WorldWideScience

Sample records for alpha spectrometers

  1. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  2. The Alpha Magnetic Spectrometer (ams)

    Science.gov (United States)

    Ionica, Maria

    2004-01-01

    The Alpha Magnetic Spectrometer (AMS), once installed on the International Space Station will provide precise measurements of the cosmic ray spectra up to TeV energy range, and will search for cosmological antimatter and missing matter. A prototype version of the detector was operated successfully on the space shuttle Discovery in June 1998 (STS-91). Here we briefly report on the design of the AMS apparatus and present the results of the measurements of the fluxes of proton, electron, positron and helium from the STS-91 flight.

  3. The Alpha Magnetic Spectrometer (AMS)

    International Nuclear Information System (INIS)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A.; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G.S.; Suter, H.; Tang, X.W.; Ting, S.C.C.Samuel C.C.; Ting, S.M.; Tornikoski, M.; Torsti, J.; Tr umper, J.; Ulbricht, J.; Urpo, S.; Usoskin, I.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J.P.; Viertel, G.; Vite, D.; Gunten, H. Von; Wicki, S.W.S. Waldmeier; Wallraff, W.; Wang, B.C.; Wang, J.Z.; Wang, Y.H.; Wiik, K.; Williams, C.; Wu, S.X.; Xia, P.C.; Yan, J.L.; Yan, L.G.; Yang, C.G.; Yang, M.; Ye, S.W.; Yeh, P.; Xu, Z.Z.; Zhang, H.Y.; Zhang, Z.P.; Zhao, D.X.; Zhu, G.Y.; Zhu, W.Z.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m 2 ) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS

  4. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  5. A 16-detector alpha spectrometer using 1 multichannel analyzer

    International Nuclear Information System (INIS)

    Phillips, W.G.

    1978-01-01

    An alpha spectrometer containing 16 independent detectors and utilizing one 4096-channel multichannel analyzer (MCA) was constructed from commerically available modules. The spectrometer was designed specifically for the counting of low levels of radioactivity in environmental samples. Gated analog routing allows spectral data acquisition into 256 channel regions of the MCA memory as if each region were an independent 256-channel MCA. External live-time clocks and 50-Mhz analog-to-digital converters control timing and acquisition on each unit of eight detectors. Spectral data output is to magnetic tape in units of 256 channels each with a unique tagword. These tapes are then read and processed, and final reports are generated, by a large Control Data 6000 series computer

  6. Search for Antimatter in Space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Battiston, Roberto

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is a state of the art particle physics experiment for the extraterrestrial study of antimatter, matter and missing matter. AMS successfully completed the precursor STS91 Discovery flight (June 2nd-12th, 1998), completing 152 orbits at 52 degrees of latitude and about 400 km of height, collecting more than 100 million CR events. In this paper we report on the first flight experience and we present preliminary results on the search for nuclear antimatter. No antimatter nuclei with Z>=2 were detected. We obtain a model dependent upper limit on the anti-He /He flux 2, improving the results of previous published searches performed with stratospheric balloons.

  7. An Alpha spectrometer for measuring radon daughter individual activity concentration

    International Nuclear Information System (INIS)

    Berico, M.; Formignani, M.; Mariotti, F.

    2001-01-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of 218 Po, 214 Pb and 214 Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated [it

  8. The Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Paniccia, M

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra up to TV region, with high energy photon detection capability up to few hundred GeV. With the large acceptance, the long duration (3 years) and the state of the art particle identification techniques, AMS will provide the most sensitive search for the existence of antimatter nuclei and for the origin of dark matter. The detector is being constructed with an eight layers Silicon Tracker inside a large superconducting magnet, providing a ~ 0.8 Tm2 bending power and an acceptance of ~ 0.5 m2sr. A Transition Radiation Detector and a 3D Electromagnetic Calorimeter allow for electron, positron and photon identification, while independent velocity measurements are performed by a Time of Flight scintillating system and a Ring Image Cherenkov detector. The overall construction is due to be completed by 2008.

  9. MPF ROVER MARS ALPHA PROTON X-RAY SPECTROMETER EDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The APXS EDRs are a collection of 27 measurements (173 data files) obtained by the Alpha Proton X-ray Spectrometer (APXS). Of these, nine are measurements of rock,...

  10. MPF ROVER MARS ALPHA PROTON X-RAY SPECTROMETER DDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The APXS_oxides is a listing of weight percent oxide abundances derived from the X-ray portion of the APXS_EDR data from the Alpha Proton X-ray Spectrometer (APXS)....

  11. Automated multispectra alpha spectrometer and data reduction system

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1975-12-01

    A complete hardware and software package for the accumulation and rapid analysis of multiple alpha pulse height spectra has been developed. The system utilizes a 4096-channel analyzer capable of accepting up to sixteen inputs from solid-state surface barrier detectors via mixer-router modules. The analyzer is interfaced to a desk-top programmable calculator and thermal line printer. A chained software package including spectrum printout, peak analysis, plutonium-238 and plutonium-239 data reduction, and automatic energy calibration routines was written. With the chained program a complete printout, peak analysis, and plutonium data reduction of a 512-channel alpha spectrum are obtained in about three minutes with an accuracy within five percent of hand analyses

  12. New Limits on Dark Matter Annihilation from Alpha Magnetic Spectrometer Cosmic Ray Positron Data

    NARCIS (Netherlands)

    Bergström, L.; Bringmann, T.; Cholis, I.; Hooper, D.; Weniger, C.

    2013-01-01

    The Alpha Magnetic Spectrometer experiment onboard the International Space Station has recently provided cosmic ray electron and positron data with unprecedented precision in the range from 0.5 to 350 GeV. The observed rise in the positron fraction at energies above 10 GeV remains unexplained, with

  13. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  14. Modeling of possible localized electron flux in cosmic rays with Alpha Magnetic Spectrometer measurements

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2017-10-01

    Discrete quantum Boltzmann model together with the introduction of an external-field-tuned orientation parameter as well as the acoustic analog are adopted to study the possible localization of electron (fermion) flux in cosmic rays considering the precision measurement with the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS). Our approximate results match qualitatively with those data measured with the AMS on the ISS.

  15. CANALPH-3: a portable three-channel alpha spectrometer for measuring the daughter products of radon and thoron

    International Nuclear Information System (INIS)

    Carson, D.W.

    1979-07-01

    A portable three-channel alpha spectrometer for the measurment of radon and thoron daughters in uranium mines or homes is described. The computer programs for analysing the data to give the working levels of radon and thoron by both the alpha spectrometric and modified Kusnetz methods are included along with some typical results

  16. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    CERN Document Server

    Alpat, Behcet

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91) with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998. The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module in early 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches for the antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the improved physics capabilities of AMS02 on ISS.

  17. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  18. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  19. CR-39 as an alpha spectrometer: analysis of the activity of a fossil from Presidente Prudente region, SP, Brazil

    International Nuclear Information System (INIS)

    Novaes, Felipe P.; Tello Saenz, Carlos A.; Balan, Ana Maria Osorio A.; Dias, Airton N.C.; Soares, Cleber J.; Oliveira, Roger D.; Barra, Beatriz C.

    2007-01-01

    In this work, CR-39 (a commercial polymer) was used as an alpha spectrometer, based on the relationship between the diameter and the trace gray scale with the energy of the incident alpha particle. A rock from Presidente Prudente region (SP, Brazil), containing a fossil, was analysed and a comparison of the activities in the areas with and without the fossil sample have been compared

  20. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    Terini, R.A.

    1986-01-01

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM 241 source were compared to systems made with imported stages. (Author) [pt

  1. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    Alencar, Marcus Alexandre Vallini de

    1994-04-01

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm 2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm 2 . The rectifier and the ohmic contacts were prepared at high vacuum (10 -2 to 10 -3 Pa) evaporation with 40μg/cm 2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR) 2- (RC) 4 shaping network and the unipolar output is obtained through a CR-(RC) 4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241 Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  2. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  3. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  4. Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    Science.gov (United States)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schroder, C.; Yen, A. S.

    2016-01-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  5. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  6. The alpha particle X-ray spectrometer within the Rosetta mission: preparing the landing on a comet

    Energy Technology Data Exchange (ETDEWEB)

    Girones Lopez, Jordi; Fernandez Sanchez, Jose; Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Mainz (Germany); Space Research Institute IKI, Moskau (Russian Federation); Brueckner, Johannes [Max-Planck-Institut fuer Chemie, Mainz (Germany); Gellert, Ralf [Department of Physics, University of Guelph (Canada)

    2008-07-01

    One of the main objectives of the Rosetta mission is to gain a better understanding of the origin and formation of comets. There exist different theories about the possible chemical composition of comets assumed to be the most primitive bodies of the solar system. The chemical composition of the surface of the target comet 67/P Churyumov-Gerasimenko will be determined by measurements of the Alpha Particle X-ray Spectrometer (APXS), which is part of the payload of the Lander Philae. The APXS will irradiate the cometary surface with Curium-244 alpha sources exciting characteristic X-rays of the elements present. Using its high-resolution X-ray detector, most elements from Na to Ni (increasing atomic number) will be detected depending on their concentration. With its alpha detectors, elements like C and O and groups of elements with higher Z will be detected. Within the next few months, some internal parameters of the instrument will be optimized to improve the quality of the integrated X-ray spectra. These data will be used to explore the present state of the comet and derive its formation history.

  7. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  8. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  9. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  10. The Alpha-Proton-X-ray Spectrometer deployment mechanism: an anthropomorphic approach to sensor placement on Martian rocks and soil

    Science.gov (United States)

    Blomquist, Richard S.

    1995-05-01

    On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.

  11. Measurements of (n,{alpha}) cross-section of small samples using a lead-slowing-down-spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Catherine [Rensselaer Polytechnic Intstitute, 110 8th St., Troy, NY 12180 (United States)]. E-mail: romanc2@rpi.edu; Danon, Yaron [Rensselaer Polytechnic Intstitute, 110 8th St., Troy, NY 12180 (United States); Haight, Robert C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wender, Stephen A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Vieira, David J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bond, Evelyn M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rundberg, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wilhelmy, Jerry B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); O' Donnell, John M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Michaudon, Andre F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bredeweg, Todd A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rochman, Dimitri [Brookhaven National Laboratory National Nuclear Data Center (NNDC), Upton, NY 11973-5000 (United States); Granier, Thierry [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France); Ethvignot, Thierry [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France)

    2006-06-23

    At the Los Alamos Neutron Science Center (LANSCE) a compensated ionization chamber (CIC) was placed in a lead slowing down spectrometer (LSDS) to measure the {sup 6}Li(n,{alpha}){sup 3}H cross-section as a feasibility test for further work. The LSDS consists of a 1.2 m cube of lead with a tungsten target in the center where spallation neutrons are produced when bombarded with pulses of 800 MeV protons. The resulting neutron flux is of the order of 10{sup 14} n/cm{sup 2} /s which allows the cross-section measurement of samples of the order of 10's of nanograms. The initial experiment measured a 91 {mu}g sample of natural lithium flouride. Cross-section measurements were obtained in the 0.1 eV-2 keV energy range. A 62 {mu}g sample was placed in the chamber with a higher neutron beam intensity, and data was obtained in the 0.1-300 eV range. Adjustments in chamber dimensions and electronic configuration will improve gamma flash compensation at high beam intensity, decrease the dead time, and increase the energy range where data can be obtained. The intense neutron flux will allow the use of a smaller sample.

  12. In Situ Sub-cm Chemistry for Assessing Ancient Habitability on Mars with the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Vanbommel, Scott; Gellert, Ralf; Berger, Jeff; Thompson, Lucy; Campbell, John L.; Edgett, Ken; McBride, Marie; Apxs Team; Mahli Team

    The Alpha Particle X-ray Spectrometer (APXS) is a chemical analysis instrument on board NASA's Mars rovers. Mounted at the end of the rover arm, the APXS conducts high-precision in situ measurements of rocks and regolith, playing a significant role in understanding the surface composition and geochemical processes on Mars. Curium-244 sources provide complementary PIXE and XRF excitation resulting in a slowly varying and high sensitivity across the range of geochemically important elements with the added benefits of low power demand, low mass, and robust durability. We combine oversampled APXS data with pictures from the arm-mounted MAHLI camera to produce a 3D model of the target and deconvolve the sub-cm-scale chemistry of visible endmembers within heterogeneous targets. Quantitative chemistry at these small scales is perfectly tailored for deconvolving chemical differences in the rock record that resulted from aqueous processes, particularly the fluid mobilization of biologically essential elements such as P, S, and Zn. This is critical for understanding the history of ancient Mars and contributes to Curiosity's quest to discover past habitable environments on Mars. This work has been supported by the Canadian Space Agency under contract 9F052-14-0592.

  13. Alpha Magnetic Spectrometer (AMS) for Extraterrestrial Study of Antimatter, Matter and Missing Matter on the International Space Station

    CERN Multimedia

    Lee, M W; Lipari, P; Berdugo perez, J F; Borgia, B; Battarbee, M C; Valente, V; Bartoloni, A

    2002-01-01

    % RE1\\\\ \\\\ AMS is the first magnetic particle physics spectrometer to be installed on the International Space Station. With a superconducting magnetic spectrometer, AMS will provide accurate measurements of electrons, positrons, protons, antiprotons and various nuclei up to TeV region. NASA has scheduled to install this detector on the International Space Station in May 2003. The first flight of AMS was done with a permanent magnet and this prototype detector has provided accurate information on the limit of the existence of antihelium. It also showed that proton and electron -positron spectra exhibited a complicated behavior in the near earth orbit. The construction of AMS is being carried out in Switzerland, Germany, Italy, France, Finland, Spain, Portugal, Romania, Russia, Taiwan, China and the United States. NASA provides the use of the space shuttle and the space station, as well as mission management.

  14. Single Event Upset Analysis: On-orbit performance of the Alpha Magnetic Spectrometer Digital Signal Processor Memory aboard the International Space Station

    Science.gov (United States)

    Li, Jiaqiang; Choutko, Vitaly; Xiao, Liyi

    2018-03-01

    Based on the collection of error data from the Alpha Magnetic Spectrometer (AMS) Digital Signal Processors (DSP), on-orbit Single Event Upsets (SEUs) of the DSP program memory are analyzed. The daily error distribution and time intervals between errors are calculated to evaluate the reliability of the system. The particle density distribution of International Space Station (ISS) orbit is presented and the effects from the South Atlantic Anomaly (SAA) and the geomagnetic poles are analyzed. The impact of solar events on the DSP program memory is carried out combining data analysis and Monte Carlo simulation (MC). From the analysis and simulation results, it is concluded that the area corresponding to the SAA is the main source of errors on the ISS orbit. Solar events can also cause errors on DSP program memory, but the effect depends on the on-orbit particle density.

  15. Development of U-235 and U-238 analysis by electrodeposition technique using alpha spectrometer as radiation counter

    International Nuclear Information System (INIS)

    Suwanporung, U.

    1984-01-01

    An analytical method for U-235 and U-238 in uranium sample by electrodeposition technique followed by alpha spectrometry was developed. The process involved purification of uranium by anion exchange resin, Amberlite IR A-400 prior to electrodeposition of uranium on stainless steel disc and counted the alpha activity by using a silicon surface barrier detector. The alpha energies could be resolved clearly. The quantity of uranium isotopes could be calculated by comparing with that of the uranium standard which was treated by the same method. The optimum current density for the electrodeposition was found to be 170 m A/cm 2 and electrodeposition time was about 3 hours. A depleted uranium sample was analyzed by this method and found that uranium-234, uranium-235 and uranium-238 contents were 0.0026%, 0.25% and 99.74% respectively. The studies covered also the effect of temperature on electrodeposition of uranium and the effects of impurities in the sample: arsenic, iron, molybdenum and vanadium on the accuracy of analyses

  16. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John L., E-mail: icampbel@uoguelph.ca; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-15

    Spectra from the laboratory and flight versions of the Curiosity rover’s alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  17. Prof. Samuel ting presents results from AMS experiment at CERN main auditorium. Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS1) today announced the first results in its search for dark matter

    CERN Multimedia

    Samuel Morier-Genoud

    2013-01-01

    Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS) today announced the first results in its search for dark matter. The results, presented by AMS spokesperson Professor Samuel Ting in a seminar at CERN, are to be published in the journal Physical Review Letters. They report the observation of an excess of positrons in the cosmic ray flux

  18. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I - results from the test flight on the space shuttle

    Science.gov (United States)

    AMS Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Delgado, C.; Deus, J. D.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimms, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Postolache, V.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Wicki, S. Waldmeier; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.

    2002-08-01

    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 (June 1998) in a 51.7° orbit at altitudes between 320 and 390km. A search for antihelium nuclei in the rigidity range 1-140GV was performed. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of <1.1×10-6 was obtained. The high energy proton, electron, positron, helium, antiproton and deuterium spectra were accurately measured. For each particle and nuclei two distinct spectra were observed: a higher energy spectrum and a substantial second spectrum. Positrons in the second spectrum were found to be much more abundant than electrons. Tracing particles from the second spectra shows that most of them travel for an extended period of time in the geomagnetic field, and that the positive particles (p and e+) and negative ones (e-) originate from two complementary geographic regions. The second helium spectrum flux over the energy range 0.1-1.2GeV/nucleon was measured to be (6.3+/-0.9)×10-3(m2ssr)-1. Over 90 percent of the helium flux was determined to be 3He at the 90% confidence level.

  19. An Alpha spectrometer for measuring radon daughter individual activity concentration; Spettrometro Alfa per la misura delle concentrazioni individuali in attivita' della progenie del radon

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Formignani, M. [ENEA, Div. Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche E. Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of {sup 218}Po, {sup 214}Pb and {sup 214}Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated. [Italian] Presso l'Istituto per la Radioprotezione, nell'ambito del programma di valutazione di dose da radon e' stato progettato e realizzato uno spettrometro alfa per il monitoraggio continuo in aria (CAM) della progenie del radon e del toron. Le caratteristiche costruttive dello strumento permettono, tramite l'utilizzo di batterie a diffusione a reti, di determinare l'attivita' individuale della progenie per diverse dimensioni granulometriche in particolare per la frazione attaccata e non al particolato amosferico con un taglio granulometrico di qualche nanometro. E' stato inoltre applicato un metodo spettrometrico a tre conteggi per il calcolo delle concentrazioni individuali della progenie del radon, {sup 218}Po, {sup 214}Pb and {sup 214}Bi, effettuando un conteggio alfa di {sup 218}Po e due conteggi alfa di {sup 214}Po. Tale informazione consentira' una valutazione della dose di radon utilizzando il modello dosimetrico in alternativa a quello epidemiologico.

  20. Millimeter-Scale Chemistry of Observable Endmembers with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer and Mars Hand Lens Imager

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Thompson, Lucy; Berger, Jeff; Campbell, Iain; Edgett, Ken; McBride, Marie; Minitti, Michelle; Desouza, Elstan; Boyd, Nick

    2016-04-01

    The Alpha Particle X-ray Spectrometer (APXS) is a bulk chemistry instrument conducting high-precision in-situ measurements of Martian rocks and soils onboard both active NASA rovers [1]. Mounted at the end of the Curiosity rover arm, the APXS can conduct multi-spot (raster) investigations in a single morning or evening. Combining APXS raster spectra and Mars Hand Lens Imager (MAHLI) images, a modeled terrain is developed in which the positions of APXS field of views (FOV) can be localized, thereby mitigating arm placement uncertainty. An acquired APXS spectrum is the result of the weighted sum of the signals from within the FOV. The spatial sensitivity of the APXS consists of an off-nadir contribution in addition to a vertical separation (standoff with respect to the APXS detector) contribution [2, 3]. MAHLI images and focus merge (MFM) products facilitate a 3D surface model of the target [4] compensating for the effects of sample relief in an APXS spectrum. Employing a MFM relief map, APXS placement is modeled in three-dimensions, permitting variable APXS docking (standoff, deployment angle). Through minimization, we arrive at millimeter-scale chemistry of veins, diagenetic features and dust-free rock endmembers of Martian targets. Several rasters have been conducted with Curiosity's APXS on Mars including a study of the Garden City outcrop. The area is characterized by its contrasting light and dark veins of cm-scale surface relief. Three-dimensional localization and minimization indicated calcium sulfate as the major component of the light vein while the dark vein is enriched in CaO (without accompanying SO3), MnO, Ni and Zn, with respect to average Mars composition. References: [1] Gellert et al. (2014), LPSC XLV, #1876. [2] VanBommel et al. (2015), LPSC XLVI, #2049. [3] VanBommel et al. (2016), XRS #2681. [4] Edgett et al. (2015), MAHLI Tech Rept 0001. Acknowledgements: The MSL APXS is financed and managed by the Canadian Space Agency (CSA) with Mac

  1. Representative composition of the Murray Formation, Gale Crater, Mars, as refined through modeling utilizing Alpha Particle X-ray Spectrometer observations

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Berger, Jeff; Desouza, Elstan; O'Connell-Cooper, Catherine; Thompson, Lucy; Boyd, Nicholas

    2017-04-01

    The Murray formation[1] in Gale Crater is distinctly characterized by depleted MgO and CaO, an elevated Fe/Mn ratio, and enrichments in SiO2, K2O, and Ge, compared to average Mars. Supported by observations with Curiosity's Alpha Particle X-ray Spectrometer[2], this pattern is consistent over several kilometers. However, intermixed dust, Ca-, and Mg-sulfates introduce chemical heterogeneities into the APXS field of view. Better constraints on the composition of what is characteristic of the Murray formation is achieved by applying a least-squares deconvolution[3] to a selection of APXS Murray targets. We subtract the composition of known additions (dust[4], MgSO4, CaSO4) to derive a more-representative Murray composition. Slight variations within Murray are then probed by modeling each target as a mixture of dust, sulfates and the derived representative Murray. The derived composition for what is representative of Murray has several key deviations from the straightforward average of Murray targets. The subtraction of known dust, Mg-, and Ca-sulfate additions suggests further depletion in MgO and CaO in Murray and also suggests a significant decrease in SO3 concentration compared to the average of Murray targets. While veins and concretions are contaminants when considering the composition of the bulk rock, the subtraction of Mg- or Ca-sulfate is independent of sulfate form. Sulfates within the bulk rock (detrital or cements) have been observed in the Murray formation. These sulfates are important and discussed further in [5]. Modeling APXS Murray targets as a mixture of dust, MgSO4, CaSO4, and representative Murray, provides insight into potential subtle variations within the surprisingly consistent Murray formation. For example, the high SiO2 in Buckskin, (sol 1057-1091) is not simply a mixture of representative Murray with sulfates and dust. The elevated Ni (and MgSO4) of Morrison (sol ˜775), the elevated Al2O3 of Mojave (sol ˜800-900), and the gradually

  2. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  3. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  4. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  5. Mass spectrometers

    International Nuclear Information System (INIS)

    Manojlov, V.E.; Nedelin, P.N.; Lukichev, A.N.; Sapozhkov, L.K.; Turubarov, V.I.

    1980-01-01

    Mass spectrometers of different types are suggested to use for qualitative and quantitative analyses of gas. The operation principles of static and dynamic mass spectrometer are studied. In static mass spectrometers mass separation of ions is performed by changing the value of accelerating voltage in the ion source when retaining the magnetic field intensity. Such devices are stationary. The device mass is conditioned by the magnet mass. Mass separation in dynamic mass spectrometers is dependent on the degree of energy increment of ions in HF-electric fields. Radio frequency mass spectrometers are used with advantage for studying upper layers of an atmosphere and are installed on radiosondes and satellites. The main technical characteristics of the MX-1330 mass spectrometer, the basis of which is the analyzer with 180 deg deviation of an ion beam in the field of permanent magnet, are presented. The device is intended for controlling the environment and permits to analyze gases with a molecular mass up to 450 using various systems of gas filling. The error of determination of molecular substance is not greater than +-3 %; the magnetic field intensity constitutes 4.8x10 5 A/m; the supply voltage is 380/220 V; the total power is 5.0 kVA [ru

  6. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    Freitas, I.S.M.; Goncalez, O.L.

    1992-01-01

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  7. Measurement of the cosmic $e^{+} + e^{-}$ Flux from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station

    CERN Document Server

    AUTHOR|(CDS)2080883

    2014-11-14

    The measurement of positrons and electrons (e+/-) in cosmic rays provides fundamental information about the origin and the propagation of cosmic rays in the Galaxy. The interest in the e measurements is enhanced by the possibility to observe indirect evidences of Dark Matter annihilation in the e spectral shapes and arrival directions. The most precise space experiment for the detection of cosmic rays is the Alpha Magnetic Spectrometer (AMS). AMS is a large acceptance cosmic ray detector which has been installed on the International Space Station in May 2011 to conduct an unique long-duration ( ~20 years) mission of fundamental physics research in space. In this thesis, the events collected by AMS in the first 30 months of data taking have been analyzed to measure the (e+ + e-) energy spectrum. A total of 10.6 million events have been identified as e+/- and have been used for the measurement of the (e+ + e-) flux from 0.5 GeV to 1 TeV. In this thesis the AMS detection capabilities, the e+/- identifica...

  8. Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an Annual Argon-Enriched Front

    Science.gov (United States)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.

    2018-02-01

    The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.

  9. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  10. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  11. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  12. Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sungil

    2006-01-01

    The Cold Neutron Research Facility (CNRF) project carried out by Korea Atomic Energy Research Institute (KAERI) is an effort to bring cold neutron instrumentation to Korea's only large scale research reactor, HANARO, located in Daejeon. As part of the CNRF project, a cold neutron triple-axis spectrometer (Cold-TAS) is being developed along with other five: 40 m long and 12 m long small angle neutron scattering instruments (40m-SANS and 12m-SANS), disk-chopper time-of-flight spectrometer (DC-ToF), Bio- Reflectometer (Bio-REF) and the reflectometer with vertical sample geometry (REF-V). For those cold neutron instruments, the performance of an individual instrument depends not only on its design but also on the guide that feeds cold neutrons to the instrument. Therefore, the quality of the neutron flux at an instrument position has to be checked with the specification of the instrument. As for the Cold-TAS, since the instrument requires a tall beam and a high flux of short wavelength neutrons, it was tentatively decided that it would use the cold guide 4 (CG4). The detailed specification of the guide is listed. Checking the neutron flux of the guide at the instrument position is the obvious next step

  13. Silicon spectrometer with a Peltier refrigerator

    International Nuclear Information System (INIS)

    Belcarz, E.; Chwaszczewska, J.; Hahn, G.; Nowicki, W.; Sawicka, B.; Skoczek, K.; Slapa, M.; Szymczak, M.

