in adipose tissue capillaries of AQP7 knock-out mice

    DEFF Research Database (Denmark)

    Skowronski, Mariusz T.; Skowronska, Agnieszka; Rojek, Aleksandra;

    2016-01-01

    study, we aimed to find out whether prolonged starvation influences the AQP1 expression of AQP7 knock-out mice (AQP7 KO) in the WAT. To resolve this hypothesis, immunoperoxidase, immunoblot and immunogold microscopy were used. AQP1 expression was found with the use of immunohistochemistry...... and was confirmed by immunogold microscopy in the vessels of mouse WAT of all studied groups. Semi-quantitative immunoblot and quantitative immunogold microscopy showed a significant increase (by 2.5- to 3-fold) in the abundance of AQP1 protein expression in WAT in the 72 h starved AQP7 KO mice as compared to AQP7......+/+ (p mice. The present data suggest that an interaction of different AQP isoforms is required...

  8. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  9. Overexpression of Dmp1 fails to rescue the bone and dentin defects in Fam20C knockout mice.

    Science.gov (United States)

    Wang, Xiaofang; Wang, Jingya; Yuan, Baozhi; Lu, Yongbo; Feng, Jian Q; Qin, Chunlin

    2014-08-01

    FAM20C is a kinase phosphorylating the small-integrin-binding ligand, N-linked glycoproteins (SIBLINGs), a group of extracellular matrix proteins that are essential for bone and dentin formation. Previously, we showed that Sox2-Cre;Fam20Cfl/fl mice had bone and dentin defects, along with hypophosphatemia and significant downregulation of dentin matrix protein 1 (DMP1). While the assumed phosphorylation failure of the SIBLINGs is likely associated with the defects in the Fam20C-deficient mice, it remains unclear if the downregulation of Dmp1 contributes to these phenotypes. In this study, we crossed 3.6 kb Col1-Dmp1 transgenic mice with 3.6 kb Col1-Cre;Fam20Cfl/fl mice to overexpress Dmp1 in the mineralized tissues of Fam20C conditional knockout (cKO) mice. X-ray, micro-computed tomography, serum biochemistry and histology analyses showed that expressing the Dmp1 transgene failed to rescue the bone and dentin defects, as well as the serum levels of FGF23 and phosphate in the Fam20C-cKO mice. These results indicated that the downregulation of Dmp1 may not directly associate with, or significantly contribute to the bone and dentin defects in the Fam20C-cKO mice.

  10. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  11. CyclinD(-/-)/Patched(+/-)双基因敲除鼠的构建%Construction of CyclinD(-/-)/Patched(+/-)double knockout mice

    Institute of Scientific and Technical Information of China (English)

    辛世杰; 李璇; Molly Duman-Scheel; Wei Du

    2008-01-01

    目的 构建CycD(-/-)/Ptc(+/-)双基因敲除鼠以验证Hh传导系统与Rb系统的关系.方法 应用已有的杂合子CycD基因敲除鼠CycD(+/-)与杂合子Ptc基因敲除鼠Ptc(+/-)进行交配繁殖,得到双基因杂合子敲除鼠CycD(+/-)/Ptc(+/-),再利用该双基因杂合子敲除鼠进行二次交配繁殖,得到实验组CycD(-/-)/Ptc(+/-)双基因敲除鼠.结果 实验得到了双基因敲除鼠CycD(-/-)/Ptc(+/-)、双基因杂合子基因敲除鼠CycD(+/-)/ptc(+/-)、cycD单基因敲除鼠CycD(-/-)/Ptc(+/+).结论 通过本实验方法得到CycD(-/-)/Ptc(+/-)双基因敲除鼠,可用于进一步揭示Ptc基因与CycD基因相互影响调控的作用及Hedgehog与Rb信号传导通路在哺乳动物中的相关性.%Objective To construct CyclinD(CycD)(-/-)/Patched(Ptc)(+/-)double knockout mice to stuay the relationship between Hedgehog and Rb signaling pathways.Methods Amphimixis was performed between female heterozygote CycD knockout mice CycD(+/-)and male heterozygote Ptc knockout mice Ptc(+/-),thus CycD(+/-)/Ptc(+/-)double knockout mice were obtained.These mice underwent secondary matched and thus construct CycD(-/-)/Ptc(+/-)double knockout mice.Results CycD(-/-)/Ptc(+/-)double knockout mice,CycD(+/-)/Ptc(+/-) heterozygote double knockout mice, and CycD knockout mice CycD( -/-)/Ptc( +/+) were gained.Conclusion The method of amphimixis can construct CycD (-/-)/Ptc (+/-)double knockout mice that can be used to disclose the regulation between Ptc gene and CycD gene and the relativity between Hedgehog and Rb pathways in mammals.

  12. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascul

  13. Antibodies directed against monomorphic and evolutionary conserved self epitopes may be generated in 'knock-out' mice. Development of monoclonal antibodies directed against monomorphic MHC class I determinants

    DEFF Research Database (Denmark)

    Claesson, M H; Endel, B; Ulrik, J;

    1994-01-01

    Beta-2 microglobulin (beta 2m) gene 'knock-out' mice (C1D) were primed with purified H-2Kb and H-2Db molecules and spleen cells from immunized mice were used to generate monoclonal antibody secreting B-cell hybridomas. Approximately 0.2% of the Ig-secreting primary microcultures contained H-2b...

  14. Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice

    OpenAIRE

    Bergner, A; Kellner, J.; da Silva, A. K.; Gamarra, F.; Huber, R M

    2006-01-01

    Background: Airway smooth muscle cells (ASMC) play a key role in bronchial hyperresponsiveness (BHR). A major component of the signaling cascade leading to ASMC contraction is calcium. So far, agonist-induced Ca2+-signaling in asthma has been studied by comparing innate properties of inbred rat or mouse strains, or by using selected mediators known to be involved in asthma. T-bet knock-out (KO) mice show key features of allergic asthma such as a shift towards T(H)2-lymphocytes and display a b...

  15. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks

    OpenAIRE

    Keith Maurice Kendrick

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of nitric oxide synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS/-) and wildtype control mice. Tasks ...

  16. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks

    OpenAIRE

    James, Bronwen M.; Li, Qin; Luo, Lizhu; Kendrick, Keith M.

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving...

  17. Decreased striatal dopamine in group II metabotropic glutamate receptor (mGlu2/mGlu3) double knockout mice

    OpenAIRE

    Lane, TA; Boerner, T.; Bannerman, DM; Kew, JNC; Tunbridge, EM; Sharp, T.; Harrison, PJ

    2013-01-01

    Background: Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by Grm2 and Grm3) have been the focus of attention as treatment targets for a number of psychiatric conditions. Double knockout mice lacking mGlu2 and mGlu3 (mGlu2/3−/−) show a subtle behavioural phenotype, being hypoactive under basal conditions and in response to amphetamine, and with a spatial memory deficit that depends on the arousal properties of the task. The neurochemical correlates of this profile are unk...

  18. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    DEFF Research Database (Denmark)

    Marques, Rita D; Praetorius, Helle A; Leipziger, Jens

    2013-01-01

    significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rtevalues in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO) mice. In addition, adult P2Y2 receptor KO mTALs have...... (35 days) male mice. Using microelectrodes, we determined the transepithelial voltage (Vte) and the transepithelial resistance (Rte) and thus, transepithelial NaCl absorption (equivalent short circuit current, I'sc). We find that mTALs from adult wild type (WT) mice have...... significantly lower Vtevalues compared to the juvenile. No difference in absolute I'sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression...

  19. IL-23 p19 knockout mice exhibit minimal defects in responses to primary and secondary infection with Francisella tularensis LVS.

    Directory of Open Access Journals (Sweden)

    Sherry L Kurtz

    Full Text Available Our laboratory's investigations into mechanisms of protective immunity against Francisella tularensis Live Vaccine Strain (LVS have uncovered mediators important in host defense against primary infection, as well as those correlated with successful vaccination. One such potential correlate was IL-12p40, a pleiotropic cytokine that promotes Th1 T cell function as part of IL-12p70. LVS-infected IL-12p40 deficient knockout (KO mice maintain a chronic infection, but IL-12p35 KO mice clear LVS infection; thus the role that IL-12p40 plays in immunity to LVS is independent of the IL-12p70 heterodimer. IL-12p40 can also partner with IL-23p19 to create the heterodimeric cytokine IL-23. Here, we directly tested the role of IL-23 in LVS resistance, and found IL-23 to be largely dispensable for immunity to LVS following intradermal or intranasal infection. IL-23p19 KO splenocytes were fully competent in controlling intramacrophage LVS replication in an in vitro overlay assay. Further, antibody responses in IL-23p19 KO mice were similar to those of normal wild type mice after LVS infection. IL-23p19 KO mice or normal wild type mice that survived primary LVS infection survived maximal doses of LVS secondary challenge. Thus p40 has a novel role in clearance of LVS infection that is unrelated to either IL-12 or IL-23.

  20. Upregulated Expression of Cytotoxicity-Related Genes in IFN-γ Knockout Mice with Schistosoma japonicum Infection

    Directory of Open Access Journals (Sweden)

    Xiaotang Du

    2011-01-01

    Full Text Available It is well accepted that IFN-γ is important to the development of acquired resistance against murine schistosomiasis. However, the in vivo role of this immunoregulatory cytokine in helminth infection needs to be further investigated. In this study, parasite burden and host immune response were observed in IFN-γ knockout mice (IFNg KO infected with Schistosoma japonicum for 6 weeks. The results suggested that deficiency in IFN-γ led to decreased egg burden in mice, with low schistosome-specific IgG antibody response and enhanced activation of T cells during acute infection. Microarray and qRT-PCR data analyses showed significant upregulation of some cytotoxicity-related genes, including those from the granzyme family, tumor necrosis factor, Fas Ligand, and chemokines, in the spleen cells of IFNg KO mice. Furthermore, CD8+ cells instead of NK cells of IFNg KO mice exhibited increased transcription of cytotoxic genes compared with WT mice. Additionally, Schistosoma japonicum-specific egg antigen immunization also could activate CD8+ T cells to upregulate the expression of cytotoxic genes in IFNg KO mice. Our data suggest that IFN-γ is not always a positive regulator of immune responses. In certain situations, the disruption of IFN-γ signaling may up-regulate the cytotoxic T-cell-mediated immune responses to the parasite.

  1. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene

    International Nuclear Information System (INIS)

    Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis. Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression

  2. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene

    Directory of Open Access Journals (Sweden)

    Yamamoto Masayuki

    2010-10-01

    Full Text Available Abstract Background Activation of nuclear factor erythroid 2-related factor (Nrf2, which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE. We hypothesized that (1 the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2 that Nrf2 knockout (KO mice would be more susceptible to mammary carcinogenesis. Methods Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT and KO mice were fed either control diet or diets containing auraptene (500 ppm. A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34. Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. Results All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. Conclusions We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary

  3. Impaired social behavior in 5-HT(3A) receptor knockout mice

    NARCIS (Netherlands)

    L.A. Smit-Rigter; W.J. Wadman; J.A. van Hooft

    2010-01-01

    The 5-HT(3) receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT(3A) knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT(3) receptor is also expresse

  4. Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice

    Science.gov (United States)

    Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.

    2013-01-01

    Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…

  5. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice.

    Science.gov (United States)

    Ambs, S; Ogunfusika, M O; Merriam, W G; Bennett, W P; Billiar, T R; Harris, C C

    1998-07-21

    High concentrations of nitric oxide (NO) cause DNA damage and apoptosis in many cell types. Thus, regulation of NO synthase (NOS) activity is essential for minimizing effects of cytotoxic and genotoxic nitrogen oxide species. We have shown previously that NO-induced p53 protein accumulation down-regulates basal and cytokine-modulated inducible NOS (NOS2) expression in human cells in vitro. To further characterize the feedback loop between NOS2 and p53, we have investigated NO production, i.e., urinary nitrate plus nitrite excretion, and NOS2 expression in homozygous p53 knockout (KO) mice. We report here that untreated p53 KO mice excreted 70% more nitrite plus nitrate than mice with wild-type (wt) p53. NOS2 protein expression was constitutively detected in the spleen of untreated p53 KO mice, whereas it was undetectable in the spleen of wt p53 controls. Upon treatment with heat-inactivated Corynebacterium parvum, urinary nitrite plus nitrate excretion of p53 KO mice exceeded that of wt controls by approximately 200%. C. parvum treatment also induced p53 accumulation in the liver. Splenectomy reduced the NO output of C. parvum-treated p53 KO mice but not of wt p53 controls. Although NO production and NOS2 protein expression were increased similarly in KO and wt p53 mice 10 days after injection of C. parvum, NOS2 expression returned to baseline levels only in wt p53 controls while remaining up-regulated in p53 KO mice. These genetic and functional data indicate that p53 is an important transrepressor of NOS2 expression in vivo and attenuates excessive NO production in a regulatory negative feedback loop. PMID:9671763

  6. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Directory of Open Access Journals (Sweden)

    Wang Jia

    2009-11-01

    Full Text Available Abstract Background Protein kinase C interacting protein (PKCI/HINT1 is a small protein belonging to the histidine triad (HIT family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. Results Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST and the tail suspension (TST tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. Conclusion PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.

  7. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  8. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    Science.gov (United States)

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  9. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    Directory of Open Access Journals (Sweden)

    Mumeko C Tsuda

    2014-09-01

    Full Text Available Maternal separation (MS is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h from postnatal day 1 to 14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.

  10. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Huili; Wang, Zhenhua [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Chen, Xiaoqing [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Ouyang, Qiufang [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Hao, Panpan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Ni, Jingqin [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Xu, Dongming [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Zhang, Mingxiang; Zhang, Qunye [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Ling [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); and others

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-} mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The

  11. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    International Nuclear Information System (INIS)

    Highlights: ► Titers of ANA and anti-dsDNA antibodies were higher in ApoE−/− than C57B6/L mice. ► Spleen was greater and splenocyte apoptosis lower in ApoE−/− than B6 mice. ► Level of TLR4 was lower in spleen tissue of ApoE−/− than B6 mice. ► The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. ► The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE−/−) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE−/− mice. The spleens of all ApoE−/− and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE−/− mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE−/− mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE−/− than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE−/− spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti

  12. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  13. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  14. Salivary Gland Hypofunction in tyrosylprotein sulfotransferase-2 Knockout Mice Is Due to Primary Hypothyroidism

    OpenAIRE

    Westmuckett, Andrew D.; Joseph C Siefert; Tesiram, Yasvir A; Pinson, David M.; Moore, Kevin L.

    2013-01-01

    Background Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This p...

  15. Effects of p53 knockout on ochratoxin A-induced genotoxicity in p53-deficient gpt delta mice.

    Science.gov (United States)

    Hibi, Daisuke; Kijima, Aki; Suzuki, Yuta; Ishii, Yuji; Jin, Meilan; Sugita-Konishi, Yoshiko; Yanai, Tokuma; Nishikawa, Akiyoshi; Umemura, Takashi

    2013-02-01

    Ochratoxin A (OTA) is a mycotoxin produced by fungal species and is carcinogenic targeting the S3 segment of the renal proximal tubules in rodents. We previously reported that exposure of gpt delta rats to OTA induced both mutations in the red/gam gene (Spi(-)), suggesting large deletion mutations, and fluctuations in genes transcribed by p53 in the kidneys, which were associated with DNA double-strand break (DSB) repair, particularly homologous recombination (HR) repair. In the present study, to investigate the effects of p53 knockout on OTA-induced mutagenicity, apoptosis, and karyomegaly in renal tubular cells, p53-proficient and p53-deficient gpt delta mice were given 1 and 5mg/kg of OTA for 4 weeks. Significant increases in Spi(-) mutant frequencies (MFs) were observed in the kidneys of p53-deficient gpt delta mice given 5 mg/kg of OTA, but not in the kidneys of p53-proficient gpt delta mice given the same dose. There were no changes in gpt MFs in both genotypes of mice treated with OTA. Western blotting analysis demonstrated that p53 protein levels in the kidneys of p53-proficient mice given OTA were significantly increased compared with the control. Incidences of apoptosis and karyomegaly in not only the outer stripe of outer medulla but also the cortex were significantly higher in p53-deficient at 5mg/kg than in p53-proficient gpt delta mice at same dose, which had no change in the cortex, the inner stripe of outer stripe, and the inner medulla. Given that p53 regulates HR repair in DSBs, these results suggest that OTA may promote large deletion mutations in the process of HR repair for DSBs. Additionally, the lower incidence of karyomegaly and apoptosis found in the p53-proficient gpt delta mice suggests that these phenomena may arise from OTA-induced DNA damage.

  16. Hepatic Mttp deletion reverses gallstone susceptibility in L-Fabp knockout mice.

    Science.gov (United States)

    Xie, Yan; Fung, Ho Yee Joyce; Newberry, Elizabeth P; Kennedy, Susan; Luo, Jianyang; Crooke, Rosanne M; Graham, Mark J; Davidson, Nicholas O

    2014-03-01

    Previous studies demonstrated that L-Fabp KO mice are more susceptible to lithogenic diet (LD)-induced gallstones because of altered hepatic cholesterol metabolism and increased canalicular cholesterol secretion. Other studies demonstrated that liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) reduced LD-induced gallstone formation by increasing biliary phospholipid secretion. Here we show that mice with combined deletion (i.e., DKO mice) are protected from LD-induced gallstone formation. Following 2 weeks of LD feeding, 73% of WT and 100% of L-Fabp KO mice developed gallstones versus 18% of Mttp-LKO and 23% of DKO mice. This phenotype was recapitulated in both WT and L-Fabp KO mice treated with an Mttp antisense oligonucleotide (M-ASO). Biliary cholesterol secretion was increased in LD-fed L-Fabp KO mice and decreased in DKO mice. However, phospholipid secretion was unchanged in LD-fed Mttp-LKO and DKO mice as well as in M-ASO-treated mice. Expression of the canalicular export pump ABCG5/G8 was reduced in LD-fed DKO mice and in M-ASO-treated L-Fabp KO mice. We conclude that liver-specific Mttp deletion not only eliminates apical lipoprotein secretion from hepatocytes but also attenuates canalicular cholesterol secretion, which in turn decreases LD-induced gallstone susceptibility.

  17. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2Kb domains) MHC Class I molecules were derived by transgenesis of the H-2KbDb double MHC Class I knockout strain. After immunization of Mamu-A*01/Kb Tg mice with rVV-SIVGag-Pol, the mice generated CD8+ T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/Kb Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  18. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dan, E-mail: y.dan@lacdr.leidenuniv.nl [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Meurs, Illiana [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Ohigashi, Megumi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Calpe-Berdiel, Laura; Habets, Kim L.L.; Zhao, Ying [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Kubo, Yoshiyuki [Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University (Japan); Yamaguchi, Akihito [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Berkel, Theo J.C. [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Nishi, Tsuyoshi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Eck, Miranda [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands)

    2010-05-07

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

  19. Exacerbation of benzene pneumotoxicity in connexin 32 knockout mice: enhanced proliferation of CYP2E1-immunoreactive alveolar epithelial cells

    International Nuclear Information System (INIS)

    The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small

  20. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  1. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency

    Directory of Open Access Journals (Sweden)

    Xuejun Yang

    2014-01-01

    Full Text Available Objective: To observe the efficacy of Shenxinning Decoction (SXND in ventricular remodeling in AT1 receptor-knockout (AT1-KO mice with chronic renal insufficiency (CRI. Materials and Methods: AT1-KO mice modeled with subtotal (5/6 nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN, serum creatinine (SCr, brain natriuretic peptide (BNP, echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF, collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1 of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. Results: AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice′s BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. Conclusion: SXND may antagonize the renin-angiotensin system (RAS and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.

  2. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice.

    Science.gov (United States)

    Terakata, Miki; Fukuwatari, Tsutomu; Sano, Mitsue; Nakao, Natsuki; Sasaki, Ryuzo; Fukuoka, Shin-Ichi; Shibata, Katsumi

    2012-12-01

    Pyridine nucleotide coenzymes are involved in >500 enzyme reactions and are biosynthesized from the amino acid L-tryptophan (L-Trp) as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid (QA) phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-), or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and qprt(+/-) mice. On the contrary, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (P niacin, such as blood and liver NAD concentrations, were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of QA was greater in the qprt(-/-) mice than in the qprt(+/+) and qprt(+/-) mice (P niacin-deficient mice.

  3. Smad3 knock-out mice as a useful model to study intestinal fibrogenesis

    Institute of Scientific and Technical Information of China (English)

    Giuliana Zanninelli; Giovanni Latella; Antonella Vetuschi; Roberta Sferra; Angela D'Angelo; Amato Fratticci; Maria Adelaide Continenza; Maria Chiaramonte; Eugenio Gaudio; Renzo Caprilli

    2006-01-01

    AIM: To evaluate the possible differences in morphology and immunohistochemical expression of CD3,transforming growth factor β1(TGF-β1), Smad7, α-smooth muscle actin (α-Sma), and collagen types Ⅰ-Ⅶ of small and large intestine in Smad3 null and wild-type mice.METHODS: Ten null and ten wild-type adult mice were sacrificed at 4 mo of age and the organs (esophagus, small and large bowel, ureters) were collected for histology(hematoxylin and eosin, Masson thrichrome,silver staining), morphometry and immunohistochemistry analysis. TGF-β1 levels of intestinal tissue homogenates were assessed by ELISA.RESULTS: No macroscopic intestinal lesions were detected both in null and wild-type mice. Histological and morphometric evaluation revealed a significant reduction in muscle layer thickness of small and large intestine in null mice as compared to wild-type mice. Immunohistochemistry evaluation showed a significant increase of CD3+T cell, TGF-β1 and Smad7 staining in the small and large intestine mucosa of Smad3 null mice as compared to wild-type mice. α-Sma and collagen Ⅰ-Ⅶ staining of small and large intestine did not differ between the two groups of mice. TGF-β1 levels of colonic tissue homogenates were significantly higher in null mice than in wild-type mice. In preliminary experiments a significant reduction of TNBS-induced intestinal fibrosis was observed in null mice as compared to wild-type mice.CONCLUSION: Smad3 null mice are a useful model to investigate the in vivo role of the TGF-β/Smad signalling pathway in intestinal inflammation and fibrosis.

  4. (--Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Satoh Masamichi

    2011-04-01

    Full Text Available Abstract Background (--Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP receptor in thermal, mechanical, and chemical antinociception induced by (--pentazocine using MOP receptor knockout (MOP-KO mice. Results (--Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (--pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (--pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (--pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (--pentazocine and retention of the visceral chemical antinociceptive effects of (--pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (--pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (--pentazocine.

  5. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E.; Wall, Tamara L.; Kirchhoff, Aaron M.; Xu, Yuxue; Eng, Mimy Y.; Stewart, Robert B.; Shou, Weinian; Boehm, Stephen L.; Chester, Julia A.; Yong, Weidong; Liang, Tiebing

    2016-01-01

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. PMID:27527158

  6. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  7. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E; Wall, Tamara L; Kirchhoff, Aaron M; Xu, Yuxue; Eng, Mimy Y; Stewart, Robert B; Shou, Weinian; Boehm, Stephen L; Chester, Julia A; Yong, Weidong; Liang, Tiebing

    2016-08-05

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  8. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E; Wall, Tamara L; Kirchhoff, Aaron M; Xu, Yuxue; Eng, Mimy Y; Stewart, Robert B; Shou, Weinian; Boehm, Stephen L; Chester, Julia A; Yong, Weidong; Liang, Tiebing

    2016-01-01

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. PMID:27527158

  9. Ethanol and Acetaldehyde After Intraperitoneal Administration to Aldh2-Knockout Mice-Reflection in Blood and Brain Levels.

    Science.gov (United States)

    Jamal, Mostofa; Ameno, Kiyoshi; Tanaka, Naoko; Ito, Asuka; Takakura, Ayaka; Kumihashi, Mitsuru; Kinoshita, Hiroshi

    2016-05-01

    This paper reports, for the first time, on the analysis of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the blood and brains of Aldh2-knockout (Aldh2-KO) and C57B6/6J (WT) mice. Animals were administrated EtOH (1.0, 2.0 or 4.0 g/kg) or 4-methylpyrazole (4-MP, 82 mg/kg) plus AcH (50, 100 or 200 mg/kg) intraperitoneally. During the blood tests, samples from the orbital sinus of the eye were collected. During the brain tests, dialysates were collected every 5 min (equal to a 15 µl sample) from the striatum using in vivo brain microdialysis. Samples were collected at 5, 10, 15, 20, 25, 30 and 60 min intervals post-EtOH and -AcH injection, and then analyzed by head-space GC. In the EtOH groups, high AcH levels were found in the blood and brains of Aldh2-KO mice, while only small traces of AcH were seen in the blood and brains of WT mice. No significant differences in EtOH levels were observed between the WT and the Aldh2-KO mice for either the EtOH dose. EtOH concentrations in the brain were comparable to the EtOH concentrations in the blood, but the AcH concentrations in the brain were four to five times lower compared to the AcH concentrations in the blood. In the AcH groups, high AcH levels were found in both WT and Aldh2-KO mice. Levels reached a sharp peak at 5 min and then quickly declined for 60 min. Brain AcH concentrations were almost equal to the concentrations found in the blood, where the AcH concentrations were approximately two times higher in the Aldh2-KO mice than in the WT mice, both in the blood and the brain. Our results suggest that systemic EtOH and AcH administration can cause a greater increase in AcH accumulation in the blood and brains of Aldh2-KO mice, where EtOH concentrations in the Aldh2-KO mice were comparable to the EtOH concentrations in the WT mice. Furthermore, detection of EtOH and AcH in the blood and brain was found to be dose-dependent in both genotypes. PMID:26646001

  10. Hepatic Mttp deletion reverses gallstone susceptibility in L-Fabp knockout mice

    OpenAIRE

    Xie, Yan; Fung, Ho Yee Joyce; Newberry, Elizabeth P.; Kennedy, Susan,; Luo, Jianyang; Crooke, Rosanne M.; Graham, Mark J.; Davidson, Nicholas O.

    2014-01-01

    Previous studies demonstrated that L-Fabp KO mice are more susceptible to lithogenic diet (LD)-induced gallstones because of altered hepatic cholesterol metabolism and increased canalicular cholesterol secretion. Other studies demonstrated that liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) reduced LD-induced gallstone formation by increasing biliary phospholipid secretion. Here we show that mice with combined deletion (i.e., DKO mice) are protected from LD-ind...

  11. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    OpenAIRE

    Glassner, Brian; Weeda, Geert; Allan, James; Broekhof, Jose'; Carls, Nick; Donker, Ingrid; Engelward, Bevin; Hampson, Richard; Hersmus, Remko; Hickman, Mark; Roth, Richard; Warren, Henry; Wu, Mavis; Hoeijmakers, Jan; Samson, Leona

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransferase activity, suggesting that Mgmt constitutes the major, if not the only, O6-methylguanine DNA methyltransferase. Primary mouse embryo fibroblasts and bone marrow cells from Mgmt -/- mice were s...

  12. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume.

  13. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice.

    Directory of Open Access Journals (Sweden)

    Jeanne Farrell

    Full Text Available BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex/Sacy(tm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.

  14. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  15. A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission

    OpenAIRE

    Ho, Angela; Morishita, Wade; Hammer, Robert E.; Malenka, Robert C.; Südhof, Thomas C.