    1974-01-01

    This paper describes a spectrometer with a Si(Li) detector cooled by a Peltier refrigerator. The spectrometer is able to analyse samples of practically all most frequently encountered emitters of alpha, beta and low energy gamma radiation. The energy resolution were about 1.3-1.5 keV for 14 keV gamma radiation. The system can also operate in field conditions in the fluorescence analysis. (author)

  14. Fourier Transform Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fourier Transform Spectrometer project demonstrates the efficacy of a miniaturized spectrometer for flight applications.A spectrometer is an instrument used to...

  15. Smartphone Spectrometers

    Science.gov (United States)

    Willmott, Jon R.; Mims, Forrest M.; Parisi, Alfio V.

    2018-01-01

    Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades. PMID:29342899

  16. Smartphone Spectrometers

    Directory of Open Access Journals (Sweden)

    Andrew J.S. McGonigle

    2018-01-01

    Full Text Available Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  17. Smartphone Spectrometers.

    Science.gov (United States)

    McGonigle, Andrew J S; Wilkes, Thomas C; Pering, Tom D; Willmott, Jon R; Cook, Joseph M; Mims, Forrest M; Parisi, Alfio V

    2018-01-14

    Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a 'lab in a phone' capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  18. Triple-axis spectrometer

    International Nuclear Information System (INIS)

    Toeroek, Gy.

    2001-01-01

    A triple-axis spectrometer has been designed for structural and dynamical studies of condensed matter. Because of the limited number of other operational equipment the triple axis spectrometer was used in a multi purpose regime, e.g. high resolution diffractometry, strain analysis, reflectometry, quasielastic and inelastic scattering. A polarization setup was also tested on this spectrometer. (R.P.)

  19. Ion guide quadrupole mass spectrometer at Jyvaeskylae

    International Nuclear Information System (INIS)

    Iivonen, A.; Saintola, R.; Valli, K.; Morita, K.; Yoshida, A.

    1991-01-01

    A new mass analyzing device consisting of an ion guide connected to a commercial quadrupole mass spectrometer is being developed at the Department of Physics, University of Jyvaeskylae. The new spectrometer is expected to have the similar properties to the present ion guide isotope separator on-line (IGISOL): excellent stability, similar separation efficiency for all chemical elements and short separation time. This ion guide mass spectrometer (IGQMS) is schematically shown. The IGQMS differs from the IGISOL in four essential ways: a squeezer ion guide, a differential pumping section, a transport section in which an electrostatic lens system brings ions into high vacuum, and a commercial quadrupole spectrometer used in place of a magnetic separator. The entire spectrometer became operational in the summer of 1990. The tests have been done with the alpha-active Po-215 ions released from an Ac-227 source in the target chamber. The squeezer, differential pumping section, transport section and quadrupole mass spectrometer of the IGQMS are described. The results of the measured transmission yield and the total yield of Po-215 and some merits of the IGQMS are reported. (K.I.)

  20. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  1. An EUV spectrometer for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Cotton, D.M.; Lampton, M.; Siegmund, O.H.W.; Link, R.

    1989-01-01

    This paper describes the Berkeley EUV Airglow Rocket Spectrometer (BEARS) experiment, designed to investigate the interactions between the solar ionizing radiation and the earth's upper atmosphere. The primary objective of this experiment is the verification the feasibility of using EUV observations as a quantitative diagnostic of the terrestrial atmosphere and its plasma environment. The expected information provided by spectroscopic measurements of EUV emission will include data on the excitation mechanisms, excitation rates, and branching ratios. The BEARS experimental package consists of a high-resolution EUV airglow spectrometer, a hydrogen Lyman-alpha photometer to measure both the solar radiations and the geocoronal emissions, and a moderate-resolution solar EUV spectrometer. In a test experiment, the instruments were carried aboard a four-stage sounding rocket to a peak altitude of about 960 km and obtained airglow spectra in the 980-1060 A range and in the 1300-1360 range. 34 refs

  2. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  3. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  4. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  5. Improved Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Mass Spectrometer project will develop system requirements and analyze the path to space qualification.   The results of this project...

  6. Micro Plasma Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD project is to develop a preliminary design elements of miniature electron and ion plasma spectrometers and supporting electronics, focusing...

  7. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  8. Neutral Kaon Spectrometer 2

    Science.gov (United States)

    Kaneta, M.; Beckford, B.; Fujii, T.; Fujii, Y.; Futatsukawa, K.; Han, Y. C.; Hashimoto, O.; Hirose, K.; Ishikawa, T.; Kanda, H.; Kimura, C.; Maeda, K.; Nakamura, S. N.; Suzuki, K.; Tsukada, K.; Yamamoto, F.; Yamazaki, H.

    2018-04-01

    A large-acceptance spectrometer, Neutral Kaon Spectrometer 2 (NKS2), was newly constructed to explore various photoproduction reactions in the gigaelectronvolt region at the Laboratory of Nuclear Science (LNS, currently ELPH), Tohoku University. The spectrometer consisted of a dipole magnet, drift chambers, and plastic scintillation counters. NKS2 was designed to separate pions and protons in a momentum range of less than 1 GeV/ c, and was placed in a tagged photon beamline. A cryogenic H2/D2 target fitted to the spectrometer were designed. The design and performance of the detectors are described. The results of the NKS2 experiment on analyzing strangeness photoproduction data using a 0.8-1.1 GeV tagged photon beam are also presented.

  9. Compton backscattering axial spectrometer

    International Nuclear Information System (INIS)

    Rad'ko, V.E.; Mokrushin, A.D.; Razumovskaya, I.V.

    1981-01-01

    Compton gamma backscattering axial spectrometer of new design with the 200 time larger aperture as compared with the known spectrometers at the equal angular resolution (at E=159 keV) is described. Collimator unit, radiation source and gamma detector are located in the central part of the spectrometer. The investigated specimen (of cylindrical form) and the so called ''black body'' used for absorption of photons, passed through the specimen are placed in the peripheric part. Both these parts have an imaginary symmetry axis that is why the spectrometer is called axial. 57 Co is used as the gamma source. The 122 keV spectral line which corresponds to the 83 keV backscattered photon serves as working line. Germanium disk detector of 10 mm diameter and 4 mm height has energy resolution not worse than 900 eV. The analysis of results of test measurements of compton water profile and their comparison with data obtained earlier show that only finity of detector resolution can essentially affect the form of Compton profile. It is concluded that the suggested variant of the spectrometer would be useful for determination of Compton profiles of chemical compounds of heavy elements [ru

  10. The dilepton spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yegneswaran, A.; Claesson, G.; Fulton, R.; Hendrie, D.L.; Krebs, G.F.; Lallier, E.; Letessier-Selvon, A.; Matis, H.S.; Mulera, T.; Naudet, C.; Nesbitt, D.; Roche, G.; Schroeder, L.S.; Seidl, P.A. (Lawrence Berkeley Lab., CA (USA)); Beedoe, S.; Bystricky, J.; Carroll, J.; Gordon, J.; Igo, G.; Oillataguerre, P. (California Univ., Los Angeles (USA)); Christo, S.; Gilot, J.F.; Kirk, P.; Wang, Z.; Xu, I. (Louisiana State Univ., Baton Rouge (USA)); Force, P.; Landaud, G. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France)); Hallman, T.; Madansky, L.; Welsh, R. (Johns Hopkins Univ., Baltimore, MD (USA)); Miller, D. (Northwestern Univ., Evanston, IL (USA))

    1990-05-01

    The dilepton spectrometer (DLS) at Lawrence Berkeley Laboratory's Bevalac has been designed and constructed to investigate the production of electron-positron pairs with low mass and low transverse momentum in proton-nucleus and nucleus-nucleus collisions for incident-beam kinetic energies of 5 A GeV and less. This article briefly recalls the physics objectives of the program, discusses the methodology of the measurement, presents details of the design of the spectrometer and the detector elements, and reports on their performance. Selected experimental results are given to illustrate the capability of the DLS and to demonstrate the level to which it is possible to realize the physics objectives with the spectrometer. (orig.).

  11. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  12. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  13. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  14. MIRI spectrometer optical design

    NARCIS (Netherlands)

    Kruizinga, B.; Visser, H.; Pel, J.W.; Moddemeijer, K.; Smorenburg, C.

    2004-01-01

    MIRI (the Mid InfraRed Instrument) is one of the focal plane instruments of the James Webb Space Telescope. The instrument comprises a camera and a spectrometer module. The instrument plays the following key roles in the JWST science program. Discovery of the "first light". Assembly of galaxies:

  15. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  16. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1979-03-01

    Multilayer desorption measurements of various substances adsorbed on a stainless-steel substrate are found to exhibit desorption profiles consistent with a zeroth-order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  17. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  18. Buffett's Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting-Against-Beta...... in publicly traded stocks versus wholly-owned private companies, we find that the former performs the best, suggesting that Buffett's returns are more due to stock selection than to his effect on management. These results have broad implications for market efficiency and the implementability of academic...

  19. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  20. Characterization of MEMS FTIR spectrometer

    Science.gov (United States)

    Khalil, Diaa; Sabry, Yasser; Omran, Haitham; Medhat, Mostafa; Hafez, Amr; Saadany, Bassam

    2011-03-01

    In this work we present the full characterization of an optical MEMS Fourier Transform Infra Red FTIR spectrometer fabricated by Deep Reactive Ion Etching DRIE Technology on Silicon substrate. Both electrical and optical properties of the spectrometer are measured. The presented techniques allows to build an engineering model for the spectrometer and to predict its main specifications taking into account the specificity of the MEMS technology used in the spectrometer fabrication.

  1. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  2. FAST NEUTRON SPECTROMETER

    Science.gov (United States)

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  3. Mark III spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, D.; Bernstein, J.; Bunnell, K.; Burgueno, G.; Cassell, R.; Collins, B.; Coward, D.; Einsweiler, K.; Eisele, R.; Haber, B.

    1984-10-01

    This paper describes the design, construction and performance of the Mark III, a new general purpose large solid angle spectrometer at SPEAR, the SLAC 2-8 GeV e/sup +/e storage ring. The detector has been designed for the study of exclusive final states in e/sup +/e annihilation, which requires large solid angle coverage combined with charged particle momentum resolution, particle identification, and photon detection efficiency at low energies. (orig.).

  4. Mark III spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, D.; Bernstein, J.; Bunnell, K.; Burgueno, G.; Cassell, R.; Collins, B.; Coward, D.; Einsweiler, K.; Eisele, R.; Haber, B. (Stanford Linear Accelerator Center, CA (USA))

    1984-10-01

    This paper describes the design, construction and performance of the Mark III, a new general purpose large solid angle spectrometer at SPEAR, the SLAC 2-8 GeV e/sup +/e/sup -/ storage ring. The detector has been designed for the study of exclusive final states in e/sup +/e/sup -/ annihilation, which requires large solid angle coverage combined with charged particle momentum resolution, particle identification, and photon detection efficiency at low energies.

  5. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  6. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  7. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J (Inventor); Stimac, Robert M. (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  8. A spectrometer for the NSF

    International Nuclear Information System (INIS)

    Sanderson, N.E.

    1979-01-01

    It is shown that the capabilities of a magnetic spectrometer are needed to fully exploit the research programme involving charged particle detection to be carried out on the Nuclear Structure Facility (NSF) presently under construction at Daresbury. Performance requirements for such a spectrometer are examined indicating that the QMG/2 spectrometer of the Groningen type is very well suited to the high resolution work which will be possible using beams of light - heavy ions (A < 40). Consequently, and following the recommendations of the Magnetic Spectrometer Working Party, this spectrometer is to be installed at the NSF. (U.K.)

  9. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    Fregeau, M. O.; Brys, T.; Gamboni, T.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  10. Measure of exposure of short-lived radon products using an alpha spectrometer for measuring indoor aerosol activity concentration and dose evaluation; Misure di esposizione ai prodotti di decadimento del radon a breve vita tramite uno spettrometro alfa per la misura dell'attivita' del particolato atmosferico indoor e valutazioni dosimetriche

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Castellani, C.M.; Formignani, M. [ENEA, Divisione Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche Ezio Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    A new italian law introduces the regulation of occupational exposure to radon. To evaluate the inhalation of radon daughters by the workers a sampling device has been assembled with the aim of evaluation of unattached and aerosol attached radon daughters' fractions. The instrument, based on selection of the aerosuspended particles by means of a wire screen type battery and subsequent collection on a total filter, allows to describe the behaviour of both fractions using defined temporal pattern of collecting particles and counting them by alpha spectroscopy. A measurement campaign to test the radon daughter dichotomous spectrometer in comparison with a commercial Radon Working Level meter, has been performed in a research laboratory of central Italy affected by high radon concentrations. The radon concentration during the measurement campaign has been also measured. The equilibrium factor F{sub e}q ad the attachment factor fp have been evaluated during 3 days campaign. Using the measured mean parameters (radon concentration, F{sub e}q, f{sub p}) the dose evaluation for workers using dosimetric approach has been performed. A comparison between the epidemiologic approach, based on the radon concentration, and dosimetric approach is also presented. [Italian] L'esposizione a radon in ambiente lavorativo e la conseguente inalazione dei suoi prodotti di decadimento in forma particolata e' oggetto di una recente normativa italiana in materia di protezione dalle radiazioni ionizzanti. Per rispondere a questa necessita', presso l'Istituto per la Radioprotezione dell'ENEA di Bologna e' stato progettato e realizzato uno spettrometro alfa per la misura della progenie del radon con la finalita' di valutare, su brevi periodi di tempo, la concentrazione individuale dei suoi prodotti di decadimento e, con l'impiego di batterie a diffusione a reti, consentire inoltre la discriminazione della concentrazione della frazione attaccata e non

  11. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  12. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  13. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  14. LADEE Neutral Mass Spectrometer Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains the data collected by the Neutral Mass Spectrometer (NMS) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE)...

  15. The nanopore mass spectrometer

    Science.gov (United States)

    Bush, Joseph; Maulbetsch, William; Lepoitevin, Mathilde; Wiener, Benjamin; Mihovilovic Skanata, Mirna; Moon, Wooyoung; Pruitt, Cole; Stein, Derek

    2017-11-01

    We report the design of a mass spectrometer featuring an ion source that delivers ions directly into high vacuum from liquid inside a capillary with a sub-micrometer-diameter tip. The surface tension of water and formamide is sufficient to maintain a stable interface with high vacuum at the tip, and the gas load from the interface is negligible, even during electrospray. These conditions lifted the usual requirement of a differentially pumped system. The absence of a background gas also opened up the possibility of designing ion optics to collect and focus ions in order to achieve high overall transmission and detection efficiencies. We describe the operation and performance of the instrument and present mass spectra from solutions of salt ions and DNA bases in formamide and salt ions in water. The spectra show singly charged solute ions clustered with a small number of solvent molecules.

  16. BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    Saulys, A.C.

    1984-01-01

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed

  17. A Moessbauer effect spectrometer

    International Nuclear Information System (INIS)

    Fayek, M.K.; Abbas, Y.M.; Bahgat, A.A.

    1983-01-01

    A Moessbauer effect spectrometer of Harwell type is installed and put in operation. The driving system is of a constant acceleration mode with a velocity range 40mm/sec. and associated to a 1024 multichannel analyser working in a multiscalar time mode. The gamma ray sources are 50 mCi Co 57 in Pd and 20 mCi Snsup(119m) in Ba Sn(O) 3 . Measurements are taken with the source kept at room temperature, while the absorber can be maintained at various temperatures. Gamma ray resonance spectra of different standard samples are obtained. Zero velocity and magnetic field calibration curves are deduced. Examples of some Moessbauer spectra for running investigated materials with a comprehensive general description are also given

  18. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  19. The Philippine spectrometer

    International Nuclear Information System (INIS)

    Juliano, J.O.

    1965-01-01

    A notable project for international collaboration, in which participants from Indonesia, Korea, Thailand, China and the Philippines are working together, has been launched in the Philippines with Indian assistance under the aegis of the Agency. This is a regional training and research programme using a neutron crystal spectrometer, which has been established since January 1965 at the Philippine Atomic Research Centre in Diliman, Quezon City, Philippines. It is called the IPA Project after the signatories to a five year trilateral agreement, namely, the Government of India,the Republic of the Philippines, and the International Atomic Energy Agency. The programme is administered by a Joint Committee composed of one representative each of the Philippines, India and the Agency. The objective of this cooperative venture is to establish a research centre on neutron diffraction in which scientists and technicians from any Member State of IAEA in South Asia, South-East Asia and Pacific, or Far East regions could come to participate in research and training. Studies in solid state physics, such a s the structure determination of alloys and organic crystals, studies on the orientation of magnetic moments in the lattice of magnetic substances, and other problems based on elastic and inelastic scattering of neutrons are undertaken. There are a number of research reactors in this region where neutron spectrometers can be utilized and the recent establishment of this cooperative international research and training programme has been a timely one for this area of the world. Indeed, a number of other countries have shown a strong growing interest in the development of the project

  20. Magnetic quadrupole and solenoidal spectrometers

    International Nuclear Information System (INIS)

    Laurent, H.; Schapira, J.P.

    1979-01-01

    General optical properties of magnetic quadrupole spectrometers are reviewed, together with experimental purposes for nuclear physics: background reduction, magnetic rigidity filtering for extreme forward angles measurements, light charged particle discrimination, ionic charge state separation, time of flight mass spectrometry and fast collection of radioactive nuclear reaction products. Possibility of alternative devices such as superconducting quadrupoles or solenoid spectrometers are discussed. (Auth.)

  1. The ALICE forward muon spectrometer

    Indian Academy of Sciences (India)

    ICE detector will allow to identify the quarkonium states through both the dielectron and the dimuon channels. For this purpose the apparatus is equipped with a transition radiation detector in its central part and with a forward muon spectrometer at small angles. After a brief description of the forward muon spectrometer, ...

  2. ATF beamline 1 analysis spectrometer

    International Nuclear Information System (INIS)

    Fernow, R.C.; Kirk, H.G.; Ulc, S.

    1993-01-01

    We describe the design parameters and expected performance of the analysis spectrometer for beamline 1 at the BNL Accelerator Test Facility. The spectrometer should be well suited for measuring the change in energy caused by the first generation laser acceleration experiments

  3. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    Science.gov (United States)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  4. The time-of-flight isochronous (TOFI) spectrometer for direct mass measurements of exotic light nuclei

    International Nuclear Information System (INIS)

    Wouters, J.M.; Vieira, D.J.; Butler, G.W.; Wollnik, H.; Kraus, R.H. Jr.; Vaziri, K.

    1987-01-01

    A new type of time-of-flight recoil spectrometer designed to measure the masses of neutron-rich light nuclei has recently been completed at LAMPF. The spectrometer relies on an isochronous design that directly correlates an ion's time-of-flight through the spectrometer with its mass-to-charge ratio. Additional measurements of the ion's velocity and energy enable the charge state of the recoil to be uniquely defined and thus permit precision mass measurements given sufficient statistics. The performance of the spectrometer has been investigated in both-off line (using alpha sources) and on-line tests. The design resolution of ΔM/M=1/2000 (fwhm) has been achieved. Initial performance results of the spectrometer are described with emphasis placed on the techniques used to achieve the overall high mass resolution and large solid angle/momentum acceptance. (orig.)

  5. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  6. Intrahepatic expression of interferon alpha & interferon alpha ...

    African Journals Online (AJOL)

    kemrilib

    Alpha m-RNA while 30% only expressed Interferon Alpha Receptor m-RNA. Responders and non-responders to Interferon therapy ... expression of IFN Alpha Receptor mRNA. Regardless of the response to interferon, histological .... generation reverse hybridisation, line probe assay. (Inno-LiPA HCV II; Innogenetics, Ghent,.

  7. Neutron range spectrometer

    Science.gov (United States)

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  8. UCN gravitational spectrometer

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    1988-01-01

    Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)

  9. Respiratory mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mostert, J.W. (Pretoria Univ. (South Africa). Dept. of Anesthesiology)

    1983-06-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M/sup 2/ body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O/sub 2/ consumption of less than 50 ml O/sub 2//min/M/sup 2/) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery.

  10. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  11. Measurement of radium micro-precipitates using alpha spectrometry and total alpha counting methods

    International Nuclear Information System (INIS)

    Hosseini, T.; Fathivand, A.A.

    2004-01-01

    Background: This study consists of two parts. The first part deals with both qualitative and quantitative analysis of 226 Ra suing alpha spectrometry measurement method. In the second part, the percentage of radioactive equilibrium between 226 Radium and its daughter products were determined by alpha spectrometry and total alpha measurement system after elapsed time of 15 days from precipitation. Materials and methods: Twelve 226 Radium samples as Barium-Radium Sulfate in form of micro-precipitates on millipore and What man 42 filters were prepared. An alpha spectrometer with surface barrier detector and a total alpha measurement system consists of scintillation crystal assembly Zinc Silver were used for counting. Results: The minimum detection limit of alpha spectrometry and total alpha counting for 226 Radium measurements in samples for counting time equal to 10000 seconds, were found to be 3.7 mBq and 15.8 mBq respectively. Results from total alpha counting showed that radioactive equilibrium between 226 Radium and its daughter products reached to about 92%± 3.5, where as, in the case of alpha spectrometry radioactive equilibrium, it was destroyed due to vacuum during counting the sample. Also in case of alpha spectrometry, the optimum sample to detector distance, was found to be 0.5 centimeter. Conclusion: From this study it was concluded that micro-precipitation can be used as a proper method for sample preparation and alpha spectrometry due to its lower detection limit to measure low concentration of 224 Radium and 226 Radium in these precipitates, prepared from different samples. Besides it is not time consuming and sources can be measured immediately after sample preparation

  12. Elements of Tiny Plasma Spectrometers

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to advance major elements of a miniaturized plasma spectrometer for flight on future missions. This type of instrument has been developed and successfully...

  13. Moessbauer spectrometer on integrated circuits

    International Nuclear Information System (INIS)

    Tomov, T.; Spasov, A.; Kunov, B.

    1978-01-01

    Two versions of the small-size high-quality Moessbauer spectrometer for 57 Fe spectroscopy are developed. The first version includes a proportion counter, a preamplifier, a one-chennel analyzer, a timer, and a scaler. The spectrometer is intended for measuring characteristic points of the Moessbauer-spectra and operates at constant velocities. The spectrometer parameters are as follows: integral non-linearity of the entire channel about 1%, maximum load for 14 keV line 8x10 4 pulse/s. The second version uses a multichannel time analyzer as a recording device. The spectrometer operates in the saw-toothed velocity modulation, the integral nonlinearity of the modulation being at least 0.1%

  14. Miniaturized Waveguide Fourier Transform Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — To demonstrate the efficacy of a spectrometer-on-chip system for in-situ and remote monitoring of planetary atmospheric and surface chemistry, physics, and surface...

  15. Versatile central spectrometer for ISABELLE

    International Nuclear Information System (INIS)

    Cheng, D.; Goulianso, K.; Knapp, B.; Rosen, J.; Schlein, P.

    1975-01-01

    A large aperture magnetic spectrometer is proposed to study hadrons and leptons produced in the central region at Isabelle. The essential element of the spectrometer is a large double-dipole magnet system with common flux return straddling the intersection region. The air gaps provide magnetic analysis of charged particle for up to 50 percent of the azimuthal angular range. Drift chambers, Cherenkov counters and shower detectors positioned on both sides of the beam lines comprise two spectrometers for analysis of hadrons and electrons. Muons can be momentum analyzed over a large fraction at the azimuthal angle by utilizing the upper and lower sections on the magnet yoke to provide hadron filtering and magnetic deflection. Cylindrical chambers around the vacuum pipe provide multiplicity information for events of interest. The proposed magnet configuration allows unobscured coverage of smaller angle particles with the addition of septum magnet spectrometers downstream of the central magnet in both arms.

  16. Portable Remote Imaging Spectrometer (PRISM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response uniformity...

  17. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  18. Coastal Research Imaging Spectrometer

    Science.gov (United States)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  19. The AMS experiment: a magnetic spectrometer in space

    Science.gov (United States)

    Casaus, J.

    2003-01-01

    The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) is the first large acceptance magnetic spectrometer to perform high statistics studies of cosmic rays in space. The experiment will address fundamental questions regarding primary antimatter and dark matter contents of the universe. In addition, the precision studies of cosmic rays in a wide energy range will result in a greatly improved understanding of the cosmic ray propagation in our galaxy. A prototype of the final detector was flown on the space shuttle Discovery in June 1998. The detector components are described and the results obtained on the recorded sample are presented. The final version of the detector will be placed on the ISS in 2005 for a 3-year exposure. The detector upgrades are presented and the sensitivity of the setup is outlined.

  20. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  1. Inverse-magnetron mass spectrometer

    International Nuclear Information System (INIS)

    Pakulin, V.N.

    1979-01-01

    Considered is the operation of a typical magnetron mass spectrometer with an internal ion source and that of an inverse magnetron mass spectrometer with an external ion source. It is found that for discrimination of the same mass using the inverse design of mass spectrometers it is possible to employ either r 2 /r 1 times lesser magnetic fields at equal accelerating source-collector voltages, or r 2 /r 1 higher accelerating voltages at equal magnetic fields, as compared to the typical design (r 1 and r 2 being radii of the internal and external electrodes of the analyser, respectively). The design of an inverse-magnetron mass spectrometer is described. The mass analyzer is formed by a cylindrical electrode of 3 mm diameter and a coaxial tubular cylinder of 55 mm diameter. External to the analyzer is an ionizing chamber at the pressure of up to 5x10 -6 torr. The magnetic field along the chamber axis produced by a solenoid was 300 Oe. At the accelerating voltage of 100 V and mass 28, the spectrometer has a resolution of 30 at a half-peak height

  2. Evaluation of the ROTAX spectrometer

    International Nuclear Information System (INIS)

    Tietze-Jaensch, H.; Schmidt, W.; Geick, R.

    1997-01-01

    After installation of the new-type rotating crystal analyser spectrometer ROTAX at ISIS, we report on practical experience and describe its current status. The rotating analyser technique works feasibly and reliably and provides an ultimate scan flexibility on a pulsed time-of-flight neutron spectrometer. The spinning analyser achieves a mulitplex advantage factor of ca. 50 without compromising the resolution of the instrument. Despite these instrument merits its individual beam position at ISIS has only an unsatisfactorily weak flux, thus hindering this instrument yet to become fully competitive with other high-performance neutron spectrometers based at high-flux reactors. However, we strongly recommend a ROTAX-type instrument to be emphasized when the instrumentation suite of the future European spallation source ESS will come under scrutiny. (orig.)

  3. How to Design a Spectrometer.

    Science.gov (United States)

    Scheeline, Alexander

    2017-10-01

    Designing a spectrometer requires knowledge of the problem to be solved, the molecules whose properties will contribute to a solution of that problem and skill in many subfields of science and engineering. A seemingly simple problem, design of an ultraviolet, visible, and near-infrared spectrometer, is used to show the reasoning behind the trade-offs in instrument design. Rather than reporting a fully optimized instrument, the Yin and Yang of design choices, leading to decisions about financial cost, materials choice, resolution, throughput, aperture, and layout are described. To limit scope, aspects such as grating blaze, electronics design, and light sources are not presented. The review illustrates the mixture of mathematical rigor, rule of thumb, esthetics, and availability of components that contribute to the art of spectrometer design.

  4. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  5. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  6. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  7. Compact Spectrometers Based on Linear Variable Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate a linear-variable spectrometer with an H2RG array. Linear Variable Filter (LVF) spectrometers provide attractive resource benefits – high optical...

  8. The determination of $\\alpha_s$ by the ALPHA collaboration

    CERN Document Server

    Bruno, Mattia

    2016-01-01

    We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $\\alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $\\Lambda_\\overline{MS}^{(3)}=332(14)$~MeV is translated to $\\alpha_\\overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark "thresholds". The error of this perturbative step is discussed and estimated as $0.0002$.

  9. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  10. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  11. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  12. Heavy-ion-spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures (OSP).

  13. The HISS spectrometer at LBL

    International Nuclear Information System (INIS)

    Greiner, D.

    1981-01-01

    The Heavy Ion Spectrometer System at LBL is designed to be a general purpose experimental work bench able to support a wide variety of experiments. Our philosophy is to provide instruments capable of investigating, with multi-particle sensitivity, a large portion of phase space. We have not chosen a particular region such as mid-rapidity or projectile frame, but instead, have made sure that the magnet and the instrumentation allow these choices as well as many others. (orig.)

  14. The superconducting kaon spectrometer - SKS

    International Nuclear Information System (INIS)

    Fukuda, T.; Takahashi, T.; Aoki, K.; Doi, Y.; Kondo, Y.; Makida, Y.; Nomachi, M.; Noumi, H.; Sasaki, O.; Shintomi, T.; Bhang, H.; Park, H.; Youn, M.; Yu, H.; Gavrilov, Y.; Ajimura, S.; Kishimoto, T.; Ohkusu, A.; Shinkai, N.; Maeda, K.; Sawafta, R.

    1995-01-01

    A superconducting kaon spectrometer has been installed in the north experimental hall of the KEK 12-GeV proton synchrotron. The spectrometer was designed to serve for nuclear physics experiments with meson beams in the 1 GeV/c region, particular emphasis being laid on study of Λ-hypernuclei via (π + ,K + ) reactions. In order to obtain Λ-hypernuclear data with better statistics and energy resolution, it was designed to have a good momentum resolution of 0.1% FWHM and a large acceptance of 100 msr. It consists of a large superconducting dipole magnet, tracking chambers, and trigger counters that can efficiently select kaons from large background of pions and protons. The overall energy resolution for scattering is realized together with a beam-line spectrometer in the K6 beam line, the momentum resolution of which was also designed to be better than 0.1% FWHM. A good energy resolution of better than 2 MeV FWHM has been confirmed in π - - 12 C elastic scattering and in the (π + ,K + ) reaction on 12 C. (orig.)

  15. Oxford MDM-2 magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, D.M.; Catford, W.N.; Winfield, J.S.; Lewis, D.G.; Jelley, N.A.; Allen, K.W.; Coupland, J.H.

    1986-05-01

    A new high resolution magnetic spectrometer - the Oxford MDM-2 spectrometer - has been designed, installed and tested. The layout of the magnetic elements is in the order: entrance sextupole and multipole, gradient-field dipole and exit multipole. The device has a ''normal'' focal plane, and the 1.6 m radius dipole magnet has a maximum mass-energy product of 315 MeV amu. At the maximum solid angle of 8 msr, the ratio of energies that can be accepted by the spectrometer (Esub(max)/Esub(min)) is 1.31. Precise measurements have been performed on the magnetic elements. The dipole magnet has very low hysteresis and field integral errors that amount to less than 1 part in 10/sup 4/. After some in situ modifications the field distributions of the magnets closely approximated the original design specifications. On-line tests with various ion-beams have revealed the optimum setting for each element. These are close to theoretical predictions from the program RAYTRACE, incorporating the parameterised results of the magnetic measurements. An aberration limited resolution (E/..delta..E) of greater than 3000 has been observed at 8 msr solid angle.

  16. A NMR spectrometer for educational purposes

    International Nuclear Information System (INIS)

    Colnago, Luiz A.; Torre Neto, Andre

    1991-01-01

    A NMR spectrometer has been constructed for educational purposes, such as teaching of the technique basic principles and instrumentation. The spectrometer has been designed with a minimum number of components so that the students may have acquittance with both the spectrometer, through block diagrams, and the small numbers of existent components . The device was based on a 0.t Tesla magnet from the continuous wave spectrometer (E M 300 - Varian) existent at the Instituto Militar de Engenharia, and it is expected to facilitate the comprehension of the commercial spectrometers

  17. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  18. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  19. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  20. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  1. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Austin, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).

  2. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  3. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    The Alpha One International Registry (AIR), a multinational research program focused on alpha1-antitrypsin (AAT) deficiency, was formed in response to a World Health Organization recommendation. Each of the nearly 20 participating countries maintains a national registry of patients with AAT defic...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  4. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  5. Portable neutron spectrometer and dosimeter

    Science.gov (United States)

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  6. New spectrometer for charged particles

    International Nuclear Information System (INIS)

    Wajsfelner, Rene

    1970-02-01

    This thesis is devoted to the study and development of an electrostatic spectrometer which is not only more accurate for the determination of size distributions of electrically charged radio-active atmospheric aerosols, but which can also be used for measuring the grain-size distribution of any cloud of particles which will previously have been charged according to a known, reproducible law. An experimental study has been made of the development of this precipitator and also of its calibration. The electrical charge on spherical polystyrene latex particles suspended in air by atomization has been studied; a theoretical explanation of these results is put forward. (author) [fr

  7. Ion Mobility Spectrometer Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; McLain, Derek [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Steeb, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-12-20

    The Morpho Saffran Itemizer 4DX Ion Mobility Spectrometer previously used to detect uranium signatures in FY16 was used at the former New Brunswick Facility, a past uranium facility located on site at Argonne National Laboratory. This facility was chosen in an attempt to detect safeguards relevant signatures and has a history of processing uranium at various enrichments, chemical forms, and purities; various chemicals such as nitric acid, uranium fluorides, phosphates and metals are present at various levels. Several laboratories were sampled for signatures of nuclear activities around the laboratory. All of the surfaces that were surveyed were below background levels of the radioanalytical instrumentation and determined to be radiologically clean.

  8. Establishment of Ultra-low Background Gamma Spectrometer System in KURT

    International Nuclear Information System (INIS)

    Lee, Wan No; Kim, Kyung Su; Choi, Geun Sik; Kang, Mun Ja

    2010-06-01

    An ultra-low background gamma spectrometer at underground laboratory using hybrid Compton suppression and anti-coincidence method is developed. The designed ultra-low background gamma spectrometer is composed of HPGe detector, NaI scintillation detectors for Compton suppression, and plastic scintillation sensors as a guard detector for the background reduction, and electronic circuits for signal processing. Influence of radon radionuclide is studied in order to test performance of the designed system. The background increase problem of radon will be solved by ventilation and injection of pure nitrogen gas. Using this setup system, measurement of small sample is performed without the chemical preprocessing The results of measurement were compared with those results with conventional alpha spectrometer and two results were similar from within uncertainty range

  9. Ion cyclotron resonance spectrometer with fourier transformation

    International Nuclear Information System (INIS)

    Pikver, R.; Suurmaa, Eh.; Syugis, A.; Tammik, A.; Lippmaa, Eh.

    1983-01-01

    The ion cyclotron resonance spectrometer with Fourier transformation intended for investigating mass specta and chemical reaction kinetics in the gaseous phase is described. The mass-spectrum of CO and N 2 positive ions is shown. The spectrometer consists of an electromagnet with power supply, a vacuum system, a cell with electronic equipment and a minicomputer. In the vacuum system (5x10 -9 Torr) there is a cubic measuring cell heated up to 400 deg C. The spectrometer mass resolution is of the 10 5 order. The spectrometer is able to operate as a high-resolution analytical mass-spectrometer of positive and negative ions. The experience of the spectrometer operation confirms its effectiveness for investigating ion-molecular reactions, in particular, proton transfer reactions

  10. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  11. The construction of the SPEG spectrometer

    International Nuclear Information System (INIS)

    Gastebois, J.

    1979-01-01

    About two years ago, two distinct types of magnetic spectrometer were proposed. Since then for essentially financial reasons, only one type has been retained by the Scientific Council: the SPEG ('Energy loss spectrometer for GANIL'). This spectrometer is described in a technical document of April 1978. An overall view of the equipment is given here together with a survey of the means necessary for its realization [fr

  12. A computer based Moessbauer spectrometer system

    International Nuclear Information System (INIS)

    Jin Ge; Li Yuzhi; Yin Zejie; Yao Chunbo; Li Tie; Tan Yexian; Wang Jian

    1999-01-01

    A computer based Moessbauer spectrometer system with a single chip processor for online control and data acquisition is developed. The spectrometer is designed as a single-width NIM module and can be performed directly in NIM crate. Because the structure of the spectrometer is designed to be quite flexible, the system is easy to be configured with other kinds of Moessbauer driver, and can be used in other data acquisition systems

  13. New miniaturized alpha/beta spectrometric system for the surface contamination monitoring and radon personal dosimeter

    International Nuclear Information System (INIS)

    Streil, T.; Oeser, V.; Holfeld, G.

    1998-01-01

    The heart of the new miniaturized alpha/beta spectroscopic system is a Smart Card MCA having a 12 bit resolution and a 32 bit memory for each channel with the size of a cheque card. The system consists of a single or up to 12 alpha spectrometers in a battery powered casing with connectors for direct detector/amplifier module plugging. Surface contamination in the order of 1 Bq/cm 2 of 239 Pu can be measured. (M.D.)

  14. Measurement of actinides in environmental samples by Photo-Electron Rejecting Alpha Liquid Scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Cadieux, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Clark, S. [Savannah River Ecology Lab., Univ. of Georgia (United States); Fjeld, R.A.; Reboul, S.; Sowder, A. [Clemson Univ., SC (United States). Dept. of Environmental Systems Engineering

    1994-05-01

    This work describes the adaptation of extractive scintillation with a Photo-Electron Rejecting Alpha Liquid Scintillation (PERALS) (ORDELA, Inc.) spectrometer to the analysis of actinides in environmental samples from the Savannah River Site (SRS). Environmental quality assurance standards and actual water samples were treated by one of two methods; either a two step direct extraction, or for more complex samples, pretreatment by an extraction chromatographic separation prior to measurement of the alpha activity by PERALS.

  15. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Alpha thalassemia Alpha thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alpha thalassemia is a blood disorder that reduces the production ...

  16. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  17. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  18. The BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    Saulys, A.C.

    1985-01-01

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the programm controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both ''on-line'' and ''off-line'' operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed. (orig.)

  19. Alpha Thalassemia (For Parents)

    Science.gov (United States)

    ... the body has a problem producing alpha globin Beta thalassemia : when the body has a problem producing beta ... Transfusion Blood Test: Hemoglobin Electrophoresis Sickle Cell Disease Beta Thalassemia Blood All About Genetics Prenatal Genetic Counseling Genetic ...

  20. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  1. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  2. Laboratory EXAFS Spectrometer, Principles and Applications

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kampers, F.W.H.; Duivenvoorden, F.B.M.; Zon, J.B.A.D. van; Brinkgreve, P.; Viegers, M.P.A.

    1985-01-01

    In order to be independent of poor availability of synchrotron beamtime a laboratory EXAFS spectrometer has been developed. The X-ray source is a rotating anode generator (max. voltage 60 kV, max. current 300 mA). Monochromatisation and focusing is done with a linear spectrometer, based upon the

  3. The high momentum spectrometer drift chambers

    Science.gov (United States)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  4. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,

  5. A Mass Spectrometer Simulator in Your Computer

    Science.gov (United States)

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  6. Expression of triplicated and quadruplicated alpha globin genes in sheep.

    Science.gov (United States)

    Vestri, R; Pieragostini, E; Yang, F; di Gregorio, P; Rando, A; Masina, P

    1991-01-01

    In the sheep alpha alpha alpha globin gene haplotype, the three genes display from the 5' to the 3' end the percentage efficiencies of about 30:14:6, as indicated by the amounts of the three types of alpha chain produced in the alpha alpha alpha/alpha alpha alpha homozygotes. The 3' gene in the alpha alpha alpha alpha haplotype appears to have an efficiency around 1%, as suggested by analysis of one quadruple alpha homozygote. Moreover, the total outputs of the alpha alpha alpha as well as of the alpha alpha alpha alpha haplotypes do not substantially differ from that of the common alpha alpha haplotype.

  7. Modeling mini-orange electron spectrometers

    International Nuclear Information System (INIS)

    Canzian da Silva, Nelson; Dietzsch, Olacio

    1994-01-01

    A method for calculating the transmission of mini-orange electron spectrometers is presented. The method makes use of the analytical solution for the magnetic field of a plane magnet in the calculation of the spectrometer spatial field distribution by superimposing the fields of the several magnets that compose the system. Electron trajectories through the spectrometer are integrated numerically in a Monte Carlo calculation and the transmission of the spectrometer as a function of the electron energy is evaluated. A six-magnet mini-orange spectrometer was built and its transmission functions for several distances from source to detector were measured and compared to the calculations. The overall agreement is found to be good. The method is quite general and can be applied to the design of systems composed of plane magnets, predicting their performance before assembling them. ((orig.))

  8. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  9. Frequency-domain multisource optical spectrometer and oximeter

    Science.gov (United States)

    Fantini, Sergio; Franceschini, Maria-Angela; Maier, John S.; Walker, Scott A.; Gratton, Enrico

    1995-01-01

    We have designed and constructed a near-infrared spectrometer for the non-invasive optical study of biological tissue. This instrument works in the frequency-domain and employs multiple source-detector distances to recover the absorption coefficient ((mu) (alpha )) and the reduced scattering coefficient ((mu) s') of tissue. The light sources are eight light emitting diodes (LEDs) whose intensities are modulated at a frequency of 120 MHz. Four LEDs emit light at a peak wavelength of 715 nm ((lambda) 1), while the other four LEDs emit at a peak wavelength of 850 nm ((lambda) 2). From the frequency-domain raw data of phase, dc intensity, and ac amplitude obtained from each one of the eight light sources, which are located at different distances from the detector fiber, we calculate (mu) (alpha ) and (mu) s' at the two wavelengths (lambda) 1 and (lambda) 2. The concentrations of oxy- and deoxy-hemoglobin, and hence hemoglobin saturation, are then derived from the known extinction coefficients of oxy- and deoxy-hemoglobin at (lambda) 1 and (lambda) 2. The statistical error in the measurement of the optical coefficients due to instrument noise is about 1 - 2%. The accuracy in the determination of the absolute value of the optical coefficients is within 10 - 20%. Preliminary results obtained in vivo on the forearm of a volunteer during an ischemia measurement protocol are presented.

  10. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  11. Raman spectrometer with microprobe capability

    Science.gov (United States)

    Boyd, J. T.; Jackson, H. E.

    1986-01-01

    This report describes the results of this equipment grant funded as a part of the Department of Defense (DOD) University Research Instrumentation Program. This grant funded the purchase of a Raman spectrometer with microprobe capability having resolution of 1.0 micron. This report describes the equipment selecting decision, the configuration of the instrument selected, and some experimental results. The experimental results include Raman spectra used in characterization of laser recrystallized silicon and ion implanted regions in semi-insulating GaAs. The Raman microprobe can be used to characterize the effects of substrate temperature, beam power density and shape, beam scan speed and direction, deposition rate, substrate seeding, and polysilicon encapsulation schemes both near and away from grain boundaries. The frequency shift and the peak width of the Raman scattering from the triply degenerate zone center phonon in Si allow determination of the strain in the grains of laser recrystallized polysilicon. Reducing these strains will allow us to achieve large single grains of device quality.

  12. An Infrared Drill Borehole Spectrometer for Mars

    Science.gov (United States)

    Smythe, W.; Foote, M.; Johnson, E.; Daly, J.; Loges, P.; Puscasu, I.; Gorevan, S.; Chu, P.; Granahan, J.

    2005-08-01

    The best clues to Mars past may be hidden below the surface of Mars. Long exposure to the sun, high winds and dust storms, large diurnal temperature excursions, and eons of space weathering combine to render a greatly modified surface, in many instances remarkable for its appearance of uniform composition. Drilling can provide access to the layers in the caps, to the permafrost and possibly, to pristine crustal material. The drilling process is complex with high demand on support resources. It is vital to make the drilling process as efficient as possible. A most promising approach is to instrument the drill string itself, thereby avoiding the complexity of sample handling, speeding and simplifying drill operations, and allowing examination of freshly exposed surfaces within the borehole. A solid-state IR spectrometer is being integrated with a blackbody source into a package to fit within an existing Mars drill design. The borehole IR spectrometer is used to monitor facies encountered throughout the drilling process. The spectrometer/IR combination is used in reflectance spectrometer mode to monitor H2O and CO2 content, as well as iron and carbonate mineralogies. Integration required adapting the existing spectrometer to fit within the drill -- including attaching the detectors directly to the spectrometer waveguide, developing the techniques required to seal the micro-thermopile detectors to the waveguide, implementing miniaturized digital conversion electronics, combining the spectrometer with the IR source and coupling them to a suitable window, implementing a suitable sealed package to fit within the drill, integrating and testing the package on a drill, and establishing the proper gain for both stimulus and spectrometer to permit reasonable range of Mars soil analogs. Tests have shown that both sapphire and diamond windows perform well in the drilling environment. Testing of the integrated spectrometer and drill will be completed in the coming year.

  13. Advanced, Compact, Ultraviolet Imaging Spectrometer for Planetary Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced, Compact, Ultraviolet Imaging Spectrometer for Planetary Systems will advance the capabilities of ultraviolet imaging spectrometers by improving the...

  14. Spectrometer for cluster ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Ryuto, H., E-mail: ryuto@kuee.kyoto-u.ac.jp; Sakata, A.; Takeuchi, M.; Takaoka, G. H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510 (Japan); Musumeci, F. [Department of Physics and Astronomy, Catania University, Catania 95123 (Italy); INFN Laboratori Nazionali del Sud, Catania 95123 (Italy)

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  15. Monte Carlo alpha deposition

    International Nuclear Information System (INIS)

    Talley, T.L.; Evans, F.

    1988-01-01

    Prior work demonstrated the importance of nuclear scattering to fusion product energy deposition in hot plasmas. This suggests careful examination of nuclear physics details in burning plasma simulations. An existing Monte Carlo fast ion transport code is being expanded to be a test bed for this examination. An initial extension, the energy deposition of fast alpha particles in a hot deuterium plasma, is reported. The deposition times and deposition ranges are modified by allowing nuclear scattering. Up to 10% of the initial alpha particle energy is carried to greater ranges and times by the more mobile recoil deuterons. 4 refs., 5 figs., 2 tabs

  16. Buffett’s Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting......-Against-Beta and Quality-Minus-Junk factors. Further, we estimate that Buffett’s leverage is about 1.6-to-1 on average. Buffett’s returns appear to be neither luck nor magic, but, rather, reward for the use of leverage combined with a focus on cheap, safe, quality stocks. Decomposing Berkshires’ portfolio into ownership...

  17. Progress of the BESS Superconducting Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Haino, S. E-mail: haino@icepps.s.u-tokyo.ac.jp; Abe, K.; Anraku, K.; Fuke, H.; Hams, T.; Ikeda, N.; Itasaki, A.; Izumi, K.; Kumazawa, T.; Lee, M.H.; Maeno, T.; Makida, Y.; Matsuda, S.; Matsui, N.; Matsumoto, H.; Matsumoto, K.; Mitchell, J.W.; Moiseev, A.A.; Nishimura, J.; Nozaki, M.; Omiya, H.; Orito, S.; Ormes, J.F.; Sanuki, T.; Sasaki, M.; Seo, E.S.; Shikaze, Y.; Streitmatter, R.E.; Suzuki, J.; Takasugi, Y.; Takeuchi, S.; Tanaka, K.; Taniguchi, T.; Tanizaki, K.; Yamagami, T.; Yamamoto, A.; Yamamoto, Y.; Yamato, K.; Yoshida, T.; Yoshimura, K

    2004-02-01

    Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is a balloon-borne spectrometer to study elementary particle phenomena in the early Universe as well as the origin and the propagation of cosmic radiation. The instrument has a unique feature of a thin superconducting solenoid which enables a large acceptance with a cylindrical configuration. Nine balloon flights have been successfully carried out since 1993. In 2002, the detector was upgraded as the BESS-TeV spectrometer to extend primary cosmic-ray spectra up to 1 TeV. For further studies of low-energy antiprotons, a new spectrometer, BESS-Polar, with a ultra-thin superconducting solenoid is being developed for long duration balloon flights in Antarctica.

  18. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  19. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  20. TRISP: Three axes spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Thomas Keller

    2015-12-01

    Full Text Available TRISP, operated by the Max-Planck-Institute for Solid State Research, is a high-resolution neutron spectrometer combining the three axes and neutron resonance spin echo (NRSE techniques.

  1. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  2. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  3. Computer control in a compton scattering spectrometer

    International Nuclear Information System (INIS)

    Cui Ningzhuo; Chen Tao; Gong Zhufang; Yang Baozhong; Mo Haiding; Hua Wei; Bian Zuhe

    1995-01-01

    The authors introduced the hardware and software of computer autocontrol of calibration and data acquisition in a Compton Scattering spectrometer which consists of a HPGe detector, Amplifiers and a MCA

  4. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  5. Low Power FPGA Based Spectrometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  6. MGS SAMPLER THERMAL EMISSION SPECTROMETER GLOBAL TEMPERATURE

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Thermal Emission Spectrometer (TES) 25-micron global surface temperature data, collected during the ANS portion of the Mars Global Surveyor...

  7. Remote UV Fluorescence Lifetime Spectrometer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  8. Case Study - Alpha

    Directory of Open Access Journals (Sweden)

    Stephen Leybourne

    2016-11-01

    Full Text Available This case study was developed from an actual scenario by Dr. Steve Leybourne of Boston University.  The case documents the historical evolution of an organization, and has been used successfully in courses dealing with organizational and cultural change, and the utilization of ‘soft skills’ in project-based management. This is a short case, ideal for classroom use and discussion.  The issues are easily accessible to students, and there is a single wide ranging question that allows for the inclusion of many issues surrounding strategic decision-making, and behavioural and cultural change. Alpha was one of the earlier companies in the USA to invest in large, edge-of-town superstores, with plentiful free vehicle parking, selling food and related household products. Alpha was created in the 1950s as a subsidiary of a major publicly quoted retail group.  It started business by opening a string of very large discount stores in converted industrial and warehouse premises in the south of the United States. In the early days shoppers were offered a limited range of very competitively priced products. When Alpha went public in 1981 it was the fourth largest food retailer in the US, selling an ever-widening range of food and non-food products.  Its success continued to be based on high volume, low margins and good value for money, under the slogan of ‘Alpha Price.’

  9. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line; Stensland, Hilde Monica Frostad Riise; Olsen, Klaus Juul

    2015-01-01

    of the three subgroups of genotype/subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed...

  10. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  11. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  12. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  13. Fast-response personal Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Kholmetskij, A.L.; Mashlan, M.; Misevich, O.V.; Evdokimov, V.A.; Lopatik, A.R.; Zhak, D.; Fedorov, A.A.; Snashel, V.

    1995-01-01

    Spectrometer design to record transmission Moessbauer spectra is described. The spectrometer consists of PC/AT computer with 1 mb memory and 40 mb hard disk, of EPSON LX 850 printer, of color monitor with VGA graphical adapter, of data accumulation system, of speed generator, of motion system with minivibrator, of scintillation detector with YA10 3 :Ce scintillator, of single-channel amplitude analyzer, of measuring bench and of 57 Co(Rh) source. 1 ref.; 1 fig

  14. Muon momentum measurement in magnetized iron spectrometers

    International Nuclear Information System (INIS)

    Voss, R.; Zupancic, C.

    1984-01-01

    Measuring the momentum of high-energy muons with a magnetized iron spectrometer is a conventional technique employed by numerous experiments and may appear to be an old-fashioned subject. In the TeV regime, multiple scattering errors become small compared to measurement errors achieveable with large-surface particle detectors, and there are indications that new physical effects influencing the resolution properties of a muon spectrometer may become important. (orig./HSI)

  15. The BTeV main spectrometer

    International Nuclear Information System (INIS)

    Sheldon, P.D.

    2001-01-01

    BTeV is a second generation B-factory experiment that will use a double-arm, forward spectrometer in the C0 experimental hall at the Fermilab Tevatron. I will describe the motivation and design of the 'main spectrometer', consisting of a ring-imaging Cherenkov system for charged particle identification, an electromagnetic calorimeter of lead-tungstate crystals, a proportional tube muon system with magnetized filtering steel, and a straw-tube and silicon strip charged particle tracking system

  16. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  17. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  18. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  19. Moessbauer spectrometer MsAa-3

    International Nuclear Information System (INIS)

    Gornicki, R.; Blachowski, A.; Ruebenbauer, K.

    2007-01-01

    The paper is aimed at the description of the newly developed Moessbauer spectrometer MsAa-3. The spectrometer MsAa-3 consists of a high quality γ--ray spectrometer including either a proportional gas detector head or a scintillation detector head, a transducer driving system including the transducer, data storage system, and data communication system based on the TCP/IP protocol. Additionally, the Michelson-Morley interferometer is provided for precise calibration of the transducer velocity. The spectrometer is equipped with an integrated simple temperature controller. All the essential functions are remotely controlled over the TCP/IP link allowing for the spectrometer set-up as the stand-alone unit in the computer network, e.g. on the Internet. External γ-ray detectors or external complete nuclear blocks could be used as well. The spectrometer is equipped with software allowing for setting all the functions, to perform on-line control, and retrieve data. The Moessbauer data processing software MOSGRAF is enclosed as well. The latter software allows for the calculation of the variety of velocity reference functions. (authors)

  20. THOR Ion Mass Spectrometer (IMS)

    Science.gov (United States)

    Retinò, Alessandro

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Ion Mass Spectrometer (IMS) onboard THOR will provide the first high-time resolution measurements of mass-resolved ions in near-Earth space, focusing on hot ions in the foreshock, shock and magnetosheath turbulent regions. These measurements are required to study how kinetic-scale turbulent fluctuations heat and accelerate different ion species. IMS will measure the full three-dimensional distribution functions of main ion species (H+, He++, O+) in the energy range 10 eV/q to 30 keV/q with energy resolution DE/E down to 10% and angular resolution down to 11.25˚ . The time resolution will be 150 ms for O+, 300 ms for He++ and ˜ 1s for O+, which correspond to ion scales in the the foreshock, shock and magnetosheath regions. Such high time resolution is achieved by mounting four identical IMS units phased by 90˚ in the spacecraft spin plane. Each IMS unit combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. Adequate mass-per-charge resolution (M/q)/(ΔM/q) (≥ 8 for He++ and ≥ 3 for O+) is obtained through a 6 cm long Time-of-Flight (TOF) section. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCPs) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification and discrimination and a discrete Time-to-Amplitude Converter (TAC) to determine the ion time of flight. A processor board will be used to for ion events formatting and will interface with the Particle Processing Unit (PPU), which will perform data processing for THOR particle detectors. The IMS instrument is being designed and will be built and calibrated by an international consortium of scientific institutes from France, USA, Germany and Japan and Switzerland.