    2003-01-01

    Mints (also called X11-like proteins) are adaptor proteins composed of divergent N-terminal sequences that bind to synaptic proteins such as CASK (Mint 1 only) and Munc18-1 (Mints 1 and 2) and conserved C-terminal PTB- and PDZ-domains that bind to widely distributed proteins such as APP, presenilins, and Ca2+ channels (all Mints). We find that Mints 1 and 2 are similarly expressed in most neurons except for inhibitory interneurons that contain selectively high levels of Mint 1. Using knockout...

  16. HDLs in apoA-I transgenic Abca1 knockout mice are remodelednormally in plasma but are hypercatabolized by the kidney.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young; Timmins, Jenelle M.; Mulya, Anny; Smith, ThomasL.; Zhu, Yiwen; Rubin, Edward M.; Chisholm, Jeffrey W.; Colvin, Perry L.; Parks, John S.

    2005-07-05

    Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with 125I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-ITg) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P<0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-ITg mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo.

  17. Salivary gland hypofunction in tyrosylprotein sulfotransferase-2 knockout mice is due to primary hypothyroidism.

    Directory of Open Access Journals (Sweden)

    Andrew D Westmuckett

    Full Text Available BACKGROUND: Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2. We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were (≈ 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine-induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes were restored to normal or near normal by thyroid hormone supplementation. CONCLUSIONS/SIGNIFICANCE: Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism.

  18. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1.

    Science.gov (United States)

    Ilic, Zoran; Crawford, Dana; Vakharia, Dilip; Egner, Patricia A; Sell, Stewart

    2010-02-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N(7)-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N(7)-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3. PMID:19850059

  19. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    International Nuclear Information System (INIS)

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N7-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N7-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.

  20. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransf

  1. Lessons from Hepatocyte-Specific Cyp51 Knockout Mice: Impaired Cholesterol Synthesis Leads to Oval Cell-Driven Liver Injury

    Science.gov (United States)

    Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Gutierrez-Mariscal, Francisco M.; Lewinska, Monika; Gebhardt, Rolf; Keber, Rok; Horvat, Simon; Björkhem, Ingemar; Rozman, Damjana

    2015-03-01

    We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14α-demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arrest, senescence-associated secretory phenotype and ultimately the oval cell response, while elevated CYP51 substrates promoted the integrated stress response. In spite of the oval cell-driven fibrosis being histologically similar in both sexes, data indicates a female-biased down-regulation of primary metabolism pathways and a stronger immune response in males. Liver injury was ameliorated by dietary fats predominantly in females, whereas dietary cholesterol rectified fibrosis in both sexes. Our data place defective cholesterol synthesis as a focus of sex-dependent liver pathologies.

  2. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Jacob Kornerup;

    2014-01-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity...... and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFαmAb, cyclosporine A (CsA) and oral...... immunohistochemistry were performed on colon tissue. Treatments with anti-IL-12/23p40 mAb and CsA prevented disease in PAC IL-10 k.o. mice and reduced IFNγ, IL-17A, MPO and calprotectin levels in colon. Anti-TNFαmAb treatment caused amelioration of selected clinical parameters. No effect of prednisolonewas detected...

  3. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  4. Weekly Treatment of 2-Hydroxypropyl-β-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Sofie M. A. Walenbergh

    2015-09-01

    Full Text Available Recently, the importance of lysosomes in the context of the metabolic syndrome has received increased attention. Increased lysosomal cholesterol storage and cholesterol crystallization inside macrophages have been linked to several metabolic diseases, such as atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Two-hydroxypropyl-β-cyclodextrin (HP-B-CD is able to redirect lysosomal cholesterol to the cytoplasm in Niemann-Pick type C1 disease, a lysosomal storage disorder. We hypothesize that HP-B-CD ameliorates liver cholesterol and intracellular cholesterol levels inside Kupffer cells (KCs. Hyperlipidemic low-density lipoprotein receptor knockout (Ldlr−/− mice were given weekly, subcutaneous injections with HP-B-CD or control PBS. In contrast to control injections, hyperlipidemic mice treated with HP-B-CD demonstrated a shift in intracellular cholesterol distribution towards cytoplasmic cholesteryl ester (CE storage and a decrease in cholesterol crystallization inside KCs. Compared to untreated hyperlipidemic mice, the foamy KC appearance and liver cholesterol remained similar upon HP-B-CD administration, while hepatic campesterol and 7α-hydroxycholesterol levels were back increased. Thus, HP-B-CD could be a useful tool to improve intracellular cholesterol levels in the context of the metabolic syndrome, possibly through modulation of phyto- and oxysterols, and should be tested in the future. Additionally, these data underline the existence of a shared etiology between lysosomal storage diseases and NAFLD.

  5. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus.

    Science.gov (United States)

    Eadie, B D; Zhang, W N; Boehme, F; Gil-Mohapel, J; Kainer, L; Simpson, J M; Christie, B R

    2009-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the selective loss of the expression of the Fmr1 gene. Key symptoms in FXS include intellectual impairment and abnormal anxiety-related behaviors. Fmr1 knockout (KO) mice exhibited reduced anxiety on two behavioral tests as well as a blunted corticosterone response to acute stress. Spatial learning and memory was not impaired when tested with both the classic Morris water and Plus-shaped mazes. Adult hippocampal neurogenesis has been associated with spatial learning and memory and emotions such as anxiety and depression. The process of neurogenesis appears abnormal in young adult Fmr1 KO mice, with significantly fewer bromodeoxyuridine-positive cells surviving for at least 4 weeks in the ventral subregion of the dentate gyrus (DG), a hippocampal subregion more closely associated with emotion than the dorsal DG. Within this smaller pool of surviving cells, we observed a concomitant increase in the proportion of surviving cells that acquire a neuronal phenotype. We did not observe a clear difference in cell proliferation using both endogenous and exogenous markers. This work indicates that loss of Fmr1 expression can alter anxiety-related behaviors in mice as well as produce region-specific alterations in hippocampal adult neurogenesis.

  6. Trace eyeblink conditioning is impaired in α7 but not in β2 nicotinic acetylcholine receptor knock-out mice

    Directory of Open Access Journals (Sweden)

    Kevin L Brown

    2010-10-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are essentially involved in learning and memory. A neurobiologically and behaviorally well-characterized measure of learning and memory, eyeblink classical conditioning, is sensitive to disruptions in acetylcholine neurotransmission. The two most common forms of eyeblink classical conditioning – the delay and trace paradigms - differentially engage forebrain areas densely-populated with nAChRs. The present study used genetically modified mice to investigate the effects of selective nAChR subunit deletion on delay and trace eyeblink classical conditioning. α7 and β2 nAChR subunit knockout (KO mice and their wild-type littermates were trained for 10 daily sessions in a 500 ms delay or 500 ms trace eyeblink conditioning task, matched for the interstimulus interval (ISI between conditioned stimulus (CS and unconditioned stimulus (US onset. Impairments in conditioned responding were found in α7 KO mice trained in trace – but not delay – eyeblink conditioning. Relative to littermate controls, β2 KO mice were unimpaired in the trace task but displayed higher levels of conditioned responding in delay eyeblink conditioning. Elevated conditioned response levels in delay-conditioned β2 KOs corresponded to elevated levels of alpha responding in this group. These findings suggest that α7 nAChRs play a role in normal acquisition of 500 ms trace eyeblink classical conditioning in mice. The prominent distribution of α7 nAChRs in the hippocampus and other forebrain regions may account for these genotype-specific acquisition effects in this hippocampus-dependent trace paradigm.

  7. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  8. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice.

    Science.gov (United States)

    Cubells, Joseph F; Schroeder, Jason P; Barrie, Elizabeth S; Manvich, Daniel F; Sadee, Wolfgang; Berg, Tiina; Mercer, Kristina; Stowe, Taylor A; Liles, L Cameron; Squires, Katherine E; Mezher, Andrew; Curtin, Patrick; Perdomo, Dannie L; Szot, Patricia; Weinshenker, David

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency

  9. CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells

    DEFF Research Database (Denmark)

    Fjelbye, Jonas; Antvorskov, Julie C; Buschard, Karsten;

    2015-01-01

    knockout (CD1d KO) and wild-type (Wt) mice after contact allergen exposure. For induction of CHS, C57BL/6 CD1d KO mice (n = 6) and C57BL/6 Wt mice (n = 6) were sensitised with 1% (w/v) dinitrochlorobenzene (DNCB) or vehicle for three consecutive days and subsequently challenged with a single dose of 0.......5% DNCB (w/v) on the ears fifteen days later. We demonstrate that CD1d KO mice, as compared with Wt littermates, have more pronounced infiltration of mononuclear cells in the skin (29.1% increase; P

  10. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system

    Science.gov (United States)

    Nakagawa, Yoshimi; Oikawa, Fusaka; Mizuno, Seiya; Ohno, Hiroshi; Yagishita, Yuka; Satoh, Aoi; Osaki, Yoshinori; Takei, Kenta; Kikuchi, Takuya; Han, Song-iee; Matsuzaka, Takashi; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yatoh, Shigeru; Yahagi, Naoya; Isaka, Masaaki; Suzuki, Hiroaki; Sone, Hirohito; Takahashi, Satoru; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    cAMP responsive element binding protein 3-like 3 (CREB3L3), a transcription factor expressed in the liver and small intestine, governs fasting-response energy homeostasis. Tissue-specific CREB3L3 knockout mice have not been generated till date. To our knowledge, this is the first study using the one-step CRISPR/Cas9 system to generate CREB3L3 floxed mice and subsequently obtain liver- and small intestine-specific Creb3l3 knockout (LKO and IKO, respectively) mice. While LKO mice as well as global KO mice developed hypertriglyceridemia, LKO mice exhibited hypercholesterolemia in contrast to hypocholesterolemia in global KO mice. LKO mice demonstrated up-regulation of hepatic Srebf2 and its corresponding target genes. No phenotypic differences were observed between IKO and floxed mice. Severe liver injury was observed in LKO mice fed a methionine-choline deficient diet, a model for non-alcoholic steatohepatitis. These results provide new evidence regarding the hepatic CREB3L3 role in plasma triglyceride metabolism and hepatic and intestinal CREB3L3 contributions to cholesterol metabolism. PMID:27291420

  11. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system.

    Science.gov (United States)

    Nakagawa, Yoshimi; Oikawa, Fusaka; Mizuno, Seiya; Ohno, Hiroshi; Yagishita, Yuka; Satoh, Aoi; Osaki, Yoshinori; Takei, Kenta; Kikuchi, Takuya; Han, Song-Iee; Matsuzaka, Takashi; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yatoh, Shigeru; Yahagi, Naoya; Isaka, Masaaki; Suzuki, Hiroaki; Sone, Hirohito; Takahashi, Satoru; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    cAMP responsive element binding protein 3-like 3 (CREB3L3), a transcription factor expressed in the liver and small intestine, governs fasting-response energy homeostasis. Tissue-specific CREB3L3 knockout mice have not been generated till date. To our knowledge, this is the first study using the one-step CRISPR/Cas9 system to generate CREB3L3 floxed mice and subsequently obtain liver- and small intestine-specific Creb3l3 knockout (LKO and IKO, respectively) mice. While LKO mice as well as global KO mice developed hypertriglyceridemia, LKO mice exhibited hypercholesterolemia in contrast to hypocholesterolemia in global KO mice. LKO mice demonstrated up-regulation of hepatic Srebf2 and its corresponding target genes. No phenotypic differences were observed between IKO and floxed mice. Severe liver injury was observed in LKO mice fed a methionine-choline deficient diet, a model for non-alcoholic steatohepatitis. These results provide new evidence regarding the hepatic CREB3L3 role in plasma triglyceride metabolism and hepatic and intestinal CREB3L3 contributions to cholesterol metabolism. PMID:27291420

  12. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice

    DEFF Research Database (Denmark)

    Bentzon, Jacob Fog; Weile, Charlotte; Sondergaard, Claus S;

    2006-01-01

    Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present st...

  13. Role of interferon-gamma in the pathogenesis of LCMV-induced meningitis: unimpaired leucocyte recruitment, but deficient macrophage activation in interferon-gamma knock-out mice

    DEFF Research Database (Denmark)

    Nansen, A; Christensen, Jan Pravsgaard; Röpke, C;

    1998-01-01

    , a viral peptide could also elicit a T cell mediated inflammatory response in virus-primed IFN-gamma knock-out mice, indicating that redundancy of this cytokine as a proinflammatory mediator is not restricted to inflammatory reactions triggered by an active infection. Thus, T cell mediated inflammation may...

  14. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  15. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  16. Hormone-sensitive lipase-knockout mice maintain high bone density during aging.

    Science.gov (United States)

    Shen, Wen-Jun; Liu, Li-Fen; Patel, Shailja; Kraemer, Fredric B

    2011-08-01

    We tested the hypothesis that the actions of hormone-sensitive lipase (HSL) affect the microenvironment of the bone marrow and that removal of HSL function by gene deletion maintains high bone mass in aging mice. We compared littermate control wild-type (WT) and HSL(-/-) mice during aging for changes in serum biochemical values, trabecular bone density using micro-computed tomography, bone histomorphometry, and characteristics of primary bone marrow cells and preosteoblasts. There is a regulated expression of HSL and genes involved in lipid metabolism in the bone marrow during aging. HSL(-/-) mice have increased serum levels of insulin and osteocalcin with decreased leptin levels. Compared with the marked adipocyte infiltration in WT bone marrow (65% by area) at 14 mo, HSL(-/-) mice have fewer (16%, PHSL(-/-) mice maintain a higher bone density (bone volume/total volume 6.1%) with age than WT mice (2.6%, PHSL(-/-) mice show increased growth rates and higher osteogenic potential, manifested by increased expression of Runx2 (3.5-fold, PHSL directs cells within the bone marrow toward osteoblast differentiation and favors the maintenance of bone density with aging.

  17. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice.

    Science.gov (United States)

    Gu, Sun Mi; Park, Mi Hee; Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-03-29

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.

  18. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.

    Directory of Open Access Journals (Sweden)

    Paul D Bozyk

    Full Text Available In bronchopulmonary dysplasia (BPD, alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.

  19. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guodong [Department of Surgical Oncology, Cancer Treatment Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin (China); Kong, Bo [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Zhu, Yan [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Zhan, Le [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Williams, Jessica A. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Tawfik, Ossama [Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Kassel, Karen M. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Luyendyk, James P. [Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI (United States); Wang, Li [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT (United States); Guo, Grace L., E-mail: guo@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States)

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  20. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Khanna Ashwani K

    2009-07-01

    Full Text Available Abstract Cyclin kinase inhibitor p21 is one of the most potent inhibitors of aortic smooth muscle cell proliferation, a key mediator of atherosclerosis. This study tests if p2l deficiency will result in severe atherosclerosis in a mouse model. p21-/- and strain matched wild type mice were fed with high fat diet for 21 weeks. Analysis for biochemical parameters (cholesterol, triglycerides in serum and mRNA expression of CD36, HO-1, TGF-β, IFN-γ, TNF-α, PPAR-γ and NADPH oxidase components (p22phox, NOX-1 and Rac-1 was performed in aortic tissues by Real Time PCR. p21-/- mice gained significantly (p -/- compared to wild type mice fed with high fat diet. High fat diet resulted in significantly decreased TGF-β (p -/- mice compared to animal fed with regular diet. IFN-γ mRNA expression (235 ± 11 folds increased significantly in high fat diet fed p21-/- mice and a multifold modulation of PPAR-γ(136 ± 7, p22phox, NOX-1 and Rac-1 (15–35-folds mRNA in aortic tissues from p21-/- mice compared to the wild type mice. Severity of atherosclerotic lesions was significantly higher in p21-/- compared to wild type mice. The results demonstrate that the deficiency of p21 leads to altered expression of pro-atherogenic genes, and severe atherosclerosis in mice fed with high fat diet. This opens the possibility of p21 protein as a therapeutic tool to control progression of atherosclerosis.

  1. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG). The biodistribution of [18F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [18F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [18F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [18F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [18F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [18F]-FDG uptake in the heart in normal daily conditions. IR was associated with decreased [18F

  2. Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice

    Directory of Open Access Journals (Sweden)

    Gamarra Fernando

    2006-02-01

    Full Text Available Abstract Background Airway smooth muscle cells (ASMC play a key role in bronchial hyperresponsiveness (BHR. A major component of the signaling cascade leading to ASMC contraction is calcium. So far, agonist-induced Ca2+-signaling in asthma has been studied by comparing innate properties of inbred rat or mouse strains, or by using selected mediators known to be involved in asthma. T-bet knock-out (KO mice show key features of allergic asthma such as a shift towards TH2-lymphocytes and display a broad spectrum of asthma-like histological and functional characteristics. In this study, we aimed at investigating whether Ca2+-homeostasis of ASMC is altered in T-bet KO-mice as an experimental model of asthma. Methods Lung slices of 100 to 200 μm thickness were obtained from T-bet KO- and wild-type mice. Airway contraction in response to acetylcholine (ACH was measured by video-microscopy and Ca2+-signaling in single ASMC of lung slices was assessed using two-photon-microscopy. Results Airways from T-bet KO-mice showed increased baseline airway tone (BAT and BHR compared to wild-type mice. This could be mimicked by incubation of lung slices from wild-type mice with IL-13. The increased BAT was correlated with an increased incidence of spontaneous changes in intracellular Ca2+-concentrations, whereas BHR correlated with higher ACH-induced Ca2+-transients and an increased proportion of ASMC showing Ca2+-oscillations. Emptying intracellular Ca2+-stores using caffeine or cyclopiazonic acid induced higher Ca2+-elevations in ASMC from T-bet KO- compared to wild-type mice. Conclusion Altered Ca2+-homeostasis of ASMC contributes to increased BAT and BHR in lung slices from T-bet KO-mice as a murine asthma model. We propose that a higher Ca2+-content of the intracellular Ca2+-stores is involved in the pathophysiology of these changes.

  3. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    Science.gov (United States)

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  4. Decreased response to social defeat stress in μ-opioid-receptor knockout mice

    OpenAIRE

    Komatsu, Hiroshi; Ohara, Arihisa; Sasaki, Kazumasu; Abe, Hiromi; Hattori, Hisaki; Hall, F Scott; Uhl, George R.; Sora, Ichiro

    2011-01-01

    Substantial evidence exists that opioid systems are involved in stress response and that changes in opioid systems in response to stressors affect both reward and analgesia. Reportedly, mice suffering chronic social defeat stress subsequently show aversion to social contact with unfamiliar mice. To further examine the role of opioid systems in stress response, the behavioral and neurochemical effects of chronic social defeat stress (psychosocial stress) were evaluated in μ-opioid-receptor kno...

  5. Oxidative Stress Impairs Learning and Memory in apoE Knockout Mice

    OpenAIRE

    Evola, Marianne; Hall, Allyson; Wall, Trevor; Young, Alice; Grammas, Paula

    2010-01-01

    Cardiovascular risk factors, such as oxidative stress and elevated lipids, are linked to the development of cognitive impairment. A mediator common to both stressors is the apolipoprotein E (apoE). The objectives of this study are to determine the effects of apoE deficiency and diet-induced systemic oxidative stress in mice on vascular expression of inflammatory proteins and on cognitive function. Mice are placed on a diet enriched in homocysteine for fifteen weeks and then assessed for spati...

  6. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Directory of Open Access Journals (Sweden)

    Akito eNakao

    2015-06-01

    Full Text Available Calcium (Ca2+ influx through voltage-gated Ca2+ channels (VGCCs induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached study-wide significance. Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.

  7. On the mechanistic differences of benzene-induced leukemogenesis between wild type and p53 knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Yoko; Yoon, Byung-Il; Kawasaki, Yasushi; Li, Guang-Xun; Kanno, Jun; Inoue, Tohru [National Inst. of Health Sciences, Tokyo (Japan)

    2003-07-01

    Leukemia induction by benzene inhalation was first reported by Le Noire in 1887, described multiple cases of leukemia among Parisian cobblers. However, experimental induction of leukemia by benzene exposure was not succeeded for a hundred years, until Snyder et al. and our group reported it nearly 20 years ago. Nevertheless, the mechanistic background of benzene-induced leukemia was still an enigma until recently a benzene-induced peculiar cell kinetics of the stem/progenitor cells has been elucidated by our study, demonstrated a marked repeated oscillatory decrease in peripheral blood and bone marrow (BM) cellularity during and after benzene exposure, which epigenetically preceded and developed the leukemia more than a year later. We utilized the BUUV (bromodeoxyuridine + UV exposure) method to study stem/progenitor cell kinetics during and/or after benzene exposure. Using these methods, we were able to measure the labeling rate, cycling fraction of clonogenic progenitor cells, and other cell cycle parameters. The cycling fraction of stem/progenitor cells was found not to turn into an active hematopoiesis but to remain low during benzene inhalation and further we found evidence that the cycling fraction depression may be mediated in part by a slowing of stem/progenitor cell cycling perse by up-regulation of p21. The benzene induced leukemogenicity between mice carrying wild-type p53 and mice lacking p53 seem to differ from one another. In the case of p53 knockout mouse, DNA damage such as weak mutagenicity and or chromosomal damages are retained, and those damages participated in the induction of a consequent activation of proto-oncogenes and the like, which led cells to further neoplastic changes. In contrast, in the case of wild type mice, a dramatic oscillational change in the cell cycle of the stem cell compartment seems to be an important factor for mice carrying the p53 gene. (author)

  8. Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Directory of Open Access Journals (Sweden)

    Somasundaram Sivagurunathan

    2001-10-01

    Full Text Available Abstract Background Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT and rates of diffusional (sodium independent and active (sodium dependent uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. Methods Wild-type, heterozygous cftr (+/- and homozygous cftr (-/- mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer 3H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. Results In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/- and two-fold higher in cftr (+/- mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/- mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/- animals. Conclusions In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/- mice > cftr (+/- > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function.

  9. Higher Incidence of Lung Adenocarcinomas Induced by DMBA in Connexin 43 Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Krishna Duro de Oliveira

    2013-01-01

    Full Text Available Gap junctions are communicating junctions which are important for tissue homeostasis, and their disruption is involved in carcinogenic processes. This study aimed to verify the influence of deletion of one allele of the Connexin 43 gene on cancer incidence in different organs. The 7, 12-dimethylbenzanthracene (DMBA carcinogenic model, using hebdomadary doses by gavage of 9 mg per animal, was used to induce tumors in Connexin 43 heterozygous or wild-type mice. The experiment began in the eighth week of the mice life, and all of them were euthanized when reaching inadequate physical condition, or at the end of 53 weeks. No statistical differences occurred for weight gain and cancer survival time (P=0.9853 between heterozygous and wild-type mice. Cx43+/− mice presented significantly higher susceptibility to lung cancer (P=0.0200 which was not evidenced for benign neoplasms (P=0.3449. In addition, incidence of ovarian neoplasms was 2.5-fold higher in Cx43+/− mice, although not statistically significant. Other organs showed a very similar cancer occurrence between Cx43 groups. The experiment strengthens the evidence of the relationship between Connexin 43 deficiency and carcinogenesis.

  10. Conditional Knockout in Mice Reveals the Critical Roles of Ppp2ca in Epidermis Development

    Directory of Open Access Journals (Sweden)

    Chao Fang

    2016-05-01

    Full Text Available The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2caflox/flox transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2caflox/flox; Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2caflox/flox; Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2caflox/flox mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases.

  11. Conditional Knockout in Mice Reveals the Critical Roles of Ppp2ca in Epidermis Development.

    Science.gov (United States)

    Fang, Chao; Li, Lei; Li, Jianmin

    2016-01-01

    The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2ca(flox/flox) transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2ca(flox/flox); Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2ca(flox/flox); Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2ca(flox/flox) mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases. PMID:27213341

  12. Quantification of Pelvic Organ Prolapse in Mice: Vaginal Protease Activity Precedes Increased MOPQ Scores in Fibulin 5 Knockout Mice1

    OpenAIRE

    Wieslander, Cecilia K.; Rahn, David D.; Donald D. Mcintire; Acevedo, Jesús F.; Peter G. Drewes; Yanagisawa, Hiromi; Word, R. Ann

    2009-01-01

    Two mouse models of pelvic organ prolapse have been generated recently, both of which have null mutations in genes involved in elastic fiber synthesis and assembly (fibulin 5 and lysyl oxidase-like 1). Interestingly, although these mice exhibit elastinopathies early in life, pelvic organ prolapse does not develop until later in life. In this investigation we developed and validated a tool to quantify the severity of pelvic organ prolapse in mice, and we used this tool prospectively to study t...

  13. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  14. Effects of insulin sensitizers on plaque vulnerability associated with elevated lipid content in atheroma in ApoE-knockout mice.

    Science.gov (United States)

    Cefalu, W T; Wang, Z Q; Schneider, D J; Absher, P M; Baldor, L C; Taatjes, D J; Sobel, B E

    2004-03-01

    Acute coronary syndromes are generally precipitated by rupture of lipid-laden, relatively acellular, vulnerable atherosclerotic plaques with thin fibrous caps. We investigated whether a high-fat diet alters insulin sensitivity and whether insulin sensitizers (troglitazone and rosiglitazone) alter the composition of otherwise lipidladen atherosclerotic plaques in mice deficient in apolipoprotein E (ApoE). ApoE-knockout mice were fed a high-fat (n=30) or standard chow (n=10) diet for two weeks. Thereafter, those fed the high-fat diet were treated with troglitazone (n=10), rosiglitazone (n=10) or no drug (n=10) for 16 weeks beginning at 8 weeks of age. Carbohydrate metabolism was assessed with intraperitoneal glucose tolerance tests and insulin tolerance tests. Plaque composition was characterised with confocal laser scanning microscopy. The high-fat diet induced insulin resistance in the absence of weight gain. Compared with control animals on the high-fat diet, animals given troglitazone (400 mg/kg/day) or rosiglitazone (4 mg/kg/day) had significantly less area under the curve (AUC) for insulin ( p<0.05) and glucose disposal ( p<0.05). Despite significant increases in insulin sensitivity with drug treatment, no change in HDL-cholesterol and triglyceride levels, nor reduction in atheroma size or lipid content was noted. Thus, improvement in insulin resistance induced by a high-fat diet in this animal model of vasculopathy did not alter plaque composition.

  15. Atorvastatin attenuates p-cresyl sulfate-induced atherogenesis and plaque instability in ApoE knockout mice

    Science.gov (United States)

    Han, Hui; Chen, Yanjia; Zhu, Jinzhou; Ni, Jingwei; Sun, Jiateng; Zhang, Ruiyan

    2016-01-01

    p-cresyl sulfate (PCS) is a protein-bound uremic toxin retained in the blood of patients with chronic kidney disease (CKD) As atherosclerosis is a primary cardiovascular complication for patients with CKD, the aim of the present study was to investigate the mechanisms underlying the aggravation of atherosclerosis by PCS. In addition, the effect of atorvastatin was assessed in reversing the effects of PCS. PCS was revealed to promote the initiation and progression of atherosclerosis. Following treatment with atorvastatin, apolipoprotein E knockout mice demonstrated a reduction in PCS-induced atherogenesis and plaque vulnerability. In addition, atorvastatin decreased the protein expression levels of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1, and the interaction between leukocytes and endothelia. The plasma lipid profiles of mice were not significantly affected by gavage of low-dose atorvastatin. The results of the present study indicate that PCS promotes plaque growth and instability by enhancing leukocyte-endothelium interaction, and that these effects may be attenuated by atorvastatin treatment. PMID:27574007

  16. Knockout of the TauT gene predisposes C57BL/6 mice to streptozotocin-induced diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Xiaobin Han

    Full Text Available Diabetic nephropathy is the leading cause of end stage renal disease in the world. Although tremendous efforts have been made, scientists have yet to identify an ideal animal model that can reproduce the characteristics of human diabetic nephropathy. In this study, we hypothesize that taurine insufficiency is a critical risk factor for development of diabetic nephropathy associated with diabetes mellitus. This hypothesis was tested in vivo in TauT heterozygous (TauT+/- and homozygous (TauT-/- knockout in C57BL/6 background mice. We have shown that alteration of the TauT gene (also known as SLC6A6 has a substantial effect on the susceptibility to development of extensive diabetic kidney disease in both TauT+/- and TauT-/-mouse models of diabetes. These animals developed histological changes characteristic of human diabetic nephropathy that included glomerulosclerosis, nodular lesions, arteriosclerosis, arteriolar dilation, and tubulointerstitial fibrosis. Immunohistochemical staining of molecular markers of smooth muscle actin, CD34, Ki67 and collagen IV further confirmed these observations. Our results demonstrated that both homozygous and heterozygous TauT gene deletion predispose C57BL/6 mice to develop end-stage diabetic kidney disease, which closely replicates the pathological features of diabetic nephropathy in human diabetic patients.