  1. Construction of a photoelectron spectrometer of hemispherical type

    International Nuclear Information System (INIS)

    Park, C.Y.; Kim, S.K.; Lee, D.W.

    1983-01-01

    We constructed the double focusing electron spectrometer for the ultraviolet photonelectron spectroscopy(UPS). The spectrometer is hemispherical type with the high resolution power with a vaule of about 100. The efficiency of the spectrometer was examined by the thermoelectron spectroscopy and UPS of the valence band of the Pd. It is merit of the present spectrometer that is very simple and small. (Author)

  2. Demystifying AlphaGo Zero as AlphaGo GAN

    OpenAIRE

    Dong, Xiao; Wu, Jiasong; Zhou, Ling

    2017-01-01

    The astonishing success of AlphaGo Zero\\cite{Silver_AlphaGo} invokes a worldwide discussion of the future of our human society with a mixed mood of hope, anxiousness, excitement and fear. We try to dymystify AlphaGo Zero by a qualitative analysis to indicate that AlphaGo Zero can be understood as a specially structured GAN system which is expected to possess an inherent good convergence property. Thus we deduct the success of AlphaGo Zero may not be a sign of a new generation of AI.

  3. $\\alpha$-Representation for QCD

    OpenAIRE

    Tuan, Richard Hong

    1998-01-01

    An $\\alpha$-parameter representation is derived for gauge field theories.It involves, relative to a scalar field theory, only constants and derivatives with respect to the $\\alpha$-parameters. Simple rules are given to obtain the $\\alpha$-representation for a Feynman graph with an arbitrary number of loops in gauge theories in the Feynman gauge.

  4. Alpha Theta Meditation: Phenomenological, neurophysiologic ...

    African Journals Online (AJOL)

    Alpha Theta Meditation: Phenomenological, neurophysiologic, mindfulness, mood, health and sport implications. ... the single alpha theta meditation was associated with elevated alpha and theta activity, as well as decrease in negative mood perceptions, especially with regard to anxiety, sadness and confusion scores.

  5. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  6. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  7. Amping it up on a small budget: Transforming inexpensive, commercial audio and video components into a useful charged particle spectrometer

    Science.gov (United States)

    Pallone, Arthur

    Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.

  8. Performances of a bent-crystal spectrometer adapted to resonant x-ray emission measurements on gas-phase samples

    Energy Technology Data Exchange (ETDEWEB)

    Journel, Loiec; El Khoury, Lara; Marin, Thierry; Guillemin, Renaud; Carniato, Stephane; Avila, Antoine; Delaunay, Renaud; Hague, Coryn F.; Simon, Marc [Laboratoire de Chimie Physique-Matiere et Rayonnement, UPMC University of Paris 06, UMR 7614, F-75005 Paris (France) and Laboratoire de Chimie Physique-Matiere et Rayonnement, CNRS, UMR 7614, F-75005 Paris (France)

    2009-09-15

    We describe a bent-crystal spectrometer adapted to measure x-ray emission resulting from core-level excitation of gas-phase molecules in the 0.8-8 keV energy range. The spectrometer is based on the Johann principle, and uses a microfocused photon beam to provide high-resolution (resolving power of {approx}7500). A gas cell was designed to hold a high-pressure (300 mbar) sample of gas while maintaining a high vacuum (10{sup -9} mbar) in the chamber. The cell was designed to optimize the counting rate (2000 cts/s at the maximum of the Cl K{alpha} emission line), while minimizing self-absorption. Example of the K{alpha} emission lines of CH{sub 3}Cl molecules is presented to illustrate the capabilities of this new instrument.

  9. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  10. Improvement of total reflection X-ray fluorescence spectrometer sensitivity by flowing nitrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Tee, Deh Ping; Kawai, Jun

    2012-07-15

    The intensity of Ar K{alpha} line was reduced by a factor of 17 times by flowing more than 400 mL min{sup -1} of N{sub 2} gas through gas pipe placed at the gap between the X-ray detector and the sample stage of the total reflection X-ray fluorescence (TXRF) spectrometer. The signal-to-background ratios of characteristic X-rays with energies less than 8 keV were improved by flowing N{sub 2} gas owing to the reduction of peak pileups related to the Ar K{alpha} peak. The improvement of the signal-to-background ratios became significant as the energies of the characteristic X-rays approached that of the Ar K{alpha} line (2.96 keV) for characteristic X-rays with energies less than 5 keV. When 1 {mu}L of solution containing 10 mg L{sup -1} cadmium (10 ng) was measured with the TXRF spectrometer by flowing N{sub 2} gas, Cd L{alpha} line was clearly observed, although the Cd L{alpha} line overlapped with the Ar K lines without flowing N{sub 2} gas. The lower limit of detection of cadmium evaluated from the Cd L{alpha} line was improved from 7.0 to 2.2 ng by flowing N{sub 2} gas. This N{sub 2} gas flowing technique can be applied to trace element analysis of cadmium in solutions which do not contain potassium such as leaching solutions from products containing cadmium in TXRF and conventional XRF measurements. - Highlights: Black-Right-Pointing-Pointer Intensity of Ar K{alpha} line was decreased by a factor of 17 times by flowing N{sub 2} gas. Black-Right-Pointing-Pointer S/N of characteristic X-rays with energies less than 8 keV were improved. Black-Right-Pointing-Pointer Detection limit of cadmium calculated from Cd L{alpha} line was improved from 7.0 to 2.2 ng by flowing N{sub 2} gas. Black-Right-Pointing-Pointer This technique can be applied to trace element analysis of Cd in leaching solutions.

  11. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  12. Time-of-flight isochronous spectrometer

    International Nuclear Information System (INIS)

    Wouters, J.M.; Vieira, D.J.; Wollnik, H.

    1985-01-01

    This report is the second in a series of progress reports describing the design and construction of the time-of-flight isochronous (TOFI) spectrometer and its associated secondary beam line. TOFI, which is being constructed jointly by INC and MP Divisions, is designed to measure in a systematic fashion the ground-state masses of the light neutron-rich nuclei with A<70 that lie far from the valley of β stability. In the past year the authors ordered all the long-lead items necessary for construction of the spectrometer and installed the first half of the secondary beam line. Furthermore, a major portion of the control system for both the spectrometer and beam line was designed and installed. This annual report briefly summarizes the current status of the spectrometer and describes in some detail the design and installation of the first half of the transport line. For a summary of the scientific goals and overall design of the TOFI spectrometer, see the 1983 Progress at LAMPF report

  13. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  14. Magnetic field measurements of the BLAST spectrometer

    International Nuclear Information System (INIS)

    Dow, Karen A.; Botto, Tancredi; Goodhue, Abigail; Hasell, Douglas; Loughnan, Dylan; Murphy, Kilian; Smith, Timothy Paul; Ziskin, Vitaliy

    2009-01-01

    The Bates Large Acceptance Spectrometer Toroid has been built to study nuclear physics reactions using a stored, polarized electron beam and a variety of polarized targets internal to the storage ring. The spectrometer consists of eight coils surrounding the target cell. There is a requirement of nominally zero field along the centerline of the spectrometer for proper electron beam storage. In addition, the polarized internal targets require a low field gradient in the target region. Magnetic field measurements were made near the beam centerline to guide the alignment of the coils and satisfy the field magnitude and gradient requirements. After the coils were aligned, the magnetic field was measured in the detector regions to provide information for particle tracking.

  15. SPEG: An energy loss spectrometer for GANIL

    Science.gov (United States)

    Bianchi, L.; Fernandez, B.; Gastebois, J.; Gillibert, A.; Mittig, W.; Barrette, J.

    1989-04-01

    Since July 1985, an energy loss spectrometer (SPEG) is under operation at the National Heavy Ion Laboratory (GANIL), at Caen (France). It has been designed to allow the study of quantum states populated in reactions induced by nuclei accelerated at energies up to 100 A MeV. The spectrometer has been designed by P. Birien. The optical properties and the main magnetic features have been calculated by Birien and Valero. A detailed reported of their study is given in ref. [1]. In the first part of the present paper, after recalling the specifications of the spectrometer, we shall give an overall description of the main characteristics, together with indications about the various shimming procedures which have been used to achieve the desired resolution (sections 1-4). In the second part, we shall describe various accessories and the different kinds of detectors which are used during experiments, with several illustrations of experimental results (sections 5 and 6).

  16. Landsat-Swath Imaging Spectrometer Design

    Science.gov (United States)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori; Wilson, Daniel W.; Bender, Holly A.

    2015-01-01

    We describe the design of a high-throughput pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution. The design is based on a 3200 x 480 element x 18 µm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  17. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  18. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  19. Prismatic analyzer concept for neutron spectrometers

    DEFF Research Database (Denmark)

    Birk, Jonas O.; Marko, M.; Freeman, P.G.

    2014-01-01

    Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal...... analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can...... inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor...

  20. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  1. Experimental study on microlaser fluorescence spectrometer

    Science.gov (United States)

    Tian, Zhaoshuo; Wang, Ling; Zhang, Shanshan; Zhang, Yanchao; Liu, Libao; Gu, Erdan

    2018-01-01

    This paper presents a kind of miniature handheld laser fluorescence spectrometer, which integrates a laser emission system, a spectroscopic system, and a detection system into a volume of 100×50×20 mm3. A universal serial bus interface is connected to PC for data processing and spectrum display. The emitted laser wavelength is 405 nm. A spectral range is 400 to 760 nm and 2-nm optical resolution has been achieved. This spectrometer has the advantages of compact structure, small volume, high sensitivity, and low cost.

  2. Wide size range fast integrated mobility spectrometer

    Science.gov (United States)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  3. Spectrometer Baseline Control Via Spatial Filtering

    Science.gov (United States)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  4. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  5. An efficient gravitational spectrometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Geltenbort, P.; Goeltl, L.; Henneck, R.; Horras, M.; Kirch, K.; Knecht, A.; Lauss, B.; Meier, M.; Straumann, U.; Zsigmond, G.

    2010-01-01

    We report on the design and construction of an efficient gravitational spectrometer for ultracold neutrons. The spectrometer is suited to experiments that can greatly profit from knowledge of the neutron energy spectrum without losing available statistics, such as many of the current precision experiments that use ultracold neutrons. The description of the apparatus is complemented by the results of the first test measurements which served as a proof of principle and showed its capability of discriminating between different UCN energy ranges. The measurements showed the expected behavior and are in qualitative agreement with Monte Carlo simulations.

  6. An efficient gravitational spectrometer for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Goeltl, L. [Paul Scherrer Institut, PSI, Villigen (Switzerland); ETH Zuerich, Zuerich (Switzerland); Henneck, R. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Horras, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Excellence Cluster ' Universe' , Technische Universitaet Muenchen, Garching (Germany); Kirch, K., E-mail: klaus.kirch@psi.c [Paul Scherrer Institut, PSI, Villigen (Switzerland); ETH Zuerich, Zuerich (Switzerland); Knecht, A., E-mail: a.knecht@psi.c [Paul Scherrer Institut, PSI, Villigen (Switzerland); University of Zuerich, Zuerich (Switzerland); ETH Zuerich, Zuerich (Switzerland); Lauss, B.; Meier, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Straumann, U. [University of Zuerich, Zuerich (Switzerland); Zsigmond, G. [Paul Scherrer Institut, PSI, Villigen (Switzerland)

    2010-12-01

    We report on the design and construction of an efficient gravitational spectrometer for ultracold neutrons. The spectrometer is suited to experiments that can greatly profit from knowledge of the neutron energy spectrum without losing available statistics, such as many of the current precision experiments that use ultracold neutrons. The description of the apparatus is complemented by the results of the first test measurements which served as a proof of principle and showed its capability of discriminating between different UCN energy ranges. The measurements showed the expected behavior and are in qualitative agreement with Monte Carlo simulations.

  7. Large acceptance spectrometers for π0 mesons

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1984-01-01

    A spectrometer composed of lead-oxide loaded glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy ion reactions. The spectrometer detects the Cerenkov radiation emitted when the high energy photons (Eγ approx. 70 MeV) resulting from π 0 decay create electron-position pairs in the glass, initiating electromagnetic showers. A geometric acceptance of better than 5% of 4π is possible; the π 0 detection efficiency varies between this value at T/sub π/ = 0 MeV and 1% for T/sub π/ approx. 100 MeV

  8. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  9. Improved analytical procedure for the determination of 210Pb and 210Po using alpha-spectrometric isotope dilution

    International Nuclear Information System (INIS)

    Urnezis, P.W.; Holtzman, R.B.

    1981-01-01

    An isotope dilution method has been incorporated into the 210 Pb- 210 Po analysis. A known amount of 209 Po is added to the sample before analysis. Then both 209 Po and 210 Po are deposited on a silver planchet which is assayed in an alpha spectrometer to determine the activities of each isotope. The recoveries generally range from 70% to 90%

  10. Treatment of alpha bearing wastes

    International Nuclear Information System (INIS)

    1988-01-01

    This report deals with the current state of the art of alpha waste treatment, which is an integral part of the overall nuclear waste management system. The International Atomic Energy Agency (IAEA) defines alpha bearing waste as 'waste containing one or more alpha emitting radionuclides, usually actinides, in quantities above acceptable limits'. The limits are established by national regulatory bodies. The limits above which wastes are considered as alpha contaminated refer to the concentrations of alpha emitters that need special consideration for occupational exposures and/or potential safety, health, or environmental impact during one or more steps from generation through disposal. Owing to the widespread use of waste segregation by source - that is, based upon the 'suspect origin' of the material - significant volumes of waste are being handled as alpha contaminated which, in fact, do not require such consideration by reason of risk or environmental concern. The quantification of de minimis concepts by national regulatory bodies could largely contribute to the safe reduction of waste volumes and associated costs. Other factors which could significantly contribute to the reduction of alpha waste arisings are an increased application of assaying and sorting, instrumentation and the use of feedback mechanisms to control or modify the processes which generate these wastes. Alpha bearing wastes are generated during fabrication and reprocessing of nuclear fuels, decommissioning of alpha contaminated facilities, and other activities. Most alpha wastes are contact handled, but a small portion may require shielding or remote handling because of high levels of neutron (n), beta (β), or gamma (γ) emissions associated with the waste material. This report describes the sources and characteristics of alpha wastes and strategies for alpha waste management. General descriptions of treatment processes for solid and liquid alpha wastes are included. 71 refs, 14 figs, 9 tabs

  11. The alpha effect

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Much of the recent interest in RAM system reliability stems from concern over alpha particle soft error rates reported for the initial 64 k RAMs. With increasing memory density likely in the next few years the problem of soft errors is rearing its head again. A few years ago ITT carried out experiments on 16k RAMs and found no significant problems. However, recent tests have shown a raise in the number of soft errors with 64k RAMs, and the launch of 256k and 512k memories is likely to make the problem acute

  12. Alpha-mannosidosis

    Directory of Open Access Journals (Sweden)

    Nilssen Øivind

    2008-07-01

    Full Text Available Abstract Alpha-mannosidosis is an inherited lysosomal storage disorder characterized by immune deficiency, facial and skeletal abnormalities, hearing impairment, and intellectual disability. It occurs in approximately 1 of 500,000 live births. The children are often born apparently normal, and their condition worsens progressively. Some children are born with ankle equinus or develop hydrocephalus in the first year of life. Main features are immune deficiency (manifested by recurrent infections, especially in the first decade of life, skeletal abnormalities (mild-to-moderate dysostosis multiplex, scoliosis and deformation of the sternum, hearing impairment (moderate-to-severe sensorineural hearing loss, gradual impairment of mental functions and speech, and often, periods of psychosis. Associated motor function disturbances include muscular weakness, joint abnormalities and ataxia. The facial trait include large head with prominent forehead, rounded eyebrows, flattened nasal bridge, macroglossia, widely spaced teeth, and prognathism. Slight strabismus is common. The clinical variability is significant, representing a continuum in severity. The disorder is caused by lysosomal alpha-mannosidase deficiency. Alpha-mannosidosis is inherited in an autosomal recessive fashion and is caused by mutations in the MAN2B1 gene located on chromosome 19 (19 p13.2-q12. Diagnosis is made by measuring acid alpha-mannosidase activity in leukocytes or other nucleated cells and can be confirmed by genetic testing. Elevated urinary secretion of mannose-rich oligosaccharides is suggestive, but not diagnostic. Differential diagnoses are mainly the other lysosomal storage diseases like the mucopolysaccharidoses. Genetic counseling should be given to explain the nature of the disease and to detect carriers. Antenatal diagnosis is possible, based on both biochemical and genetic methods. The management should be pro-active, preventing complications and treating

  13. The First Five Years of the Alpha Magnetic Spectrometer on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the five years since its installation on the International Space Station, it has collected more than 90 billion cosmic rays. Some of the unexpected results and their possible interpretations will be presented.

  14. MER 1 MARS ALPHA PARTICLE X-RAY SPECTROMETER 2 XRAYSPEC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Mars Exploration Rover x-ray data products from the APXS instrument and ancillary files. Each product has a detached PDS label that describes...

  15. MER 2 MARS ALPHA PARTICLE X-RAY SPECTROMETER 2 XRAYSPEC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Mars Exploration Rover x-ray data products from the APXS instrument and ancillary files. The APXS x-ray products archived on this volume were...

  16. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  17. Alpha activity measurement with lsc

    International Nuclear Information System (INIS)

    Dobrin, R. I.; Dulama, C. N.; Ciocirlan, C. N.; Toma, A.; Stoica, S. M.; Valeca, M.

    2013-01-01

    Recently, we showed that the alpha activity in liquid samples can be measured using a liquid scintillation analyzer without alpha/beta discrimination capability. The purpose of this work was to evaluate the performances of the method and to optimize the procedure of the sample preparation. A series of tests was performed to validate the procedure of alpha emitting radionuclides extraction in aqueous samples with Actinide Resin, especially regarding to the contact time required to extract all alpha nuclides. The main conclusions were that a minimum 18 hours stirring time is needed to achieve a percent recovery of the alpha nuclides grater than 90% and that the counting efficiency of alphas measurements with LSC is nearly 100%. (authors)

  18. Triple-axis spectrometer DruechaL

    International Nuclear Information System (INIS)

    Buehrer, W.; Keller, P.

    1996-01-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs

  19. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  20. L G Smith's RF mass spectrometer

    International Nuclear Information System (INIS)

    Koets, E.

    1981-01-01

    From 1948 on Lincoln G Smith developed mass spectrometers based on time and frequency measurements. With his last machine he obtained an accuracy of the order of 1 to 10 9 . After his untimely death in 1972 his unique instrument was moved to Delft, where its development is carried on. (author)

  1. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  2. Advanced Laboratory NMR Spectrometer with Applications.

    Science.gov (United States)

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  3. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  4. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  5. Design of radial neutron spectrometer for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Kasai, Satoshi; Iguchi, Tetsuo; Ebisawa, Katsuyuki; Kita, Yoshio.

    1996-09-01

    We designed the radial neutron spectrometer using a new type DT neutron spectrometer base on a recoil proton counter-telescope technique aiming ion temperature measurement for ITER. The neutron spectrometer will be installed on the well-collimated neutron beam line. A large-area recoil proton emitter is placed in parallel to the incident neutron beam and a micro-channel collimating plates are inserted between the radiator and the recoil proton detectors away from the neutron beam in order to limit the scattering angle of protons to the proton detectors. Here a very thin polyethylene film and a silicon surface barrier detector are employed as the radiator and proton detector, respectively. The energy resolution and detection efficiency are estimated to be 2.5% and 1x10 -5 counts/(n/cm 2 ), respectively for DT neutron through Monte Carlo calculations. Five units of the spectrometers will be installed just out side the bio-shield and consist a fun array using penetrations inside the bio-shield and a pre-collimator in the horizontal port. The life time of the proton detectors is estimated to be about one year in the Basic Performance Phase of ITER by neutron transport calculations using MCNP Monte Carlo code. The necessary R and D items and the design work were identified. (author)

  6. Calibration method for ion mobility spectrometer

    International Nuclear Information System (INIS)

    Vasiliev, Valery

    2011-01-01

    The new method for the calibration of the ion mobility spectrometer has been developed. This article describes the working principle, advantages and disadvantages of the calibration method operating in the mode of explosives detection. This method is most suitable for use in portable detectors, due to the small weight, small size parameters and low power consumption.

  7. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  8. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    electric field accelerates and then decelerates the emitted secondary electron beam, the magnetic field steers the beam away from the source and focuses it onto the electron microchannel plate detector. The initial momentum distribution of the electron beam is observed to have profound effect on the electron transport time. Hence, the CEM field spectrometer measurements suffer more from spectral broadening at similar operating parameters. The CEM field spectrometer measurements were obtained with a 210Po alpha source at the Penn State Radiation Science and Engineering Center, University Park, PA. Although the PEM field spectrometer suffers less from electron transport time dispersion, the CEM field spectrometer is more suited for application to neutron depth profiling. The multiple small-diameter apertures used in the PEM field configuration considerably reduces the geometric efficiency of the spectrometer. Most of the neutron depth profiling measurements, where isotropic emission of charged particles is observed, have relatively low count rates; hence, high detection efficiency is essential.

  9. Using a fully automatic mass spectrometer for fissile material control

    International Nuclear Information System (INIS)

    Wilhelmi, M.

    1978-08-01

    The demand for higher accuracy and a shorter delay in the analysis together with better objectifiability and data security needed in safeguards, lead to the automation of a mass spectrometer. Starting with a continuous feeding of samples via a high vacuum lock and including the subsequent heating, focussing and scanning of the samples as well as the final evaluation of the source data (taking alpha spectrometry and the weights required for the isotope dilution technique into account), the mass spectrometric procedure was completely automated. For this purpose, a serial CH-5 instrument of varian mat was modified to be operated by a varian 620/I computer. A newly developed three chamber high vacuum lock was attached to this system and the final evaluation is made with an IBM 370. The system has been used in operation for the isotope analysis of U, Pu and Nd for one year. Major breakdowns of the hardware did not occur, however, the computer programmes had to be steadily improved according to the changing characteristics of the samples. Compared to manual operation, the automat is superior in its throughput and speed of analysing series of similar samples. The automatic procedure objectifies the analysis and the complete evaluation ensures a better data security. (Orig./HP). (author)

  10. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  11. Molecular characterization of alpha 1- and alpha 2-adrenoceptors.

    Science.gov (United States)

    Harrison, J K; Pearson, W R; Lynch, K R

    1991-02-01

    Three 'alpha 1-adrenoceptors' and three 'alpha 2-adrenoceptors' have now been cloned. How closely do these receptors match the native receptors that have been identified pharmacologically? What are the properties of these receptors, and how do they relate to other members of the cationic amine receptor family? Kevin Lynch and his colleagues discuss these questions in this review.

  12. SuperSpec: A Revolutionary New Spectrometer for Submillimeter Astronomy

    Data.gov (United States)

    National Aeronautics and Space Administration — SuperSpec is a new spectrometer for submm astronomy. SuperSpec stands out from other submm spectrometers in that the detectors are coupled to a series of resonant...

  13. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  14. The TRIUMF low energy pion spectrometer and channel

    International Nuclear Information System (INIS)

    Sobie, R.J.; Drake, T.E.; Barnett, B.M.; Erdman, K.L.; Gyles, W.; Johnson, R.R.; Roser, H.W.; Tacik, R.; Blackmore, E.W.; Gill, D.R.

    1983-08-01

    A low energy pion spectrometer has been developed for use with the TRIUMF M13 pion channel. The combined channel and spectrometer resolution is presently 1.1 MeV at T = 50 MeV. This is limited by the amount of gas and detector material in the spectrometer in addition to the inherent resolution of the channel. Improvements to both the spectrometer and channel are discussed

  15. Hardware of automation systems of isotope mass spectrometers

    International Nuclear Information System (INIS)

    Manojlov, V.V.; Meleshkin, A.S.; Novikov, L.V.; Kornil'ev, S.O.; Voronin, B.M.

    1997-01-01

    The modernized hardware of isotope mass spectrometers is described. The modern control systems for the mass spectrometers are fulfilled on the basis of IBM/PC AT. Versions of subsystems mass spectrometer control through a standard bus and through a digital-to-analog converter are considered. The characteristics of an electrometric amplifier and interface cards developed for modernized automation systems of the isotope mass spectrometers are presented

  16. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  17. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  18. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mass spectrometer for clinical use. 862.2860 Section 862.2860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for...

  19. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  20. Measured properties of an out-of-plane spectrometer

    International Nuclear Information System (INIS)

    Mandeville, J.B.; Cardman, L.S.; Dolfini, S.M.; Kim, W.; Laszewski, R.M.; Papanicolas, C.N.; Williamson, S.E.; Alarcon, R.; Goergen, J.; Martinez, D.; Dow, K.; Farkhondeh, M.M.; Tieger, D.; Zumbro, J.; Epstein, M.; Magaziotis, D.; Bernstein, A.; Bertozzi, W.; Bhushan, V.; Gilad, S.; Holtrop, M.; Jordan, D.; McIlvain, T.; Weinstein, L.; Beck, R.; Boeglin, W.; Offermann, E.A.J.M.

    1994-01-01

    We report the results of measurements of the properties of a prototype out-of-plane magnetic spectrometer (OOPS). This spectrometer is one of four identical modules which, together with a support structure, comprise the OOPS cluster. The performance of the spectrometer was found to closely match its design characteristics. (orig.)

  1. Mind Your p's and Alphas.

    Science.gov (United States)

    Stallings, William M.