  17. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Directory of Open Access Journals (Sweden)

    Ardizzone Michele

    2008-08-01

    Full Text Available Abstract Background The present study has investigated the protein tyrosine phosphatase H1 (PTPH1 expression pattern in mouse brain and its impact on CNS functions. Methods We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype were also behaviorally tested for CNS functions. Results In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females. Conclusion These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.

  18. Effects of Chronic Mild Stress on the Development of Atherosclerosis and Expression of Toll-Like Receptor 4 Signaling Pathway in Adolescent Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hongfeng Gu

    2009-01-01

    Full Text Available Here, we investigated the effect of chronic mild stress (CMS on the development of atherosclerosis as well as the expression of Toll-like receptors (TLRs signaling pathway in adolescent apolipoprotein E knockout (apoE-/- mice. Mice were subjected to daily CMS for 0, 4, and 12 weeks, respectively. To identify the expression of Toll-like receptor 4 signaling pathway in adolescent apolipoprotein E knockout mice subjected to CMS, we compared gene expression in aortas of stressed and unstressed mice using TLRs signaling pathway real-time PCR microarrays consisting of 87 genes. We found that atherosclerosis lesions both in aortic tress and sinuses of CMS mice were significantly increased linearly in response to duration of CMS exposure. Among 87 genes analyzed, 15 genes were upregulated in stressed mice, especially TLR4, myeloid differentiation factor 88 (MyD88, and IL-1β, and 28 genes were downregulated compared with nonstressed mice. CMS mice demonstrated markedly increased aortic atherosclerosis that were associated with significant increases in levels of expression of TLR4, MyD88, nuclear factor κB (NF-κB, MCP-1, IL-1β, TNF-α, and sICAM-1. Taken together, our results suggest an important role for TLR4 signaling pathway in atherosclerosis in a CMS mouse model.

  19. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene

    Directory of Open Access Journals (Sweden)

    Tao Pao-Luh

    2010-04-01

    Full Text Available Abstract Background Opioid analgesics such as morphine and meperidine have been used to control moderate to severe pain for many years. However, these opioids have many side effects, including the development of tolerance and dependence after long-term use, which has limited their clinical use. We previously reported that mutations in the mu-opioid receptors (MOR S196L and S196A rendered them responsive to the opioid antagonist naloxone without altering the agonist phenotype. In MORS196A knock-in mice, naloxone and naltrexone were antinociceptive but did not cause tolerance or physical dependence. In this study we delivery this mutated MOR gene into pain related pathway to confirm the possibility of in vivo transfecting MORS196A gene and using naloxone as a new analgesic agent. Methods The MOR-knockout (MOR-KO mice were used to investigate whether morphine and naloxone could show antinociceptive effects when MORS196A gene was transfected into the spinal cords of MOR-KO mice. Double-stranded adeno-associated virus type 2 (dsAAV2 was used to deliver the MORS196A-enhanced green fluorescence protein (EGFP gene by microinjected the virus into the spinal cord (S2/S3 dorsal horn region. Tail-flick test was used to measure the antinociceptive effect of drugs. Results Morphine (10 mg/kg, s.c. and naloxone (10 mg/kg, s.c. had no antinociceptive effects in MOR-KO mice before gene transfection. However, two or three weeks after the MOR-S196A gene had been injected locally into the spinal cord of MOR-KO mice, significant antinociceptive effects could be induced by naloxone or morphine. On the other hand, only morphine but not naloxone induced significant tolerance after sub-chronic treatment. Conclusion Transfecting the MORS196A gene into the spinal cord and systemically administering naloxone in MOR-KO mice activated the exogenously delivered mutant MOR and provided antinociceptive effect without causing tolerance. Since naloxone will not activate natural

  20. 小鼠基因敲除的研究进展%Advances of gene knockout in mice

    Institute of Scientific and Technical Information of China (English)

    张剑; 杨晓梅; 高建刚

    2011-01-01

    With the successful completion of the Human Genome Project (HGP), biological research of the post-genome era has a urgent need for an effective gene function analysis. Application of the knockout mouse model provides a strong support for the study of gene function and the search for new therapeutic interventions in human disease. Two different techniques, gene targeting and gene trapping produce knockout mice from embryonic stem cells (ES cells). The characteristic of gene trapping is high-throughput, random, and sequence tagged, while gene targeting is a specific gene knockout. Two decades ago, the first gene targeting and gene trapping mice were generated. In recent years, new tools for gene targeting and gene trapping have been emerging, and the related organizations have been formed. These organi- zations can knock out genes in the mouse genome using these two methods. The international gene trap consortium (IGTC) and the knockout mouse project (KOMP) have begun to create a worldwide resource for research facilities, and plan to knock out all the mouse genes. KOMP organizers consider it as important as the HGP. From conventional gene targeting to high throughput conditional gene targeting, gene targeting methods have changed. The combined advantages of trapping and targeting enhance the gene trapping spectrum and gene targeting efficiency. As a newly developed insertional mutation system, transposons in trapping genes have more advantages than retrovirus. Emergence of the international knockout mouse consortium (IKMC) is the beginning of global cooperation. The organization is committed to systematically knock out all genes in the mouse genorne, and then to carry out functional genomics studies.%随着人类基因组计划(HGP)的顺利完成,后基因时代的生物学研究迫切需要一种有效的基因功能分析方法。基因敲除小鼠模型的应用,为研究基因的功能和寻找新的治疗人类疾病的干预措施

  1. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  2. Tumor growth and angiogenesis is impaired in CIB1 knockout mice

    Directory of Open Access Journals (Sweden)

    Zayed Mohamed A

    2010-08-01

    Full Text Available Abstract Background Pathological angiogenesis contributes to various ocular, malignant, and inflammatory disorders, emphasizing the need to understand this process more precisely on a molecular level. Previously we found that CIB1, a 22 kDa regulatory protein, plays a critical role in endothelial cell function, angiogenic growth factor-mediated cellular functions, PAK1 activation, MMP-2 expression, and in vivo ischemia-induced angiogenesis. Since pathological angiogenesis is highly dependent on many of these same processes, we hypothesized that CIB1 may also regulate tumor-induced angiogenesis. Methods To test this hypothesis, we allografted either murine B16 melanoma or Lewis lung carcinoma cells into WT and CIB1-KO mice, and monitored tumor growth, morphology, histology, and intra-tumoral microvessel density. Results Allografted melanoma tumors that developed in CIB1-KO mice were smaller in volume, had a distinct necrotic appearance, and had significantly less intra-tumoral microvessel density. Similarly, allografted Lewis lung carcinoma tumors in CIB1-KO mice were smaller in volume and mass, and appeared to have decreased perfusion. Intra-tumoral hemorrhage, necrosis, and perivascular fibrosis were also increased in tumors that developed in CIB1-KO mice. Conclusions These findings suggest that, in addition to its other functions, CIB1 plays a critical role in facilitating tumor growth and tumor-induced angiogenesis.

  3. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  4. Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes in Dopamine-β-Hydroxylase- and CRH-Knockout Mice Exposed to Stress

    OpenAIRE

    Richard, Kvetnansky; Olga, Krizanova; Andrej, Tillinger; Sabban Esther, L.; Thomas Steven, A; Lucia, Kubovcakova

    2008-01-01

    Norepinephrine-deficient mice harbor a disruption of the gene for dopamine-β-hydroxylase (DBH-KO). Corticotropin-releasing hormone knockout mice (CRH-KO) have markedly reduced HPA activity. The aim of the present work was to study how deficiency of DBH and CRH would affect tyrosine hydroxylase (TH), DBH, and phenylethanolamine N-methyltransferase (PNMT) gene expression and protein levels in the adrenal medulla (AM) and stellate ganglia (SG) of control and stressed mice. Both in AM and SG, sin...

  5. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  6. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  7. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.;

    2013-01-01

    Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver......-specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting...... of the mice (24 h) induced modest dilatation of the rough endoplasmic reticulum (RER) in the periportal hepatocytes. Refeeding with standard mouse chow induced rapid generation of large RER-derived vacuoles in Aqp11 KO mice hepatocytes. Similar effects were observed following oral administration of pure...

  8. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial.

    Science.gov (United States)

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-05-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1(-/-)) and wild-type mice (DJ-1(+/+)) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1(-/-) and DJ-1(+/+) mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1(-/-) mice showed a significant increase in a time-dependent manner, compared to that of DJ-1(+/+) mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  9. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N;

    2013-01-01

    The recently identified G protein-coupled receptor GPRC6A is activated by dietary amino acids and expressed in multiple tissues. Although the receptor is hypothesised to exert biological impact on metabolic and endocrine-related parameters, the role of the receptor in obesity and metabolic....... A significant increase in body weight, corresponding to a selective increase in body fat, was observed in Gprc6a KO mice exposed to an HFD relative to WT controls. The obese phenotype was linked to subtle perturbations in energy homoeostasis as GPRC6A deficiency resulted in chronic hyperphagia and decreased...... locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...

  10. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  11. The Effects of Cocaine on Regional Brain Glucose Metabolism Is Attenuated in Dopamine Transporter Knockout Mice

    OpenAIRE

    Thanos, Panayotis K.; MICHAELIDES, MICHAEL; Benveniste, Helene; WANG, GENE JACK; Volkow, Nora D.

    2008-01-01

    Cocaine’s ability to block the dopamine transporter (DAT) is crucial for its reinforcing effects. However the brain functional consequences of DAT blockade by cocaine are less clear since they are confounded by its concomitant blockade of norepinephrine and serotonin transporters. To separate the dopaminergic from the non-dopaminergic effects of cocaine on brain function we compared the regional brain metabolic responses to cocaine between dopamine transporter deficient (DAT−/−) mice with tha...

  12. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie;

    2003-01-01

    control conditions (450.5 +/- 60 vs. 475.2 +/- 62.5 microl/min) but fell significantly less in A1AR -/- mice during infusion of ANG II at 1.5 ng/min (A1AR +/+: 242 +/- 32.5 microl/min, A1AR -/-: 371 +/- 42 microl/min; P = 0.03). Bolus injection of 1, 10, and 100 ng of ANG II reduced renal blood flow...... vessels and to reduce GFR....

  13. Dramatically decreased cocaine self-administration in dopamine but not serotonin transporter knockout mice

    OpenAIRE

    Thomsen, Morgane; Hall, F. Scott; Uhl, George R.; Caine, S. Barak

    2009-01-01

    There has been much interest in the relative importance of dopamine and serotonin transporters in the abuse-related-effects of cocaine. We tested the hypotheses that mice lacking the dopamine transporter (DAT−/−), the serotonin transporter (SERT−/−), or both (DAT−/−SERT−/−) exhibit decreased reinforcing effects of cocaine. We also assessed whether observed effects on self-administration are specific to cocaine or if operant behavior maintained by food or a direct dopamine agonist are similarl...

  14. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis

    Institute of Scientific and Technical Information of China (English)

    Jianfeng Wu; Zhe Huang; Junming Ren; Zhirong Zhang; Peng He; Yangxin Li; Jianhui Ma

    2013-01-01

    Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines.We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development.Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli.Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB,ERK,JNK,and p38 in response to TNF and lipopolysaccharides (LPS),respectively.Consistently,Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β),IL-6,and TNF production after LPS treatment.Mlkl deficiency protects mice from cerulean-induced acute pancreatitis,a necrosis-related disease,but has no effect on polymicrobiai septic shock-induced animal death.Our results provide genetic evidence for the role of Mlkl in necroptosis.

  15. Conditional knockout mice demonstrate function of Klf5 as a myeloid transcription factor.

    Science.gov (United States)

    Shahrin, Nur Hezrin; Diakiw, Sonya; Dent, Lindsay A; Brown, Anna L; D'Andrea, Richard J

    2016-07-01

    Krüppel-like factor 5 (Klf5) encodes a zinc-finger transcription factor and has been reported to be a direct target of C/EBPα, a master transcription factor critical for formation of granulocyte-macrophage progenitors (GMP) and leukemic GMP. Using an in vivo hematopoietic-specific gene ablation model, we demonstrate that loss of Klf5 function leads to a progressive increase in peripheral white blood cells, associated with increasing splenomegaly. Long-term hematopoietic stem cells (HSCs), short-term HSCs (ST-HSCs), and multipotent progenitors (MPPs) were all significantly reduced in Klf5(Δ/Δ) mice, and knockdown of KLF5 in human CD34(+) cells suppressed colony-forming potential. ST-HSCs, MPPs, and total numbers of committed progenitors were increased in the spleen of Klf5(Δ/Δ) mice, and reduced β1- and β2-integrin expression on hematopoietic progenitors suggests that increased splenic hematopoiesis results from increased stem and progenitor mobilization. Klf5(Δ/Δ) mice show a significant reduction in the fraction of Gr1(+)Mac1(+) cells (neutrophils) in peripheral blood and bone marrow and increased frequency of eosinophils in the peripheral blood, bone marrow, and lung. Thus, these studies demonstrate dual functions of Klf5 in regulating hematopoietic stem and progenitor proliferation and localization in the bone marrow, as well as lineage choice after GMP, promoting increased neutrophil output at the expense of eosinophil production.

  16. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis

    Science.gov (United States)

    Wang, Zhen; Tran, Misha C.; Bhatia, Namrata J.; Hsing, Alexander W.; Chen, Carol; LaRussa, Marie F.; Fattakhov, Ernst; Rashidi, Vania; Jang, Kyu Yun; Choo, Kevin J.; Nie, Xingju; Mathy, Jonathan A.; Longaker, Michael T.; Dauskardt, Reinhold H.; Helms, Jill A.; Yang, George P.

    2016-01-01

    Objective We identified significant expression of the matricellular protein, DEL1, in hypertrophic and mature cartilage during development. We hypothesized that this tissue-specific expression indicated a biological role for DEL1 in cartilage biology. Methods Del1 KO and WT mice had cartilage thickness evaluated by histomorphometry. Additional mice underwent medial meniscectomy to induce osteoarthritis, and were assayed at 1 week for apoptosis by TUNEL staining and at 8 weeks for histology and OA scoring. In vitro proliferation and apoptosis assays were performed on primary chondrocytes. Results Deletion of the Del1 gene led to decreased amounts of cartilage in the ears and knee joints in mice with otherwise normal skeletal morphology. Destabilization of the knee led to more severe OA compared to controls. In vitro, DEL1 blocked apoptosis in chondrocytes. Conclusion Osteoarthritis is among the most prevalent diseases worldwide and increasing in incidence as our population ages. Initiation begins with an injury resulting in the release of inflammatory mediators. Excessive production of inflammatory mediators results in apoptosis of chondrocytes. Because of the limited ability of chondrocytes to regenerate, articular cartilage deteriorates leading to the clinical symptoms including severe pain and decreased mobility. No treatments effectively block the progression of OA. We propose that direct modulation of chondrocyte apoptosis is a key variable in the etiology of OA, and therapies aimed at preventing this important step represent a new class of regenerative medicine targets. PMID:27505251

  17. Knockout of the tumor necrosis factor α receptor 1 gene can up-regulate erythropoietin receptor during myocardial ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    LI Chang-ling; JIANG Jun; FAN You-qi; FU Guo-sheng; WANG Jia-nan; FAN Wei-ming

    2009-01-01

    Background Tumor necrosis factor α receptor 1 (TNFαR1) plays an important role in the signal pathway of apoptosis.The objective of this study was to investigate the effects of TNFaR1 knockout on the up-regulation of erythropoietin receptor (Epo-R) and the coordinated anti-apoptosis functions during myocardial ischemia-reperfusion injury in mice.Methods The ischemia-reperfusion injury model for cardiomyocytes was performed by ligating the left circumflex branch artery of TNFαR1 knockout (P55-/-) C17 B6 mice, as well as wild-type (P55+/+) C17 B6 mice. Triphenyltetrazolium chloride (TTC) staining was performed to observe the damaged area of the heart. TUNEL staining and DNA fragmentation were used to identify apoptosis. Mitochondrial Bcl-2 and Bax as well as expression of Epo-R and its downstream genes (Jak-2, slat-5, Akt, IkB-α, HIF-1α) were measured by Western blotting. The gene knockout mice were assigned into those undergoing the apoptosis surgical model group (KO group), and those subjected to sham operation (Kos group). Similarly, wild-type mice were either exposed to the surgical model (WT group) or subject to a sham operation (WTs group).Results The myocardial damage ratio of the wild-type group after the operation was significantly higher than that of the knockout group, (50.5±6.4)% vs (36.9±6.9)%, P<0.01. Similarly, TUNEL positive ratio of the wild-type group was significantly higher than that of the knockout group, (63.1±5.6)% vs (42.1±4.7)%, P<0.01. The gray value ratios of Epo-R,Jak-2, stat-5, Akt, IkB-α, HIF-1 and mitochondrial Bcl-2 in the KO group were significantly higher than those of the WT group, P<0.05; however, mitochondrial Bax was significantly lower than that of the WT group significantly (P<0.05).Conclusions Using the ischemia-reperfusion injury model in mice, cardiomyocytes of TNFαR1 knockouts exhibited anti-apoptotic characteristics. This information could be used to coordinate the prevention of myocardial apoptosis by up

  18. PLEKHQ1基因敲除小鼠基因型鉴定方法%The method of the identification of the PLEKHQ1 gene knockout mice

    Institute of Scientific and Technical Information of China (English)

    张鹏飞; 张硌; 陆琤; 周晨辰

    2015-01-01

    目的:探讨鉴定PLEKHQ1基因敲除(KO)小鼠基因型的方法。方法:对PLEKHQ1基因敲除杂合子小鼠进行单独饲养及配种繁殖,繁殖后其子代出现野生型、杂合子型及纯合子型3种基因型,提取每只小鼠的基因组DNA,采用聚合酶链反应(PCR)和变性方法进行基因类型鉴定。结果:采用PCR和变性法成功鉴定出PLEKHQ1基因敲除小鼠的基因型。结论:这种无需T7酶切的小鼠基因型鉴定方法可用于PLEKHQ1基因敲除小鼠的基因型鉴定。%Objective:To identify PLEKHQ1 gene knock-out mice.Methods: The PLEKHQ1 gene knock-out heterozygote mice were bred alone and copulated. The offsprings were to have three genotypes: wild genotype, heterozygote genotype and homozygote genotype. Genomic DNA was obtained from each pups and were subjected to PCR and Denature to identify the genotype. Results: The identification of PLEKHQ1 gene knockout mice is successful.Conclusion: The identification method of PLEKHQ1-KO mice without T7 can correct identify PLEKHQ1 gene knockout mice.

  19. Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans.

    Science.gov (United States)

    Oppelt, Sarah A; Sennott, Erin M; Tolan, Dean R

    2015-03-01

    The rise in fructose consumption, and its correlation with symptoms of metabolic syndrome (MBS), has highlighted the need for a better understanding of fructose metabolism. To that end, valid rodent models reflecting the same metabolism as in humans, both biochemically and physiologically, are critical. A key to understanding any type of metabolism comes from study of disease states that affect such metabolism. A serious defect of fructose metabolism is the autosomal recessive condition called hereditary fructose intolerance (HFI), caused by mutations in the human aldolase B gene (Aldob). Those afflicted with HFI experience liver and kidney dysfunction after fructose consumption, which can lead to death, particularly during infancy. With very low levels of fructose exposure, HFI patients develop non-alcoholic fatty acid liver disease and fibrosis, sharing liver pathologies also seen in MBS. A major step toward establishing that fructose metabolism in mice mimics that of humans is reported by investigating the consequences of targeting the mouse aldolase-B gene (Aldo2) for deletion in mice (Aldo2(-/-)). The Aldo2(-/-) homozygous mice show similar pathology following exposure to fructose as humans with HFI such as failure to thrive, liver dysfunction, and potential morbidity. Establishing that this mouse reflects the symptoms of HFI in humans is critical for comparison of rodent studies to the human condition, where this food source is increasing, and increasingly controversial. This animal should provide a valuable resource for answering remaining questions about fructose metabolism in HFI, as well as help investigate the biochemical mechanisms leading to liver pathologies seen in MBS from high fructose diets.

  20. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  1. Protection against Fas-induced fulminant hepatic failure in liver specific integrin linked kinase knockout mice

    OpenAIRE

    Donthamsetty, Shashikiran; Mars, Wendy M.; Orr, Anne; Wu, Chuanyue; Michalopoulos, George K

    2011-01-01

    Background Programmed cell death or apoptosis is an essential process for tissue homeostasis. Hepatocyte apoptosis is a common mechanism to many forms of liver disease. This study was undertaken to test the role of ILK in hepatocyte survival and response to injury using a Jo-2-induced apoptosis model. Methods For survival experiments, ILK KO and WT mice received a single intraperitoneal injection of the agonistic anti-Fas monoclonal antibody Jo-2 at the lethal dose (0.4 μg/g body weight) or s...

  2. Prevention of Hepatic Apoptosis and Embryonic Lethality in RelA/TNFR-1 Double Knockout Mice

    OpenAIRE

    Rosenfeld, Maryland E.; Prichard, Lisa; Shiojiri, Nobuyoshi; Fausto, Nelson

    2000-01-01

    Mice deficient in the nuclear factor κB (NF-κB)-transactivating gene RelA (p65) die at embryonic days 14–15 with massive liver apoptosis. In the adult liver, activation of the NF-κB heterodimer RelA/p50 can cause hepatocyte proliferation, apoptosis, or the induction of acute-phase response genes. We examined, during wild-type fetal liver development, the expression of the Rel family member proteins, as well as other proteins known to be important for NF-κB activation. We found these proteins ...

  3. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis

    OpenAIRE

    Khanna Ashwani K

    2009-01-01

    Abstract Cyclin kinase inhibitor p21 is one of the most potent inhibitors of aortic smooth muscle cell proliferation, a key mediator of atherosclerosis. This study tests if p2l deficiency will result in severe atherosclerosis in a mouse model. p21-/- and strain matched wild type mice were fed with high fat diet for 21 weeks. Analysis for biochemical parameters (cholesterol, triglycerides) in serum and mRNA expression of CD36, HO-1, TGF-β, IFN-γ, TNF-α, PPAR-γ and NADPH oxidase components (p22...

  4. Cushing's syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice.

    Directory of Open Access Journals (Sweden)

    Isabelle Sahut-Barnola

    2010-06-01

    Full Text Available Carney complex (CNC is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD, a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory subunit (R1alpha of the cAMP-dependent protein kinase (PKA have been found in 80% of CNC patients with Cushing's syndrome. To demonstrate the implication of R1alpha loss in the initiation and development of PPNAD, we generated mice lacking Prkar1a specifically in the adrenal cortex (AdKO. AdKO mice develop pituitary-independent Cushing's syndrome with increased PKA activity. This leads to autonomous steroidogenic genes expression and deregulated adreno-cortical cells differentiation, increased proliferation and resistance to apoptosis. Unexpectedly, R1alpha loss results in improper maintenance and centrifugal expansion of cortisol-producing fetal adrenocortical cells with concomitant regression of adult cortex. Our data provide the first in vivo evidence that loss of R1alpha is sufficient to induce autonomous adrenal hyper-activity and bilateral hyperplasia, both observed in human PPNAD. Furthermore, this model demonstrates that deregulated PKA activity favors the emergence of a new cell population potentially arising from the fetal adrenal, giving new insight into the mechanisms leading to PPNAD.

  5. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takehiko; Yanai, Kazuhiko [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2001-12-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  6. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  7. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice

    Science.gov (United States)

    Cong, Xiaofei; Doering, Jonathan; Grange, Robert W.; Jiang, Honglin

    2016-01-01

    The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K+], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle. PMID:27184118

  8. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    Directory of Open Access Journals (Sweden)

    Claësson Mogens H

    2008-06-01

    Full Text Available Abstract Background Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7, established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensional gel electrophoresis (2D-PAGE. Results Protein spots excised from 2D-PAGE gels, were subjected to in-gel tryptic digestion and identified by liquid chromatography – tandem mass spectrometry. A total of 47 protein spots were identified. Immunological verification was performed for several of the differentially regulated proteins where suitable antibodies could be obtained. Functional annotation clustering revealed similarities as well as differences between the tumours. Twelve proteins that changed similarly in both tumours included up-regulation of rho GDP-dissociation inhibitor 2, proteasome subunit α type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin β-3 chain, a 25 kDa actin fragment, proteasome subunit β type 9, cofilin-1 and glia maturation factor γ. Conclusion Some of the commonly differentially expressed proteins are also differentially expressed in other tumours and may be putative diagnostic and/or prognostic markers for lymphomas.

  9. Chronic hyperbaric oxygen treatment elicits an anti-oxidant response and attenuates atherosclerosis in apoE knockout mice.

    Science.gov (United States)

    Kudchodkar, Bhalchandra J; Pierce, Anson; Dory, Ladislav

    2007-07-01

    We previously demonstrated that hyperbaric oxygen (HBO) treatment inhibits diet-induced atherosclerosis in New Zealand White rabbits. In the present study we investigate the mechanisms that might be involved in the athero-protective effect of HBO treatment in a well-accepted model of atherosclerosis, the apoE knockout (KO) mouse. We examine the effects of daily HBO treatment (for 5 and 10 weeks) on the components of the anti-oxidant defense mechanism and the redox state in blood, liver and aortic tissues and compare them to those of untreated apoE KO mice. HBO treatment results in a significant reduction of aortic cholesterol content and decreased fatty streak formation. These changes are accompanied by a significant reduction of autoantibodies against oxidatively modified LDL and profound changes in the redox state of the liver and aortic tissues. A 10-week treatment significantly reduces hepatic levels of TBARS and oxidized glutathione, while significantly increases the levels of reduced glutathione, glutathione reductase (GR), transferase, Se-dependent glutathione peroxidase and catalase (CAT). The effects of HBO treatment are similar in the aortic tissues. These observations provide evidence that HBO treatment has a powerful effect on the redox state of relevant tissues and produces an environment that inhibits oxidation. The anti-oxidant response may be the key to the anti-atherogenic effect of HBO treatment. PMID:16973170

  10. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    International Nuclear Information System (INIS)

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  11. Breeding Reproducing and Identifying for p53 Gene Knockout Mice%p53基因敲除小鼠的饲养繁殖及鉴定

    Institute of Scientific and Technical Information of China (English)

    乔录新; 徐萌; 柴梦音; 乔欣; 陈德喜

    2012-01-01

    目的 为了繁育和鉴定p53基因敲除小鼠,将引进的杂合子小鼠进行饲养繁殖,杂合子用于继续保种.方法 对其幼鼠剪尾提取基因组DNA,采用PCR方法进行基因型鉴定.结果 对引进小鼠已成功饲养和繁殖,并得到纯合基因缺失型小鼠.结论 正确的饲养、繁殖及基因鉴定方法对于基因敲除小鼠的获得和保种具有重要的意义.%Objective To breed and identify p53 gene knockout mice, Heterozygote mice were bred and reproduced. Methods Genome DNA extracted from the mice' s tails were subjected to PCR test for genotype identification. Results Heterozygous were used to acquire baby mice for Protection species. Conclusion The breeding and reproducing were successful and Homozygous genotype mice were acquired. Appropriate methods of feeding, breeding and identifying are important for obtaining gene knockout mice and protecting species.

  12. Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice.

    Science.gov (United States)

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Yanaka, Noriyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi

    2016-08-15

    Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency.

  13. Atherosclerosis in low density lipoprotein receptor knockout mice fed cholesterol and soybean oil

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Olsen, P.; Frandsen, H.

    1999-01-01

    In order to study aortic atherosclerosis and atherosclerotic response to dietary cholesterol and soybean oil in homozygous LDLR-/- mice, the 16 weeks old animals were randomized in 4 groups either fed standard diet (no cholesterol added, group I, 12 male and 12 female), standard diet added 0.......9 +/- 0.07 (group III), 32.6 +/-0.1 (group IV), and of females 6.9 +/- 2.7 (group I) and 31.7 +/- 4.4 (group II). No apparent difference in plasma triglyceride levels was observed between the groups of either sexes. Aortic atherosclerosis (ratio intima/media) in males was 0.17 +/- 0.09 (SD) (group I), 0...

  14. Species-dependent smooth muscle contraction to Neuromedin U and determination of the receptor subtypes mediating contraction using NMU1 receptor knockout mice

    OpenAIRE

    Prendergast, Clodagh E; Morton, Magda F; Figueroa, Katherine W.; Wu, Xiaodong; Shankley, Nigel P.

    2006-01-01

    The peptide ligand neuromedin U (NMU) has been implicated in an array of biological activities, including contraction of uterine, intestinal and urinary bladder smooth muscle. However, many of these responses appear to be species-specific. This study was undertaken to fully elucidate the range of smooth muscle-stimulating effects of NMU in rats, mice and guinea-pigs, and to examine the extent of the species differences. In addition, the NMU1 receptor knockout mouse was used to determine which...

  15. Cardiac structure and function during ageing in energetically compromised Guanidinoacetate N-methyltransferase (GAMT-knockout mice – a one year longitudinal MRI study

    Directory of Open Access Journals (Sweden)

    Clarke Kieran

    2008-02-01

    Full Text Available Abstract Background High-resolution magnetic resonance imaging (cine-MRI is well suited for determining global cardiac function longitudinally in genetically or surgically manipulated mice, but in practice it is seldom used to its full potential. In this study, male and female guanidinoacetate N-methyltransferase (GAMT knockout, and wild type littermate mice were subjected to a longitudinal cine-MRI study at four time points over the course of one year. GAMT is an essential enzyme in creatine biosynthesis, such that GAMT deficient mice are entirely creatine-free. Since creatine plays an important role in the buffering and transfer of high-energy phosphate bonds in the heart, it was hypothesized that lack of creatine would be detrimental for resting cardiac performance during ageing. Methods Measurements of cardiac structure (left ventricular mass and volumes and function (ejection fraction, stroke volume, cardiac output were obtained using high-resolution cine-MRI at 9.4 T under isoflurane anaesthesia. Results There were no physiologically significant differences in cardiac function between wild type and GAMT knockout mice at any time point for male or female groups, or for both combined (for example ejection fraction: 6 weeks (KO vs. WT: 70 ± 6% vs. 65 ± 7%; 4 months: 70 ± 6% vs. 62 ± 8%; 8 months: 62 ± 11% vs. 62 ± 6%; 12 months: 61 ± 7% vs. 59 ± 11%, respectively. Conclusion These findings suggest the presence of comprehensive adaptations in the knockout mice that can compensate for a lack of creatine. Furthermore, this study clearly demonstrates the power of cine-MRI for accurate non-invasive, serial cardiac measurements. Cardiac growth curves could easily be defined for each group, in the same set of animals for all time points, providing improved statistical power, and substantially reducing the number of mice required to conduct such a study. This technique should be eminently useful for following changes of cardiac structure and

  16. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    Science.gov (United States)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  17. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice.

    Science.gov (United States)

    MacLean, Glenn; Li, Hui; Metzger, Daniel; Chambon, Pierre; Petkovich, Martin

    2007-10-01

    Cyp26b1 encodes a retinoic acid (RA) metabolizing cytochrome P450 enzyme that is expressed in embryonic tissues undergoing morphogenesis, including the testes. We have generated transgenic mice lacking Cyp26b1 and have observed increased RA levels in embryonic testes. Cyp26b1(-/-) germ cells prematurely enter meiosis at embryonic d 13.5 and appear to arrest at pachytene stage. Furthermore, after embryonic d 13.5, a rapid increase in apoptosis is observed in male germ cells derived from Cyp26b1(-/-) embryos; germ cells are essentially absent in mutant male neonates. In contrast, testicular somatic cells appear to develop normally in the absence of Cyp26b1. Moreover, ovarian germ and somatic cells appear unaffected by the lack of CYP26B1. We also show that the synthetic retinoid Am580, which is resistant to CYP26 metabolism, induces meiosis of male germ cells in cultured gonads, suggesting that abnormal development of germ cells in the Cyp26b1(-/-) testes results from excess RA rather than the absence of CYP26B1-generated metabolites of RA. These results provide evidence that CYP26B1 maintains low levels of RA in the developing testes that blocks entry into meiosis and acts as a survival factor to prevent apoptosis of male germ cells.

  18. Sarcocystis neurona infection in gamma interferon gene knockout (KO) mice: comparative infectivity of sporocysts in two strains of KO mice, effect of trypsin digestion on merozoite viability, and infectivity of bradyzoites to KO mice and cell culture.

    Science.gov (United States)

    Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A

    2013-09-01

    The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals. PMID:23375195

  19. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer Brielmaier

    Full Text Available ENGRAILED 2 (En2, a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.

  20. Establishment of IL-31 RA Gene Knockout Homozygous Mice Model%IL-31 RA基因敲除小鼠纯合子模型的建立

    Institute of Scientific and Technical Information of China (English)

    江涛; 高婧; 岳欢; 高雅倩; 黄俊琼

    2015-01-01

    目的:建立IL-31RA基因敲除小鼠纯合子模型,为IL-31RA基因相关研究提供动物模型。方法:IL-31RA基因敲除小鼠严格按照SPF级要求的动物饲养标准进行饲养繁殖,采用聚合酶链式反应( PCR)法鉴定子代小鼠的基因型,RT-PCR法鉴定小鼠IL-31RA mRNA的表达,Western blot鉴定IL-31RA蛋白的表达,HE染色观察小鼠重要脏器的形态学变化。结果:PCR法成功检测出子代小鼠的3种基因型,纯合子基因敲除小鼠未检测出IL-31RA mRNA和IL-31RA蛋白的表达,IL-31RA基因敲除小鼠的重要脏器的形态学特征与野生型小鼠比较无明显变化;基因敲除小鼠可成功饲养繁殖,亦可获得较多的基因敲除纯合子小鼠。结论:成功构建了IL-31RA基因敲除小鼠纯合子模型。%Objective:To establish the IL-31RA gene knockout homozygous mice model and lay the foundation for further study on IL-31 gene. Methods:IL-31RA gene knockout mice were bred and re-produced according to the SPF class animal feeding standard. PCR was used to identify the genotype of the offspring,the expression of IL-31RA mRNA was detected by RT-PCR,expression of IL-31RA pro-tein was detected by Western blot,and morphological changes of vital organs were observed by HE staining . Result:Three genotypes of the offspring of IL-31 RA gene knockout mice were successfully i-dentified;expression of IL-31 RA mRNA and IL-31 RA protein was not detected in IL-31 RA gene knockout homozygous mice. Compared with the wild type mice,morphological characteristics of vital organs of had no significant changes in IL-31RA gene knockout homozygous mice. IL-31RA gene knockout mice could be dred and reproduced successfully. Conclusion:The IL-31RA gene knockout homozygous mice model has been successfully established.

  1. ASIC1基因敲除小鼠的繁殖及基因鉴定%Reproduction and genotype identification of ASIC1 knockout mice

    Institute of Scientific and Technical Information of China (English)

    周仁鹏; 吴小山; 王志森; 葛金芳; 陈飞虎

    2015-01-01

    To breed and identify acid sensing ion channel 1(ASIC1) gene knockout mice, so as to lay the founda-tion for studying ASIC1 protein. The heterozygote mice were bred and reproduced. Genome DNA extracted from the murine tail was subjected to PCR test for genotype identification. Breeding and reproducing of ASIC1 knockout mice were both successful,and the genotypes of the offspring mice were heterozygous( ASIC1+/ -) ,homozygous( ASIC1-/ -) ,and wild-type( ASIC1+/ +) . Appropriate methods of breeding,reproducing and identifying can effective-ly obtain ASIC1-/ - mice.%饲养并繁殖酸敏感离子通道1(ASIC1)基因敲除杂合子小鼠,提取小鼠尾部组织DNA,采用聚合酶链反应( PCR)方法鉴定子代小鼠基因型. ASIC1 基因敲除小鼠的繁育和鉴定均获得成功,子代小鼠基因型分别为杂合子( ASIC1+/-)、纯合子( ASIC1-/ -)和野生型( ASIC1+/ +).

  2. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    Science.gov (United States)

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; Pfat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed. PMID:24769669

  3. SETD4基因敲除小鼠的构建及鉴定%Establishment and Identification of SETD4gene knockout mice

    Institute of Scientific and Technical Information of China (English)

    黄穗; 黄梦怡; 钟玙沄; 雷烨铭; 赵舒祺; 蔡军伟; 姜勇; 刘靖华

    2016-01-01

    Objective To study the function of SETD4,the SETD4 gene knockout homozygous mice has been established. Methods SETD4flox/+mice and EIIa-Cre mice were interbred,the offspring of which was genotyping SETD4 +/-.EIIa-Cre were crossed with C57BL/6 mice to obtain the mice with the SETD4+/-genotype,SETD4+/-heterozygous mice were inbred and then the SETD4-/- homozygous mice were gained. PCR was used to identify the genotype of the offspring,the expression of SETD4 mRNA was detected by RT-PCR and qPCR,and morphological changes of liver and lung were observed by HE staining. Result PCR results showed genotypes of the offspring of SETD4 gene knockout mice was in accordance with SETD4-/-. Compared with the wild type mice,expression of SETD4 mRNA in SETD4 gene knockout homozygous mice was significantly decreased,and morphological characteristics of liver and lung in SETD4 gene knockout homozygous mice had no significant changes. Conclusion Wehave successfully generated SETD4 gene knockout homozygous mice which can be used for study ofSETD4 function.%目的:构建并鉴定SETD4基因敲除小鼠,为研究SETD4的生物学功能提供动物模型。方法将引进的SETD4flox/+小鼠与EIIa-Cre小鼠进行杂交繁殖,得到基因型为SETD4+/-.EIIa-Cre的小鼠;再与C57BL/6小鼠杂交去除Cre酶,获得杂合子SETD4+/-小鼠;该小鼠自交获得纯合子SETD4-/-小鼠。通过PCR法鉴定子代小鼠的基因型;RT-PCR、荧光定量PCR方法鉴定纯合子的SETD4基因敲除小鼠SETD4 mRNA表达情况;HE染色观察小鼠肝、肺组织的形态学变化。结果 PCR结果表明子代小鼠的基因型符合SETD4-/-;纯合子基因敲除小鼠SETD4 mRNA水平显著低于野生型小鼠;SETD4基因敲除小鼠肝、肺组织的形态学特征与野生型小鼠相比无明显差异。结论本研究基于Cre/loxp系统,成功构建并鉴定了SETD4基因敲除小鼠。

  4. PDH activation during in vitro muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation.

    Science.gov (United States)

    Dunford, Emily C; Herbst, Eric A; Jeoung, Nam Ho; Gittings, William; Inglis, J Greig; Vandenboom, Rene; LeBlanc, Paul J; Harris, Robert A; Peters, Sandra J

    2011-06-01

    Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PDH is deactivated by a set of PDH kinases (PDK1, PDK2, PDK3, PDK4), with PDK2 and PDK4 being the most predominant isoforms in skeletal muscle. Although PDK2 is the most abundant isoform, few studies have examined its physiological role. The role of PDK2 on PDH activation (PDHa) at rest and during muscle stimulation at 10 and 40 Hz (eliciting low- and moderate-intensity muscle contractions, respectively) in isolated extensor digitorum longus muscles was studied in PDK2 knockout (PDK2KO) and wild-type (WT) mice (n = 5 per group). PDHa activity was unexpectedly 35 and 77% lower in PDK2KO than WT muscle (P = 0.043), while total PDK activity was nearly fourfold lower in PDK2KO muscle (P = 0.006). During 40-Hz contractions, initial force was lower in PDK2KO than WT muscle (P PDK2 and was 1.8-fold higher in PDK2KO than WT muscle (P = 0.019). This likely contributed to ensuring that resting PDHa activity was similar between the groups and accounts for the lower PDH activation during muscle contraction, as PDK1 is a very potent inhibitor of the PDH complex. Increased PDK1 expression appears to be regulated by hypoxia inducible factor-1α, which was 3.5-fold higher in PDK2KO muscle. It is clear that PDK2 activity is essential, even at rest, in regulation of carbohydrate oxidation and production of reducing equivalents for the electron transport chain. In addition, these results underscore the importance of the overall kinetics of the PDK isoform population, rather than total PDK activity, in determining transformation of the PDH complex and PDHa activity during muscle contraction. PMID:21411764

  5. Sex Differences in Presynaptic Density and Neurogenesis in Middle-Aged ApoE4 and ApoE Knockout Mice

    Directory of Open Access Journals (Sweden)

    A. Rijpma

    2013-01-01

    Full Text Available Atherosclerosis and apolipoprotein E ε4 (APOE4 genotype are risk factors for Alzheimer’s disease (AD and cardiovascular disease (CVD. Sex differences exist in prevalence and manifestation of both diseases. We investigated sex differences respective to aging, focusing on cognitive parameters in apoE4 and apoE knockout (ko mouse models of AD and CVD. Presynaptic density and neurogenesis were investigated immunohistochemically in male and female apoE4, apoE ko, and wild-type mice. Middle-aged female apoE4 mice showed decreased presynaptic density in the inner molecular layer of the dentate gyrus of the hippocampus. Middle-aged female apoE ko mice showed a trend towards increased neurogenesis in the hippocampus compared with wild-type mice. No differences in these parameters could be observed in middle-aged male mice. Specific harmful interactions between apoE4 and estrogen could be responsible for decreased presynaptic density in female apoE4 mice. The trend of increased neurogenesis found in female apoE ko mice supports previous studies suggesting that temporarily increased amount of synaptic contacts and/or neurogenesis is a compensatory mechanism for synaptic failure. To our knowledge, no other studies investigating presynaptic density in aging female apoE4 or apoE ko mice are available. Sex-specific differences between APOE genotypes could account for some sex differences in AD and CVD.

  6. Enhanced plasma ghrelin levels in Helicobacter pylori-colonized,interleukin-1-receptor type 1-homozygous knockout (IL-1R1-/-) mice

    Institute of Scientific and Technical Information of China (English)

    Yuka Abiko; Hidekazu Suzuki; Tatsuhiro Masaoka; Sachiko Nomura; Kumiko Kurabayashi; Hiroshi Hosoda; Kenji Kangawa; Toshifumi Hibi

    2005-01-01

    AIM: Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor, and it plays a role in stimulating the growth hormone secretion, food intake,body weight gain and gastric motility. Eradication of Helicobacter pylori(H pylori) was shown to be associated with increase of the body weight. On the other hand, H pylori infection evokes the release of gastric IL-1β. The present study was designed to investigate the involvement of the gastric IL-1 signal in the ghrelin dynamics in H pyloricolonized mice.METHODS: Twelve-week-old female IL-1-receptor type 1-homozygous-knockout mice (IL-1R1-/-) and their wild-type littermates (WT) were orally inoculated with H pylori (Hp group), while other cohorts received oral inoculation of culture medium (Cont group). Thirteen weeks after the inoculation, the mice were examined. The plasma and stomach ghrelin levels and the gastric preproghrelin mRNA were measured.RESULTS: Although the WT mice with H pylori infection showed a significantly decreased body weight as compared with that of the animals without H pylori infection,H pylori infection did not influence the body weight of the IL-1R1-knockout (IL-1R1-/-) mice. In the H pylori-infected IL-1R1-/-mice, the total and active ghrelin levels in the plasma were significantly increased, and the gastric ghrelin level was decreased. No significant differences were noted in the gastric preproghrelin mRNA expression.CONCLUSION: Ghrelin secretion triggered by H pylori infection might be suppressed by IL-1β, the release of which is also induced by the infection, resulting in the body weight loss of mice with H pylori infection.

  7. Hyperglycemia Induced by Glucokinase Deficiency Accelerates Atherosclerosis Development and Impairs Lesion Regression in Combined Heterozygous Glucokinase and the Apolipoprotein E-Knockout Mice

    Science.gov (United States)

    Adingupu, Damilola D.; Andréasson, Anne-Christine; Ahnmark, Andrea

    2016-01-01

    Aim. Models combining diabetes and atherosclerosis are important in evaluating the cardiovascular (CV) effects and safety of antidiabetes drugs in the development of treatments targeting CV complications. Our aim was to evaluate if crossing the heterozygous glucokinase knockout mouse (GK+/−) and hyperlipidemic mouse deficient in apolipoprotein E (ApoE−/−) will generate a disease model exhibiting a diabetic and macrovascular phenotype. Methods. The effects of defective glucokinase on the glucose metabolism and on the progression and regression of atherosclerosis on high-fat diets were studied in both genders of GK+/−ApoE−/− and ApoE−/− mice. Coronary vascular function of the female GK+/−ApoE−/− and ApoE−/− mice was also investigated. Results. GK+/−ApoE−/− mice show a stable hyperglycemia which was increased on Western diet. In oral glucose tolerance test, GK+/−ApoE−/− mice showed significant glucose intolerance and impaired glucose-stimulated insulin secretion. Plasma lipids were comparable with ApoE−/− mice; nevertheless the GK+/−ApoE−/− mice showed slightly increased atherosclerosis development. Conclusions. The GK+/−ApoE−/− mice showed a stable and reproducible hyperglycemia, accelerated atherosclerotic lesion progression, and no lesion regression after lipid lowering. This novel model provides a promising tool for drug discovery, enabling the evaluation of compound effects against both diabetic and cardiovascular endpoints simultaneously in one animal model.

  8. Asbestos-Induced Peribronchiolar Cell Proliferation and Cytokine Production Are Attenuated in Lungs of Protein Kinase C-δ Knockout Mice

    Science.gov (United States)

    Shukla, Arti; Lounsbury, Karen M.; Barrett, Trisha F.; Gell, Joanna; Rincon, Mercedes; Butnor, Kelly J.; Taatjes, Douglas J.; Davis, Gerald S.; Vacek, Pamela; Nakayama, Keiichi I.; Nakayama, Keiko; Steele, Chad; Mossman, Brooke T.

    2007-01-01

    The signaling pathways leading to the development of asbestos-associated diseases are poorly understood. Here we used normal and protein kinase C (PKC)-δ knockout (PKCδ−/−) mice to demonstrate multiple roles of PKC-δ in the development of cell proliferation and inflammation after inhalation of chrysotile asbestos. At 3 days, asbestos-induced peribronchiolar cell proliferation in wild-type mice was attenuated in PKCδ−/− mice. Cytokine profiles in bronchoalveolar lavage fluids showed increases in interleukin (IL)-1β, IL-4, IL-6, and IL-13 that were decreased in PKCδ−/− mice. At 9 days, microarray and quantitative reverse transcriptase-polymerase chain reaction analysis of lung tissues revealed increased mRNA levels of the profibrotic cytokine, IL-4, in asbestos-exposed wild-type mice but not PKCδ−/− mice. PKCδ−/− mice also exhibited decreased lung infiltration of polymorphonuclear cells, natural killer cells, and macrophages in bronchoalveolar lavage fluid and lung, as well as increased numbers of B lymphocytes and plasma cells. These changes were accompanied by elevated mRNA levels of immunoglobulin chains. These data show that modulation of PKC-δ has multiple effects on peribronchiolar cell proliferation, proinflammatory and profibrotic cytokine expression, and immune cell profiles in lung. These results also implicate targeted interruption of PKC-δ as a potential therapeutic option in asbestos-induced lung diseases. PMID:17200189

  9. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice

    DEFF Research Database (Denmark)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E;

    2016-01-01

    of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS: As expected, bGH mice had increased body weight (p=3.70E(-8)) but decreased percent fat mass (p=4.87E(-4)). Likewise, GHR-/- mice had decreased body weight (p...... was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN: Seven......-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression...

  10. Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice

    OpenAIRE

    Gamarra Fernando; Kemp da Silva Anita; Kellner Julia; Bergner Albrecht; Huber Rudolf M

    2006-01-01

    Abstract Background Airway smooth muscle cells (ASMC) play a key role in bronchial hyperresponsiveness (BHR). A major component of the signaling cascade leading to ASMC contraction is calcium. So far, agonist-induced Ca2+-signaling in asthma has been studied by comparing innate properties of inbred rat or mouse strains, or by using selected mediators known to be involved in asthma. T-bet knock-out (KO) mice show key features of allergic asthma such as a shift towards TH2-lymphocytes and displ...

  11. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte;

    2015-01-01

    suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected...... and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also...

  12. Genetic Monitoring of PLCε Knockout Mice by Microsatellite DNA Analysis%PLCε基因敲除小鼠微卫星DNA遗传监测分析

    Institute of Scientific and Technical Information of China (English)

    崔智; 李晓娟; 白云峰; 侯俊; 戴广海; 李瑞生

    2012-01-01

    Objective To determine the genetic characteristics of PLCe knockout mice by polymorphic microsatellite DNA loci analysis. Methods Genome DNA of 28 PLCe gene knockout mice were amplified by PCR using screening 15 microsatellite DNA loci, and population genetic diversity was identified by gene fragments. Results Among 13 microsatellite DNA loci (DlMit365, D3Mit51 , D4Mit235 , D6MM02, D7Mit281 , D8Mitll3, D9Mit23 , D10MM80, D13Mit88,D16Mitl45,D17Mit36,D18Mit94,D19Mit97),each locus of electrophoresis distance of DNA fragments in the 28 PLCe gene knockout mice kept consistent and presented monomorphism , indicating the genetic stability. However the two loci Dq (knock genotype) and Dy (wild-type) were used to discriminate 28 PLCe gene knockout mice by PCR amplification. Among them, 6 mice were of gene knock mice, 7 mice were of wild-type mice, and 15 mice were of heterozygous type. Conclusions The method of microsatellite marker analysis can be used to monitor population genetic quality and accurately distinguish different genotypes of mice , providing a feasible method for the detection of genetic quality%目的 利用多态性微卫星DNA位点分析PLCε基因敲除小鼠的遗传特性.方法 用所筛选的15个微卫星DNA位点对28只PLCε基因敲除小鼠的DNA进行了PCR扩增,通过基因片段大小来分析群体的遗传多样性.结果 13个微卫星DNA位点中(D1Mit365、D3Mit51、D4Mit235、D6Mit102、D7Mit281、D8Mit113、D9Mit23、D10Mit180、D13Mit88、D16Mit145、D17Mit36、D18Mit94、D19Mit97)每个位点的28只小鼠DNA片段泳动距离一致,呈现单态性,表明该群体符合近交系的遗传特性;而利用Dq(敲基因型)和Dy(野生型)两个位点对28只小鼠的PCR扩增结果进行了鉴别分析,其中敲除基因型小鼠为6只;野生型为7只;杂合型为15只.结论 利用微卫星标记技术可以对群体进行遗传质量监测,并能有效地鉴别不同的基因型,为小鼠的遗传质量监测提供了一种可行的方法.

  13. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis.

    Science.gov (United States)

    Valenzuela, Nicolas; Fan, Qiying; Fa'ak, Faisal; Soibam, Benjamin; Nagandla, Harika; Liu, Yu; Schwartz, Robert J; McConnell, Bradley K; Stewart, M David

    2016-03-01

    HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis. PMID:26935106

  14. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity.

    Directory of Open Access Journals (Sweden)

    Judit Remenyi

    Full Text Available miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.

  15. Resilience to audiogenic seizures is associated with p-ERK1/2 dephosphorylation in the subiculum of Fmr1 knockout mice

    Directory of Open Access Journals (Sweden)

    Giulia eCuria

    2013-04-01

    Full Text Available Young, but not adult, Fmr1 knockout (KO mice display audiogenic seizures (AGS that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT controls at postnatal day (P 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2. Wild running (100% of tested mice followed by clonic/tonic seizures (30% were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P<0.01 vs WT in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P<0.05 vs WT and CA3 (P<0.01. Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P<0.05 vs WT, in both age groups. In this region, p-ERK1/2-immunopositive cells significantly decreased (-75%, P<0.01 in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1/2 in the subiculum of mature Fmr1 KO mice.

  16. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  17. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM?

    Science.gov (United States)

    Bell, James R; Lloyd, David; Curl, Claire L; Delbridge, Lea M D; Shattock, Michael J

    2009-03-01

    In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.

  18. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent

    Directory of Open Access Journals (Sweden)

    Sutcliffe Margaret

    2011-04-01

    Full Text Available Abstract Background Humans and mice with loss of function mutations in GPR54 (KISS1R or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. Results We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix and quantitative polymerase chain reaction (QPCR validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC. Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i genotype only dependent regulation, (ii T only dependent regulation, (iii genotype and T-dependent regulation with interaction between these variables, (iv genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2, proteases (Klk1b22, and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Conclusions Taken together, global

  19. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice.

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-08-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation- (TBS) induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression impairs hippocampus-dependent learning. We previously showed that TBS-induced LTP was associated with calpain-1 mediated truncation of PHLPP1.To better understand the roles of these 2 genes in synaptic plasticity and learning and memory, we generated a double knockout (DKO) mouse by crossing the parent strains. Surprisingly, DKO mice exhibit normal TBS-induced LTP, and the learning impairments in fear conditioning and novel object or novel location recognition were absent in the DKO mice. Moreover, TBS-induced ERK activation in field CA1 of hippocampal slices, which is impaired in both single deletion mice, was restored in the DKO mice. These results further strengthen the roles of both CANP1 and PHLPP1 in synaptic plasticity and learning and memory, and illustrate the complexities of the interactions between multiple pathways participating in synaptic plasticity. PMID:27421891

  20. Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2012-01-01

    Full Text Available Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/− mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/− mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer.