    In the educational research literature alpha, the a priori level of significance, and p, the a posteriori probability of obtaining a test statistic of at least a certain value when the null hypothesis is true, are often confused. Explanations for this confusion are offered. Paradoxically, alpha retains a prominent place in textbook discussions of…

  2. Summary of Alpha Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  3. Downsizing of Johansson spectrometer for X-ray fluorescence trace analysis with brilliant undulator source

    CERN Document Server

    Sakurai, K; Inoue, K; Yagi, N

    2001-01-01

    The downsizing of a Johansson-type X-ray fluorescence (XRF) spectrometer has been examined as a way of enhancing detection efficiency with a tolerable loss of energy resolution. A compact spectrometer equipped with a Ge(2 2 0) analyzing crystal with a Rowland radius of 120 mm has been tested with a highly brilliant helical undulator source at BL40XU, SPring-8. The energy resolution obtained for cobalt K alpha sub 1 (6930.32 eV) was 8.8 eV, which is 10-20 times better than that obtained using a Si(Li) detector, and effectively improved the signal-to-background ratio for XRF spectra. The combination of the present spectrometer and a third generation synchrotron source could provide new opportunities for trace analytical applications, which have been difficult so far by conventional synchrotron XRF experiments based on a Si(Li) detector system. The detection limit obtained for solid bulk samples has reached a level of several tens of ppb.

  4. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  5. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  6. Portable gas chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  7. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  8. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  9. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  10. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Managadze, G.G.

    1991-01-01

    A time-of-flight mass spectrometer comprises an ion source consisting of a grid assembly, a drift space with a focusing system, a reflector and a detector. The grid assembly has the shape of a ring with the internal diameter equal to that of the detector, whereas the focusing system consists of two cylinders coaxially mounted in the drift space whose diameters are equal, respectively, to the internal and the external diameter of the grid assembly of the ion source. The time-of-flight mass spectrometer is intended mainly for studying the mass composition of an inert gas, of a low-energy ion flux as well as of a plasma in a vacuum. (author)

  11. Interface for liquid chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  12. Feasibility studies for the Forward Spectrometer

    International Nuclear Information System (INIS)

    Biernat, Jacek

    2015-01-01

    The Forward Spectrometer designed for the P-barANDA detector will consist of many different detector systems allowing for precise track reconstruction and particle identification. Feasibility studies for Forward Spectrometer done by means of specific reactions will be presented. In the first part of the paper, results of simulations focussing on rate estimates of the tracking stations based on straw tubes will be presented. Next, the importance of the Forward Tracker will be demonstrated through the reconstruction of the ψ(4040) → DD-bar decay. Finally, results from the analysis of the experimental data collected with a straw tube prototype designed and constructed at the Research Center in Juelich will be discussed. (paper)

  13. Inelastic rotor spectrometer at the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.

    1983-01-01

    The spectrometer is designed to measure energy transfer from 50 MeV to 400 MeV covering a range of Q values from 1 to 15 A - 1 . Particular emphasis has been placed on the low Q counter banks where measurements at low Q reduce multiphonon contributions in vibrational spectra, diffusional broadening in liquids and allow measurements to be made on magnetic excitations. All indications are that the energy resolution is as predicted and is certainly twice as good as that of any other spectrometer presently available to the UK users at these energy transfers. Backgrounds on the high angle banks 24 0 to 94 0 are excellent but at the low angles are too high at present for anything but hydrogenous samples. Tests have shown that much of this background comes from the main beam in the area of the collimation between the chopper and the sample, and steps are being taken to improve this area

  14. Superheated drop as a neutron spectrometer

    Science.gov (United States)

    Das, Mala; Chatterjee, B. K.; Roy, B.; Roy, S. C.

    2000-09-01

    Superheated drops are known to vaporise when exposed to energetic nuclear radiation since the discovery of bubble chamber. The application of superheated drops in neutron research especially in neutron dosimetry is a subject of intense research for quite sometime. As the degree of superheat increases in a given liquid, less and less energetic neutrons are required to cause nucleation. This property of superheated liquid makes it possible to use it as a neutron spectrometer. Neutron detection efficiency of superheated drops made of R12 exposed to Am-Be neutron source has been measured over a wide range of temperature -17-60°C and the results have been utilised to construct the energy spectrum of the neutron source. This paper demonstrates that a suitable neutron spectrometer may be constructed by using a single liquid and varying the temperature of the liquid suitably at a closer grid.

  15. Superheated drop as a neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Das, Mala; Chatterjee, B.K.; Roy, B. E-mail: biva@bosemain.boseinst.ernet.in; Roy, S.C

    2000-09-21

    Superheated drops are known to vaporise when exposed to energetic nuclear radiation since the discovery of bubble chamber. The application of superheated drops in neutron research especially in neutron dosimetry is a subject of intense research for quite sometime. As the degree of superheat increases in a given liquid, less and less energetic neutrons are required to cause nucleation. This property of superheated liquid makes it possible to use it as a neutron spectrometer. Neutron detection efficiency of superheated drops made of R12 exposed to Am-Be neutron source has been measured over a wide range of temperature -17-60 deg. C and the results have been utilised to construct the energy spectrum of the neutron source. This paper demonstrates that a suitable neutron spectrometer may be constructed by using a single liquid and varying the temperature of the liquid suitably at a closer grid.

  16. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp,; Michael, P [Danville, CA

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  17. Status of the LEP2 Spectrometer Project

    CERN Document Server

    Dehning, Bernd; Bovet, Claude; Coosemans, Williame; Cornuet, D; Hidalgo, A; Hilleret, Noël; Hublin, M; Kalbreier, Willi; Leclère, P; Matheson, J; Mugnai, G; Muttoni, Y; Myers, S; Occelli, B; Palacios, J; Perret, R; Placidi, Massimo; Prochnow, J; Rühl, I; Sassowsky, M; Schmickler, Hermann; Valbuena, R; Wells, P S; Wenninger, J; Wilkinson, G R; Hildreth, M D; Roncarolo, F; Torrence, E

    2000-01-01

    The LEP spectrometer has been conceived to provide a determination of the beam energy with a relative accuracy of 10-4 in the LEP2 physics region where insufficient polarisation levels prevent the application of the resonant depolarisation method. The setup consists of a steel bending magnet flanked by a triplet of Beam Position Monitors (BPM) at each side providing a measurement of changes in the bending angle when the beams are accelerated to physics energies. The goal for a 100 ppm relative precision on the beam energy involves a ± 1 micron BPM resolution and the calibration of the dipole bending strength to a 30 ppm accuracy. This paper reports on the results of the commissioning of the Spectrometer during the 1999 LEP Run and on the experience acquired on the behaviour of the several sub-systems with circulating beams.

  18. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  19. Synchronized high speed scanning infrared spectrometer.

    Science.gov (United States)

    Camm, J C; Taylor, R L; Lynch, R

    1967-05-01

    A spectrometer which scans a wavelength band of 0.6 micro in 30 microsec and is useful from 2-6 micro is described. The instrument can be synchronized with a pulsed source with a minimum triggering delay of 15microsec. The instrument is basically an Ebert spectrometer equipped with an indium antimonide detector at the exit slit, an aluminum scanning mirror placed 5 cm before the exit slit, and a wavelength calibration signal generator. The scanning mirror, which is supported on pivots inside a helical coil, deflects the spectrum through an angle of approximately 90 degrees onto the exit slit. When a capacitor is discharged through the coil, the resulting magnetic field spins the aluminum mirror causing the spectrum to move across the exit slit. The wavelength calibration signal generator produces a series of electrical pulses as the scanning mirror turns, permitting wavelength calibration when the pulses are displayed below the spectrometer signal on a dual beam oscilloscope. Using this instrument on a shock tube, data have bee obtained on the absolute spectral radiation intensity of air, nitrogen, neon, and argon heated by reflected shocks to equilibrium temperatures in the range of 6000 degrees K to 10,000 degrees K. In this temperature region with these gases, an important source of continuum radiation is neutral Bremsstrahlung caused by the inelastic scattering of electrons from neutral atoms and molecules. By employing the scanning ir spectrometer it has been possible to separate the continuum radiation from contributions owing to lines and bands and determine the cross section for the neutral Bremsstrahlung.

  20. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  1. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  2. Mobile environment for an emission spectrometer

    Science.gov (United States)

    Radziak, Kamil; Litwin, Dariusz; Galas, Jacek; Tyburska-Staniewska, Anna; Ramsza, Andrzej

    2017-08-01

    The paper describes a mobile application to be used in a chemical analytical laboratory. The program running under the control of Android operating system allows for preview of measurements recorded by the emission spectrometer. Another part of the application monitors operational and configuration parameters of the device in real time. The first part of this paper includes an overview of the atomic spectrometry. The second part contains a description of the application and its further potential development direction.

  3. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...... or experimentally determined probability distributions may be used. The application to the study of the dispersion relation for excitations in a crystal is outlined...

  4. Some characteristics of a miniature neutron spectrometer

    International Nuclear Information System (INIS)

    Sekimoto, H.; Oishi, K.; Hojo, K.; Hojo, T.

    1984-01-01

    Some characteristics of an NE213 miniature spherical spectrometer for in-assembly fast-neutron spectrometry were measured. As the bubbling time changed, the pulse-height did not change appreciably, but the n-γ discrimination characteristics changed considerably. As the count rate changed, the pulse-height did not change appreciably, and the change of the n-γ discrimination characteristics was acceptable. The neutron response function was measured to be almost isotropic except for the backward direction. (orig.)

  5. Capillary zone electrophoresis-mass spectrometer interface

    Science.gov (United States)

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  6. The third generation of multichannel Raman spectrometers

    OpenAIRE

    Deffontaine, A.; Bridoux, M.; Delhaye, M.; Da Silva, E.; Hug, W.

    1984-01-01

    A new multichannel Raman spectrometer is described. Each component of the optical part (sample compartment, sample adjustment provisions, filters, fore-monochromator, spectrograph) have been carefully designed to build a high quality, high reliability and easy to use instrument. The detection system uses a self-scanned photodiode array and the read-out electronics and data acquisition system are based on electronic circuits and logics specially developed to give a high dynamic range with low ...

  7. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  8. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  9. Imaging spectrometers developments in Italian space agency

    Science.gov (United States)

    de Cosmo, V.

    2017-11-01

    The imaging spectroscopy is a very powerful tool for the Remote Sensing of the Solar Planets and, in particular, of the Earth. This technique permits to get not only the geometrical information but also the spectral information of the scenario under observation. The number of potential data-products obtainable in this way could be very high, useful and of benefit in several fields of Earth Observation. If these are the advantages on the other side the new dimension will increase the number of data by the number of spectral band, and for this it will increase the technical requirements, mainly, on the Instrument Optical Design, Focal Plane Array, Storage/Compressor Data Unit, Data Transmission etc. The instruments able to produce 3-dimensional data (cube image) are the imaging spectrometers, which depending on the way how the spectral contents is obtained, can be divided in two main categories: •The Fourier Imaging spectrometers •The Dispersing Imaging spectrometers Each one of the above categories of spectrometers has advantages and disadvantages and a choice between the two types can be made only performing a trade-off with the mission requirements. The Italian Space Agency (ASI) from long time is promoting and funding, to industrial and scientific levels, several activities covering almost all the aspects related to the imaging spectroscopy: from the applications to the instruments, from the data compressors to future hyperspectral missions. Purpose of this paper is to present the main results of the activities supported by ASI in this field with particular emphasis on the activities related to the studies and developments of new instruments.

  10. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  11. MERTIS: a highly integrated IR imaging spectrometer

    Science.gov (United States)

    Walter, I.; Hirsch, H.; Jahn, H.; Knollenberg, J.; Venus, H.

    2006-08-01

    With a background of several instrument developments in the past the German Aerospace Center in Berlin proposed for ESA's deep space mission BepiColombo an imaging spectrometer which meets the challenges of limited technical resources and a very special operational environment. An 80-channel push broom-type spectrometer has been drafted and it s development has been started under the name MERTIS (MErcury Radiometer and Thermal Infrared Spectrometer). The instrument is dedicated to the mineralogy surface science and thermal characteristics studies of the innermost planet. It is based on modern un-cooled micro-bolometer technology and all-reflective optics design. The operation concept principle is characterised by intermediate scanning of the planet, deep space and black bodies as calibration targets. A miniaturised radiometer is included for low level temperature measurements. Altogether the system shall fit into a CD-package sized cube and weigh less than 3 kg. The paper will present the instrument architecture of MERTIS, its design status and will show the results of first components being built.

  12. Silicon Microleaks for Inlets of Mass Spectrometers

    Science.gov (United States)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  13. Sensing systems using chip-based spectrometers

    Science.gov (United States)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  14. Various experiments with the omicron spectrometer

    CERN Document Server

    Allardyce, Brian W; Bailey, J; Bos, K; Bressani, Tullio; Chiavassa, E; Costa, S; Davies, J D; Dellacasa, G; Frame, D; Gallio, M; Kernel, G; Michaelis, E G; Musso, A; Panighini, M; Stanovnik, A; Tanner, N W; Van Dantzig, R; Van Doesburg, W

    1977-01-01

    A series of experiments are to be performed using a spectrometer with both a large solid angle and a large momentum acceptance; it will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c. Pion scattering from light nuclei will be the prime use of the spectrometer. The spectrometer consists of a large magnet with a usable field volume of 1 m*2 m*0.85 m. The magnetic field is homogeneous to within about 10% over this volume, in which it is intended to place planes of multiwire chambers in front of a target, followed by arrays of multiwire and draft chambers and thin scintillators. Various geometries are possible, but the intention is to detect inside the magnet both the incident particle and the one(s) leaving the target over a large angular range. The information from the various detectors will be handled on-line by an HP computer system, which also performs some preliminary analysis.

  15. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  16. The GRANIT spectrometer; Le spectrometre GRANIT

    Energy Technology Data Exchange (ETDEWEB)

    Baessler, St. [University of Virginia, Charlottesville, VA 22904 (United States); Oak Ridge Nat. Lab., Oak Ridge, TN 37831 (United States); Beau, M.; Kreuz, M.; Nesvizhevsky, V.V. [ILL, 6 rue Jules Horowitz, Grenoble, F-3804(France); Kurlov, V.N. [ISSP, 2 Institutskaia, Chernogolovka, RU-142432 (Russian Federation); Pignol, G.; Protasov, K.V.; Vezzu, F. [LPSC/IN2P3-UJF-INPG, 53 rue des Martyrs, Grenoble, F-38026 (France); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation)

    2010-10-15

    The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces; as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL. It will become operational in 2011. The spectrometer consists of several neutron-optics elements and UCN detectors installed on a massive granite table in an aluminium vacuum chamber with a volume of about 1.5 m{sup 3}. 3 types of detectors will be used at the first stage of the GRANIT experiment: {sup 3}He gaseous proportional counters with extremely low background, position-sensitive nuclear-track UCN detectors will be used to study the spatial distribution in quantum states, and real-time position-sensitive detectors with a resolution of a few hundred microns to measure velocity distributions of neutrons in quantum states. The key elements of the GRANIT spectrometer is a set of mirrors to shape/analyze neutron spectra and to store neutrons in quantum states

  17. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  18. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sung Il

    2006-04-01

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  19. Method of multiplexed analysis using ion mobility spectrometer

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Smith, Richard D [Richland, WA

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  20. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  1. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  2. Recoil mass spectrometers in low-energy nuclear physics

    International Nuclear Information System (INIS)

    Cormier, T.M.

    1987-01-01

    By the ion-optical standards of modern spectrometers in nuclear physics the recoil mass spectrometer is a rather inelegant device. Satisfactory correction of the dominant second-order aberrations have expanded the useful mass range and solid angle of the new spectrometers but not without real loss of mass-resolving power. The new spectrometers will involve compromises between resolution and efficiency. Despite their ion-optical inelegance, existing recoil mass spectrometers have opened important new approaches in low-energy nuclear physics, and the new spectrometers promise similar developments. The authors considered a very limited sample of the potential applications of these instruments. Many new applications will follow the development of the new, higher efficiency spectrometers

  3. ALPHA freezes antiprotons

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Laboratories like CERN can routinely produce many different types of antiparticles. In 1995, the PS210 experiment formed the first antihydrogen atoms and a few years later, in 2002, ATRAP and ATHENA were already able to produce several thousand of them. However, no experiment in the world has succeeded in ‘trapping’ these anti-atoms in order to study them. This is the goal of the ALPHA experiment, which has recently managed to cool down the antiprotons to just a few Kelvin. This represents a major step towards trapping the anti-atom, thus opening a new avenue into the investigation of antimatter properties.   Members of the ALPHA collaboration working on the apparatus in the Antiproton Decelerator experimental hall at CERN. Just like the atom, the anti-atom is neutral. Unlike the atom, the anti-atom is made up of antiprotons (as opposed to protons in the atom) and positrons (as opposed to electrons). In order to thoroughly study the properties of the anti-atoms, scien...

  4. Alpha-1-antitrypsin deficiency.

    Science.gov (United States)

    Bals, Robert

    2010-10-01

    Alpha-1-antitrypsin deficiency (AATD) is a rare genetic disorder associated with the development of liver and lung disease. AAT is a 52-kD glycoprotein, produced mainly by hepatocytes and secreted into the blood. Agglomeration of the AAT-protein in hepatocytes can result in liver disease. Exposure to smoke is the major risk factor for the development of lung disease characterised as early chronic obstructive lung disease (COPD). Diagnosis is based on the analysis of the AAT genotype and phenotype. The measurement of the AAT serum level is useful as screening test. Liver biopsy is not necessary to establish the diagnosis. Therapy for AAT-related liver disease is supportive, a specific therapy is not available. AATD is a rare condition (1:5000-10000) and, as a consequence, data and information on diagnosis and treatment are not easily accessible. This chapter provides a comprehensive overview on AATD, covering basic biology, diagnostic and therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Measurement of $\\alpha_{s}$ with Radiative Hadronic Events

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, R J; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, S; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; Dallavalle, M; de Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkays, A Jr; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schiecks, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, J; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2008-01-01

    Hadronic final states with a hard isolated photon are studied using data taken at centre-of-mass energies around the mass of the Z0 boson with the OPAL detector at LEP. The strong coupling alpha S is extracted by comparing data and QCD predictions for event shape observables at average reduced centre-of-mass energies ranging from 24 GeV to 78 GeV, and the energy dependence of alpha S is studied. Our results are consistent with the running of alpha S as predicted by QCD and show that within the uncertainties of our analysis event shapes in hadronic Z0 decays with hard and isolated photon radiation can be described by QCD at reduced centre-of-mass energies. Combining all values from different event shape observables and energies gives alpha S (Mz)=0.1182 pm 0.0015(stat.) pm 0.0101(syst.).

  6. What Powers Lyman alpha Blobs?

    OpenAIRE

    Ao, Y.; Matsuda, Y.; Beelen, A.; Henkel, C.; Cen, R.; De Breuck, C.; Francis, P.; Kovacs, A.; Lagache, G.; Lehnert, M.; Mao, M.; Menten, K. M.; Norris, R.; Omont, A.; Tatemastu, K.

    2015-01-01

    Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the rad...

  7. Alpha heating in toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.

    1978-01-01

    Ignition (or near-ignition) by alpha heating is a key objective for the achievement of economic fusion reactors. While good confinement of high-energy alphas appears possible in larger reactors, near-term tokamak-type ignition experiments as well as some concepts for small reactors (e.g., the Field-Reversed Mirror or FRM) potentially face marginal situations. Consequently, there is a strong motivation to develop methods to evaluate alpha losses and heating profiles in some detail. Such studies for a TFTR-size tokamak and for a small FRM are described here.

  8. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Science.gov (United States)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  9. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  10. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Rabin, Michael W.; Hoover, Andrew S.; Bacrania, Minesh K.; Croce, Mark P.; Hoteling, N.J.; Lamont, S.P.; Plionis, A.A.; Dry, D.E.; Ullom, J.N.; Bennett, D.A.; Horansky, R.; Kotsubo, V.; Cantor, R.

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ∼15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  11. Determination of alpha particle detection efficiency of an imaging plate (IP) detector

    International Nuclear Information System (INIS)

    Rahman, N.M; Iida, Takao; Yamazawa, Hiromi; Moriizumi, Jun

    2006-01-01

    In order to determine the detection efficiency of the imaging plate (IP) detector, the true radioactivity of the alpha particles, which sampled in the collection media, should be known. The true radioactivity could be accurately predicted with the help of the reference alpha spectrometer measurement. The detection efficiency calculated for the IP was estimated with the theoretical curve and the experimental data. It is assumed that the air sample contained the decay products of both 222 Rn and 220 Rn series, the most significant sources of alpha particles. The present study estimated the detection efficiency of the IP as 39.3% with an uncertainty of 2.9 that is well enough to confirm the future use of the IP as a radiation detector. Experimental materials and methods are described. (S.Y.)

  12. Elastic and inelastic scattering of 1.37GeV alpha particles on 12C

    International Nuclear Information System (INIS)

    Bauer, T.; Bertini, R.; Boudard, A.; Bruge, G.; Catz, H.; Chaumeaux, A.; Couvert, P.; Duhm, H.H.; Fontaine, J.M.; Garreta, D.; Layly, V.; Lugol, J.C.; Schaeffer, R.

    Elastic and inelastic scattering of 1.37GeV alpha-particles have been measured by means of the SPES I magnetic spectrometer facility. The alpha-particles were accelerated by the synchrotron Saturne. Angular distributions have been measured in a 3-15 deg angular range for the ground and the first three excited states in 12 C. The energy resolution was 400-700keV. Calculations have been performed in the framework of the Kerman, McManus and Thaler formalism. The nucleon-alpha amplitudes have been calculated from the nucleon-nucleon data at 350MeV by means of the Glauber model and checked on the experimental p- 4 He data at the same energy [fr

  13. Ultra-compact MEMS FTIR spectrometer

    Science.gov (United States)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  14. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  15. Progress in commercial TXRF spectrometer for semiconductors

    International Nuclear Information System (INIS)

    Nishihagi, K.

    2000-01-01

    In the scale down of ULSI devices, it is required to reduce contamination of metal or particle due to get higher yield. For the metallic contamination, we are trying to develop to get higher sensitivity in direct-TXRF method, however, VPD-TXRF is the most important method to get 10 7 to 10 8 atoms/cm 2 sensitivity. For the particle contamination, we have developed software to link TXRF spectrometer with particle counter because not only position or size but also composition analysis have got required. In semiconductor industries, there are two important changing for improvement on production management system as COO (Cost Of Ownership) or standardization. One is the size of wafer has changed from 200 mm to 300 mm. Against this, we have redesigned TXRF spectrometer for 300 mm wafer without down of sensitivity. The other is the production system has become completely automated. On this point, we have also redesigned to link TXRF spectrometer with SMIF (Standard Mechanical Interface) or FOUP (Front Opening Unified Pod) as mini-environment, and with SECS 2 (SEMI Equipment Communications Standard 2) or GEM 300 (Generic Equipment Model) as automatically standardization. We shall also introduce some applications about new materials using TXRF such as Ta 2 O 5 , ZrO 2 and HfO 2 for high-k materials, and also Ru, SRO and IrO 2 for electrode materials. Furthermore, we shall introduce our new equipment for thickness and composition analysis such as PZT, BST and MOCVD TiN thin films. (author)

  16. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  17. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  18. Computerized mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.; Dupzyk, R.J.

    1976-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of data acquisition allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  19. Mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.

    1975-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly-swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of sweeping allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  20. The Omega spectrometer in the West Hall.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  1. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  2. Microprocessor-controlled portable neutron spectrometer

    International Nuclear Information System (INIS)

    Hunt, G.F.; Kaifer, R.C.; Slaughter, D.R.; Strout, R.E. II; Rueppel, D.W.

    1979-01-01

    A neutron spectrometer that acquires and unfolds data in the field has been developed for use in the energy range from 1 to 20 MeV. The system includes an NE213 organic scintillation detector, automatic gain stabilization, automatically stabilized pulseshape discrimination, an LSl-11 microprocessor for control and data reduction, and a multichannel analyzer for data acquisition. The system, with the exception of the multichannel analyzer, is mounted in a suitcase 47 by 66 by 23.5 cm. The mass is 23.5 kg

  3. The Triple Axis and SPINS Spectrometers.

    Science.gov (United States)

    Trevino, S F

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  4. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  5. Dual waveband compact catadioptric imaging spectrometer

    Science.gov (United States)

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  6. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  7. A novel spectrometer for neutrino experiments

    CERN Document Server

    Pasqualini, Laura

    2015-01-01

    The WA104-NESSiE program developed in the context of the CERN Neutrino Platform, includes an innovative spectrometer to measure the charge and the momentum of muons in 0.5-5 GeV/c range. A tracking apparatus with a spatial resolution of 1 mm was designed, to be placed in a magnetized air volume in order to achieve a charge resolution and mis-identification of better than 1% at 1 GeV/c. Preliminary results obtained by detecting cosmic ray muons are reported.

  8. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  9. Full-absorption scintillation spectrometer for neutrons

    International Nuclear Information System (INIS)

    Dzhelepov, V.P.; Filchenkov, V.V.; Konin, A.D.; Rudenko, A.I.; Solovieva, G.M.; Zinov, V.G.

    1988-01-01

    A full-absorption scintillation spectrometer for neutrons (volume of scintillator = 24 l) has been developed and employed in investigations of muon catalysed processes. Its application allows: (a) Considerably increasing the rate of accummulation of events; (b) efficiently using muon catalysis multiplicity for fuller and more reliable determination of its parameters; (c) significantly reducing uncertainty in the calculated and experimentally found values of neutron detection efficiency. The device combines good spectrometric properties for neutron energies E n = 1-6 MeV and reliable n-γ separation (the degree of separation for a Pu-Be source 3 starting from an electron energy of 50 keV). (orig.)

  10. MPS [Multiparticle Spectrometer] data acquisition software system

    International Nuclear Information System (INIS)

    Saulys, A.C.; Etkin, A.; Foley, K.J.

    1989-01-01

    A description of the software for a FASTBUS based data acquisition system in use at the Brookhaven National Laboratory Multiparticle Spectrometer is presented. Data reading and formatting is done by the SLAC Scanner Processors (SSP's) resident in the FASTBUS system. A multiprocess software system on VAX computers is used to communicate with the SSP's, record the data, and monitor on-line the progress of high energy and heavy ion experiments. The structure and the performance of this system are discussed. 4 refs., 1 fig

  11. Recent progress in the chopper spectrometer, INC

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Arai, Masatoshi; Kawai, Masayoshi

    2001-01-01

    A guide tube comprising supermirrors, of which the critical wavenumber is three times as large as that of natural nickel, was installed in the primary flight path of the chopper spectrometer, INC, at KENS. Also, the characteristics of the ambient-temperature H 2 O moderator, which INC is facing, was changed by renewal construction of the neutron source at KENS. We discuss here an improvement in the performance of INC by a comparison with the previous performance. We also report on the development on a goniometer for single-crystal experiments at low temperatures. (author)

  12. The triple axis and SPINS spectrometers

    International Nuclear Information System (INIS)

    Trevino, S.F.