  1. Anti-atherogenic effects of a phenol-rich fraction from Brazilian red wine (Vitis labrusca L.) in hypercholesterolemic low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Hort, Mariana Appel; Schuldt, Elke Zuleika; Bet, Angela Cristina; DalBó, Silvia; Siqueira, Jarbas Mota; Ianssen, Carla; Abatepaulo, Fátima; de Souza, Heraldo Possolo; Veleirinho, Beatriz; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria

    2012-10-01

    Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr⁻/⁻) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr⁻/⁻ mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

  2. Knockout of p11 attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice.

    Science.gov (United States)

    Thanos, Panayotis K; Malave, Lauren; Delis, Foteini; Mangine, Paul; Kane, Katie; Grunseich, Adam; Vitale, Melissa; Greengard, Paul; Volkow, Nora D

    2016-07-01

    Cocaine's enhancement of dopamine signaling is crucial for its rewarding effects but its serotonergic effects are also relevant. Here we examined the role of the protein p11, which recruits serotonin 5HT1B and 5HT4 receptors to the cell surface, in cocaine reward. For this purpose we tested wild-type (WT) and p11 knockout (KO) male and female mice for cocaine conditioned place preference (CPP) and its cocaine-induced reinstatement at different abstinence times, after 8 days of extinction and 28 days of being home-caged. All mice showed significant cocaine CPP. Among males, p11KO showed lower CPP than WT; this difference was also evident after 28 days of home-cage abstinence. In contrast, in females there were no CPP differences between p11KO and WT mice at any time point tested. Cocaine priming after the 28-day home-cage abstinence period also resulted in lower cocaine conditioned motor activity in both male and female p11KO mice. These results suggest that cocaine CPP and its persistence during extinction and reinstatement are modulated in a sex-differentiated manner by p11. The lack of protein p11 confers protection from CPP on male, but not female mice, immediately after cocaine conditioning as well as after prolonged abstinence, but not after short-term withdrawal. Synapse 70:293-301, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990537

  3. Changes in Otx2 and Parvalbumin Immunoreactivity in the Superior Colliculus in the Platelet-Derived Growth Factor Receptor-β Knockout Mice

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2013-01-01

    Full Text Available The superior colliculus (SC, a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO mice displayed socio-emotional deficits associated with parvalbumin (PV-immunoreactive (IR neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.

  4. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Loft Steffen

    2009-02-01

    Full Text Available Abstract Background Exposure to small size particulate matter in urban air is regarded as a risk factor for cardiovascular effects, whereas there is little information about the impact on the cardiovascular system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes are nano-sized particles that are expected to have a widespread use, including cosmetics and medicines. Methods We investigated the association between intraperitoneal injection of pristine C60 fullerenes and vasomotor dysfunction in the aorta of 11–13 and 40–42 weeks old apolipoprotein E knockout mice (apoE-/- with different degree of atherosclerosis. Results The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent vasoconstriction response was increased. One hour after an intraperitoneal injection of 0.05 or 0.5 mg/kg of C60 fullerenes, the young apoE-/- mice had slightly reduced maximal endothelium-dependent vasorelaxation. A similar tendency was observed in the old apoE-/- mice. Hampered endothelium-independent vasorelaxation was also observed as slightly increased EC50 of sodium nitroprusside-induced vasorelaxation response in young apoE-/- mice. Conclusion Treatment with C60 fullerenes affected mainly the response to vasorelaxation in young apoE-/- mice, whereas the vasomotor dysfunction in old apoE-/- mice with more advanced atherosclerosis was less affected by acute C60 fullerene treatment. These findings represent an important step in the hazard characterization of C60 fullerenes by showing that intraperitoneal administration is associated with a moderate decrease in the vascular function of mice with atherosclerosis.

  5. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  6. Behaviour Study of The Ras-GRF1 Gene knockout Mice%Ras-GRF1基因敲除小鼠的行为学研究

    Institute of Scientific and Technical Information of China (English)

    段巍鹤; 郑宏亮; 陆美林; 万家余; 何秀霞

    2015-01-01

    The Ras genes widely exist in nature, Ras-GRF1 proteins in cell signal transduction, cell differentiation and growth play a very important role. Previous researchs have shown that the Ras genes are closely associated with signal-ing pathways and learning and memory function. This research was study to companed the differences between the gene knockout Ras-GRF1 and will rats on learning and memory by the behavior experiments. It was found that Ras-GRF1 knockout mice learning memory ability weak in wild type mice by Morris water maze,etc.%Ras基因广泛存在于自然界中,其控制的Ras-GRF1蛋白在细胞信号传导,在细胞分化与生长过程中起着极其重要的作用。已有研究表明,Ras基因与信号通路和学习记忆功能密切相关。本实验利用行为学研究敲除Ras-GRF1基因的小鼠在学习记忆上与野生老鼠的差异,通过Morris水迷宫等实验发现Ras-GRF1基因敲除小鼠的学习记忆能力弱于野生型小鼠。

  7. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice.

    Science.gov (United States)

    Janssen, Carola I F; Jansen, Diane; Mutsaers, Martina P C; Dederen, Pieter J W C; Geenen, Bram; Mulder, Monique T; Kiliaan, Amanda J

    2016-01-01

    Apolipoprotein E4 (ApoE4), one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD). ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF) diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT), human ApoE4 and ApoE-knockout (ApoE-/-) mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol) throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009). HF diet improved spatial learning in WT mice (p = 0.045), but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68) in the cornu ammonis 1 (CA1) region in ApoE4 (p = 0.001) and in ApoE-/- (p = 0.032) mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052), while it decreased in ApoE4 (p = 0.009), but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX) was found in both ApoE4 (p = 0.052) and ApoE-/- mice (p = 0.068). In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice. PMID:27171180

  8. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Carola I F Janssen

    Full Text Available Apolipoprotein E4 (ApoE4, one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD. ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT, human ApoE4 and ApoE-knockout (ApoE-/- mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009. HF diet improved spatial learning in WT mice (p = 0.045, but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68 in the cornu ammonis 1 (CA1 region in ApoE4 (p = 0.001 and in ApoE-/- (p = 0.032 mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052, while it decreased in ApoE4 (p = 0.009, but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX was found in both ApoE4 (p = 0.052 and ApoE-/- mice (p = 0.068. In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice.

  9. Mast cell degranulator compound 48-80 promotes atherosclerotic plaque in apolipoprotein E knockout mice with perivascular common carotid collar placement

    Institute of Scientific and Technical Information of China (English)

    TANG Ya-ling; YANG Yong-zong; WANG Shuang; HUANG Tao; TANG Chao-ke; XU Zeng-xiang; SUN Yu-hui

    2009-01-01

    Background Study of the relationship between mast cells and atherosclerosis is mostly dependent on pathological observation and cytology experiments. To investigate the effects of mast cells degranulation on plaque and their possible mechanisms we used apolipoprotein E knockout mice which had been placed perivascular common carotid collar with mast cells degranulator compound 48-80.Methods Forty apolipoprotein E knockout mice were fed a western-type diet and operated on with placement of perivascular right common carotid collar. Four weeks after surgery, the mice were intraperitoneally injected with compound 48-80 (0.5 mg/kg) or D-Hanks every other day for 4 times. The serum lipids and activity of tryptase were measured. Tissue sections were stained with hematoxylin and eosin. Corresponding sections were stained with toluidine blue and immunohistochemically with antibodies against macrophage-specific antigen, α-smooth muscle actin, interleukin-1β and van Willebrand factor. Simultaneously, basic fibroblast growth factor was detected by in situ hybridization and immunofluorescence.Results No pathological change was observed in common carotid non-collar placement but atherogenesis in common carotid collar placement of both groups. There was a significant increase in plaque area ((5.85±0.75)×104 vs (0.86±0.28)×104 μm2, P<0.05), the degree of lumen stenosis ((81±15)% vs (41±12)%, P <0.05), the activity of tryptase in serum ((0.57±0.13) U/L vs (0.36±0.10) U/L, P <0.05), and the percentage of degranulated mast cells ((80.6±17.8)% vs (13.5±4.1)%, P <0.05). The expressions of macrophage-specific antigen, α-smooth muscle actin, interleukin-1β, basic fibroblast growth factor and the density of neovessel in plaque were more in the compound 48-80 group than in the control group.Conclusions Perivascular common carotid collar placement can promote atherosclerotic plaque formation in apolipoprotein E knockout mice. Compound 48-80 increases plaque area and the degree

  10. Tracing the movement of adiponectin in a parabiosis model of wild-type and adiponectin-knockout mice

    OpenAIRE

    Hideaki Nakatsuji; Ken Kishida; Ryohei Sekimoto; Tohru Funahashi; Iichiro Shimomura

    2014-01-01

    Adiponectin is exclusively synthesized by adipocytes and exhibits anti-diabetic, anti-atherosclerotic and anti-inflammatory properties. Hypoadiponectinemia is associated in obese individuals with insulin resistance and atherosclerosis. However, the mechanisms responsible for hypoadiponectinemia remain unclear. Here, we investigated adiponectin movement using hetero parabiosis model of wild type (WT) and adiponectin-deficient (KO) mice. WT mice were parabiosed with WT mice (WT–WT) or KO mice (...

  11. Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops.

    Directory of Open Access Journals (Sweden)

    Bo Gyung Kim

    Full Text Available Pendrin mutations cause enlarged vestibular aqueducts and various degrees of sensorineural hearing loss. The selective abolition of pendrin causes dilation of the membranous labyrinth known as endolymphatic hydrops, loss of the endocochlear potential, and consequently loss of hearing function. Because Na+ transport is one of the most important driving forces for fluid transport, the epithelial Na+ channel (ENaC is believed to play an important role in fluid volume regulation in the inner ear. Therefore, the dysfunction of Na+ transport through ENaC by the acidification of endolymph in Pendred syndrome is one of the potential causes of endolymphatic hydrops. We investigated the changes of ENaC expression and function during the development of the pendrin knock-out mouse. In the cochlea, the expression of β and γENaC was significantly increased at P56 in Pds-/- mice compared with Pds+/+ mice. In the vestibule, the expression of βENaC was significantly increased at P56, and γENaC expression significantly increased from P6 to P56 in Pds-/- mice. The ENaC-dependent trans-epithelial current was not significantly different between Pds+/+ and Pds-/- mice in Reissner's membrane or the saccular extramacular roof epithelium at P0, but the current was significantly increased in Pds-/- mice at P56 compared with Pds+/+ mice. These findings indicate that the expression and function of ENaC were enhanced in Pds-/- mice after the development of endolymphatic hydrops as a compensatory mechanism. This result provides insight into the role of Na+ transport in the development and regulation of endolymphatic hydrops due to pendrin mutations.

  12. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    Science.gov (United States)

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions.

  13. Altered Memory Capacities and Response to Stress in p300/CBP-Associated Factor (PCAF) Histone Acetylase Knockout Mice

    OpenAIRE

    Maurice, Tangui; Duclot, Florian; Meunier, Johann; Naert, Gaëlle; Givalois, Laurent; Meffre, Julie; Célérier, Aurélie; Jacquet, Chantal; Copois, Virginie; Mechti, Nadir; Ozato, Keiko; Gongora, Céline

    2007-01-01

    International audience Chromatin remodeling by posttranslational modification of histones plays an important role in brain plasticity, including memory, response to stress and depression. The importance of H3/4 histones acetylation by CREB-binding protein (CBP) or related histone acetyltransferase, including p300, was specifically demonstrated using knockout (KO) mouse models. The physiological role of a related protein that also acts as a transcriptional coactivator with intrinsic histone...

  14. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Teige, Ingrid;

    2005-01-01

    of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment...... with synthetic CpG motifs. RESULTS: Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-beta-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-beta-/- mice. Other inflammatory cells, such as lymphocytes...... and macrophages were enhanced in airways by CpG treatment in IFN-beta-/- mice. The ratio of IFN-gamma/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-beta-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T...

  15. Expression of human complement factor H prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged Cfh knockout mice.

    Science.gov (United States)

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh(-/-)) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh(-/-) mice, and transgenics had a thicker outer nuclear layer and less sub-retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets.

  16. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice.

    Science.gov (United States)

    Zhang, Wei; Chen, Lulu; Zhang, Luqing; Xiao, Ming; Ding, Jiong; Goltzman, David; Miao, Dengshun

    2015-02-19

    Previously, we reported that active vitamin D deficiency in mice causes secondary hypertension and cardiac dysfunction, but the underlying mechanism remains largely unknown. To clarify whether exogenous active vitamin D rescues hypertension by normalizing the altered central renin-angiotensin system (RAS) via an antioxidative stress mechanism, 1-alpha-hydroxylase [1α(OH)ase] knockout mice [1α(OH)ase(-/-)] and their wild-type littermates were fed a normal diet alone or with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a high-calcium, high-phosphorus "rescue" diet with or without antioxidant N-acetyl-l-cysteine (NAC) supplementation for 4 weeks. Compared with their wild-type littermates, 1α(OH)ase(-/-)mice had high mean arterial pressure, increased levels of renin, angiotensin II (Ang II), and Ang II type 1 receptor, and increased malondialdehyde levels, but decreased anti-peroxiredoxin I and IV proteins and the antioxidative genes glutathione reductase (Gsr) and glutathione peroxidase 4 (Gpx4) in the brain samples. Except Ang II type 1 receptor, these pathophysiological changes were rescued by exogenous 1,25(OH)2D3 or NAC plus rescue diet, but not by rescue diet alone. We conclude that 1,25(OH)2D3 normalizes the altered central RAS in 1α(OH)ase(-/-)mice, at least partially, through a central antioxidative mechanism.

  17. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  18. Breeding and Genotyping of PTA-1-/-/ApoE-/-Double-gene Knockout Mice%PTA-1-/-/ApoE-/-双基因敲除小鼠的繁育及基因型鉴定

    Institute of Scientific and Technical Information of China (English)

    董子龙; 庄然; 张宇丝; 金伯泉; 张圆

    2012-01-01

    目的 建立(PTA-1-/-/ApoE-/-)双基因敲除小鼠(double-gene knockout,DKO)模型,探讨该小鼠的繁育及鉴定方法,为进一步利用该小鼠研究相关疾病奠定基础.方法 将引进的PTA-1-/-及ApoE-/-基因敲除小鼠通过杂交和互交的方法进行繁殖,以得到DKO小鼠.结果 经过PCR基因鉴定的方法证实PTA-1-/-/ApoE-/-双基因敲除小鼠繁育成功.结论 正确的饲养繁殖及鉴定方法是获得该DKO纯合子小鼠的有效途径.%Objective To breed and identify the PTA-1-/-/ApoE-/- double-gene knockout (DKO) mice and to establish an animal model to further study the role of PTA-1 molecule in diseases. Method PTA-1 gene knockout mice were paired with the ApoE gene knockout mice in different ways. Genomic DNA were isolated from the tails and analyzed by PCR. Result Genotyping analysis identified that we established PTA-1 -/-/ApoE-/- DKO mice successfully. Conclusion It is feasible to breed PTA-1 -/-/ApoE-/- DKO mice with the PTA-1 and ApoE gene knockout mice. PCR can be used to identify the genotype of the DKO mice precisely.

  19. In vivo evaluation of cellular activity in αCaMKII heterozygous knockout mice using manganese-enhanced magnetic resonance imaging (MEMRI

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2013-11-01

    Full Text Available The alpha-calcium/calmodulin-dependent protein kinase II (αCaMKII is a serine/threonine protein kinase predominantly expressed in the forebrain, especially in the postsynaptic density, and plays a key role in synaptic plasticity, learning and memory. αCaMKII heterozygous knockout (HKO mice exhibit abnormal emotional and aggressive behaviors and cognitive impairments and have been proposed as an animal model of psychiatric illness. Our previous studies have shown that the expression of immediate early genes (IEGs after exposure to electric foot shock or after performing a working memory task is decreased in the hippocampus, central amygdala, and medial prefrontal cortex of mutant mice. These changes could be caused by disturbances in neuronal signal transduction; however, it is still unclear whether neuronal activity is reduced in these regions. In this study, we performed in vivo manganese-enhanced magnetic resonance imaging (MEMRI to assess the regional cellular activity in the brains of αCaMKII HKO mice. The signal intensity of MEMRI 24 h after systemic MnCl2 administration reflects functional increases of Mn2+ influx into neurons and glia via transport mechanisms, such as voltage-gated and/or ligand-gated Ca2+ channels. αCaMKII HKO mice demonstrated a low signal intensity of MEMRI in the dentate gyrus (DG, in which almost all neurons were at immature status at the molecular, morphological, and electrophysiological levels. In contrast, analysis of the signal intensity in these mutant mice revealed increased activity in the CA1 area of the hippocampus, a region crucial for cognitive function. The signal intensity was also increased in the bed nucleus of the stria terminalis (BNST, which is involved in anxiety. These changes in the mutant mice may be responsible for the observed dysregulated behaviors, such as cognitive deficit and abnormal anxiety-like behavior, which are similar to symptoms seen in human psychiatric disorders.

  20. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    Directory of Open Access Journals (Sweden)

    Raphaël Weibel

    Full Text Available Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  1. PrP{sup C} displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrP{sup C} knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Bertuchi, Fernanda R. [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil); Bourgeon, Dominique M.G.; Landemberger, Michele C.; Martins, Vilma R. [International Center for Research and Education, A.C. Camargo Hospital, Rua Tagua 440, 01505-010 Sao Paulo, SP (Brazil); Cerchiaro, Giselle, E-mail: giselle.cerchiaro@ufabc.edu.br [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer PrP{sup C} in solution acts as a radical scavenger. Black-Right-Pointing-Pointer PrP{sup C} reduces hydrogen peroxide toxicity in astrocytes. Black-Right-Pointing-Pointer Increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes. Black-Right-Pointing-Pointer PrP{sup C} prevents the cell death independently of an SOD-like activity. -- Abstract: The PrP{sup C} protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP{sup C} in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP{sup C} decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu{sup 2+}/ascorbate/H{sub 2}O{sub 2}), which was demonstrated by approximately 70% less DMPO/OH{sup {center_dot}}. In cultured PrP{sup C}-knockout astrocytes from mice, the absence of PrP{sup C} caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H{sub 2}O{sub 2} treatment. This rapid increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP{sup C} in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  2. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice

    International Nuclear Information System (INIS)

    Highlights: ► PrPC in solution acts as a radical scavenger. ► PrPC reduces hydrogen peroxide toxicity in astrocytes. ► Increase in ROS disrupted the cell cycle in the PrPC-knockout astrocytes. ► PrPC prevents the cell death independently of an SOD-like activity. -- Abstract: The PrPC protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrPC in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrPC decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu2+/ascorbate/H2O2), which was demonstrated by approximately 70% less DMPO/OH·. In cultured PrPC-knockout astrocytes from mice, the absence of PrPC caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H2O2 treatment. This rapid increase in ROS disrupted the cell cycle in the PrPC-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrPC in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  3. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization.

    Directory of Open Access Journals (Sweden)

    Dean W Andrew

    Full Text Available IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i the course of natural genital tract C. muridarum infection, (ii the development of oviduct pathology and (iii the development of vaccine-induced immunity against infection in wild type (WT BALB/c and IL-17 knockout mice (IL-17-/- to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarumMajor Outer Membrane Protein (MOMP and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated

  4. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization.

    Science.gov (United States)

    Andrew, Dean W; Cochrane, Melanie; Schripsema, Justin H; Ramsey, Kyle H; Dando, Samantha J; O'Meara, Connor P; Timms, Peter; Beagley, Kenneth W

    2013-01-01

    IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarumMajor Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however

  5. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  6. Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Susick, Laura L; Chrumka, Alexandria C; Hool, Steven M; Conti, Alana C

    2016-03-01

    dysregulation of a potential survival pathway in the AC1/8 knockout mice following early-life ethanol exposure.

  7. Enhanced human immunodeficiency virus Type 1 expression and neuropathogenesis in knockout mice lacking Type I interferon responses.

    Science.gov (United States)

    He, Hongxia; Sharer, Leroy R; Chao, Wei; Gu, Chao-Jiang; Borjabad, Alejandra; Hadas, Eran; Kelschenbach, Jennifer; Ichiyama, Koji; Do, Meilan; Potash, Mary Jane; Volsky, David J

    2014-01-01

    The roles of Type I interferon (IFN) in human immunodeficiency virus Type 1 (HIV-1) neuropathogenesis are poorly understood; both protective and deleterious effects of IFN signaling have been described. We used genetically modified mice deficient in the Type I IFN receptor (IFNRKO) to analyze the progress of HIV-1 brain infection and neuropathogenesis in the absence of IFN signaling. IFNRKO and wild-type (WT) mice on the 129xSv/Ev or C57BL/6 strain backgrounds were infected systemically with EcoHIV, a chimeric HIV-1 that productively infects mice. IFNRKO mice showed higher HIV-1 expression in spleen and peritoneal macrophages and greater virus infiltration into the brain compared to WT mice. Neuropathogenesis was studied by histopathological, immunohistochemical, immunofluorescence, and polymerase chain reaction analyses of brain tissues after the virus was inoculated into the brain by stereotaxic intracerebral injection. Both IFNRKO and WT mice showed readily detectable HIV-1 and brain lesions, including microglial activation, astrocytosis, and increased expression of genes coding for inflammatory cytokines and chemokines typical of human HIV-1 brain disease. Parameters of HIV-1 neuropathogenesis, including HIV-1 expression in microglia/macrophages, were significantly greater in IFNRKO than in WT mice. Our results show unequivocally that Type I IFN signaling and responses limit HIV-1 infection and pathogenesis in the brains of mice.

  8. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism.

  9. Regulation of prostaglandin generation in carrageenan-induced pleurisy by inducible nitric oxide synthase in knockout mice.

    NARCIS (Netherlands)

    Rossi, A.; Cuzzocrea, S.; Mazzon, E.; Serraino, I.; Sarro, A. de; Dugo, L.; Felice, M.R.; Loo, F.A.J. van de; Rosa, M. Di; Musci, G.; Caputi, A.P.; Sautebin, L.

    2003-01-01

    In the present study, by comparing the responses in wild-type mice (iNOSWT) and mice lacking (iNOSKO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the correlation between endogenous nitric oxide (NO) and prostaglandin (PG) generation in carrageenan-induced pleurisy. The in

  10. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-10-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal. PMID:21788651

  11. Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Marina S Hernandes

    Full Text Available We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA-induced Parkinson's disease (PD model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN of wild-type (wt mice after PD induction. Gp91(phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA neurons in the SN of wt mice. In gp91(phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91(phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91(phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91(phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91(phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91(phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction.

  12. Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice.

    Science.gov (United States)

    Costa, Diana K; Huckestein, Brydie R; Edmunds, Lia R; Petersen, Max C; Nasiri, Ali; Butrico, Gina M; Abulizi, Abudukadier; Harmon, Daniel B; Lu, Canying; Mantell, Benjamin S; Hartman, Douglas J; Camporez, João-Paulo G; O'Doherty, Robert M; Cline, Gary W; Shulman, Gerald I; Jurczak, Michael J

    2016-07-01

    Mitochondrial dysfunction is associated with many human diseases and results from mismatch of damage and repair over the life of the organelle. PARK2 is a ubiquitin E3 ligase that regulates mitophagy, a repair mechanism that selectively degrades damaged mitochondria. Deletion of PARK2 in multiple in vivo models results in susceptibility to stress-induced mitochondrial and cellular dysfunction. Surprisingly, Park2 knockout (KO) mice are protected from nutritional stress and do not develop obesity, hepatic steatosis or insulin resistance when fed a high-fat diet (HFD). However, these phenomena are casually related and the physiological basis for this phenotype is unknown. We therefore undertook a series of acute HFD studies to more completely understand the physiology of Park2 KO during nutritional stress. We find that intestinal lipid absorption is impaired in Park2 KO mice as evidenced by increased fecal lipids and reduced plasma triglycerides after intragastric fat challenge. Park2 KO mice developed hepatic steatosis in response to intravenous lipid infusion as well as during incubation of primary hepatocytes with fatty acids, suggesting that hepatic protection from nutritional stress was secondary to changes in energy balance due to altered intestinal triglyceride absorption. Park2 KO mice showed reduced adiposity after 1-wk HFD, as well as improved hepatic and peripheral insulin sensitivity. These studies suggest that changes in intestinal lipid absorption may play a primary role in protection from nutritional stress in Park2 KO mice by preventing HFD-induced weight gain and highlight the need for tissue-specific models to address the role of PARK2 during metabolic stress. PMID:27166280

  13. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  14. Male 11β-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Larner, Dean P.; Morgan, Stuart A.; Gathercole, Laura L.; Doig, Craig L.; Guest, Phil; Weston, Christopher; Hazeldine, Jon; Tomlinson, Jeremy W.; Stewart, Paul M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) defines a spectrum of conditions from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis and is regarded as the hepatic manifestation of the metabolic syndrome. Glucocorticoids can promote steatosis by stimulating lipolysis within adipose tissue, free fatty acid delivery to liver and hepatic de novo lipogenesis. Glucocorticoids can be reactivated in liver through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme activity. Inhibition of 11β-HSD1 has been suggested as a potential treatment for NAFLD. To test this, male mice with global (11β-HSD1 knockout [KO]) and liver-specific (LKO) 11β-HSD1 loss of function were fed the American Lifestyle Induced Obesity Syndrome (ALIOS) diet, known to recapitulate the spectrum of NAFLD, and metabolic and liver phenotypes assessed. Body weight, muscle and adipose tissue masses, and parameters of glucose homeostasis showed that 11β-HSD1KO and LKO mice were not protected from systemic metabolic disease. Evaluation of hepatic histology, triglyceride content, and blinded NAFLD activity score assessment indicated that levels of steatosis were similar between 11β-HSD1KO, LKO, and control mice. Unexpectedly, histological analysis revealed significantly increased levels of immune foci present in livers of 11β-HSD1KO but not LKO or control mice, suggestive of a transition to NASH. This was endorsed by elevated hepatic expression of key immune cell and inflammatory markers. These data indicate that 11β-HSD1-deficient mice are not protected from metabolic disease or hepatosteatosis in the face of a NAFLD-inducing diet. However, global deficiency of 11β-HSD1 did increase markers of hepatic inflammation and suggests a critical role for 11β-HSD1 in restraining the transition to NASH. PMID:27384305

  15. C-Terminal-Truncated Microdystrophin Recruits Dystrobrevin and Syntrophin to the Dystrophin-Associated Glycoprotein Complex and Reduces Muscular Dystrophy in Symptomatic Utrophin/Dystrophin Double-Knockout Mice

    OpenAIRE

    Yue, Yongping; LIU, MINGJU; Duan, Dongsheng

    2006-01-01

    C-terminal-truncated (ΔC) microdystrophin is being developed for Duchenne muscular dystrophy gene therapy. Encouraging results have been achieved in the mdx mouse model. Unfortunately, mdx mice do not display the same phenotype as human patients. Evaluating ΔC microdystrophin in a symptomatic model will be of significant relevance to human trials. Utrophin/dystrophin double-knockout (u-dko) mice were developed to model severe dystrophic changes in human patients. In this study we evaluated th...

  16. Attenuated lung fibrosis in interleukin 6 knock-out mice after C-ion irradiation to lung

    International Nuclear Information System (INIS)

    There is a great deal of evidence that a cyclic cascade of inflammatory cytokines, together with the activation of macrophages, is initiated very early after irradiation to develop lung fibrosis in a late phase. To understand the persistent effects of cytokines, the cytokine gene of knock out or transgenic mouse is one of the useful tools. In this study, we evaluated a role of a key molecule, interleukin-6 (IL-6), in the late-phase inflammatory response and subsequent fibrotic changes after irradiation using wild-type (WT) and IL-6 knock out (IL-6 KO) mice. The mice underwent thoracic irradiation with 10 Gy of C-ion beam or sham-irradiation and were examined by histology. Immunoreactivity for IL-6 was induced at the site of bronchiolar epithelium, in pneumocytes and in monocytes by C-ion irradiation. At 24 weeks after irradiation, the infiltration of macrophages, detected by positive immunohistological staining with Mac3 antibody, was observed in alveolar spaces both in WT and IL-6 KO mice. The thickening of bronchiolar and alveolar walls exhibited in WT mice, but not KO mice, and fibrotic changes detected by Masson-Trichrome staining, were observed only in the lungs of WT mice, while it was attenuated in IL-6 KO mice. These results indicated that IL-6 might not be essential for activating macrophages in the late phase, but plays an important role for fibrotic changes of the alveolar wall after irradiation. (author)

  17. Increased renal methylglyoxal formation with down-regulation of PGC-1α-FBPase pathway in cystathionine γ-lyase knockout mice.