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments

  13. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  14. Lead Slowing Down Spectrometer Status Report

    International Nuclear Information System (INIS)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R.C.; Imel, G.R.; Kulisek, Jonathan A.; O'Donnell, J.M.; Weltz, Adam

    2012-01-01

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  15. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  16. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    Science.gov (United States)

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  17. Classification of alpha 1-adrenoceptor subtypes

    NARCIS (Netherlands)

    Michel, M. C.; Kenny, B.; Schwinn, D. A.

    1995-01-01

    Two alpha 1-adrenoceptor subtypes (alpha 1A and alpha 1B) have been detected in various tissues by pharmacological techniques, and three distinct cDNAs encoding alpha 1-adrenoceptor subtypes have been cloned. The profile of an increasing number of subtype-selective compounds at cloned and endogenous

  18. General study of asymmetrical crossed Czerny-Turner spectrometer.

    Science.gov (United States)

    Tang, Ming; Fan, Xianguang; Wang, Xin; Xu, Yingjie; Que, Jing; He, Jian

    2015-11-20

    A study of the spectrum resolution, wavelength range, and primary aberration of the asymmetrical crossed Czerny-Turner spectrometer is presented by deducing the relationship between them and structural parameters of the spectrometer in a new way of thinking based on simple but effective geometric models. The analysis was verified in an experiment and simulation performed on the optical design program ZEMAX, and the obtained results agree with the analysis. Owing to the analysis, initial designed parameters of the spectrometer were given and then optimized by ZEMAX; with the instruction of the study, a small adjustment was made in the actual alignment to obtain the desired final spectrometer. The spectrometer successfully measured the last four characteristic peaks of the Raman spectrum of CCL4, which demonstrates that the research provides important guidance to the design and alignment of an asymmetrical crossed Czerny-Turner spectrometer.

  19. Development of triple axis neutron spectrometer (Paper No. 24)

    International Nuclear Information System (INIS)

    Pal, B.C.; Wadhwa, N.R.; Goveas, S.H.

    1987-02-01

    The triple axis neutron spectrometers are the basic instruments intended for use with neutron beams from reactors. Various types of spectrometers, each devoted to different kinds of measurement can be designed and manufactured, once a prototype having all the attributes of a versatile instrument is designed and developed. With the view to achieving self reliance in this field, Central Workshops of Bhabha Atomic Research Centre (BARC), Bombay designed and developed a prototype of triple axis spectrometer meeting the specifications prepared by Nuclear Physics Division of BARC . This spectrometer, with a moving wedge system was successfully manufactured and installed at 'DHRUVA'. Another version of this spectrometer, called the 'Polarised Neutron Spectrometer' was also built and exported to South Korea and installed at Korea Advanced Energy Research Institute, Seoul. This paper deals with basic concept, development of design, engineering of mechanical assemblies, the manufacturing approach and problems encountered during manufacture. (author). 3 figs

  20. Chirped Pulse Spectrometer Operating at 200 GHz

    Science.gov (United States)

    Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin

    2018-01-01

    The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.

  1. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  2. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  3. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  4. New imaging spectrometer for auroral research

    International Nuclear Information System (INIS)

    Rairden, R.; Swenson, G.

    1994-01-01

    A Loral 1024 x 1024 CCD array with 15-micron pixels has been incorporated as the focal plane detector in a new imaging spectrometer for auroral research. The large format low-noise CCD provides excellent dynamic range and signal to noise characteristics with image integration times on the order of 60 seconds using f/1.4 camera optics. Further signal enhancement is achieved through on-CCD pixel binning. In the nominal binned mode the instrument wavelength resolution varies from 15 to 30 angstrom across the 5000 to 8600 angstrom spectral range. Images are acquired and stored digitally on a Macintosh computer. This instrument was operated at a field site in Godhavn, Greenland during the past two winters (1993, 1994) to measure the altitude distribution of the various spectral emissions within auroral arcs. The height resolution on an auroral feature 300 km distant is ∼1 km. Examples of these measurements are presented here in snapshot and summary image formats illustrating the wealth of quantitative information provided by this new imaging spectrometer

  5. The optical frequency comb fibre spectrometer.

    Science.gov (United States)

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-10-03

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers.

  6. The optical frequency comb fibre spectrometer

    Science.gov (United States)

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers. PMID:27694981

  7. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  8. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  9. Analog and digital dividers for mass spectrometers

    International Nuclear Information System (INIS)

    Osipov, A.K.

    1980-01-01

    Errors of four different types of stress dividers used in statical mass-spectrometers for determination of mass number by accelerating stress are analyzed. The simplest flowsheet of the analog divider comprises operation amplifier, in the chain of the negative feedback of which a multiplication device on differential cascade is switched- in. This analog divider has high sensitivity to temperature and high error approximately 5%. Application of the multiplier on differential cascade with normalization permits to increase temperature stability and decrease the error up to 1%. Another type of the analog divider is a logarithmic divider the error of which is constant within the whole operation range and it constitutes 1-5%. The digital divider with a digital-analog transformer (DAT) has the error of +-0.015% which is determined by the error of detectors and resistance of keys in the locked state. Considered is the design of a divider based on transformation of the inlet stress into the time period. The error of the divider is determined in this case mainly by stress of the zero shift of the operation amplifier (it should be compensated) and relative threshold stability of the comparator triggering which equals (2-3)x10 -4 . It is noted that the divider with DAT application and the divider with the use of stress transformation within the time period are most perspective ones for statical mass-spectrometers [ru

  10. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  11. Triplication of alpha-globin genes is responsible for unusual alpha 113Leu/alpha 113His-globin chain ratios in sheep.

    Science.gov (United States)

    Vestri, R; Masina, P; Rando, A; Testa, A; Di Gregorio, P

    1987-10-01

    By investigations at the DNA and protein level, it has been shown that in sheep a previously detected, presumed quantitative allele of the II alpha 113His gene, displaying a reduced efficiency (called the II alpha 113His decreases gene), is carried by a chromosome bearing three alpha-globin loci. In particular, five sheep having an alpha 113Leu/alpha 113His-chain ratio of about 13:1 (13:1 phenotype) possessed the -I alpha 113Leu-II alpha 113Leu-/-I alpha 113Leu-II alpha 113Leu-III alpha 113His decreases genotype. One sheep showing a alpha 113Leu/alpha 113His-chain ratio of about 3:1 (3:1 phenotype) had the -I alpha 113Leu-II alpha 113His-/-I alpha 113Leu-II alpha 113Leu-III alpha 113His decreases genotype, while one sheep having a chain ratio of about 6:1 (6:1 phenotype) carried the -I alpha 113Leu-II alpha 113Leu-II alpha 113His decreases-/-I alpha 113Leu-II alpha 113Leu-III alpha 113His decreases genotype. Nineteen sheep, displaying the common phenotypes, all possessed the alpha alpha/alpha alpha gene arrangement. Furthermore, the possible location of the gene with reduced efficiency and the expression of the three genes in the triple alpha-globin loci chromosome are discussed.

  12. Study and operation of a mini portable germanium spectrometer

    International Nuclear Information System (INIS)

    Nasri, Mohamed

    2010-01-01

    The study allowed us to master a technique for analysis of radioactive element: this is the gamma ray spectrometry. The Gamma ray spectrometry allows us to determine the activities of gamma emitters. In this study we used a portable gamma spectrometer for measurements on site. The spectrometer requires two types of calibration. We conducted a comparative study of activity of soil samples obtained in the laboratory and the results made by the portable spectrometer.

  13. Design, calibration and assembly of an Offner imaging spectrometer

    International Nuclear Information System (INIS)

    Gonzalez-Nunez, Hector; Vazquez-Vazquez, Carmen; Lopez Lago, Elena; Mouriz, M Dolores; Montero-Orille, Carlos; Prieto-Blanco, Xesus; De la Fuente, Raul

    2011-01-01

    We present a rapid and efficient method of design, assembly and calibration of an Offner dispersive imaging spectrometer. Experimental results are described from a laboratory prototype that was built adapting an analytic model to an experimental design. This imaging spectrometer has a spectral range from 400 nm to 1000 nm, 245 spectral bands and an f number of 2.4. Therefore, this work allows high optical quality and low cost imaging spectrometers to be built.

  14. A high Luminosity electrostatic spectrometer for conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Baeverstam, U.; Bodlund-Ringstroem, B.; Bohm, C.; Ekdahl, T.; Liljeqvist, D.

    1977-10-01

    The properties of the electrostatic mirror spectrometer, especially its luminosity at modest resolution, are investigated by means of computer simulation. On the basis of the results of the simulations a spectrometer is built, which has figures of merit in very good agreement with the computed results. For a circular source having a radius equal to one tenth of the radius of the inner cylinder of the spectrometer a resolution (fwhm) of 2.5 precent is reached. (author)

  15. Wide swath imaging spectrometer utilizing a multi-modular design

    Science.gov (United States)

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  16. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  17. Optimization of time-correlated single photon counting spectrometer

    International Nuclear Information System (INIS)

    Zhang Xiufeng; Du Haiying; Sun Jinsheng

    2011-01-01

    The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)

  18. Optical spectrometer for an electron-probe microanalyzer

    International Nuclear Information System (INIS)

    Zamoryanskaya, M.V.; Zamoryanskij, A.N.; Vajnshenker, I.A.

    1987-01-01

    Optical spectrometer for the ''Kamebax'' electron-probe microanalyzer permitting to carry out cathodoluminescence analysis together with X-ray diffraction analysis of a sample microvolume, is described. The use of the optical spectrometer in certain cases permits to increase the sensitivity of microanalysis by 2-3 orders, to determine the valency of luminescenting impurities, to study structural defects of microvolumes. The optical spectrometer has the resolution not worse than 0.1 nm over the whole visible region of spectrum (35-750 nm). The spectrometer is used for the study of cathodoluminescence spectra of mineral microvolumes when solving certain problems of technological mineralogy

  19. Uncooled near- and mid-IR spectrometer engine., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Agiltron proposes to develop an extremely compact and high sensitivity uncooled near- and mid-infrared (NMIR) spectrometer engine for planetary compositional...

  20. Contribution to the study of the alpha-alpha interaction

    International Nuclear Information System (INIS)

    Darriulat, Pierre

    1965-01-01

    The new variable energy cyclotron at Berkeley that can accelerate an alpha beam up to an energy of 130 MeV and the mass production of lithium diffused junctions have enabled us to perform 2 series of measurement, in the first one we use alpha beams with an energy ranging between 50 and 120 MeV to study alpha-alpha forces in the second one we use the flexibility of the variable energy cyclotron the resonances around 40 MeV, region that can not yet be reached by tandem accelerators. This work is divided into 6 chapters. The first chapter is dedicated to the formalism of partial wave analysis and the theory of the compound nucleus. In the second chapter the author presents the 88 cyclotron at Berkeley and the diffusion chamber, the alpha detectors are lithium diffused junctions made of silicon. The third chapter deals with the experimental methods used and the issue of the reduction of the volume of data. In the fourth chapter the results obtained in the upper part of the energy range are described in terms of complex shifts that allow the description of the α-α interaction at high energy. The very low impact parameter has enabled us to find 2 new components (l=6 and l=8) of the rotational spectrum and to define a more accurate phenomenological potential. The fifth chapter is dedicated to the narrow resonances we have found between 12 and 27 MeV. We present in the last chapter a calculation of the binding energy of C 12 in which we have considered the 12 C nucleus as formed by 3 alpha particles interacting with each other through the phenomenological potential defined above

  1. Workshop on Precision Measurements of $\\alpha_s$

    Energy Technology Data Exchange (ETDEWEB)

    Bethke, Siegfried; /Munich, Max Planck Inst.; Hoang, Andre H.; /Vienna U.; Kluth, Stefan; /Munich, Max Planck Inst.; Schieck, Jochen; /Munich U.; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  2. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-01-01

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These

  3. Multilayer x-ray mirrors for the objective crystal spectrometer on the Spectrum Roentgen Gamma satellite

    DEFF Research Database (Denmark)

    Louis, E.; Spiller, E.; Abdali, S.

    1995-01-01

    with Kr+- and Ar+- ions of 300, 500, and 1000 eV. We examined the effect of different polishing parameters on the smoothening of the Co- and Ni-layers. The in-situ reflectivity of lambda equals 3.16 nm during deposition and the ex-situ grazing incidence reflectivity of Cu-K(alpha ) radiation (lambda...... multiplied by 6 cm2 Si (111) crystals for the Objective Crystal Spectrometer on the Russian Spectrum Rontgen Gamma satellite. The coatings on the flight crystals have a period Lambda of 3.95 plus or minus 0.02 nm and a reflectivity of more than 8% averaged over s- and p-polarization over the entire...

  4. Low-pressure, multistep, multiwire proportional counter for the time-of-flight isochronous spectrometer

    International Nuclear Information System (INIS)

    Vieira, D.J.

    1985-01-01

    A low-pressure, multistep, multiwire proportional counter (MSMWPC) has been developed for the characterization and testing of the time-of-flight isochronous (TOFI) spectrometer and its associated secondary-beam transport line. This type of counter was selected because of its high sensitivity, large dynamic range, and good position (0.2 mm FWHM) and timing (180 ps FWHM) resolution. Furthermore, because the counter operates at low gas pressures (1-10 torr) and high electric-field strengths, which enable short collection times, it can be used as a transmission counter with thin gas-isolation windows and it can operate at high counting rates. Here the authors discuss the basic operating principle of the MSMWPC, describe the technical details of the detector and signal processing, and report on the performance they have measured for alpha particles and fission fragments

  5. Microbolometer spectrometer opens hoist of new applications

    Science.gov (United States)

    Leijtens, J.; Smorenburg, C.; Escudero, I.; Boslooper, E.; Visser, H.; Helden, W. v.; Breussin, F.

    2017-11-01

    Current Thermal infra red ( 7..14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. This causes the instruments to be bulky, power hungry and expensive. For systems that have medium NETD (Noise Equivalent Temperature Difference) requirements and can operate with high speed optics (system, and using the latest improvements in detector performance, TNO TPD has been able to design a spectrometer that is able to provide co-registered measurements in the 7 to 12 μm wavelength region yielding acceptable NETD performance. Apart from the usual multispectral imaging, the concept can be used for several other applications, among which imaging in both the 3 to 5 and 7 to 12 μm atmospheric windows at the same time (forest fire detection and military recognisance) or wideband flame analysis (Nox detection in industrial ovens).

  6. An electrostatic autoresonant ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Ermakov, A. V.; Hinch, B. J.

    2010-01-01

    A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution ∼60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.

  7. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity ≥0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs

  8. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0-20 KeV, 0-800 KeV and 0-2 MeV, for volume between 2 and 20 ml of three commercial scintillators, Hisafe II, Ultima-gold and Instagel, and quenching degree in the interval equivalent to 50%-3% tritium efficiency. This procedure was tested with standard samples of ''3 H, and led to average discrepancies less than 10% for activity => 0,6 Bq, against conventional methods for which the discrepancies are twice on average

  9. A summation free β+-endpoint spectrometer

    International Nuclear Information System (INIS)

    Keller, H.; Kirchner, R.; Klepper, O.; Roeckl, E.; Schardt, D.; Simon, R.S.; Kleinheinz, P.; Liang, C.F.; Paris, P.

    1990-08-01

    A β + -endpoint spectrometer is described, where positrons are observed in an 11-mm thick silicon detector in coincidence with subsequent γ-rays meausred in a germanium detector, and where the summing of the positron energy with the annihilation radiation is prevented by detecting both 511-keV quanta in opposite segments of a BGO ring surrounding the silicon detector. The procedure of measuring and analyzing the data is outlined for the decay of the 11/2 - -isomer of 149 Tb; its endpoint energy is determined to be 1853(10) keV, in agreement with the literature. The accuracy and reliability of β + -endpoint measurements is discussed in comparison to the EC/β + -ratio method. (orig.)

  10. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  11. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  12. New spectrometers for diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Just, W.; Schmatz, W.; Bauer, G.

    1975-01-01

    The study of defects in solids can be complemented in many cases by the diffuse scattering of X-rays, neutrons or electrons to draw information about size, symmetry and position of defects. Since defect concentrations are usually very low in order to avoid interactions, the intensity problem is of major concern as well as the distinction between the interesting signal and other sources of scattering. Two neutron spectrometers are described which were specially designed to tackle these problems, one of them operating in Juelich, the other one on the HFR in Grenoble. The second one, also offering the possibility of employing polarized neutrons, is specially suited to the study of diffuse magnetic scattering

  13. Polarized triple-axis spectrometer TASP

    International Nuclear Information System (INIS)

    Boeni, P.; Keller, P.

    1996-01-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs

  14. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  15. LANL/Green Star spectrometer tests

    International Nuclear Information System (INIS)

    Sampson, T.E.; Cremers, T.L.; Vo, D.T.; Seldiakov, Y.P.; Dorin, A.B.; Kondrashov, M.V.; Timoshin, V.I.

    1997-12-01

    The US and Russia have agreed to the joint development of a nondestructive assay system for use to support the dismantlement of nuclear weapons in Russia. This nondestructive assay system will be used to measure plutonium produced by the conversion of Russian nuclear weapons. The NDA system for Russia will be patterned after the ARIES NDA system being constructed at Los Alamos. One goal of the program is to produce an NDA system for use in Russia that maximizes the use of Russian resources to facilitate maintenance and future upgrades. The Green Star SBS50 Single Board Spectrometer system (Green Star Ltd., Moscow, Russia) has been suggested for use as the data acquisition component for gamma ray instruments in the system. Possible uses are for plutonium isotopic analysis and also segmented gamma scanning. Green Star has also developed analysis software for the SBS50. This software, both plutonium isotopic analysis and uranium enrichment analysis, was developed specifically for customs/border inspection applications (low counting rate applications and identification as opposed to quantification) and was not intended for MC and A applications. Because of the relative immaturity of the Green Star plutonium isotopic analysis software (it has been under development for only one year and is patterned after US development circa 1980), it was tentatively agreed, before the tests, that the Russian NDA system would use the Los Alamos PC/FRAM software for plutonium isotopic analysis. However, it was also decided to include the Green Star plutonium isotopic software in the testing, both to quantify its performance for MC and A applications and also to provide additional data to Green Star for further development of their software. The main purpose of the testing was to evaluate the SBS-50 spectrometer as a data acquisition device for use with LANL software

  16. Compact imaging Bragg spectrometer for fusion devices

    International Nuclear Information System (INIS)

    Bertschinger, G.; Biel, W.; Jaegers, H.; Marchuk, O.

    2004-01-01

    A compact imaging x-ray spectrometer has been designed for tokamaks and stellarators to measure the plasma parameters at different spatial chords. It has been optimized for high spectral resolution and high sensitivity. High spectral resolution is obtained by using solid state detectors and minimizing the imaging errors of the spherical crystals. It is shown, that using spherical crystals the solid angle and hence the throughput can be increased significantly, without compromising the spectral resolution. The design is useful for the measurement of the spectra of He- and H-like ions from Si to Kr. The spectral resolution is sufficient for the measurement of plasma parameters. The temporal resolution is high enough for transport studies by gas puff and laser ablation experiments. The design is based on a modified Johann spectrometer mount, utilizing a spherically bent crystal instead of the cylindrically bent crystal in the traditional Johann mount. The astigmatism of the wavelength selective reflection on the spherical crystal is applied to obtain imaging of an extended plasma source on a two-dimensional detector. For each element, a separate crystal is required, only in few cases, a crystal can be used for the spectra of two elements. For the spectra of most of the He-like ions from Si up to Kr, suitable crystal cuts have been found on quartz, silicon and germanium crystals with Bragg angles in a small interval around the design value of 53.5 deg. All of the crystals have the same radius. They are fixed on a rotational table. The distance to the detector is adjusted by an x-y table to fit to the Rowland circle

  17. Usage of portable spectrometers for prevention of radioactive and nuclear materials illicit trafficking

    International Nuclear Information System (INIS)

    Bystrov, Evgenij; Antonau, Uladzimir; Gurinovich, Uladzimir; Kazhamiakin, Valery; Petrov, Vitaly; Shulhovich, Heorhi; Tischenko, Siarhei

    2008-01-01

    Full text: It is publicly known that radioactive and nuclear materials can be shielded not only with passive protection but also be masked with legally transported radioactive substances. These radioactive substances can be contained as medical radionuclides incorporated in human body or in cargos with high content of natural isotopes 40 K, 232 Th, 238 U, etc. This constitutes an additional serious obstacle to detection of radioactive substances trafficking. Dosimeters, search monitors or radiation portal monitors have insufficient capability for this objective. It is necessary to use much more intellectual instruments that can detect both gamma radiation and other types of radiation (neutron, alpha, beta), recognize radionuclide type and identify it with high probability. To address these objectives, we have developed portable scintillation gamma spectrometers AT6101 and AT6102 with neutron radiation detection and measurement of surface contamination with alpha and beta particles. Gamma scintillation spectrometry methods using NaI(Tl) crystal allow to detect source of gamma radiation, measure ambient dose rate equivalent of gamma radiation and identify radionuclide composition. The implemented spectrometry method of gamma radiation dose rate measurement using 'spectrum-dose' function allows to measure ambient dose rate equivalent of gamma radiation with relative error up to 20%. Radionuclide identification is based on channel-by-channel spectrum convolution with the second derivative from Gaussian function. Peak search and analysis and peak position comparison to energy values of gamma lines of library radionuclides is performed in convolution spectrum. Analysis of relative intensity of detected gamma lines with peak detection threshold overrun allows qualitative definition of radionuclide composition in object under examination. The special feature of the spectrometers is LED stabilization through spectrometric path. The stabilization system covers PEM, pre

  18. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hall, J.W.; Hutchings, M.T.

    1975-07-01

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  19. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  20. Automation, development and performance of a photoacoustic spectrometer

    International Nuclear Information System (INIS)

    Cavalheiro, F.R.F.

    1985-01-01

    This work consists in the development of a circuit to interface a photoacoustic spectrometer with a microcomputer. The obtained spectra are identical to those obtained in commercial photoacoustic spectrometers. The system permits a great versatility and it has possibilities to automatize other types of experiments. The system can be duplicated from national components and at a relatively low coast. (author)

  1. Repeatable intensity calibration of an X-ray photoelectron spectrometer

    International Nuclear Information System (INIS)

    Seah, M.P.; Spencer, S.J.

    2006-01-01

    Ten years ago, NPL developed an infrastructure for calibrating the intensity response functions of electron spectrometers for Auger electron and for X-ray photoelectron spectroscopies. Two software systems were developed: one for Auger electron spectrometers or for Auger electron and X-ray photoelectron spectrometers combined, and one for X-ray photoelectron spectrometers on their own; the latter being applied if no suitable electron gun is available. The system for Auger electron and X-ray photoelectron spectrometers combined has been used regularly to calibrate the Metrology Spectrometer II at NPL and experience shows that this gives an instrumental intensity consistency of 0.4% over 10 years. Evaluations have not previously been reported at this level. The system for Auger electron and X-ray photoelectron spectrometers combined is used here in preference to the system solely for X-ray photoelectron spectrometers since it is more robust to the sample condition and can be used over a wider energy range. These issues, and how observed variations in the instrument intensity response may arise, are explained

  2. Evaluation of HOPG mounting possibilities for multiplexing spectrometers

    DEFF Research Database (Denmark)

    Groitl, Felix; Bartkowiak, Marek; Bergmann, Ryan M.

    2017-01-01

    Four different methods for mounting HOPG analyzer crystals on Si holders have been evaluated in the design process of the new multiplexing spectrometer CAMEA. Contrary to neutron optics used in standard spectrometers, the new instrument concept employs a series of analyzer segments behind each ot...

  3. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  4. High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer

    Indian Academy of Sciences (India)

    High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer. N. Kameswara Rao, S. Sriram, K. Jayakumar & F. Gabriel. Indian Institute of Astrophysics, Bangalore 560 034, India. Abstract. The optical design and performance of the recently commis- sioned fiber fed echelle spectrometer of 2.34 meter Vainu Bappu ...

  5. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    Results suggest that the SEM-EDX is one of the potential tools for rapid detection of metals, namely, As and Cd in himematsutake. Key words: Arsenic (As), cadmium (Cd), scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX), coupled plasma-mass spectrometer (ICP-MS), himematsutake.

  6. SMARTS - a spectrometer for strain measurement in engineering materials

    CERN Document Server

    Bourke, M A M; Ustundag, E

    2002-01-01

    A new spectrometer called SMARTS (Spectrometer for Materials Research at Temperature and Stress) has been commissioned at the Los Alamos neutron science center and entered the user program in August of 2002. Its design maximizes capability and throughput for measurements of (a) residual macrostrain in engineering components and (b) in situ loading. This paper describes some aspects of the instrument. (orig.)

  7. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  8. A GE + BAF2 COMPOSITE GAMMA-RAY SPECTROMETER

    NARCIS (Netherlands)

    KRASZNAHORKAY, A; BACELAR, J; BALANDA, A; BUDA, A

    1992-01-01

    The design of a new gamma-ray spectrometer for detection of high energy photons in the 10-20 MeV region with high resolution and efficiency is presented. Tests with a prototype of the Ge + BaF2 composite gamma-ray spectrometer are discussed. The measured energy resolution and efficiency of the

  9. Determination of the shielding factors for gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Korun, M.; Vodenik, B.; Zorko, B.

    2014-01-01

    A method for determining the shielding factors for gamma-ray spectrometers is described. The shielding factors are expressed by decomposing the peaked background of the spectrometer into contributions of the detector, spectrometer shield and ambient radiation to the spectrometer background. The dimensions of the sample and its mass-attenuation coefficient are taken into account using a simple model. For six spectrometers, with contributions to the background quantified, the shielding factors were determined for the background based on the thorium decay series and the radon daughters. For a water sample with a diameter of 9 cm and a thickness of 4 cm and the nuclides of the thorium decay series that are in the spectrometer shields, the values of the shielding factors lie in the interval 0.95–1.00. For a spectrometer exhibiting the diffusion of radon into the shielding material, the values of the shielding factors for the same sample for gamma-rays from the radon daughters lie in the interval 0.88–1.00. - Highlights: • A model is described to assess shielding factors for gamma-ray spectrometers. • The background due to the detector, shield and ambient radiation must be known. • The sample attenuation, its dimensions and distance from the crystal are considered. • Shielding factors for gamma-rays from the 232 Th and 226 Ra decay chains are assessed. • For a water sample with a mass of 0.25 kg, shielding factors above 0.88 are obtained

  10. Infrared upconversion spectrometer for the mid-ir range

    DEFF Research Database (Denmark)

    2018-01-01

    The invention provides an infrared upconversion spectrometer for determining a mid-IR spectrum of received infrared light with a high resolution. The spectrometer applies upconversion to transform light in the mid-IR to the near-IR range where efficient detectors are available. The upconversion...