    Directory of Open Access Journals (Sweden)

    Ashley A Untereiner

    Full Text Available We have previously reported that hydrogen sulfide (H(2S, a gasotransmitter and vasodilator has cytoprotective properties against methylglyoxal (MG, a reactive glucose metabolite associated with diabetes and hypertension. Recently, H(2S was shown to up-regulate peroxisome proliferator-activated receptor-γ coactivator (PGC-1α, a key gluconeogenic regulator that enhances the gene expression of the rate-limiting gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase. Thus, we sought to determine whether MG levels and gluconeogenic enzymes are altered in kidneys of 6-22 week-old cystathionine γ-lyase knockout (CSE(-/-; H(2S-producing enzyme male mice. MG levels were determined by HPLC. Plasma glucose levels were measured by an assay kit. Q-PCR was used to measure mRNA levels of PGC-1α and FBPase-1 and -2. Coupled-enzymatic assays were used to determine FBPase activity, or triosephosphate levels. Experimental controls were either age-matched wild type mice or untreated rat A-10 cells. Interestingly, we observed a significant decrease in plasma glucose levels along with a significant increase in plasma MG levels in all three age groups (6-8, 14-16, and 20-22 week-old of the CSE(-/- mice. Indeed, renal MG and triosephosphates were increased, whereas renal FBPase activity, along with its mRNA levels, were decreased in the CSE(-/- mice. The decreased FBPase activity was accompanied by lower levels of its product, fructose-6-phosphate, and higher levels of its substrate, fructose-1,6-bisphosphate in renal extracts from the CSE(-/- mice. In agreement, PGC-1α mRNA levels were also significantly down-regulated in 6-22 week-old CSE(-/- mice. Furthermore, FBPase-1 and -2 mRNA levels were reduced in aorta tissues from CSE(-/- mice. Administration of NaHS, a H(2S donor, increased the gene expression of PGC-1α and FBPase-1 and -2 in cultured rat A-10 cells. In conclusion, overproduction of MG in CSE(-/- mice is due to a H(2S-mediated down-regulation of

  18. Muc2和DCN基因敲除小鼠食子现象的初步研究%Preliminary study of kronismus in Muc2 and DCN gene knockout mice

    Institute of Scientific and Technical Information of China (English)

    李巍; 贺国洋

    2013-01-01

    Objective To explore the differences in kronismus of Muc2 and DCN gene knockout mice. Methods Knockout homozygote males and females ( Muc2 -/ - ,DCN -/ - ) mice were mated respectively according to 1 :1 or 1 ;2 ratio. The average litter size of 1 - 3 generations, parity interval time, and kronismus in Muc2 and DCN gene knockout mice were observed. Results An average litter size of Muc2 gene knockout mice was 5.80 ±0.95. The average birth interval time was 42. 29 ±2. 28 days. The average DCN knockout mice seed production was 3. 85 ±0. 76, and the average birth interval time was 24. 86 ± 10. 42 days. There were significant differences between Muc2 and DCN gene knockout mice in the average litter size, parity interval time, and kronismus. Conclusions The reproductive performance of the two groups of gene knockout mice are different, indicating that Muc2 and DCN genes may be associated with reproductive function.%目的 探讨Muc2和DCN基因敲除小鼠繁殖能力和食子现象的异同.方法 分别将Muc2和DCN基因敲除纯合子雌雄小鼠按1∶1或1∶的合笼,观察1~3胎产仔量、胎次间隔时间、出生存活率和食子现象.结果 Muc2基因敲除小鼠平均产子量5.80±0.95只,平均胎次间隔时间(42.29±2.28) d;DCN基因敲除小鼠平均产子量3.85±0.76只,平均胎次间隔时间(24.86±10.42)d.Muc2和DCN基因敲除小鼠在产仔量、胎次间隔时间、出生存活率和食子率差异均存在显著性.结论 两组基因敲除小鼠繁殖性能有差异,揭示可能与Muc2和DCN基因有关.

  19. Hepatic selenoprotein P (Sepp) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice

    OpenAIRE

    Renko, Kostja; Werner, Margarethe; Renner-Müller, Ingrid; Trevor G Cooper; Yeung, Ching Hei; Hollenbach, Birgit; Scharpf, Marcus; Köhrle, Josef; Schomburg, Lutz; Schweizer, Ulrich

    2007-01-01

    Abstract Selenoprotein P (SePP) is central for selenium (Se) transport and distribution. Targeted inactivation of the Sepp gene in mice leads to reduced Se content in plasma, kidney, testis, and brain. Accordingly, activities of selenoenzymes are reduced in Sepp -/-} organs. Male Sepp -/-} mice are infertile. Unlike Se deficiency, Sepp-deficiency leads to neurological impairment with ataxia and seizures. Hepatocyte-specific inactivation of selenoprotein biosynthesis reduces plasma ...

  20. Observation of tail suspension test in Fmr1 gene knockout mice%Fmr1基因敲除小鼠悬尾实验的观察

    Institute of Scientific and Technical Information of China (English)

    胡丽婵; 黄海樱; 郭艺; 孙祺章; 余国汉; 黄月玲; 戴丽军; 党亚梅; 黄雄; 陈盛强

    2016-01-01

    Objective To observe tail suspension test in Fmr1 gene knockout mice and to explore whether there are differences in mobility of KO and WT mice. Methods 1 80 test mice were divided into two groups:① KO group (4,6,8 weeks old,each age group of mice is 30,male and female in half,a total of 90)② WT group (4,6,8 weeks old,each group of mice is 30,male and female on half,a total of 90).Through forced swimming test and tail suspension test to observe gender, age effect on immobility time. Results With the same age of the same sex,the KO mice’s immobility time was longer than WT mice’s.P <0.05.With the same age,the male mice’s immobility time was shorter than female mice’s.With the age in-crease,the immobility time of KO mice was longer than WT mice.P <0.05. Conclusion Fmr1 gene knockout mice have anxiety and depressive behavior.%目的:对不同周龄的 KO 小鼠与 WT 小鼠进行悬尾实验进行观察,探讨 KO 小鼠与 WT 小鼠的行为差别。方法采用健康的试验动物180只分两组:①KO 组(4、6、8周龄,各周龄30只,雌雄各半,共90只)②WT 组(4、6、8周龄,各周龄30只,雌雄各半,共90只);通过悬尾实验观察性别,年龄对不动时间的影响。结果同龄 KO 雌性小鼠比雄性小鼠的静止时间差别不大;随着年龄增大,静止时间增长。同龄同性别的 KO 鼠比 WT 鼠的不动时间长。P <0.05;同龄雄性小鼠比雌性小鼠的不动时间短;随年龄增长各种系小鼠不动时间增长,KO 鼠的不动时间比 WT 鼠长,P <0.05。结论 KO 小鼠存在抑郁行为表型。

  1. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang

    2008-01-01

    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  2. A new mutant transcript generated in Znf230 exon 2 knockout mice reveals a potential exon structure in the targeting vector sequence

    Institute of Scientific and Technical Information of China (English)

    Yunqiang Liu; Dachang Tao; Sunkai Ma; Ying Kuang; Dan Su; Hao Zhang; Yuan Yang

    2013-01-01

    Testis gene Znf230 may play a role in mammalian spermatogenesis according to previous reports.Deleting 5' important exons to block the formation of protein was a routine way in gene-knockout experiments.To investigate the physiological function of Znf230 gene,the mutant mice with disrupted exon 2 of Znf230 were generated in this study.Results showed that,mutant Znf230 mice were fertile and showed normal body,genitourinary organs,testes weights,and spermatid number but the litter size of the offspring reduced with unclear reasons.Hematoxylin and eosin staining showed that the testicular tissue of mutant mice was intact.Reverse transcriptase polymerase chain reaction analysis showed that two novel mutant transcripts appeared in the mutant mice:the short one including exon-1 and exon-3 to-6,the long one unexpectedly containing a partial sequence from the pPNT vector acting as a new exon 2.Bioinformatic analysis of the long transcript revealed that it might code a 24-kDa N-terminal mutant protein with the same 182 amino acids as that of the wild-type Znf230 in the C-terminus,indicating that the potential functional region of C3HC4-type RING finger was intact in mutant protein.Western blot and immunohistochemistry analyses also implied that this N-terminal mutation of Znf230 might not disrupt the possible role that wild-type Znf230 played in spermatogenesis.In summary,a potential exon structure in the targeting vector sequence involved in the expression of targeting Znf230 gene and disturbed the strategy of this gene-targeting experiment.

  3. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice.

    Science.gov (United States)

    Pritchett, David; Taylor, Amy M; Barkus, Christopher; Engle, Sandra J; Brandon, Nicholas J; Sharp, Trevor; Foster, Russell G; Harrison, Paul J; Peirson, Stuart N; Bannerman, David M

    2016-04-01

    A common strategy when searching for cognitive-enhancing drugs has been to target the N-methyl-d-aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D-amino acid oxidase (DAO) degrades neutral D-amino acids such as D-serine, the primary endogenous co-agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long-term potentiation and facilitated water maze acquisition of ddY/Dao(-) mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao(-/-) ) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao(-/-) mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao(-/-) mice exhibited normal performance in two alternative assays of long-term spatial memory: the appetitive and aversive Y-maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long-term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.

  4. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice.

    Directory of Open Access Journals (Sweden)

    Muralikrishna Gangadharan Komala

    Full Text Available BACKGROUND AND OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2 is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to determine the renoprotective benefits of empagliflozin, an SGLT2 inhibitor, independent of its glucose lowering effect. RESEARCH DESIGN AND METHODS: We induced diabetes using a low dose streptozotocin protocol in 7-8 week old endothelial nitric oxide (eNOS synthase knockout mice. We measured fasting blood glucose on a monthly basis, terminal urinary albumin/creatinine ratio. Renal histology was assessed for inflammatory and fibrotic changes. Renal cortical mRNA transcription of inflammatory and profibrotic cytokines, glucose transporters and protein expression of SGLT2 and GLUT1 were determined. Outcomes were compared to diabetic animals receiving the angiotensin receptor blocker telmisartan (current best practice. RESULTS: Diabetic mice had high matched blood glucose levels. Empagliflozin did not attenuate diabetes-induced albuminuria, unlike telmisartan. Empagliflozin did not improve glomerulosclerosis, tubular atrophy, tubulointerstitial inflammation or fibrosis, while telmisartan attenuated these. Empagliflozin did not modify tubular toll-like receptor-2 expression in diabetic mice. Empagliflozin did not reduce the upregulation of macrophage chemoattractant protein-1 (MCP-1, transforming growth factor β1 and fibronectin mRNA observed in the diabetic animals, while telmisartan decreased transcription of MCP-1 and fibronectin. Empagliflozin increased GLUT1 mRNA expression and telmisartan increased SGLT2 mRNA expression in comparison to untreated diabetic mice. However no significant difference was found in protein expression of GLUT1 or SGLT2 among the

  5. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice.

    Science.gov (United States)

    Pritchett, David; Taylor, Amy M; Barkus, Christopher; Engle, Sandra J; Brandon, Nicholas J; Sharp, Trevor; Foster, Russell G; Harrison, Paul J; Peirson, Stuart N; Bannerman, David M

    2016-04-01

    A common strategy when searching for cognitive-enhancing drugs has been to target the N-methyl-d-aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D-amino acid oxidase (DAO) degrades neutral D-amino acids such as D-serine, the primary endogenous co-agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long-term potentiation and facilitated water maze acquisition of ddY/Dao(-) mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao(-/-) ) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao(-/-) mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao(-/-) mice exhibited normal performance in two alternative assays of long-term spatial memory: the appetitive and aversive Y-maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long-term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted. PMID:26833794

  6. Knockout Zbtb33 gene results in an increased locomotion, exploration and pre-pulse inhibition in mice.

    Science.gov (United States)

    Kulikov, Alexander V; Korostina, Valeria S; Kulikova, Elizabeth A; Fursenko, Dariya V; Akulov, Andrey E; Moshkin, Mikhail P; Prokhortchouk, Egor B

    2016-01-15

    The Zbtb33 gene encodes the Kaiso protein-a bimodal transcriptional repressor. Here, the effects of Zbtb33 gene disruption on the brain and behaviour of the Kaiso-deficient (KO) and C57BL/6 (WT) male mice were investigated. Behaviour was studied using the open field, novel object, elevated plus maze and acoustic startle reflex tests. Brain morphology was investigated with magnetic resonance imaging. Biogenic amine levels and gene expression in the brain were measured with high-performance liquid chromatography and quantitative real-time RT-PCR, respectively. Zbtb33 gene mRNA was not detected in the brain of KO mice. KO mice exhibited increased locomotion, exploration in the open field, novel object and elevated plus-maze test. At the same time, Zbtb33 gene disruption did not alter anxiety-related behaviour in the elevated plus-maze test. KO mice showed elevated amplitudes and pre-pulse inhibitions of the acoustic startle reflex. These behavioural alterations were accompanied by significant reductions in the volumes of the lateral ventricles without significant alterations in the volumes of the hippocampus, striatum, thalamus and corpus callosum. Norepinephrine concentration was reduced in the hypothalami and hippocampi in KO mice, while the levels of serotonin, dopamine, their metabolites as well as mRNA of the gene coding brain-derived neurotrophic factor were not altered in the brain of KO mice compared to WT mice. This study is the first to reveal the involvement of the Zbtb33 gene in the regulation of behaviour and the central nervous system. PMID:26454239

  7. Effects of ketoconazole on the biodistribution and metabolism of [{sup 11}C]loperamide and [{sup 11}C]N-desmethyl-loperamide in wild-type and P-gp knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Seneca, Nicholas; Zoghbi, Sami S.; Shetty, H. Umesha; Tuan, Edward; Kannan, Pavitra; Taku, Andrew; Innis, Robert B. [Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 (United States); Pike, Victor W. [Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 (United States)], E-mail: pikev@mail.nih.gov

    2010-04-15

    Introduction: [{sup 11}C]Loperamide and [{sup 11}C]N-desmethyl-loperamide ([{sup 11}C]dLop) have been proposed as radiotracers for imaging brain P-glycoprotein (P-gp) function. A major route of [{sup 11}C]loperamide metabolism is N-demethylation to [{sup 11}C]dLop. We aimed to test whether inhibition of CYP3A4 with ketoconazole might reduce the metabolism of [{sup 11}C]loperamide and [{sup 11}C]dLop in mice, and thereby improve the quality of these radiotracers. Methods: Studies were performed in wild-type and P-gp knockout (mdr-1a/b -/-) mice. During each of seven study sessions, one pair of mice, comprising one wild-type and one knockout mouse, was pretreated with ketoconazole (50 mg/kg, ip), while another such pair was left untreated. Mice were sacrificed at 30 min after injection of [{sup 11}C]loperamide or [{sup 11}C]dLop. Whole brain and plasma samples were measured for radioactivity and analyzed with radio-high-performance liquid chromatography. Results: Ketoconazole increased the plasma concentrations of [{sup 11}C]loperamide and its main radiometabolite, [{sup 11}C]dLop, by about twofold in both wild-type and knockout mice, whereas the most polar radiometabolite was decreased threefold. Furthermore, ketoconazole increased the brain concentrations of [{sup 11}C]loperamide and the radiometabolite [{sup 11}C]dLop by about twofold in knockout mice, and decreased the brain concentrations of the major and most polar radiometabolite in wild-type and knockout mice by 82% and 49%, respectively. In contrast, ketoconazole had no effect on plasma and brain distribution of administered [{sup 11}C]dLop and its radiometabolites in either wild-type or knockout mice, except to increase the low plasma [{sup 11}C]dLop concentration. The least polar radiometabolite of [{sup 11}C]dLop was identified with LC-MS{sup n} as the N-hydroxymethyl analog of [{sup 11}C]dLop and this also behaved as a P-gp substrate. Conclusion: In this study, ketoconazole (50 mg/kg, ip) proved

  8. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus;

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold......) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion...... of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0...

  9. Tracing the movement of adiponectin in a parabiosis model of wild-type and adiponectin-knockout mice

    Directory of Open Access Journals (Sweden)

    Hideaki Nakatsuji

    2014-01-01

    Full Text Available Adiponectin is exclusively synthesized by adipocytes and exhibits anti-diabetic, anti-atherosclerotic and anti-inflammatory properties. Hypoadiponectinemia is associated in obese individuals with insulin resistance and atherosclerosis. However, the mechanisms responsible for hypoadiponectinemia remain unclear. Here, we investigated adiponectin movement using hetero parabiosis model of wild type (WT and adiponectin-deficient (KO mice. WT mice were parabiosed with WT mice (WT–WT or KO mice (WT–KO and adiponectin levels were measured serially up to 63 days after surgery. In the WT–KO parabiosis model, circulating adiponectin levels of the WT partners decreased rapidly, on the other hand, those of KO partners increased, and then these reached comparable levels each other at day 7. Circulating adiponectin levels decreased further to the detection limit of assay, and remained low up to day 63. However, adiponectin protein was detected in the adipose tissues of not only the WT partner but also WT–KO mice. In the diet-induced obesity model, high adiponectin protein levels were detected in adipose stromal vascular fraction of diet-induced obese KO partner, without changes in its binding proteins. The use of parabiosis experiments shed light on movement of native adiponectin among different tissues such as the state of hypoadiponectinemia in obesity.

  10. Impact of Campylobacter jejuni cj0268c knockout mutation on intestinal colonization, translocation, and induction of immunopathology in gnotobiotic IL-10 deficient mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Although Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden, the underlying molecular mechanisms of induced intestinal immunopathology are still not well understood. We have recently generated a C. jejuni mutant strain NCTC11168::cj0268c, which has been shown to be involved in cellular adhesion and invasion. The immunopathological impact of this gene, however, has not been investigated in vivo so far. METHODOLOGY/PRINCIPAL FINDINGS: Gnotobiotic IL-10 deficient mice were generated by quintuple antibiotic treatment and perorally infected with C. jejuni mutant strain NCTC11168::cj0268c, its complemented version (NCTC11168::cj0268c-comp-cj0268c, or the parental strain NCTC11168. Kinetic analyses of fecal pathogen loads until day 6 post infection (p.i. revealed that knockout of cj0268c did not compromise intestinal C. jejuni colonization capacities. Whereas animals irrespective of the analysed C. jejuni strain developed similar clinical symptoms of campylobacteriosis (i.e. enteritis, mice infected with the NCTC11168::cj0268c mutant strain displayed significant longer small as well as large intestinal lengths indicative for less distinct C. jejuni induced pathology when compared to infected control groups at day 6 p.i. This was further supported by significantly lower apoptotic and T cell numbers in the colonic mucosa and lamina propria, which were paralleled by lower intestinal IFN-γ and IL-6 concentrations at day 6 following knockout mutant NCTC11168::cj0268c as compared to parental strain infection. Remarkably, less intestinal immunopathology was accompanied by lower IFN-γ secretion in ex vivo biopsies taken from mesenteric lymphnodes of NCTC11168::cj0268c infected mice versus controls. CONCLUSION/SIGNIFICANCE: We here for the first time show that the cj0268c gene is involved in mediating C. jejuni induced immunopathogenesis in vivo. Future studies will provide further

  11. Formation of acellular cementum-like layers, with and without extrinsic fiber insertion, along inert bone surfaces of aging c-Src gene knockout mice.

    Science.gov (United States)

    Baba, Otto; Miyata, Atsushi; Abe, Tatsuhiko; Shibata, Shunichi; Nakano, Yukiko; Terashima, Tatsuo; Oda, Tsuyoshi; Kudo, Akira; Takano, Yoshiro

    2006-12-01

    To investigate the long-term effects of c-src deficiency on skeletal and dental tissues, we examined the lower jaws and long bones of c-src gene knockout (c-src KO) mice by histological and histochemical methods. Numerous multinucleated osteoclasts were distributed throughout the mandible in 5-wk-old c-src KO mice, but by 14 wk they had almost completely disappeared from the alveolar bone, leaving tartrate-resistant acid phosphatase (TRAP)-positive layers along the bone surface. Deposition of osteopontin-positive mineralized tissue, reminiscent of acellular afibrillar cementum (AAC), was confirmed along the TRAP-positive bone surface at 14 wk. The layer progressively thickened up to 21 months. A comparable mineralized layer was noted along the trabeculae of long bones as thickened cement lines. In the periostin-rich areas of jaw bones, but not in the long bones, portions of AAC-like mineralized layers were often replaced with and/or covered by acellular extrinsic fiber cementum (AEFC)-like tissue. These data suggest that the deposition of AAC-like mineralized tissue is a general phenomenon that may occur along inert or slowly remodeling bone surfaces under conditions characterized by reduced bone-resorbing activity, whereas the induction of AEFC-like tissue seems to be associated with the expression of certain molecules that are particularly abundant in the microenvironment of the periodontal ligament. PMID:17184236

  12. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. PMID:24752151

  13. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia.

    Science.gov (United States)

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L

    2011-01-01

    Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain.

  14. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    2016-05-01

    Full Text Available Insulin receptor substrate-2-deficient (IRS2−/− mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  15. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    Science.gov (United States)

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  16. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  17. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K., E-mail: mwalker@salud.unm.edu

    2012-11-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  18. Enhanced growth and improved vascular function in offspring from successive pregnancies in endothelial nitric oxide synthase knockout mice

    NARCIS (Netherlands)

    Longo, M; Jain, [No Value; Langenveld, J; Vedernikov, YP; Garfield, RE; Hankins, GDV; Anderson, GD; Saade, GR

    2004-01-01

    Objective: Transgenic mice that lack endothelial nitric oxide synthase have offspring with growth deficiency and abnormal vascular reactivity in later life. Our objective was to evaluate the role of parity in the modulation of the fetal programming of growth and vascular responses in these transgeni

  19. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema.

    Science.gov (United States)

    Matsuyama, Shigemi; Palmer, James; Bates, Adam; Poventud-Fuentes, Izmarie; Wong, Kelvin; Ngo, Justine; Matsuyama, Mieko

    2016-06-01

    Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their

  20. Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice.

    Directory of Open Access Journals (Sweden)

    Tomoya Nakamura

    Full Text Available Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI; reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.

  1. Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice.

    Science.gov (United States)

    Brown, Melissa L; Andrzejewski, Danielle; Burnside, Amy; Schneyer, Alan L

    2016-03-01

    Diabetes results from inadequate β-cell number and/or function to control serum glucose concentrations so that replacement of lost β-cells could become a viable therapy for diabetes. In addition to embryonic stem cell sources for new β-cells, evidence for transdifferentiation/reprogramming of non-β-cells to functional β-cells is accumulating. In addition, de-differentiation of β-cells observed in diabetes and their subsequent conversion to α-cells raises the possibility that adult islet cell fate is malleable and controlled by local hormonal and/or environmental cues. We previously demonstrated that inactivation of the activin antagonist, follistatin-like 3 (FSTL3) resulted in β-cell expansion and improved glucose homeostasis in the absence of β-cell proliferation. We recently reported that activin directly suppressed expression of critical α-cell genes while increasing expression of β-cell genes, supporting the hypothesis that activin is one of the local hormones controlling islet cell fate and that increased activin signaling accelerates α- to β-cell transdifferentiation. We tested this hypothesis using Gluc-Cre/yellow fluorescent protein (YFP) α-cell lineage tracing technology combined with FSTL3 knockout (KO) mice to label α-cells with YFP. Flow cytometry was used to quantify unlabeled and labeled α- and β-cells. We found that Ins+/YFP+ cells were significantly increased in FSTL3 KO mice compared with wild type littermates. Labeled Ins+/YFP+ cells increased significantly with age in FSTL3 KO mice but not wild type littermates. Sorting results were substantiated by counting fluorescently labeled cells in pancreatic sections. Activin treatment of isolated islets significantly increased the number of YFP+/Ins+ cells. These results suggest that α- to β-cell transdifferentiation is influenced by activin signaling and may contribute substantially to β-cell mass.

  2. Smad3基因剔除小鼠的基因型鉴定与繁殖性能研究%Research of the Genotype Identification and Riproductive Performance of Smad3 Gene Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    孙岩松; 吕雅歆; 王冬平; 方厚华; 时彦胜; 战大伟; 张爱兰; 李桂军

    2003-01-01

    The previous study of Srnad3 gene knockout mice ( Smad3ex8/ex8 ) shows that the Smad3ex8/ex8 mice develop progressive leukocytosis, periodontitis, gastritis, colitis and chronic infection with abscess formation adjacent to mucosal surfaces . symptomatic mutant mice exhibit thymic involution, enlarged lymph nodes and T cells with activated phenotype.Further study suggests that the thymic cells and peripheral T ceels of Smad3ex8/ex8 mice have lost the response to TGF-β.Furthermore, nwe found that the homologous Smad3ex8/ex mice developed degenerative joint disease resembling human osteoarthritis, osteoporosis and wound healing up quicker. So the mice can serve as an ideal animal model for immune dysregulation, osteoarthritis and so on.

  3. Effect of dietary calcium and 1,25-(OH)2D3 on the expression of calcium transport genes in calbindin-D9k and -D28k double knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Choi, Kyung-Chul; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-02-01

    The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)(2)D(3)-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)(2)D(3) during growth and development.

  4. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction

    OpenAIRE

    Balu, Darrick T.; Li, Yan; Puhl, Matthew D.; Benneyworth, Michael A.; Basu, Alo C.; Takagi, Shunsuke; Bolshakov, Vadim Y.; Coyle, Joseph T.

    2013-01-01

    We sought to determine whether the diverse hippocampal neuropathology observed in schizophrenia could be recapitulated in an animal model of NMDA receptor (NMDAR) hypofunction. Serine racemase-deficient (SR−/−) mice, which lack one of the NMDAR coagonists d-serine, display impaired hippocampal plasticity, as well as the morphological, neurochemical, and cognitive abnormalities consistent with what is observed in schizophrenia. Importantly, treatment in adulthood with d-serine reversed the ele...

  5. Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice

    OpenAIRE

    Newberry, Elizabeth P.; Kennedy, Susan M; Xie, Yan; Luo, Jianyang; Davidson, Nicholas O.

    2008-01-01

    Liver fatty acid binding protein (L-FABP) is highly expressed in both enterocytes and hepatocytes and binds multiple ligands, including saturated (SFA), unsaturated fatty acids (PUFA), and cholesterol. L-fabp−/− mice were protected against obesity and hepatic steatosis on a high saturated fat (SF), high cholesterol “Western” diet and manifested a similar phenotype when fed with a high SF, low cholesterol diet. There were no significant differences in fecal fat content or food consumption betw...

  6. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes

    OpenAIRE

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Sakamoto, Takuya; Ohmuraya, Masaki; NAKAGATA, Naomi; Yamamoto, Takashi

    2015-01-01

    Background Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing permits the rapid production of genetically engineered mice. To make the most of this innovative technology, a streamlined procedure is needed for the robust construction of CRISPR/Cas9 vectors, the efficient preparation of mouse oocytes, and refined genotyping strategies. Although we previously demonstrated the applicability of oocyte cryopreservation tech...