  11. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    Science.gov (United States)

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  12. Development of the Fabry-Perot Spectrometer Application

    Science.gov (United States)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  13. Dye laser spectrometer for the analysis of pulsed vacuum arcs

    International Nuclear Information System (INIS)

    Hargis, P.J. Jr.; Robertson, M.M.

    1975-01-01

    A pulsed dye laser spectrometer which is used to obtain detailed single shot spectroscopic measurements of the plasma in a pulsed vacuum arc was developed. The capabilities of this spectrometer are indicated by the detection of laser induced fluorescence signals from 10 6 neutral Ti atoms in the plasma of a pulsed vacuum arc with a Ti anode. (U.S.)

  14. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  15. A perturbed angular correlation spectrometer for material science ...

    Indian Academy of Sciences (India)

    Abstract. A four-detector perturbed angular correlation (PAC) spectrometer has been developed with ultra-fast BaF2 detectors to acquire four coincidence spectra simultane- ously, two at 180° and two at 90°. This spectrometer has double efficiency compared to that of a three-detector set-up. Higher efficiency is desirable for ...

  16. On a low intensity 241Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    In this paper, a new design and construction of a low intensity (100 mCi) 241Am -ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design.

  17. Spectrometer for external detection of magnetic and related double resonance

    International Nuclear Information System (INIS)

    Sagalyn, P.L.; Alexander, M.N.

    1977-01-01

    The patent relates to an improvement in nuclear magnetic resonance spectrometer apparatus. It consists of a spectrometer which utilizes separate materials containing, respectively, sample and detector spin systems as opposed to one in which the sample and detector spins are contained in the same single material

  18. A perturbed angular correlation spectrometer for material science ...

    Indian Academy of Sciences (India)

    A four-detector perturbed angular correlation (PAC) spectrometer has been developed with ultra-fast BaF2 detectors to acquire four coincidence spectra simultaneously, two at 180° and two at 90°. This spectrometer has double efficiency compared to that of a three-detector set-up. Higher efficiency is desirable for PAC ...

  19. On a low intensity 241 Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    In this paper, a new design and construction of a low intensity (100 mCi) 241Am -ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design.

  20. Quadrupole mass spectrometer driver with higher signal levels

    Science.gov (United States)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2003-01-01

    Driving a quadrapole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  1. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  2. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  3. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  4. Improved Alpha Testing Using Hashed Sampling.

    Science.gov (United States)

    Wyman, Chris; McGuire, Morgan

    2017-08-14

    We further describe and analyze the idea of hashed alpha testing from Wyman and McGuire [1], which builds on stochastic alpha testing and simplifies stochastic transparency. Typically, alpha testing provides a simple mechanism to mask out complex silhouettes using simple proxy geometry with applied alpha textures. While widely used, alpha testing has a long-standing problem: geometry can disappear entirely as alpha mapped polygons recede with distance. As foveated rendering for virtual reality spreads, this problem worsens as peripheral minification and prefiltering introduce this problem on nearby objects.

  5. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  6. Large Solid Angle Spectrometer for Inelastic X-ray Scattering

    International Nuclear Information System (INIS)

    Gelebart, F.; Morand, M.; Dermigny, Q.; Giura, P.; Shukla, A.; Rueff, J.-P.

    2007-01-01

    We have designed a large solid angle spectrometer mostly devoted to inelastic x-ray scattering (IXS) studies of materials under extreme conditions (high pressure / temperature) in the hard x-ray range. The new IXS spectrometer is designed to optimize the photon throughput while preserving an excellent resolving power of ∼10000 in the considered energy range. The spectrometer consists of an array of up to 4 spherically bent 0.5 m radius analyzer crystals and a solid-state detector positioned on the Rowland circle. The four analyzers can cover a solid angle more than one order of magnitude larger than conventional spectrometers. The spectrometer is to be installed on the GALAXIES beamline at SOLEIL in the near future

  7. Calibration of a mass spectrometer in steady-state conditions

    International Nuclear Information System (INIS)

    Popov, E.V.; Kupryazhkin, A.Ya.

    1982-01-01

    The mass spectrometer calibration technique by 4 He in steady-state operation conditions by the method of gas expansion from the small volume into the large one using a capacitance micromanometer is described. For realizing steady-state operation of the mass-spectrometer one of the steam-mercury diffusion pumps has been replaced for an adsorption pump. Using adsorption pump permits to maintain working vacuum in the system for more than 3 h. The mass spectrometer calibration has been performed by comparing calibrated volume and mass spectrometer chamber volume. The mass spectrometer sensitivity value by 4 He in the steady-state operation ν=(4.1+-0.1)x10 - 7 Pa/mV is obtained

  8. Small-sized time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Belov, A.S.

    1985-01-01

    A time-of-flight mass spectrometer with beam particle ionization by electron impact developed for the measurement of pulsed hydrogen beam parameters, is described. Duration of electron beam current pulses in the mass-spectrometer ionizer is varied within the 2-20 μs, interval electron pulse current is 0.6 mA, electron energy is 250 eV. Time resolution of the mass spectrometer is determined by the period of electron beam current pulse repetition and equals 40 μs. The ion drift range is 16 cm. Mass resolution ΔM/M=1/5 is sufficient for the determination of hydrogen beam composition. The mass spectrometer has 100% transparency in the direction of molecular beam particle movement. In this direction the mass spectrometer size is 7 cm

  9. Portable, low-power, mechanically cooled Ge spectrometer

    International Nuclear Information System (INIS)

    Becker, J.A.; Cork, C.P.; Fabris, L.; Madden, N.W.

    2003-01-01

    A light-weight portable mechanically cooled γ-ray spectrometer has been constructed and tested. The spectrometer is based on a high-purity n-type Ge coaxial crystal, ∼5 cm longx5 cm diameter, a small, low-power Stirling cycle microcooler, and a low-power custom electronics package. The energy resolution of the spectrometer is ∼3.5 keV at E γ =662 keV, the power requirements are ∼15 W DC, and the combined weight of the Ge, housing, and controller is approximately 10 pounds. The spectrometer qualifies therefore as ''hand held''. It is suitable for field operations, because of its light-weight, low-power draw, and operational lifetime. The microcooler itself has a MTBF >30,000 h, and the spectrometer runs for several months (at least 6) before a 2 day recycle is required

  10. Comprehensive investigation of the angular transmission in magnetic spectrometers

    CERN Document Server

    Pereira-Conca, J; Schmidt, K H

    2003-01-01

    Magnetic spectrometers are largely used in experimental nuclear physics. These devices allow one to perform precise measurements of the reaction kinematics or to separate and fully identify the reaction residues for nuclear-dynamics and structure studies. They can also be used as separators to produce radioactive nuclear beams. However, all these applications are affected by the limited transmission of the reaction residues through the spectrometer. The final transmission depends on the ion-optical characteristics and the mechanical constraints of the spectrometer but also on the kinematic properties of the considered nuclei. The ion optics are characterised by the bending and focusing powers of the magnetic elements which constitute the spectrometer. The reaction mechanism determines the kinematics of the particles. The transmission losses in any magnetic spectrometer can be attributed to its limited acceptance in longitudinal momentum and angle. The limitation in longitudinal momentum can be overcome by com...

  11. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  12. ALPHA,·ANTITRYPSIN DEFICIENCY*

    African Journals Online (AJOL)

    1971-02-06

    Feb 6, 1971 ... Lieberman," in fact, found that 15·2% of 66 patients hospitalized with pulmonary emphysema had heterozygous alpha,-antitrypsin deficiency. The over-all incidence of the deficiency was 25'8% in this group. Of patients under the age of 50 years, 47·8% had deficient levels. If such observations are confirmed ...

  13. Alpha sources deposit by sublimation

    International Nuclear Information System (INIS)

    Amoudry, F.; Eloy, J.F.

    1983-09-01

    We studied and realized a device able to perform some very thin substracts used for alpha spectrometry measurements. Sources are prepared by sublimation of the sample in a vacuum container. The energy required for this sublimation is furnished by a laser beam [fr

  14. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  15. The effect of a metalloproteinase inhibitor (GI5402) on tumor necrosis factor-alpha (TNF-alpha) and TNF-alpha receptors during human endotoxemia

    NARCIS (Netherlands)

    Dekkers, P. E.; Lauw, F. N.; ten Hove, T.; te Velde, A. A.; Lumley, P.; Becherer, D.; van Deventer, S. J.; van der Poll, T.

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is released from the cell surface by cleavage of pro-TNF-alpha by metalloproteinases (MPs). In cell cultures, inhibition of MPs has been found not only to reduce the release of TNF-alpha, but also to enhance the surface expression of TNF-alpha and TNF-alpha

  16. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  17. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et

  18. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  19. Systematic resolution study of the CEBAF Hall C spectrometers - HMS and SOS

    International Nuclear Information System (INIS)

    Tang, L.; Hungerford, E.V.

    1995-01-01

    In this paper we present a systematic study of the momentum resolution of the CEBAF Hall C spectrometers. These are the High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS). This systematic study enables us to point out the dominating sources of the spectrometer resolutions. It demonstrates that such a systematic analysis can provide the information required to optimize the performance of an existing spectrometer system or the design of a new spectrometer system. (orig.)

  20. The high-acceptance dielectron spectrometer HADES

    International Nuclear Information System (INIS)

    Agakichiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Lehnert, J.; Lichtblau, C.; Lins, E.; Metag, V.; Mishra, D.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Petri, M.; Ritman, J.; Salz, C.; Schaefer, D.; Skoda, M.; Spataro, S.; Spruck, B.; Toia, A.; Agodi, C.; Coniglione, R.; Cosentino, L.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P.; Vassiliev, D.; Alvarez-Pol, H.; Belver, D.; Cabanelas, P.; Castro, E.; Duran, I.; Fernandez, C.; Fuentes, B.; Garzon, J.A.; Kurtukian-Nieto, T.; Rodriguez-Prieto, G.; Sabin-Fernandez, J.; Sanchez, M.; Vazquez, A.; Atkin, E.; Volkov, Y.; Badura, E.; Bertini, D.; Bielcik, J.; Bokemeyer, H.; Dahlinger, M.; Daues, H.W.; Galatyuk, T.; Garabatos, C.; Gonzalez-Diaz, D.; Hehner, J.; Heinz, T.; Hoffmann, J.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kopf, U.; Lang, S.; Leinberger, U.; Magestro, D.; Muench, M.; Niebur, W.; Ott, W.; Pietraszko, J.; Rustamov, A.; Schicker, R.M.; Schoen, H.; Schoen, W.; Schroeder, C.; Schwab, E.; Senger, P.; Simon, R.S.; Stelzer, H.; Traxler, M.; Yurevich, S.; Zovinec, D.; Zumbruch, P.; Balanda, A.; Kozuch, A.; Przygoda, W.; Bassi, A.; Bassini, R.; Boiano, C.; Bartolotti, A.; Brambilla, S.; Bellia, G.; Migneco, E.; Belyaev, A.V.; Chepurnov, V.; Chernenko, S.; Fateev, O.V.; Ierusalimov, A.P.; Smykov, L.; Troyan, A.Yu.; Zanevsky, Y.V.; Benovic, M.; Hlavac, S.; Turzo, I.; Boehmer, M.; Christ, T.; Eberl, T.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Gilg, H.; Homolka, J.; Jurkovic, M.; Kastenmueller, A.; Kienle, P.; Koerner, H.J.; Kruecken, R.; Maier, L.; Maier-Komor, P.; Sailer, B.; Schroeder, S.; Ulrich, A.; Wallner, C.; Weber, M.; Wieser, J.; Winkler, S.; Zeitelhack, K.; Boyard, J.L.; Genolini, B.; Hennino, T.; Jourdain, J.C.; Moriniere, E.; Pouthas, J.; Ramstein, B.; Rosier, P.; Roy-Stephan, M.; Sudol, M.; Braun-Munzinger, P.; Diaz, J.; Dohrmann, F.; Dressler, R.; Enghardt, W.; Heidel, K.; Hutsch, J.; Kanaki, K.; Kotte, R.; Naumann, L.; Sobiella, M.; Wuestenfeld, J.; Zhou, P.; Dybczak, A.; Jaskula, M.; Kajetanowicz, M.; Kidon, L.; Korcyl, K.; Kulessa, R.; Malarz, A.; Michalska, B.; Otwinowski, J.; Ploskon, M.; Prokopowicz, W.; Salabura, P.; Szczybura, M.; Trebacz, R.; Walus, W.; Wisniowski, M.; Wojcik, T.; Froehlich, I.; Lippmann, C.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y.C.; Rosenkranz, K.; Stroebele, H.; Sturm, C.; Tarantola, A.; Teilab, K.; Wang, Y.; Zentek, A.; Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Lapidus, K.; Reshetin, A.; Sadovsky, A.; Shileev, K.; Tiflov, V.; Grosse, E.; Kaempfer, B.; Iori, I.; Krizek, F.; Kugler, A.; Marek, T.; Novotny, J.; Pleskac, R.; Pospisil, V.; Sobolev, Yu.G.; Suk, M.; Taranenko, A.; Tikhonov, A.; Tlusty, P.; Wagner, V.; Mousa, J.; Parpottas, Y.; Tsertos, H.; Nekhaev, A.; Smolyankin, V.; Palka, M.; Roche, G.; Schmah, A.; Stroth, J.

    2009-01-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range (0.1< p< 1.0 GeV/c). This paper describes the main features and the performance of the detector system. (orig.)

  1. Combined "dual" absorption and fluorescence smartphone spectrometers.

    Science.gov (United States)

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  2. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. McJunkin; Jill R. Scott; Carla J. Miller

    2003-07-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  3. Towards establishing compact imaging spectrometer standards

    Science.gov (United States)

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  4. CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2071798; Arneodo, M; Avati, V; Baechler, J; Cartiglia, N; Deile, M; Gallinaro, M; Hollar, J; Lo Vetere, M; Oesterberg, K; Turini, N; Varela, J; Wright, D; CMS-TOTEM, Collaboration; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    This report describes the technical design and outlines the expected performance of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS). CT-PPS adds precision proton tracking and timing detectors in the very forward region on both sides of CMS at about 200m from the IP to study central exclusive production (CEP) in proton-proton collisions. CEP provides a unique method to access a variety of physics topics at high luminosity LHC, such as new physics via anomalous production of $W$ and $Z$ boson pairs, high-$p_T$ jet production, and possibly the production of new resonances. The CT-PPS detector consists of a silicon tracking system to measure the position and direction of the protons, and a set of timing counters to measure their arrival time with a precision of the order of 10 ps. This in turn allows the reconstruction of the mass and momentum as well as of the $z$ coordinate of the primary vertex of the centrally produced system. The framework for the development and exploitation of CT-PPS is defined i...

  5. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  6. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  7. Ultra compact spectrometer using linear variable filters

    Science.gov (United States)

    Dami, M.; De Vidi, R.; Aroldi, G.; Belli, F.; Chicarella, L.; Piegari, A.; Sytchkova, A.; Bulir, J.; Lemarquis, F.; Lequime, M.; Abel Tibérini, L.; Harnisch, B.

    2017-11-01

    The Linearly Variable Filters (LVF) are complex optical devices that, integrated in a CCD, can realize a "single chip spectrometer". In the framework of an ESA Study, a team of industries and institutes led by SELEX-Galileo explored the design principles and manufacturing techniques, realizing and characterizing LVF samples based both on All-Dielectric (AD) and Metal-Dielectric (MD) Coating Structures in the VNIR and SWIR spectral ranges. In particular the achieved performances on spectral gradient, transmission bandwidth and Spectral Attenuation (SA) are presented and critically discussed. Potential improvements will be highlighted. In addition the results of a feasibility study of a SWIR Linear Variable Filter are presented with the comparison of design prediction and measured performances. Finally criticalities related to the filter-CCD packaging are discussed. The main achievements reached during these activities have been: - to evaluate by design, manufacturing and test of LVF samples the achievable performances compared with target requirements; - to evaluate the reliability of the projects by analyzing their repeatability; - to define suitable measurement methodologies

  8. High resolving power spectrometer for beam analysis

    Science.gov (United States)

    Moshammer, H. W.; Spencer, J. E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion, and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretation of the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread, and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability.

  9. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    International Nuclear Information System (INIS)

    McJunkin, Timothy R.; Scott, Jill R.; Miller, Carla J.

    2003-01-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  10. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly intrave...... intravenous enzyme replacement therapy (ERT). We present the preliminary data after 12 months of treatment....

  11. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  12. Some conceptual designs for a LASSY spectrometer magnet

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-09-01

    The LASSY spectrometer is a gas filled spectrometer (hydrogen or helium at a pressure of about 1 torr). The design bending power for the primary bending magnet for the spectrometer will have an induction bend radius product of 2.5 tesla-meters. In order to increase the acceptance of the spectrometer, the bending magnet system must be located close to the target where the desired nuclei are created. The spectrometer magnet system must consist of both bending and focusing elements so that the wide acceptance of particles can be brought to a focus at the analysis point that is down stream from the last magnet element. In order improve the spectrometer resolution and to catch the shortest lived nuclei, the length of the magnet system must be as short as possible. The length for the LASSY spectrometer magnet system from the target to the analysis point has been set at 2.5 meters or less. To improve the resolution of the spectrometer, the bending angle for bending magnet system must be increased to close to 180 degrees. In order to achieve a large bending angle and a short magnet system length, the bending induction must be above 3 tesla and the focusing elements must be combined with the bending elements. As a result, a LASSY spectrometer will have bending magnet with a bending angle from 140 to 170 degrees. This magnet win be combined with one or more focusing magnets (a straight dipole in some places and a combined function dipole in other places). The result is a single superconducting bending magnet with one or more quadrupoles incorporated within the large angle bending magnet

  13. MESSENGER E/V/H GRNS 4 NEUTRON SPECTROMETER DDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) 'derived' data records (DDRs). The NS experiment is a neutron spectrometer...

  14. MESSENGER E/V/H GRNS 4 NEUTRON SPECTROMETER DDR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) 'derived' data records (DDRs). The NS experiment is a neutron spectrometer...

  15. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  16. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  17. Nature of the pygmy dipole resonance in Ce-140 studied in (alpha, alpha 'gamma) experiments

    NARCIS (Netherlands)

    Savran, D.; Babilon, M.; van den Berg, A.M.; Harakeh, M.N.; Hasper, J.; Matic, A.; Wörtche, H.J.; Zilges, A.

    2006-01-01

    A concentration of electric-dipole excitations below the particle threshold, which is frequently denoted as the pygmy dipole resonance, has been studied in the semimagic nucleus Ce-140 in (alpha, alpha(')gamma) experiments at E-alpha=136 MeV. The technique of alpha-gamma coincidence experiments

  18. Evaluation of HOPG mounting possibilities for multiplexing spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Groitl, Felix, E-mail: felix.groitl@psi.ch [Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bartkowiak, Marek [Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bergmann, Ryan M. [Division Large Research Facilities, Paul Scherrer Institut, 5232 Villigen (Switzerland); Birk, Jonas Okkels [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby (Denmark); Markó, Márton [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Wigner Research Centre for Physics, Neutron Spectroscopy Department, 1525 Budapest (Hungary); Bollhalder, Alex; Graf, Dieter [Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institut, 5232 Villigen (Switzerland); Niedermayer, Christof [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Rüegg, Christian [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Department of Quantum Matter Physics, University of Geneva, 1211 Geneva (Switzerland); Rønnow, Henrik M. [Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark)

    2017-06-21

    Four different methods for mounting HOPG analyzer crystals on Si holders have been evaluated in the design process of the new multiplexing spectrometer CAMEA. Contrary to neutron optics used in standard spectrometers, the new instrument concept employs a series of analyzer segments behind each other where the neutrons have to pass through the bonding compound of the different analyzer crystals. The different methods, namely screws, shellac, indium soldering and clips, have been evaluated with regards to background, transmission, cooling, activation and handling. The results presented here will give valuable input for future CAMEA-type spectrometers currently planned and designed at various neutron sources.

  19. Data acquisition system for the HHIRF spin spectrometer

    International Nuclear Information System (INIS)

    Hensley, D.C.

    The Spin Spectrometer at the Holifield Heavy Ion Research Facility (HHIRF) is a multidetector γ-ray spectrometer consisting of 72 separate NaI detector elements closely packed in a 4π geometry. The basic apparatus was constructed at Washington University and has been installed and implemented at the HHIRF at Oak Ridge National Laboratory. The spectrometer was designed especially for the investigation of the mechanisms of heavy-ion induced nuclear reactions and of the structure of nuclei with high angular momentum. The data acquisition system is described

  20. Opening the terahertz window on the OSIRIS spectrometer

    Directory of Open Access Journals (Sweden)

    Demmel F.

    2015-01-01

    Full Text Available A cooled and mechanically retractable beryllium filter has been installed and commissioned on the low-energy OSIRIS spectrometer at ISIS. This instrument development extends the energy-transfer range of the spectrometer up to ca. 20 meV (∼ 5 THz, leading to an excellent resolution at THz frequencies and substantial gains in detected flux relative to existing capabilities on the neighbouring IRIS spectrometer. Herein, we provide a concise account of this new capability for high-resolution neutron spectroscopy in the THz domain, as well as outline a number of ongoing and potential scientific opportunities in condensed-matter physics, chemistry, and materials science.

  1. [Development of X-ray excited fluorescence spectrometer].

    Science.gov (United States)

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials.

  2. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    Science.gov (United States)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  3. Moessbauer backscattering spectrometer for mineralogical analysis of the Mars surface

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Foh, J.; Held, P.; Jaeger, H.; Kankeleit, E.; Teucher, R.

    1992-01-01

    A Moessbauer spectrometer for the mineralogical analysis of the Mars surface is under development. This instrument will be installed on a Mars-Rover, included in the Soviet Union Mars-94/96 Mars mission. Due to power and mass restrictions the electromechanical drive and the electronic components have been extremely miniaturized in comparison to standard systems. Solid state detectors (PIN-diodes) are used for γ- and x-ray detection. The whole spectrometer is controlled by a microprocessor (transputer). An additional application as X-ray fluorescence spectrometer is proposed. (orig.)

  4. First experience with the magnet spectrometer 'Big Karl'

    International Nuclear Information System (INIS)

    Martin, S.; Berg, G.; Hardt, A.; Huerlimann, W.; Koehler, M.; Meissburger, J.; Sagefka, T.; Schult, O.W.B.

    1979-01-01

    The design of a magnetic spectrometer consisting of two quadrupoles, followed by two dipoles with a quadrupole at the exit of the system (QQDDQ) with high resolution and a large solid angle, which operates at the Juelich isochronous cyclotron (JULICH) is described. Test results obtained with the spectrometer are given indicating that the veritability of the dispersion of the spectrometer and its operation with complete beam matching have proved to be of great advantage for carrying out the planned experiments under optimal conditions. (U.K.)

  5. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically......, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number...

  6. Mass spectrometer for investigation of solar wind composition

    International Nuclear Information System (INIS)

    Kogan, V.T.; Kornienko, A.P.; Koshevenko, B.V.; Pavlov, A.K.; Chichagov, Yu.V.

    1989-01-01

    Mass-spectrometer designed for analysis of charged particles in solar wind is developed. Analysis of charged particle flux composition is realized in velocity space due to their selection. Properties of mass-spectrometer built using the scheme where analysis of ion composition after their passage through plane magnet with parallel boundaries is realized by means of electrostatic capacitor are considered. The suggested device differs from analog by fundamentally new possibility to carry out analysis of ion composition regardless of their energy within the selected range (solar wind). This property eliminates the necessity to carry out time successive energy analysis increases essentially mass-spectrometer sensitivity and enables to study fast processes

  7. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou

    2017-01-01

    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  8. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  9. Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Weisberg, Arel; Craparo, Joseph; De Saro, Robert; Pawluczyk, Romuald

    2010-01-01

    We evaluate a new transmission grating spectrometer for standoff laser-induced breakdown spectroscopy (LIBS) measurements. LIBS spectra collected from standoff distances are often weak, with smaller peaks blending into the background and noise. Scattered light inside the spectrometer can also contribute to poor signal-to-background and signal-to-noise ratios for smaller emission peaks. Further, collecting standoff spectra can be difficult because most spectrometers are designed for laboratory environments and not for measurements in the field. To address these issues, a custom-designed small, lightweight transmission grating spectrometer with no moving parts was built that is well suited for standoff LIBS field measurements. The performance of the spectrometer was quantified through 10 m standoff LIBS measurements collected from aluminum alloy samples and measurements from spectra of a Hg-Ar lamp. The measurements were compared to those collected using a Czerny-Turner reflective grating spectrometer that covered a similar spectral range and used the same ICCD camera. Measurements using the transmission grating spectrometer had a 363% improved signal-to-noise ratio when measured using the 669 nm aluminum emission peak.

  10. Alpha particles detection in nitrocellulose

    International Nuclear Information System (INIS)

    Romero C, M.

    1976-01-01

    The method for the manufacturing of the detection films follows these steps: preparation of the mass which includes nitrocellulose in the form of cotton as raw material ethyl acetate, cellosolve acetate, isopropyl and butyl alcohols as solvents and dioctyl phtalate as plasticiser; dilution of the paste; pouring of the diluted mass; and drying of the detection films. The results obtained experimentally are: The determination of the development times of the different thicknesses of the manufactured films. Response linearity of the detectors, variation of the number of tracks according to the distance of the source to the detector. Sizes of the diameter of the tracks depending of the distance detector-alpha emmission source. As a conclusion we can say the the nitrocellulose detectors are specific for alpha radiation; the more effective thicknesses in uranium prospecting works were those of 60 microns, since for the laboratory works the thicknesses of 30 to 40 microns were the ideal; the development technique of the detection films is simple and cheap and can be realized even in another place than the laboratory; this way of the manufacturing of nitrocellulose detection film sensitive to alpha nuclear radiation is open to future research. (author)

  11. Measurement and analysis of $\\alpha$ particle induced reactions on yttrium

    CERN Document Server

    Singh, N L; Chintalapudi, S N

    2000-01-01

    Excitation functions for /sup 89/Y[( alpha ,3n); ( alpha ,4n); ( alpha , p3n); ( alpha , alpha n); ( alpha , alpha 2n)] reactions were measured up to 50 MeV using stacked foil activation technique and HPGe gamma ray spectroscopy method. The experimental data were compared with calculations considering equilibrium as well as preequilibrium reactions according to the hybrid model of Blann (ALICE/90). For ( alpha , xnyp) type of reactions, the precompound contributions are described by the model. There seems to be indications of direct inelastic scattering effects in ( alpha , alpha xn) type of reactions. To the best of our knowledge, the excitation functions for ( alpha ,4n), ( alpha , p3n), ( alpha , alpha n) and ( alpha , alpha 2n) reactions were measured for the first time. (23 refs).