  7. Alpha-Tocopherol Transfer Protein (α-TTP): Insights from Alpha-Tocopherol Transfer Protein Knockout Mice

    OpenAIRE

    Lim, Yunsook; Traber, Maret G.

    2007-01-01

    Alpha-tocopherol transfer protein (α-TTP) is a liver cytosolic transport protein that faciliates α-tocopherol (α-T) transfer into liver secreted plasma lipoproteins. Genetic defects in α-TTP, like dietary vitamin E deficiency, are associated with infertility, muscular weakness and neurological disorders. Both human and α-TTP deficient (α-TTP-/-) mice exhibit severe plasma and tissue vitamin E deficiency that can be attenuated by sufficient dietary α-T supplementations. In this review, we summ...

  8. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice

    OpenAIRE

    Kellermayer, Richard; Dowd, Scot E.; Harris, R. Alan; Balasa, Alfred; Schaible, Tiffany D.; Wolcott, Randy D; Tatevian, Nina; Szigeti, Reka; Li, Zhijie; Versalovic, James; Smith, C. Wayne

    2011-01-01

    The connection between intestinal microbiota and host physiology is increasingly becoming recognized. The details of this dynamic interaction, however, remain to be explored. Toll-like receptor 2 (Tlr2) is important for its role in bacterial recognition, intestinal inflammation, and obesity-related metabolic changes. Therefore, we sought to determine the epigenomic and metagenomic consequences of Tlr2 deficiency in the colonic mucosa of mice to gain insights into biological pathways that shap...

  9. Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in Phospho1(-/-) and Phospho1/Pi t1 Double-Knockout Mice.

    Science.gov (United States)

    Yadav, Manisha C; Bottini, Massimo; Cory, Esther; Bhattacharya, Kunal; Kuss, Pia; Narisawa, Sonoko; Sah, Robert L; Beck, Laurent; Fadeel, Bengt; Farquharson, Colin; Millán, José Luis

    2016-06-01

    We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis, but that their chondrocyte-derived and osteoblast-derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1-mediated intravesicular generation of inorganic phosphate (Pi ) and phosphate transporter-mediated influx of Pi . To test this hypothesis, we generated mice with col2a1-driven Cre-mediated ablation of Slc20a1, hereafter referred to as Pi t1, alone or in combination with a Phospho1 gene deletion. Pi t1(col2/col2) mice did not show any major phenotypic abnormalities, whereas severe skeletal deformities were observed in the [Phospho1(-/-) ; Pi t1(col2/col2) ] double knockout mice that were more pronounced than those observed in the Phospho1(-/-) mice. Histological analysis of [Phospho1(-/-) ; Pi t1(col2/col2) ] bones showed growth plate abnormalities with a shorter hypertrophic chondrocyte zone and extensive hyperosteoidosis. The [Phospho1(-/-) ; Pi t1(col2/col2) ] skeleton displayed significant decreases in BV/TV%, trabecular number, and bone mineral density, as well as decreased stiffness, decreased strength, and increased postyield deflection compared to Phospho1(-/-) mice. Using atomic force microscopy we found that ∼80% of [Phospho1(-/-) ; Pi t1(col2/col2) ] MVs were devoid of mineral in comparison to ∼50% for the Phospho1(-/-) MVs and ∼25% for the WT and Pi t1(col2/col2) MVs. We also found a significant decrease in the number of MVs produced by both Phospho1(-/-) and [Phospho1(-/-) ; Pi t1(col2/col2) ] chondrocytes. These data support the involvement of phosphate transporter 1, hereafter referred to as Pi T-1, in the initiation of skeletal mineralization and

  10. Enhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    OpenAIRE

    Spiro, Adena S.; Alexander Wong; Boucher, Aurélie A.; Arnold, Jonathon C.

    2012-01-01

    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9)-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to ca...

  11. Pelvic Organ Prolapse in Fibulin-5 Knockout Mice : Pregnancy-Induced Changes in Elastic Fiber Homeostasis in Mouse Vagina

    OpenAIRE

    Peter G. Drewes; Yanagisawa, Hiromi; Starcher, Barry; Hornstra, Ian; Csiszar, Katalin; Marinis, Spyridon I.; Keller, Patrick; Word, R. Ann

    2007-01-01

    Pelvic organ prolapse is strongly associated with a history of vaginal delivery. The mechanisms by which pregnancy and parturition lead to failure of pelvic organ support, however, are not known. Recently, it was reported that mice with null mutations in lysyl oxidase-like 1 (LOXL1) develop pelvic organ prolapse. Elastin is a substrate for lysyl oxidase (LOX) and LOXL1, and LOXL1 interacts with fibulin-5 (FBLN5). Therefore, to clarify the potential role of elastic fiber assembly in the pathog...

  12. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy.

    Science.gov (United States)

    Peng, Xin-Gui; Ju, Shenghong; Fang, Fang; Wang, Yu; Fang, Ke; Cui, Xin; Liu, George; Li, Peng; Mao, Hui; Teng, Gao-Jun

    2013-01-15

    Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.

  13. Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice.

    Science.gov (United States)

    Garoby-Salom, Sandra; Guéraud, Françoise; Camaré, Caroline; de la Rosa, Ana-Paulina Barba; Rossignol, Michel; Santos Díaz, María del Socorro; Salvayre, Robert; Negre-Salvayre, Anne

    2016-03-01

    Dietary intake of Opuntia species may prevent the development of cardiovascular diseases. The present study was designed to characterize the biological antioxidant and anti-inflammatory properties of Opuntia species and to investigate whether Opuntia cladodes prevent the development of atherosclerosis in vivo, in apoE(-)KO mice. The effects of the two Opuntia species, the wild Opuntia streptacantha and the domesticated Opuntia ficus-indica, were tested on the generation of intra- and extracellular reactive oxygen species (ROS) production and kinetics of the LDL oxidation by murine CRL2181 endothelial cells and on the subsequent inflammatory signaling leading to the adhesion of monocytes on the activated endothelium and the formation of foam cells. Opuntia species blocked the extracellular ROS (superoxide anion) generation and LDL oxidation by CRL2181, as well as the intracellular ROS rise and signaling evoked by the oxidized LDL, including the nuclear translocation of the transcription factor NFκB, the expression of ICAM-1 and VCAM-1 adhesion molecules, and the adhesion of monocytes to CRL2181. In vivo, Opuntia significantly reduced the formation of atherosclerotic lesions and the accumulation of 4-hydroxynonenal adducts in the vascular wall of apoE-KO mice, indicating that Opuntia cladodes prevent lipid oxidation in the vascular wall. In conclusion, wild and domesticated Opuntia species exhibit antioxidant, anti-inflammatory, and antiatherogenic properties which emphasize their nutritional benefit for preventing cardiovascular diseases. PMID:26704378

  14. Thalidomide influences atherogenesis in aortas of ApoE(-/-)/LDLR (-/-) double knockout mice: a nano-CT study.

    Science.gov (United States)

    Kampschulte, Marian; Gunkel, Irina; Stieger, Philipp; Sedding, Daniel G; Brinkmann, Anne; Ritman, Erik L; Krombach, Gabriele A; Langheinrich, Alexander C

    2014-04-01

    Plaque progression in atherosclerosis is closely connected to angiogenesis due to vasa vasorum (VV) growth. Objective of this study was to determine the unknown long-term effect of thalidomide on adventitial VV neovascularization and plaque progression using nano-focussed computed tomography (nano-CT). Proliferation and migration assays in human coronary artery endothelial cells (HCAEC) measured number of viable cells after incubation with thalidomide. Male ApoE(-/-)/LDLR(-/-) (AL) mice (n = 5) received a thalidomide containing western diet (WD) over 29 weeks. Another five male AL mice (WD without thalidomide) served as control group. Descending aortas were scanned with nano-CT at (1.5 μm)(3) isotropic voxel size. Number and area of adventitial VV as well as plaque cross sectional area were measured. Results were complemented by histology. Thalidomide inhibited proliferation and migration of HCAEC dose-dependently. VV neovascularization decreased in number per cross section (7.66 ± 0.301 vs. 8.62 ± 0.164, p thalidomide (0.57 ± 0.0187 vs. 0.803 ± 0.0148 mm(2), p thalidomide. Therefore, nano-CT can be considered as a new method to detect therapeutic effects in experimental models of atherosclerosis.

  15. Cyclophilin C-associated protein (CyCAP) knock-out mice spontaneously develop colonic mucosal hyperplasia and exaggerated tumorigenesis after treatment with carcinogen azoxymethane1

    International Nuclear Information System (INIS)

    The discovery of a 'serrated neoplasia pathway' has highlighted the role of hyperplastic lesions of the colon as the significant precursor of colorectal adenocarcinoma. In mice, hyperplasia of the colonic mucosa is a regular phenomenon after a challenge with colonic carcinogens indicating that mucosal hyperproliferation and thickening, even without cytological dysplasia, represents an early pre-malignant change. Cyclophilin C-associated protein (CyCAP) has been described to down-modulate endotoxin signaling in colorectal murine mucosa and is a murine orthologue of the tumor-associated antigen 90 K (TAA90K)/mac-2-binding protein. Female Balb/c wild-type (WT) and CyCAP knock-out (KO) mice (6–8 weeks old) were administered 2 or 6 weekly subcutaneous injections of azoxymethane. The animals were evaluated post-injection at six weeks for aberrant crypt foci (ACF) study and at five months for colon tumor measurement. The thickness of the colon crypts was measured in microns and the number of colonocytes per crypt was also determined in well-oriented crypts. Morphometric analyses of the colon mucosa were also performed in untreated 6–8 weeks old KO and WT animals. Formalin-fixed/paraffin-embedded colon sections were also studied by immunohistochemistry to determine the Ki-67 proliferation fraction of the colon mucosa, β-catenin cellular localization, cyclin D1, c-myc, and lysozyme in Paneth cells. Cyclophilin C-associated protein (CyCAP)-/- mice, spontaneously developed colonic mucosal hyperplasia early in life compared to wild-type mice (WT) (p < 0.0001, T-test) and crypts of colonic mucosa of the (CyCAP)-/- mice show higher proliferation rate (p = 0.039, Mann-Whitney Test) and larger number of cyclin D1-positive cells (p < 0.0001, Mann-Whitney Test). Proliferation fraction and cyclin D1 expression showed positive linear association (p = 0.019, Linear-by-Linear Association). The hyperplasia was even more pronounced in CyCAP-/- mice than in WT after

  16. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice.

    Science.gov (United States)

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta

    2016-03-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis. PMID:26909367

  17. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice

    Directory of Open Access Journals (Sweden)

    Cesare Lancini

    2016-03-01

    Full Text Available The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ. Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR (Jackson and Durocher, 2013 [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008 [2,3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014 [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article “Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells” (Lancini et al., 2014 [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002 [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495. With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.

  18. 利用基因敲除小鼠研究发热机制的进展%Progress in studying the mechanism of fever using knockout mice

    Institute of Scientific and Technical Information of China (English)

    李沧海; 霍海如; 姜廷良

    2002-01-01

    Increasing evidence suggests that a complex net-work of fever induction pathways in mammalian exists.In this article,the overview of recent studies on the mechanism of fever induced by different pyrogens using IL-1,IL-1R,ICE,IL-1ra,IL-1RacP,IL-6,IL-10,TNFR,cPLA2,COX,EP,AT2,iNOS and D2/3 knockout mice is presented.Hyperthermia respond to localized infection/inflammation(e.g.,scinjection of turpentine) is mediated by IL-1β and IL-6 in turn.While fever induced by systemic infection/inflammation(e.g.,treatment with LPS intraperitoneally)varies with the different doses of pyrogens administered.Fever caused by a low dose of LPS administered ip is IL-6 dependent,but the IL-6 independent pathway is crucial for the fever evoked by a high dose of LPS.Febrile responses during both local and systemic infection/inflammation develop totally through central PGE2 dependent mechanism,but some stress induced hyperthermia otherwise.

  19. Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice.

    Science.gov (United States)

    Chen, Bei-Yu; Zheng, Min-Hua; Chen, Yan; Du, Yan-Ling; Sun, Xiao-Long; Zhang, Xing; Duan, Li; Gao, Fang; Liang, Liang; Qin, Hong-Yan; Luo, Zhuo-Jing; Han, Hua

    2015-12-01

    The outcome of spinal cord injury (SCI) is determined by both neural cell-intrinsic survival pathways and tissue microenvironment-derived signals. Macrophages dominating the inflammatory responses in SCI possess both destructive and reparative potentials, according to their activation status. Notch signaling is involved in both cell survival and macrophage-mediated inflammation, but a comprehensive role of Notch signaling in SCI has been elusive. In this study, we compared the effects of general Notch blockade by a pharmaceutical γ-secretase inhibitor (GSI) and myeloid-specific Notch signal disruption by recombination signal binding protein Jκ (RBP-J) knockout on SCI. The administration of Notch signal inhibitor GSI resulted in worsened hind limb locomotion and exacerbated inflammation. However, mice lacking RBP-J, the critical transcription factor mediating signals from all four mammalian Notch receptors, in myeloid lineage displayed promoted functional recovery, attenuated glial scar formation, improved neuronal survival and axon regrowth, and mitigated inflammatory response after SCI. These benefits were accompanied by enhanced AKT activation in the lesion area after SCI. These findings demonstrate that abrogating Notch signal in myeloid cells ameliorates inflammation response post-SCI and promotes functional recovery, but general pharmaceutical Notch interception has opposite effects. Therefore, clinical intervention of Notch signaling in SCI needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.

  20. GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice.

    Science.gov (United States)

    Park, Jong-In; Powers, James F; Tischler, Arthur S; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2005-02-01

    Glial cell line-derived neurotrophic factor (GDNF) can induce neuron-like differentiation of mouse pheochromocytoma (MPC) cell lines derived from mice with a heterozygous knockout mutation of nf1, the murine counterpart of the human gene mutated in neurofibromatosis type 1 (NF1). Here, we show that GDNF-induced differentiation in the MPC 862L cell line is mediated by the MEK/extracellular signal-regulated kinase (ERK) pathway. Neurite outgrowth, increased expression of growth-associated protein 43, and decreased incorporation of bromodeoxyuridine (BrdU) were induced by treatment with GDNF, H-RasV12, or a constitutively active MEK2. GDNF also induces leukemia inhibitory factor (LIF) via the MEK/ERK pathway, and LIF itself can elicit these differentiative changes via a cell-extrinsic autocrine/paracrine pathway. Treatment with anti-LIF neutralizing antibody depleted the differentiative activity of the conditioned medium from cells stimulated for MEK/ERK signaling, while recombinant LIF could induce differentiation in MPC cells, indicating that LIF is the sole factor with differentiative activity. LIF could activate MEK1/2 and STAT3, but LIF-induced differentiation was blocked only by the MEK1/2-specific inhibitor U0126, indicating that the MEK/ERK pathway is necessary for LIF action in MPC cells. Our findings suggest that LIF may be utilized for signaling mediated by GDNF and may be important in the pathobiology of neuroendocrine tumors.

  1. Type II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice

    Science.gov (United States)

    2016-01-01

    Abstract The cochlear nerve includes a small population of unmyelinated sensory fibers connecting outer hair cells to the brain. The functional role of these type II afferent neurons is controversial, because neurophysiological data are sparse. A recent study (Froud et al., 2015) reported that targeted deletion of peripherin, a type of neurofilament, eliminated type II afferents and inactivated efferent feedback to the outer hair cells, thereby suggesting that type II afferents were the sensory drive to this sound-evoked, negative-feedback reflex, the olivocochlear pathway. Here, we re-evaluated the cochlear phenotype in mice from the peripherin knock-out line and show that (1) type II afferent terminals are present in normal number and (2) olivocochlear suppression of cochlear responses is absent even when this efferent pathway is directly activated by shocks. We conclude that type II neurons are not the sensory drive for the efferent reflex and that peripherin deletion likely causes dysfunction of synaptic transmission between olivocochlear terminals and their peripheral targets. PMID:27570826

  2. Distribution of selected elements in atherosclerotic plaques of apoE/LDLR-double knockout mice subjected to dietary and pharmacological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gajda, Mariusz, E-mail: mmgajda@cyf-kr.edu.pl [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Kowalska, Joanna [Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Krakow (Poland); Banas, Agnieszka; Banas, Krzysztof [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603 Singapore (Singapore); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Krakow (Poland); Kostogrys, Renata B. [Department of Human Nutrition, Agricultural University of Krakow, Balicka 122, 30-149, Krakow (Poland); Mateuszuk, Lukasz; ChLopicki, Stefan [Department of Experimental Pharmacology, Jagiellonian University Medical College, Kopernika 7, 31-531 Krakow (Poland); Litwin, Jan A. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Appel, Karen [Hasylab, DESY, Notkestrasse 85, D-22607, Hamburg (Germany)

    2011-10-15

    Gene-targeted, apolipoprotein E and LDL receptor-double knockout (apoE/LDLR{sup -/-}) mice represent a new animal model that displays severe hyperlipidemia and atherosclerosis. The aim of the present study was to show changes in histomorphology and in distribution of selected elements in atherosclerotic plaques of apoE/LDLR{sup -/-} mice fed egg-rich proatherosclerotic diet (5% egg-yolk lyophilisate) supplemented or not with perindopril (inhibitor of angiotensin converting enzyme; 2 mg/kg b.w.). Synchrotron radiation micro-X-ray fluorescence spectrometry was combined with histological stainings to determine distribution and concentration of trace and essential elements in atherosclerotic lesions. More advanced atherosclerotic lesions expressed by total area occupied by lipids (oil red-O staining) and by macrophages (CD68 immunohistochemistry) were observed in animals fed egg-rich diet. The perindopril treatment attenuated these effects. No significant differences were observed in the number of intimal smooth muscle cells (smooth muscle actin immunohistochemistry). In animals fed egg-rich diet significantly higher concentrations of Ca and significantly lower contents of S, Cl, , Fe, Cu, Zn and Se in atheromas were seen in comparison to chow diet-fed animals. After pharmacological treatment, concentrations of S, Cl, Fe, Cu, Zn and Se showed the tendency to achieve levels like in animals fed normal diet. K level differed only in group treated with perindopril. Concentration of P did not significantly vary in all experimental groups. Perindopril showed its potency to reduce atherosclerosis, as estimated by the size of the atheroma and content of pro- and antiatherogenic elements.

  3. Distribution of selected elements in atherosclerotic plaques of apoE/LDLR-double knockout mice subjected to dietary and pharmacological treatments

    Science.gov (United States)

    Gajda, Mariusz; Kowalska, Joanna; Banaś, Agnieszka; Banaś, Krzysztof; Kwiatek, Wojciech M.; Kostogrys, Renata B.; Mateuszuk, łukasz; ChŁopicki, Stefan; Litwin, Jan A.; Appel, Karen

    2011-10-01

    Gene-targeted, apolipoprotein E and LDL receptor-double knockout (apoE/LDLR -/-) mice represent a new animal model that displays severe hyperlipidemia and atherosclerosis. The aim of the present study was to show changes in histomorphology and in distribution of selected elements in atherosclerotic plaques of apoE/LDLR -/- mice fed egg-rich proatherosclerotic diet (5% egg-yolk lyophilisate) supplemented or not with perindopril (inhibitor of angiotensin converting enzyme; 2 mg/kg b.w.). Synchrotron radiation micro-X-ray fluorescence spectrometry was combined with histological stainings to determine distribution and concentration of trace and essential elements in atherosclerotic lesions. More advanced atherosclerotic lesions expressed by total area occupied by lipids (oil red-O staining) and by macrophages (CD68 immunohistochemistry) were observed in animals fed egg-rich diet. The perindopril treatment attenuated these effects. No significant differences were observed in the number of intimal smooth muscle cells (smooth muscle actin immunohistochemistry). In animals fed egg-rich diet significantly higher concentrations of Ca and significantly lower contents of S, Cl, , Fe, Cu, Zn and Se in atheromas were seen in comparison to chow diet-fed animals. After pharmacological treatment, concentrations of S, Cl, Fe, Cu, Zn and Se showed the tendency to achieve levels like in animals fed normal diet. K level differed only in group treated with perindopril. Concentration of P did not significantly vary in all experimental groups. Perindopril showed its potency to reduce atherosclerosis, as estimated by the size of the atheroma and content of pro- and antiatherogenic elements.

  4. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: Implications for schizophrenia

    OpenAIRE

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B.; Halberstadt, Adam L.

    2011-01-01

    Serotonin-1A (5-HT1A) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT1A receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT1A receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modelin...

  5. Reproduction and genotype identification of corticotropin-releasing hormone gene knockout mice%促肾上腺皮质激素释放激素基因敲除小鼠的繁殖与基因型鉴定

    Institute of Scientific and Technical Information of China (English)

    王海燕; 刘庆; 钟河江; 杨策; 黄苏娜; 严军; 蒋建新

    2011-01-01

    目的 探讨促肾上腺皮质激素释放激素(CRH)基因敲除(KO)小鼠饲养、繁殖及基因型鉴定的方法.方法 从美国Jackson实验室引进CRH KO小鼠,按照遗传学规则,对杂合子型(CRH+/-)小鼠进行配对繁殖,提取幼鼠尾部组织全基因组DNA,通过聚合酶链反应(PCR)对幼鼠基因型进行鉴定.结果 CRH KO纯合子型(CRH-/-)小鼠的繁殖和饲养均获得成功,采用PCR成功地对所获得的小鼠进行基因分析,在子代小鼠中存在野生纯合子型(CRH+/+)、杂合子型(CRH+/-)及CRH KO纯合子型(CRH-/-)小鼠.CRH-/-小鼠较另外2种基因型小鼠存活率明显下降,但3种基因型小鼠在出生后10 d及30 d体质量无明显差异.结论 正确的饲养繁殖以及鉴定方法可从杂合子型(CRH+/-)小鼠中获得CRH KO纯合子型(CRH-/-)小鼠.%Objective To explore the methods of breeding, reproductin and genotype identification of corticotropin-releasing hormone ( CRH)knockout( KO) mice.Methods CRH knockout mice were obtained from Jackson laboratory in USA.Heterozygous type (CRH+/- )mice were inbreeded according to genetic rules to yield CRH knockout mice.The genotypes of offspring were identified by polymerase chain reaction(PCR)using genomic DNA extracted from tissue of mice tails.Results Both breeding and reproductin of CRH KO heterozygous type(CRH+/- )mice were successful.PCR was used successfully for genetic analysis in mice obtained.There were wild homozygous genotype( CRH+ /+ ) , heterozygous genotype ( CRH + /- ) and CRH KO homozygous genotype( CRH-/- )in the offspring.Compared with other two genotype mice,survival rate of CRH- /- mice were significantly decreased.however, body mass of the three genotypes mice had no significant difference at 10 and 30 days after birth.Conclusion Appropriate reproductin , breeding and identification are effective methods to obtain CRH KO homozygous genotype( CRH -/- ) mice from heterozygous genotype( CRH+ / - ) mice.

  6. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  7. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    Science.gov (United States)

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  8. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze

    OpenAIRE

    Walf, Alicia A.; Koonce, Carolyn; Manley, Kevin; Frye, Cheryl A.

    2008-01-01

    17β-Estradiol (E2) may influence cognitive and/or affective behavior in part via the β isoform of the estrogen receptor (ERβ). Endocrine status and behavior in cognitive (object recognition, T-maze), anxiety (open field, elevated plus maze, mirror maze, emergence), and motor/coordination (rotarod, activity chamber) tasks of proestrous and diestrous wildtype (WT) and ERβ knockout (βERKO) mice was examined. Proestrous (WT or βERKO), versus diestrous, mice had higher E2 and progestin levels in p...

  9. Oleylphosphocholine (OlPC arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice

    Directory of Open Access Journals (Sweden)

    Karine eSonzogni-Desautels

    2015-09-01

    Full Text Available Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC, an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 µM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 mg/kg/day and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.

  10. Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice.

    Science.gov (United States)

    Sonzogni-Desautels, Karine; Renteria, Axel E; Camargo, Fabio V; Di Lenardo, Thomas Z; Mikhail, Alexandre; Arrowood, Michael J; Fortin, Anny; Ndao, Momar

    2015-01-01

    Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 μM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients. PMID:26441906

  11. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice.

    Directory of Open Access Journals (Sweden)

    Susanna Pietropaolo

    Full Text Available BACKGROUND: No animal models of autism spectrum disorders (ASD with good construct validity are currently available; using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known genetic disorder presenting ASD symptoms. The Fmr1-KO is available on different genetic backgrounds (FVB versus C57BL/6, which may explain some of the conflicting results that have been obtained with these mutants up till now. METHODS: Fmr1 KO and their wild-type littermates on both the FVB and C57BL/6 genetic backgrounds were examined on a battery of tests modeling the clinical symptoms of ASD, including the triad of core symptoms (alterations in social interaction and communication, presence of repetitive behaviors, as well as the secondary symptoms (disturbances in sensori-motor reactivity and in circadian patterns of activity, epileptic events. RESULTS: Fmr1-KO mice displayed autistic-like core symptoms of altered social interaction and occurrence of repetitive behaviors with additional hyperactivity. The genetic background modulated the effects of the Fmr1 deletion and it appears that the C57BL/6 background may be more suitable for further research on core autistic-like symptoms. CONCLUSIONS: The Fmr1-mouse line does not recapitulate all of the main core and secondary ASD symptoms, but still can be useful to elucidate the neurobiological mechanisms underlying specific ASD-like endophenotypes.

  12. Social disruption stress exacerbates alpha-galactosylceramide-induced hepatitis in mice

    OpenAIRE

    Sonoda, J.; Chida, Y; Sudo, N.; Kubo, C

    2005-01-01

    Objective: Psychosocial stress has been suggested as a possible aggravating factor in liver diseases, however, the underlying mechanism has yet to be clarified. Recently, our research revealed that electric foot-shock stress aggravated NK1.1 Ag+ T cell-dependent a-galactosylceramide (alpha-GalCer)-induced hepatitis in mice via a mechanism mediated by endogenous glucocorticoids. In this study, we examined whether or not such aggravation could be applied to a psychosocially stressful situation,...

  13. Corynebacterium parvum- and Mycobacterium bovis bacillus Calmette-Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF-RI) knockout mice and by treatment with soluble TNF-RI.

    Science.gov (United States)

    Senaldi, G; Yin, S; Shaklee, C L; Piguet, P F; Mak, T W; Ulich, T R

    1996-12-01

    The aim of this study was to examine the role of TNF receptor I (TNF-RI) in the pathogenesis of heat-killed Corynebacterium parvum- and live bacillus Calmette-Guerin (BCG)-induced granulomas. Granuloma formation was analyzed in TNF-RI knockout mice and after treatment with soluble TNF-RI (sTNF-RI). TNF-RI knockout mice injected with C. parvum or BCG developed fewer and smaller granulomas than wild-type control mice. Mice treated with sTNF-RI from days 7 to 13 after injection of C. parvum or BCG developed fewer and smaller granulomas than saline-treated control mice. Established granulomas regressed in rats treated with sTNF-RI from days 10 to 13 after injection of C. parvum. In conclusion, TNF signaling via TNF-RI contributes to the pathogenesis of C. parvum- and BCG-induced granulomas. sTNF-RI inhibits the development of granulomas and can cause the regression of established granulomas. PMID:8943410

  14. High Fat High Cholesterol Diet (Western Diet Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Siddhartha S Ghosh

    Full Text Available A high fat meal, frequently known as western diet (WD, exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx or WD (Nx+WD. The controls were sham operated animals on normal diet (control and WD (WD. To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM, a known LPS antagonist, and curcumin (CU, a compound known to ameliorate chronic kidney disease (CKD, was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively. Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  15. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    Science.gov (United States)

    Ghosh, Siddhartha S; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H Davis; Sica, Domenic A; Gehr, Todd W B; Ghosh, Shobha

    2015-01-01

    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  16. Altered reward circuitry in the norepinephrine transporter knockout mouse.

    Directory of Open Access Journals (Sweden)

    Joseph J Gallagher

    Full Text Available Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET, using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT knockout mouse, but dissimilar from work with serotonin transporter (SERT knockout mice where Mn(2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely

  17. 30日龄Fmr1基因敲除小鼠的跳台实验观察%Behavioural Comparison of Fmr1 Knockout Mice at 30 Days Age in Step-down Test

    Institute of Scientific and Technical Information of China (English)

    黄月玲; 沈岩松; 张维雯; 孙卫文; 李敏雄; 陈盛强; 戴丽军

    2011-01-01

    目的 对30日龄的Fmr1基因敲除小鼠的跳台实验进行观察.方法 采用30日龄的KO鼠和WT鼠分别连续进行2d的跳台实验,根据所获得的数据进行多因素方差分析处理.结果 同周龄KO鼠的潜伏期比WT鼠明显少(P<0.05);而KO鼠的错误次数比WT鼠明显多(P<0.05);不同周龄KO鼠或WT鼠的潜伏期、错误次数无差异(P>0.05);第1天KO鼠的潜伏期和错误次数与第2天相比无差异(P>0.05);第1天WT鼠的潜伏期和错误次数与第2天相比有显著差异(P<0.05).结论 30日龄Fmr1基因敲除小鼠存在认知功能障碍.%Objective This study was designed to observe the cognition of Fmrl knockout mice at 30 days Age instep-down test. Method Fmrl knockout mice were identified using the PCR technical and step-down test were used in the study. Animals were tested for two days. The latency and the number of errors were recorded. The data was analyzed with multifactor variance analysis. Result KO mice obviously had the shorter latency than WT mice, and KO mice obviously had more errors than WT mice ( P 0. 05 ) ; On the first day, the latency and number of errors of WT mice had significant difference compared with the second day ( P < 0.05 ). Conclusion Fmrl knockout mice displayed cognitive impairment in the step-down test.

  18. 补体C3基因敲除小鼠的繁育及子代基因型鉴定%Reproduction and Genotype Identification of Complement 3 Gene Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    郑静; 刘阳; 胡松; 李敏惠; 李丽梅; 阳泰; 杨淑霞; 邹强

    2011-01-01

    Objective This study was to explore the method to breed and identify complement 3 gene knockout mice. Methods The heterozygote of complement 3 gene knockout mice ( C3 + / - ) were bred and reproduced.Wild genotype ( C3 + / + ), heterozygote genotype ( C3 + / - ) , and homozygote genotype ( C3 - / - ) would appear in offspring. The genotypes were characterized using ELISA and PCR. Result The heterozygote mice bred 135 offspring. 38 mice are wild type ,68 mice are heterozygote, and 29 mice are homozygote. By x2text, the segregate ratio of offspring was fitted to the Mendelian ratio. Conclusion Appropriate methods for breeding, reproducing, and identifying are the effective way for acquiring complement 3 gene knockout mice from heterozygote.%目的 探讨繁殖和鉴定补体C3基因敲除小鼠的实验方法.方法 将所引进的补体C3基因敲除杂合子小鼠(C3+/-)进行饲养并繁殖,其子代出现三种基因型的小鼠,即纯合子C3-/-、杂合子C3+/-、野生型C3+/+,采用ELISA与PCR相结合对子代小鼠基因型进行鉴定.结果 繁育出135只子代小鼠,经鉴定,C3+/+、C3+/-、C3-/-各为38只、68只、29只,经x2检验,子代小鼠分离比例符合孟德尔遗传规律.结论 正确的饲养繁殖以及子代鉴定是从杂合子小鼠中获得补体C3基因敲除小鼠的有效途径.

  19. Fmr1基因敲除小鼠耳蜗的GABAα1受体的表达%Expression of GABAα1 receptor of cochlea in FMR1 gene knock-out mice

    Institute of Scientific and Technical Information of China (English)

    李敏雄; 杜娜; 孙卫文; 黄月玲; 沈岩松; 戴丽军; 陈盛强; 马钊恩; 张建国

    2012-01-01

    Objective To observe cochlea morphology and expression of GABA a 1 receptor of cochlea in 4 weeks FMR1 KO mice and WT mice. Methods Four-week old Fmrl knockout mice were identified using the PCR technique.and immunohistochemistry to compare with the changes of expression of GABA a 1 receptor between FMR1 KO mice and WT mice cochlea. Results There were no difference in cochlea morphology between FMR1 KO mice and WT mice by HE dyeing. The expression of GABA a 1 receptor in cochlear in FMR-1K0 mice was decreased. Conclusion The expression of GABA a 1 receptor is incerased in cochlear in four-week old FMR-1K0 mice that might be associated with audiogenic seizure susceptibility of Fmrl knockout mice.%目的 对4周龄Fmr1基因敲除小鼠耳蜗的GABAα1受体表达进行观察,探讨耳蜗GABAα1受体的表达是否受FMRP的影响.方法 使用PCR技术对Fmr1基因敲除小鼠鉴定后,对4周龄的Fmr1基因敲除小鼠和野生型小鼠进行耳蜗的GABAα1受体免疫组织化学的表达观察,数据采用多因素方差分析处理.结果 耳蜗HE染色结果:4周龄组KO鼠较WT鼠形态学观察无差异.4周龄KO小鼠的耳蜗中GABAα1受体表达的平均阳性细胞数均低于WT小鼠,P<0.01,差异具有统计学意义.结论 GABAα1受体表达的降低可能与FMR1基因KO小鼠听源性惊厥发病有关.

  20. Cellular and molecular alterations in 5-HTT knockout mice%5-羟色胺转运体敲除小鼠的分子和细胞改变

    Institute of Scientific and Technical Information of China (English)

    蒋雪

    2011-01-01

    5-羟色胺转运体(5-HTT)在神经精神心理正常功能的维持及疾病的发生和发展中起重要作用.5-HTT的表达能力减低或消失的小鼠(称为:5-HTT敲除小鼠)表现出许多行为的改变,例如:焦虑类似行为增多、对应激更加敏感和攻击性行为减少.这些行为的改变有的与携带5-HTTLPR短等位基因的人很相似.因此5-HTT敲除小鼠被作为研究5-HTTLPR多态性导致情感性精神障碍发病机制的动物模型.本文主要就5-HTT敲除小鼠的5-HT浓度和代谢、下丘脑-垂体-肾卜腺皮质轴以及对其他神经递质转运体影响的分子和细胞改变进行综述.%The function of 5-hydroxytryptamine transporter (5-HTT) is related to the mood regulation.Mice with deficit or reduced 5-HTT function (5-HTT knockout mice) showed several behavioral changes, including increased anxiety-like behavior, more sensitive to stress and reduced aggressive behavior.Some of these behavioral alterations are similar to phenotypes found in human who have short alleles of polymorphism in 5-HT transporter linked promoter region (5-HTTLPR).Therefore, 5-HTT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders.The present review focuses on the cellular and molecular alterations in 5-HTT knockout mice, including changes in 5-HT concentrations and its metabolism, impaired HPA axis, developmental changes in the neurons and brain and the influence on other neurotransmitter transporters.The possible relationships between these alterations and the behavioral changes in these mice are also discussed.

  1. Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice

    DEFF Research Database (Denmark)

    Penkowa, Milena; Cáceres, Mario; Borup, Rehannah;

    2006-01-01

    . A genomic approach, such as the use of microarrays, provides much insight in this regard, especially if combined with the use of gene-targeted animals. We report here the results of one of these studies comparing wild-type and metallothionein-I + II knockout mice subjected to a cryolesion...... of the somatosensorial cortex and killed at 0, 1, 4, 8, and 16 days postlesion (dpl) using Affymetrix genechips/oligonucleotide arrays interrogating approximately 10,000 different murine genes (MG_U74Av2). Hierarchical clustering analysis of these genes readily shows an orderly pattern of gene responses at specific...... and opened new avenues that were confirmed by immunohistochemistry. Data in KO, MT-I-overexpressing, and MT-II-injected mice strongly suggest a role of these proteins in postlesional activation of neural stem cells....

  2. FMR1基因敲除对雄性小鼠生殖功能的影响%The influence of FMR1 gene knockout on the reproduction of male mice

    Institute of Scientific and Technical Information of China (English)

    祝亚桥; 周兴; 陈盛强

    2012-01-01

    Objective To investigate the influence of fragile x mental retardation-1 (FMR1) gene on the spermatogenesis and reproduction of male mice. Methods FMR1 knockout (KO) male mice and wild type (WT) male mice were mated with wt female mice. The number of litters, pregnancy rate and male mice having offsprings were counted. Serum T, FSH and LH concentrations were also measured. The density, mortality and morphology of the left cauda epididymis sperms were analyzed, HE staining was performed on the right side. Results The pregnance rate of wt female mice mated with FMR1K0 males was significantly lower than the control group (41.7% vs. 87. 5% , P 0.05). Male fertility showed that 41.7% of KO mice had pups, whereas 91.7% of the mice had pups in the control group (P 0.05).两组小鼠血清T,FSH,LH浓度无统计学差异.KO组的睾丸附睾病理切片与WT组比较未见明显异常,其精子活率及各种畸形率与WT小鼠比较均没有统计学差异(P>0.05).结论:可以推测FMR1基因对雄性生殖系统发育有一定的影响,Fmr1基因的缺失降低了雄性小鼠生育率,但对精子生成、畸形率等未见明显影响,其对雄性生殖系统影响机制还有待进一步的实验研究.

  3. Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate A{beta} formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice.

    Science.gov (United States)

    Jawhar, Sadim; Wirths, Oliver; Schilling, Stephan; Graubner, Sigrid; Demuth, Hans-Ulrich; Bayer, Thomas A

    2011-02-11

    Pyroglutamate-modified Aβ (AβpE3-42) peptides are gaining considerable attention as potential key players in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Overexpressing AβpE3-42 induced a severe neuron loss and neurological phenotype in TBA2 mice. In vitro and in vivo experiments have recently proven that the enzyme glutaminyl cyclase (QC) catalyzes the formation of AβpE3-42. The aim of the present work was to analyze the role of QC in an AD mouse model with abundant AβpE3-42 formation. 5XFAD mice were crossed with transgenic mice expressing human QC (hQC) under the control of the Thy1 promoter. 5XFAD/hQC bigenic mice showed significant elevation in TBS, SDS, and formic acid-soluble AβpE3-42 peptides and aggregation in plaques. In 6-month-old 5XFAD/hQC mice, a significant motor and working memory impairment developed compared with 5XFAD. The contribution of endogenous QC was studied by generating 5XFAD/QC-KO mice (mouse QC knock-out). 5XFAD/QC-KO mice showed a significant rescue of the wild-type mice behavioral phenotype, demonstrating the important contribution of endogenous mouse QC and transgenic overexpressed QC. These data clearly demonstrate that QC is crucial for modulating AβpE3-42 levels in vivo and prove on a genetic base the concept that reduction of QC activity is a promising new therapeutic approach for AD.

  4. Expression of Key Regulators of Mitochondrial Biogenesis in Growth Hormone Receptor Knockout (GHRKO) Mice is Enhanced but is Not Further Improved by Other Potential Life-Extending Interventions

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator–activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)–activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitri...

  5. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice:implications for Rett syndrome

    Directory of Open Access Journals (Sweden)

    Xin eXu

    2014-03-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf, a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in several pathophysiological mechanisms of RTT disease progression. To evaluate whether the dynamics of BDNF trafficking is affected by Mecp2 deletion, we analyzed movements of BDNF tagged with yellow fluorescent protein (YFP in cultured hippocampal neurons by time-lapse fluorescence imaging. We found that both anterograde and retrograde vesicular trafficking of BDNF-YFP are significantly impaired in Mecp2 knockout hippocampal neurons. Selective inhibitors of histone deacetylase 6 (HDAC6 show neuroprotective effects in neurodegenerative diseases and stimulate microtubule-dependent vesicular trafficking of BDNF-containing dense core vesicles. Here, we show that the selective HDAC6 inhibitor Tubastatin-A increased the velocity of BDNF-YFP vesicles in Mecp2 knockout neurons in both directions by increasing αtubulin acetylation. Tubastatin-A also restored activity-dependent BDNF release from Mecp2 knockout neurons to levels comparable to those shown by wildtype neurons. These findings demonstrate that a selective HDAC6 inhibitor is a potential pharmacological strategy to reverse cellular and synaptic impairments in RTT resulting from impaired BDNF signaling.

  6. Construction of the skeletal muscle-specific TβR Ⅱ knockout mice%骨骼肌特异性敲除TβRⅡ小鼠模型的建立

    Institute of Scientific and Technical Information of China (English)

    王旭; 王晶; 王璐; 王华旻; 管又飞; 范明; 陈晓萍

    2012-01-01

    Objective: To generate the skeletal muscle-specific transfomung growth factor beta receptor Q TβR Ⅱ) gene knockout mice for the research on the (unction of the TpR Ⅱ gene in skeletal muscles. Methods:TβR Ⅱ flox /flax mice were generated using embryonic stem cell technology. The MCK-Cre mice were engineered containing Cre recombinase under the control of creatinkinase (MCK) muscle-specific promoter. TgRDflox /flax mice were crossed with MCK-Cre mice generating TβR Ⅱ flox /flax/MCK-Cre double Tg mice. And then, TβR Ⅱflox /flaxVMCK-Cre( +) double Tg mice were crossed with TβR Ⅱ flox /flax mice to generate TβR II flox /flaxVMCK- Cre( +) mice genetically ablating TpR D in cre-ex-pressing skeletal muscle cells. Results: As predicted, mice lacking TβR Ⅱ by gene targeting in skeletal muscles were generated first in the world using Cre/loxP system. TβR Ⅱ null mutant mice were viable, fertile and showed apparently normal development.%目的:建立骨骼肌特异性敲除转化生长因子受体Ⅱ(TβRⅡ)小鼠模型,为进一步研究TβRⅡ在骨骼肌发育和分化中的作用奠定基础.方法:首先将TβRⅡffox/flox转基因小鼠与上游携带肌酸激酶(MCK)启动子的MCK-Cre转基因小鼠进行杂交,培育繁殖出TβRⅡflox/wt/MCK-Cre(+)双转基因小鼠.然后利用TβRⅡflox/wt/MCK- Cre(+)双转基因小鼠与TβRⅡflx/flox转基因小鼠进行杂交,繁殖培育出在骨骼肌内特异敲除TβRⅡ基因的TpRⅡflox/flox/MCK-Cre(+)小鼠.结果:利用Cre/loxP技术世界上首次成功繁殖培育出有活力的且发育正常的TβRⅡ基因敲除小鼠.

  7. Behavioural comparision on Fmr1 knockout mice at 30 days age in spontaneous activity test%30日龄Fmr1基因敲除小鼠的自主活动观察

    Institute of Scientific and Technical Information of China (English)

    张伟雯; 黄越玲; 刘国彬; 沈岩松; 孙卫文; 李敏雄; 戴丽军; 陈盛强

    2011-01-01

    Objective To compare the behavioural differences at 30 days age in spontaneous activity test. Methods Fmr1 knockout mice were identified using the PCR technica. and spontaneous activity test was used in the study .The data was analyzed with Multifactor Variance Analysis. Results Activities in their own experiments, as compared with WT mice, KO mice in the experiment of self-activity increase in the number of activities and reduction in the number of standing, with statistical significance ( P<0.05 ), but there were no significant differences on manure behaviour between two groups. Conclusion Fmr1 knockout animals exhibited higher locomotor activity in the spontaneous activity test at 30 days age.%目的 对30日龄的Fmr1基因敲除小鼠的自主活动进行观察.方法 采用30日龄的KO鼠和WT鼠分别连续进行2天的自主活动实验,根据所获得的数据进行多因素方差分析处理.结果 通过第1天的学习与第2天的记忆再现,在自主活动实验中,与WT鼠相比,KO鼠在自主活动实验中的活动和站立次数均增多,具有统计学意义(P<0.05),粪便数相比无明显差异.结论 30日龄Fmr1基因敲除小鼠的自主活动异常,运动性和兴奋性较野生型小鼠增高.

  8. 三十日龄Fmr1基因敲除小鼠的水迷宫实验观察%Behavioural comparision on Fmr1 knockout mice at 30 days age in Morris water maze experiment

    Institute of Scientific and Technical Information of China (English)

    孙卫文; 黄越玲; 张维雯; 刘国彬; 沈岩松; 李敏雄; 戴丽军; 陈盛强

    2011-01-01

    目的 实验对30日龄的Fmr1基因敲除(KO)小鼠的经典Morris水迷宫实验进行观察.方法 采用Morris水迷宫实验,测试1月龄KO小鼠与WT小鼠的学习记忆功能.水迷宫实验共训练4 d,记录每天的潜伏期与游泳轨迹,第5天去除平台,记录小鼠停留各象限的时间百分比.根据所获得的数据进行多因素方差分析处理.结果 ①空间航行实验第1天至第3天实验中KO鼠与WT鼠的潜伏期和穿越平台次数差异无统计学意义(P>0.05);在第4天实验中KO鼠的潜伏期和穿越平台次数比WT鼠差异有统计学意义(JP<0.05).②空间搜索实验4周龄WT鼠在目标象限停留时间比其它象限停留时间长;4周龄KO鼠在第二象限停留时间长.结论 30日龄KO小鼠存在认知功能障碍.%Objective To compare the behaviour defferences at 30 days age in Morris water maze experiment.Methods Fmr1 knockout mice were identified using the PCR technique , and Morris water maze experiment were used in the study.The data was analyzed with Multifactor Variance Analysis.Results ①space navigation experiment from the first day to the third day, KO mice have no obviously difference with the WT mice in the Latency and number of crossing platform (P> 0.05) , but on the fourth day , there was a statistical significance (P< 0.05) ; ②Space search experiment.The four-week WT mice will stay longer than the other mice at the target quadrants; the four-week KO mice stay at the second quadrant longer.Conclusion Fmr1 knockout animals exhihited low ability of learning and memorizing in the Morris water maze task at 30 days Age.

  9. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection.

    OpenAIRE

    Morrison, R P; Feilzer, K; Tumas, D B

    1995-01-01

    Mice with disrupted beta 2-microglobulin (beta 2m-/-), I-A (class II-/-), or CD4 (CD4-/-) genes were examined for their capacity to resolve Chlamydia trachomatis genital tract infection. C57BL/6 and beta 2m-/- mice resolved infection similarly and were culture negative by 4 to 5 weeks following infection. Conversely, major histocompatibility complex (MHC) class II-/- mice failed to resolve infection, and CD4-/- mice showed a significant delay (2 weeks). Secondary challenge of C57BL/6, beta 2m...

  10. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Lee, Geun-Shik; Vo, Thuy T B; Jung, Eui-Man; Choi, Kyung-Chul; Cheung, Ki-Wha; Kim, Jae Wha; Park, Jong-Gil; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-04-01

    The effect(s) of oral calcium and vitamin D(3) were examined on the expression of duodenal and renal active calcium transport genes, i.e., calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k), transient receptor potential cation channels (TRPV5 and TRPV6), Na(+)/Ca(2+) exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b), in CaBP-9k KO mice. Wild-type (WT) and KO mice were provided with calcium and vitamin D(3)-deficient diets for 10 weeks. The deficient diet significantly decreased body weights compared with the normal diet groups. The serum calcium concentration of the WT mice was decreased by the deficient diet but was unchanged in the KO mice. The deficient diet significantly increased duodenal transcription of CaBP-9k and TRPV6 in the WT mice, but no alteration was observed in the KO mice. In the kidney, the deficient diet significantly increased renal transcripts of CaBP-9k, TRPV6, PMCA1b, CaBP-28k and TRPV5 in the WT mice but did not alter calcium-relating genes in the KO mice. Two potential mediators of calcium-processing genes, vitamin D receptor (VDR) and parathyroid hormone receptor (PTHR), have been suggested to be useful for elucidating these differential regulations in the calcium-related genes of the KO mice. Expression of VDR was not significantly affected by diet or the KO mutation. Renal PTHR mRNA levels were reduced by the diet, and reduced expression was also seen in the KO mice given the normal diet. Taken together, these results suggest that the active calcium transporting genes in KO mice may have resistance to the deficiency diet of calcium and vitamin D(3).

  11. The effect of a high-fat diet on brain plasticity, inflammation and cognition in female ApoE4-knockin and ApoE-knockout mice

    NARCIS (Netherlands)

    C.I.F. Janssen (Carola); D. Jansen (Diane); M.P.C. Mutsaers (Martina); J. Dederen (Jos); B. Geenen (Bram); M. Mulder (Monique); A.J. Kiliaan Kiliaan (Amanda J.)

    2016-01-01

    textabstractApolipoprotein E4 (ApoE4), one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD). ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protec

  12. Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Broersen, L.M.; Linde, J. van der; Groenink, L.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2003-01-01

    Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were s

  13. Positron emission tomographic imaging of the cannabinoid type 1 receptor system with [¹¹C]OMAR ([¹¹C]JHU75528): improvements in image quantification using wild-type and knockout mice.

    Science.gov (United States)

    Herance, Raúl; Rojas, Santiago; Abad, Sergio; Jiménez, Xavier; Gispert, Juan Domingo; Millán, Olga; Martín-García, Elena; Burokas, Aurelijus; Serra, Miquel Àngel; Maldonado, Rafael; Pareto, Deborah

    2011-12-01

    In this study, we assessed the feasibility of using positron emission tomography (PET) and the tracer [¹¹C]OMAR ([¹¹C]JHU75528), an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1) receptor system. Wild-type (WT) and CB1 knockout (KO) animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50%) than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [¹¹C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  14. Analysis of dibenzo[def,p]chrysene-deoxyadenosine adducts in wild-type and cytochrome P450 1b1 knockout mice using stable-isotope dilution UHPLC-MS/MS.

    Science.gov (United States)

    Harper, Tod A; Morré, Jeff; Lauer, Fredine T; McQuistan, Tammie J; Hummel, Jessica M; Burchiel, Scott W; Williams, David E

    2015-04-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  15. Lipo-oxytocin-1, a Novel Oxytocin Analog Conjugated with Two Palmitoyl Groups, Has Long-Lasting Effects on Anxiety-Related Behavior and Social Avoidance in CD157 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Akira Mizuno

    2015-01-01

    Full Text Available Oxytocin (OT is a nonapeptide hormone that is secreted into the brain and blood circulation. OT has not only classical neurohormonal roles in uterine contraction and milk ejection during the reproductive phase in females, but has also been shown to have new pivotal neuromodulatory roles in social recognition and interaction in both genders. A single administration of OT through nasal spray increases mutual recognition and trust in healthy subjects and psychiatric patients, suggesting that OT is a potential therapeutic drug for autism spectrum disorders, schizophrenia, and some other psychiatric disorders. Although the mechanism is not well understood, it is likely that OT can be transported into the brain where it activates OT receptors to exert its function in the brain. However, the amount transported into the brain may be low. To ensure equivalent effects, an OT analog with long-lasting and effective blood-brain barrier penetration properties would be beneficial for use as a therapeutic drug. Here, we designed and synthesized a new oxytocin analog, lipo-oxytocin-1 (LOT-1, in which two palmitoyl groups are conjugated at the amino group of the cysteine9 residue and the phenolic hydroxyl group of the tyrosine8 residue of the OT molecule. To determine whether LOT-1 actually has an effect on the central nervous system, we examined its effects in a CD157 knockout model mouse of the non-motor psychiatric symptoms of Parkinson’s disease. Similar to OT, this analog rescued anxiety-like behavior and social avoidance in the open field test with the social target in a central arena 30 min after intraperitoneal injection in CD157 knockout mice. When examined 24 h after injection, the mice treated with LOT-1 displayed more recovery than those given OT. The results suggest that LOT-1 has a functional advantage in recovery of social behavioral impairment, such as those caused by neurodegenerative diseases, autism spectrum disorders, and schizophrenia.

  16. Lipo-oxytocin-1, a Novel Oxytocin Analog Conjugated with Two Palmitoyl Groups, Has Long-Lasting Effects on Anxiety-Related Behavior and Social Avoidance in CD157 Knockout Mice.

    Science.gov (United States)

    Mizuno, Akira; Cherepanov, Stanislav M; Kikuchi, Yusuke; Fakhrul, Azam Akm; Akther, Shirin; Deguchi, Kisaburo; Yoshihara, Toru; Ishihara, Katsuhiko; Shuto, Satoshi; Higashida, Haruhiro

    2015-01-01

    Oxytocin (OT) is a nonapeptide hormone that is secreted into the brain and blood circulation. OT has not only classical neurohormonal roles in uterine contraction and milk ejection during the reproductive phase in females, but has also been shown to have new pivotal neuromodulatory roles in social recognition and interaction in both genders. A single administration of OT through nasal spray increases mutual recognition and trust in healthy subjects and psychiatric patients, suggesting that OT is a potential therapeutic drug for autism spectrum disorders, schizophrenia, and some other psychiatric disorders. Although the mechanism is not well understood, it is likely that OT can be transported into the brain where it activates OT receptors to exert its function in the brain. However, the amount transported into the brain may be low. To ensure equivalent effects, an OT analog with long-lasting and effective blood-brain barrier penetration properties would be beneficial for use as a therapeutic drug. Here, we designed and synthesized a new oxytocin analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated at the amino group of the cysteine9 residue and the phenolic hydroxyl group of the tyrosine8 residue of the OT molecule. To determine whether LOT-1 actually has an effect on the central nervous system, we examined its effects in a CD157 knockout model mouse of the non-motor psychiatric symptoms of Parkinson's disease. Similar to OT, this analog rescued anxiety-like behavior and social avoidance in the open field test with the social target in a central arena 30 min after intraperitoneal injection in CD157 knockout mice. When examined 24 h after injection, the mice treated with LOT-1 displayed more recovery than those given OT. The results suggest that LOT-1 has a functional advantage in recovery of social behavioral impairment, such as those caused by neurodegenerative diseases, autism spectrum disorders, and schizophrenia. PMID:25612002

  17. Echium Oil Reduces Plasma Triglycerides by Increasing Intravascular Lipolysis in apoB100-Only Low Density Lipoprotein (LDL Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    John S. Parks

    2013-07-01

    Full Text Available Echium oil (EO, which is enriched in SDA (18:4 n-3, reduces plasma triglyceride (TG concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%, EO (10% EO + 10% PO, or FO (10% FO + 10% PO. Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL particle size was ordered: PO (63 ± 4 nm > EO (55 ± 3 nm > FO (40 ± 2 nm. Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model.

  18. Echium oil reduces plasma triglycerides by increasing intravascular lipolysis in apoB100-only low density lipoprotein (LDL) receptor knockout mice.

    Science.gov (United States)

    Forrest, Lolita M; Lough, Christopher M; Chung, Soonkyu; Boudyguina, Elena Y; Gebre, Abraham K; Smith, Thomas L; Colvin, Perry L; Parks, John S

    2013-07-12

    Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model.

  19. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.

  20. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  1. Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day.

    Directory of Open Access Journals (Sweden)

    Ting Carrie Yan

    Full Text Available BACKGROUND: The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/- resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD. Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. METHODS AND RESULTS: The 5-Choice Serial Reaction-Time Task (5-CSRTT was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI and a variable (VITI inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.. NK1R-/- mice expressed greater omissions (inattentiveness, perseveration and premature responses (impulsivity in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, prema