  12. Measurement and analysis of alpha particle induced reactions on yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N.L.; Gadkari, M.S. [Baroda Univ. (India). Dept. of Physics; Chintalapudi, S.N. [IUC-DAEF Calcutta Centre, Calcutta (India)

    2000-05-01

    Excitation functions for {sup 89}Y[({alpha},3n);({alpha},4n);({alpha},p3n);({alpha},{alpha}n);({alpha},{alpha}2n)] reactions were measured up to 50 MeV using stacked foil activation technique and HPGe gamma ray spectroscopy method. The experimental data were compared with calculations considering equilibrium as well as preequilibrium reactions according to the hybrid model of Blann (ALICE/90). For ({alpha},xnyp) type of reactions, the precompound contributions are described by the model. There seems to be indications of direct inelastic scattering effects in ({alpha},{alpha}xn) type of reactions. To the best of our knowledge, the excitation functions for ({alpha},4n), ({alpha},p3n), ({alpha},{alpha}n) and ({alpha},{alpha}2n) reactions were measured for the first time. (orig.)

  13. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  14. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  15. Infrared Heterodyne Earth Atmospheric Remote Spectrometer (IHEARS)

    Science.gov (United States)

    Kostiuk, T.; Hanisco, T. F.; Newman, P. A.; Olsen, M. A.; Hewagama, T.; Livengood, T. A.

    2013-12-01

    We will describe the design and capability of the Goddard Space Flight Center Infrared Heterodyne Earth Atmospheric Remote Spectrometer (IHEARS) capable of unique altitude-resolved measurements of chemical and physical processes within the Earth's upper troposphere through the lower mesosphere. Ultra-high spectral resolving power (R>1,000,000) and frequency precision in the 7 to 11 μm wavelength band enables measuring true molecular spectral line shapes with no instrumental effects, thus retrieving small changes in major atmospheric gases, detecting trace species, retrieving temperatures, and measuring Doppler-shift due to winds. These parameters can be obtained from the same set of measurements, a unique capability for Earth remote-sensing. In solar occultation, e.g., from the International Space Station, measurements of abundance changes in 15-sigma confidence level, enhancing the study of transport and chemistry in upper-troposphere/lower-stratosphere and tropical-transition-layer regions, thereby addressing and constraining GCMs and climate-change models. The technique has a long heritage in ground-based instrumentation and measurements of planetary atmospheres, with proven results paralleling the capability for Earth observations. The proposed detection concept, instrument design and its remote operation and capabilities from Earth orbit will be presented. The proposed instrument will have lower volume, mass, and power requirements compared to existing Earth-science instruments, while enabling new and unique Earth observation measurements from a variety of space platforms. The ultimate projected space flight application will be on Earth Venture Class science missions, the ISS, and future Earth and planetary missions such as GACM.

  16. Interferon Alpha in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy B. Niewold

    2010-01-01

    Full Text Available The pleiotropic cytokine interferon alpha is involved in multiple aspects of lupus etiology and pathogenesis. Interferon alpha is important under normal circumstances for antiviral responses and immune activation. However, heightened levels of serum interferon alpha and expression of interferon response genes are common in lupus patients. Lupus-associated autoantibodies can drive the production of interferon alpha and heightened levels of interferon interfere with immune regulation. Several genes in the pathways leading to interferon production or signaling are associated with risk for lupus. Clinical and cellular manifestations of excess interferon alpha in lupus combined with the genetic risk factors associated with interferon make this cytokine a rare bridge between genetic risk and phenotypic effects. Interferon alpha influences the clinical picture of lupus and may represent a therapeutic target. This paper provides an overview of the cellular, genetic, and clinical aspects of interferon alpha in lupus.

  17. LP MOON NEUTRON SPECTROMETER 3 RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Neutron Spectrometer data acquired by Lunar Prospector have been reduced to four maps, which can be interpreted in terms of elemental composition of the lunar...

  18. Compact High Performance Spectrometers Using Computational Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy Research Company (ERCo), in collaboration with CoVar Applied Technologies, proposes the development of high throughput, compact, and lower cost spectrometers...

  19. Spatial Heterodyne Spectrometer for Aviation Hazard Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc (PSI) proposes the development of a longwave infrared (LWIR) imaging spatial heterodyne spectrometer (I-SHS) for standoff detection of clear...

  20. Miniature Mass Spectrometer for Earth Science Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — By drastically reducing the physical footprint of a mass spectrometer to the size of a beverage can, Ceramitron could set a new performance/price standard in the...

  1. MAVEN Neutral Gas and Ion Mass Spectrometer Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains the data collected by the Neutral Gas and Ion Mass Spectrometer (NGIMS) instrument aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN)...

  2. A hard X ray and soft gamma ray telescope spectrometer

    International Nuclear Information System (INIS)

    Yin, L.I.; Trombka, J.I.; Schmadebeck, R.L.

    1981-01-01

    A telescope spectrometer in the hard X-ray and soft gamma-ray region from 30 keV to 200 keV can provide significant information in investigations related to solar physics and planetary science. The present study is concerned with the preliminary design of such an instrument, taking into account a use of the Low Intensity X-ray Imaging Scope (Lixiscope). In the design of the considered telescope spectrometer, attention would have to be given to three major components, including the X-ray and gamma-ray input optics, an imaging detector-spectrometer, and an output processor. The preliminary results provided by the present study indicate that, in principle, a complete hard X-ray and soft gamma-ray telescope imaging spectrometer system using the Lixiscope is feasible. However, much work remains to be done with respect to the optimization and improvement of the system for future flight applications

  3. MA nuclear data measurement with lead slowing-down spectrometers

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei

    2000-01-01

    This paper reviews the minor actinide (MA) nuclear data measured with lead slowing-down spectrometers. The Kyoto University Lead Slowing-down Spectrometer (KULS) at the Research Reactor Institute, Kyoto University has been applied to the measurements of (1) the fission cross sections of Np-237, Am-241, Am-242m and Am-243 in the energy range from 0.1 eV to 10 keV and (2) the capture cross section of Np-237 at energies between 0.01 eV and 1 keV. The results are compared with the existing experimental and the evaluated nuclear data (ENDF/B-VI, JENDL-3.2 and JEF-2.2). The recent MA nuclear data, which were measured with the Rensselaer Intense Neutron Spectrometer (RINS) at the Rensselaer Polytechnic Institute and the spectrometer at the Kurchatov Institute, are also introduced. (author)

  4. A multi-parameter, acquisition system positron annihilation lifetime spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.

    2004-01-01

    A positron annihilation lifetime spectrometer employing a multi-parameter acquisition system has been prepared for various purposes such as the investigation and characterization of solid-state materials. The fast-fast coincidence technique was used in the present spectrometer with a pair of plastic scintillation detectors. The acquisition system is based on the Kmax software and on CAMAC modules. The data are acquired in event-by-event list mode. The time spectrum for the desired energy windows can be obtained by off-line data sorting and analysis. The spectrometer for event-by-event data acquisition is an important step to construct a positron age-momentum correlation (AMOC) spectrometer. The AMOC technique is especially suited for the observation of positron transitions between different states during their lifetime. The system performance was tested and the results were presented and discussed

  5. 4 pi β-spectrometer with Li-Si counters

    DEFF Research Database (Denmark)

    Andersen, Verner; Christensen, Carl Jørgen

    1968-01-01

    Spectrometer has been developed; provided with solid-state detectors, it has resolution of 2% at 1 Mev; because of 4 pi-geometry it is well suited for absolute measurements and for measurement of conversion coefficients. (14005)...

  6. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases.

    Science.gov (United States)

    Jordan, I; Huppert, M; Brown, M A; van Bokhoven, J A; Wörner, H J

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  7. Realization of matching conditions for high-resolution spectrometers

    International Nuclear Information System (INIS)

    Fujita, H.; Fujita, Y.; Berg, G.P.A.; Bacher, A.D.; Foster, C.C.; Hara, K.; Hatanaka, K.; Kawabata, T.; Noro, T.; Sakaguchi, H.; Shimbara, Y.; Shinada, T.; Stephenson, E.J.; Ueno, H.; Yosoi, M.

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented

  8. Compact, Dual Channel, Mid-IR Laser Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase I proposal seeks to develop a dual channel, compact mid-infrared laser spectrometer for planetary atmosphere...

  9. Compact, Dual Channel, Mid-IR Laser Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase II proposal seeks to develop a dual channel, compact mid-infrared laser spectrometer for planetary atmosphere...

  10. Realization of matching conditions for high-resolution spectrometers

    CERN Document Server

    Fujita, H; Berg, G P A; Bacher, A D; Foster, C C; Hara, K; Hatanaka, K; Kawabata, T; Noro, T; Sakaguchi, H; Shimbara, Y; Shinada, T; Stephenson, E J; Ueno, H; Yosoi, M

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented.

  11. Microwave spectrometer for the detection of transient gaseous species

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, W.F.; Zoellner, W.D.; Leskovar, B.

    1979-06-01

    A microwave spectrometer and associated apparatus for the detectin of unstable free radical species is described. The spectrometer, which operates over a frequency range from 66 to 73 GHz, consists of a tunable Fabry-Perot resonator followed by superhetrodyne detection for high sensitivity at low power levels. The resonator tuning is accomplished by means of a computer controlled stepping motor and by a piezoelectric transducer which also permits the use of source modulation and phase sensitive detection at 100 Hz. The sensitivity of the spectrometer is adequate to permit the detection of rotational transitions with absorption coefficients as small as 2 x 10/sup -9/ cm/sup -1/. The operation of the spectrometer is demonstrated by the detection of the two free radical species OH and SO. In the case of OH, a number of ..lambda..-doubling transitions, previously unobserved, are reported.

  12. High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer

    Indian Academy of Sciences (India)

    Abstract. The optical design and performance of the recently commissioned fiber fed echelle spectrometer of 2.34 meter Vainu Bappu Telescope are described. The use of it for stellar spectroscopic studies is discussed.

  13. Detection system for optical coherence tomography: Czerny-Turner spectrometer

    Science.gov (United States)

    Kamińska, Aleksandra

    2017-08-01

    Research methods based on spectral analysis have powerful impact on development in many field of science. Signal spectrum can be a source of useful and important data. It enables to obtain information about physical and chemical properties of tested materials. This paper has been devoted to describe optical design for high resolution spectrometer, which is significant element of optical coherence tomography (OCT) systems. Designed spectrometer is working in visible range (450-830 nm). Czerny-Turner configuration enables to correcting astigmatism and coma aberration over full bandwidth. Moreover, spectrometer has uncomplicated construction. Merely, two mirrors and diffraction gratings allows to design low - cost spectrometer with satisfying optical properties. Spectrum detection has been realized using CMOS line scan sensors with 6144 pixels. It provides high speed and resolution of the system.

  14. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  15. Standalone vertex finding in the ATLAS muon spectrometer

    DEFF Research Database (Denmark)

    Aad, A.; Abajyan, T.; Abbott, B.

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perf......A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths....... The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011....

  16. Thermal Design for a Diffraction-Limited Doppler Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Univ. of Notre Dame is building a new high-resolution spectrometer named “iLocater” to achieve unprecedented radial velocity (RV) precision for stellar Doppler...

  17. Novel alpha-mannosidase inhibitors; Nye alfa-mannosidaseinhibitorer

    Energy Technology Data Exchange (ETDEWEB)

    Farr, R.A.; Kang, M.S.; Peet, N.P.; Sunkara, S.P.

    1997-05-20

    [4S-(4{alpha}, 4a{beta}, 6{alpha}, 7{alpha}, 7a{alpha})]-Octahydro-1H-1-pyridine-4,5,6,7-tetrols and [4R-(4{alpha}, 4a{alpha}, 5{alpha}, 6{beta}, 7{beta}, 7a{beta})]-octahydro-1H-1-pyridine-4,5,6,7-tetrols are useful inhibitors of alpha-mannosidase and are useful immunostimulants, chemoprotective and radioprotective agents and antimetastatic agents.

  18. Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus.

    Science.gov (United States)

    Sado-Kamdem, Sylvain L; Vannini, Lucia; Guerzoni, M Elisabetta

    2009-02-28

    The antimicrobial activity of alpha-linolenic, capric and lauric acids on Staphylococcus aureus was studied in relation to their effect on the de novo fatty acid biosynthesis. Labelled acetate was used as integrated carbon source and traced in the de novo fatty acid by using a GC-Mass spectrometer and the single ion monitoring (SIM) technique. The detection of the incorporation of the labelled carbon into the individual cell fatty acids (FAs) provided an insight into the different effects of alpha-linolenic, capric and lauric acids on the FA biosynthesis. The results suggested that FAs pathway is the major target of alpha-linolenic acid and that other enzymes in addition to FabI are involved in S. aureus response mechanism when medium chain fatty acids are present.

  19. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Grégory; Ahlers, Berit; Pérez, Fernando Rull

    2007-12-01

    Among the different instruments that have been pre-selected to be on-board the Pasteur payload on ExoMars is the Raman/ laser induced breakdown spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman spectrometer/LIBS elegant bread-board (EBB). The instrument is based on a specially designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and power consumption are the main drivers of the instrument's design concept. In this paper, science objectives for the combined instrument are detailed. Background information on Raman spectroscopy and LIBS are presented, focussing on the synergy of these two techniques. In the last section, the instrument concept resulting from the assessment of the feasibility of the combined Raman/LIBS EBB is presented.

  20. Deadtime measurement for the new gamma spectrometer system

    International Nuclear Information System (INIS)

    Chen Fangqiang; Ge Liangquan; Luo Yaoyao; Ni Weichong; Zeng Guoqiang; An Zhengwei; Mi Yaohui

    2010-01-01

    It introduces the reasons,the representation,the related theory and the measuring steps of the traditional dual-source method. And we also introduce a new kind of airborne Gamma-Ray spectrometer. In single connection circumstances, we confirmed the validity of the dual-source net counts method by comparing the results of four modes. The deadtime of the new kind of airborne Gamma-Ray spectrometer is measured, and the conclusion and some advice are given. (authors)

  1. Remote sensing solutions for when spectrometers no longer are affordable

    Science.gov (United States)

    van Brug, Hedser; Visser, Huib

    2016-10-01

    This paper describes one of the issues that are facing the remote sensing community in the not so far future; scientists ask for certain requirement that cannot be fulfilled either due to cost issues or technological issues. The paper starts with giving a short and quick historical overview of the development of spectrometer based remote sensing systems. Next, the likely end of the spectrometers will be explained, followed by a possible alternative.

  2. FTIS compact Fourier transform imaging spectrometer for remote sensing

    Science.gov (United States)

    Posselt, W.; Holota, K.; Tittel, H. O.; Rost, M.; Harnisch, B.

    2017-11-01

    The feasibility of a compact Fourier-Transform-Imaging-Spectrometer (FTIS) for small satellite remote sensing missions is currently being studied under ESA contract. Compared to classical hyperspectral imagers using dispersive spectrometers the major advantages of the FTIS is the compact optics module and the tolerable higher detector temperature, thus easing the instrument thermal design. The feasibility of this instrument concept will be demonstrated by breadboarding.

  3. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  4. Validation of virtual spectrometer created in RADlab1.03.

    Science.gov (United States)

    Pandey, Anil Kumar; Patel, Chetan; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Spectrometer is used to perform various in vitro tests. The ability to successfully perform these tests depends on technologist's skill. Therefore, proper training of technologists is mandatory in gamma spectrometry. During the training, they need to have sufficient practice to gain sound theoretical and practical knowledge. High cost of spectrometer and risk of their damage during independent practice may hamper the process of proper training. Hence, there is a need of cheaper and more feasible option. Virtual spectrometer created in RADlab1.03 can address this issue. The immediate objective of this paper is to validate this virtual spectrometer so as to be used as an educational and research tool for trainees. Virtual spectrometer was calibrated using Cs-137 standard source and Cs-137 spectrum was recorded by positioning 28106 Bq Cs-137 source at 2.35 cm above top surface of the well, 1 cm above from the bottom of the well and at the bottom of the well. Ba-133 and Co-60 spectrum were also recorded. The experiments were repeated with real spectrometer for exactly the same conditions as applied to the virtual spectrometer. The paired t-test was applied to find the difference in mean photopeak at 5% level of significance. The sample data provided satisfactory evidence that mean photopeak obtained with real as well as virtual spectrometer were same at P value of 4.641 × 10(-4),1.57 × 10(-12),1.40 × 10(-24), 1.26 × 10(-16), and 8.7 × 10(-9) for Cs-137 (photopeak: 664 keV, Co-60 (photopeak: 1181 keV), Co-60 (photopeak: Co-1348 keV), Ba-133 (photopeak: 304 keV) and Ba-133 (photopeak: 364 keV) respectively.

  5. Compact Spectrometer based on a silicon multimode waveguide

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip.......A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip....

  6. Activator protein 2alpha mediates parathyroid TGF-alpha self-induction in secondary hyperparathyroidism.

    Science.gov (United States)

    Arcidiacono, Maria Vittoria; Cozzolino, Mario; Spiegel, Noah; Tokumoto, Masanori; Yang, Jing; Lu, Yan; Sato, Tetsuhiko; Lomonte, Carlo; Basile, Carlo; Slatopolsky, Eduardo; Dusso, Adriana S

    2008-10-01

    In secondary hyperparathyroidism, enhanced expression of TGF-alpha in the parathyroid leads to its own upregulation, generating a feed-forward loop for TGF-alpha activation of its receptor, EGFR receptor (EGFR), which promotes parathyroid hyperplasia. These studies examined the role of activator protein 2alpha (AP2), an inducer of TGF-alpha gene transcription, in the upregulation of parathyroid TGF-alpha in secondary hyperparathyroidism. In rat and human secondary hyperparathyroidism, parathyroid AP2 expression strongly correlated with TGF-alpha levels and with the rate of parathyroid growth, as expected. Furthermore, the increases in rat parathyroid content of AP2 and its binding to a consensus AP2 DNA sequence preceded the increase in TGF-alpha induced by high dietary phosphate. More significant, in A431 cells, which provide a model of enhanced TGF-alpha and TGF-alpha self-induction, mutating the core AP2 site of the human TGF-alpha promoter markedly impaired promoter activity induced by endogenous or exogenous TGF-alpha. Important for therapy, in five-sixths nephrectomized rats fed high-phosphate diets, inhibition of parathyroid TGF-alpha self-induction using erlotinib, a highly specific inhibitor of TGF-alpha/EGFR-driven signals, reduced AP2 expression dosage dependently. This suggests that the increases in parathyroid AP2 occur downstream of EGFR activation by TGF-alpha and are required for TGF-alpha self-induction. Indeed, in A431 cells, erlotinib inhibition of TGF-alpha self-induction caused parallel reductions in AP2 expression and nuclear localization, as well as TGF-alpha mRNA and protein levels. In summary, increased AP2 expression and transcriptional activity at the TGF-alpha promoter determine the severity of the hyperplasia driven by parathyroid TGF-alpha self-upregulation in secondary hyperparathyroidism.

  7. A high performance neutron spectrometer for planetary hydrogen measurement

    Science.gov (United States)

    Naito, Masayuki; Hasebe, Nobuyuki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke; Shibamura, Eido; Kim, Kyeong J.; Matias-Lopes, José A.; Martínez-Frías, Jesús

    2017-08-01

    The elemental composition and its distribution on planetary surface provide important constraints on the origin and evolution of the planetary body. The nuclear spectrometer consisting of a neutron spectrometer and a gamma-ray spectrometer obtains elemental compositions by remote sensing. Especially, the neutron spectrometer is able to determine the hydrogen concentration, a piece of information that plays an important role in thermal history of the planets. In this work, numerical and experimental studies on the neutron spectrometer for micro-satellite application were conducted. It is found that background count rate of neutron produced from micro-satellite is very small, which enables to obtain successful results in short time observation. The neutron spectrometer combining a lithium-6 glass scintillator with a boron loaded plastic scintillator was used to be able to detect neutrons in different energy ranges. It was experimentally confirmed that the neutron signals from these scintillators were successfully discriminated by the difference of scintillation decay time between two detectors. The measurement of neutron count rates of two scintillators is found to determine hydrogen concentration on the planetary surfaces in the future missions.

  8. Development of a portable α-particle spectrometer

    Science.gov (United States)

    Kwak, S.-W.; Park, S.; Kang, H.-B.; Shin, J.-K.; Chung, H.; Kim, M.-J.

    2015-06-01

    The detection of undeclared nuclear activities and the verification of declared nuclear facilities and materials are a matter of great concern worldwide. With the purpose of detecting and locating undeclared nuclear activities on site, a portable α-particle spectrometer was designed and built with a weight of 14 kg and a size of 30 cm × 30 cm × 30 cm that can be operated at normal temperature and with a maximum pressure of 1.0 torr. A feasibility study of this new portable α-particle spectrometer was conducted. The experimental results were compared with results from a laboratory α-particle spectrometry system. The 235U/238U ratio determined by the portable spectrometer was about 3.86%, while the laboratory spectrometry system gave the ratio of 3.90%. Their detection efficiencies were nearly identical for those two spectrometers. To improve the energy resolution of the portable spectrometer, a hexagonal-type collimator was designed by using GEANT4 and employed. With this collimator, the average full width at half maximum (FWHM) was enhanced from 29 keV to 24 keV . This study showed that the newly developed portable α-particle spectrometer, employing a small vacuum pump and minimized electronics, can be used for on-site measurement to detect and locate undeclared nuclear facilities and activities in a timely manner.

  9. Theory and optical design of x-ray echo spectrometers

    Science.gov (United States)

    Shvyd'ko, Yuri

    2017-08-01

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016), 10.1103/PhysRevLett.116.080801] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. Examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.

  10. Adaptive measurement method for miniature spectrometers used in cold environments.

    Science.gov (United States)

    Wang, Hangzhou; Nan, Liwen; Huang, Hui; Yang, Ping; Song, Hong; Han, Jiwan; Wu, Yuanqian; Yan, Tingting; Yuan, Zhuoli; Chen, Ying

    2017-10-01

    Adaptive measurement is a major concern when using miniature spectrometers in extreme environments, especially when the ambient temperatures and incident light intensities vary greatly. In this study, parameters, including the signal output and the relevant noise and signal-to-noise ratio (SNR) of a fiber optic spectrometry system composed of a photodiode array miniature spectrometer and external driver electronics were examined at multiple integration times from -50°C to 30°C, well below the specified operating temperature of this spectrometer. The relationships between those parameters and incident light level were also examined, at a single temperature of 0°C. Based on these examinations, temperature-induced biases in the linear operating range of the spectrometer were identified. Signal output and the relevant noise and SNR in response to different integration times, temperatures, and incident light levels were assessed separately. These assessments were then used to develop an adaptive measurement method for estimating the incident light level and setting up an optimal integration time for this spectrometer, while autonomously adapting the variation in the ambient temperature and incident light level simultaneously. This approach provides a general framework for developing an adaptive measurement algorithm for miniature spectrometers, which face tremendous variations in ambient temperature and incident light level.

  11. Construction of Ge(Li)-NaI(Tl) pair spectrometer

    International Nuclear Information System (INIS)

    Hassan, A.M.; El-Kady, A.A.; Eissa, E.A.; Rofail, N.B.; Abu-Zeid, H.M.; Hamouda, I.

    1978-01-01

    The details of the construction and tests of the Ge (li)-NaI (Tl) pair spectrometer has been presented. The spectrometer was set up at one of the horizontal channels of the ET-RR-1 research reactor using a true coaxial Ge (li) detector of sensitive volume 30 cm 3 surrounded by an 8''L. x8''0annulus NaI (Tl) crystal. The coincidence technique is carried out between the central Ge (Li) detector and the surrounding NaI (Tl) detector to detect the annihilation quanta. The operating conditions and the preliminary experimental results were obtained using the gamma-ray spectra of 24 Na and ThC'' as radioactive sources. The high energy part of the gamma-ray spectrum following the thermal neutron capture in 35 Cl is taken, as check for the validity of the spectrometer. By the method used at energies above 2 Mev, the Compton background of Ge (Li) detector system is reduced, and the gamma ray energy gives only one peak in the pulse height distribution curve. The spectrometer gives slightly superior resolution compared to the single spectrometer and is capable of determining the energies of capture gamma rays (with well defined spectral peaks) to an accuracy of 1 kev. The spectrometer is very useful for resolving closely spaced lines and for observation of weak lines near the high energy and of gamma-ray spectrum and many weak intensity gamma-ray can be studied

  12. Pre-studies to the spectrometers of the KATRIN experiment

    International Nuclear Information System (INIS)

    Flatt, B.

    2004-01-01

    In the framework of this thesis preparatory work for KATRIN was performed. So the Mainz spectrometer was changed in order to study different mechanisms of the background suppression in MAC-E filters. As main contribution to the background counting rate electrons, which have their origin on the electrodes, were found. These electrons can be hindered by a screen-grid electrode to penetrate into the sensitive spectrometer volume. This screen-grid electrode must exhibit an as low as possible surface coverage, in order to become not itself a source for secondary electrons. Such an electrode was realized. By this procedure it succeeded to reduce the background counting rate from an average value of 15 mHz during the tritium measurements to 2.8 mHz. The pure detector background amounted during the measurement 1.6 mHz, so that only 1.2 mHz contribute to the spectrometer background. The obtained results flowed into the design of the KATRIN pre-spectrometer, which was also elaborated in this thesis. The pres-spectrometer will consist of a vacuum tank, which will lie on high voltage, to spectrometer solenoids, and an inner electrode system. The electrode systems serves for the formation of the electric retardation field and consists of three electrodes, one of which will be a screen-grid electrode, as it was tested in the Mainz arrangement

  13. Pencil-like imaging spectrometer for bio-samples sensing.

    Science.gov (United States)

    Cai, Fuhong; Wang, Dan; Zhu, Min; He, Sailing

    2017-12-01

    Spectrally-resolved imaging techniques are becoming central to the investigation of bio-samples. In this paper, we demonstrate the use of a WIFI-camera as a detection module to assemble a pencil-like imaging spectrometer, which weighs only 140 g and has a size of 3.1 cm in diameter and 15.5 cm in length. The spectrometer is standalone, and works wirelessly. A smartphone or network computer can serve as the data receiver and processor. The wavelength resolution of the spectrometer is about 17 nm, providing repeatable measurements of spatial two-dimensional images at various wavelengths for various bio-samples, including bananas, meat, and human hands. The detected spectral range is 400 nm - 675 nm and a white LED array lamp is selected as the light source. Based on the detected spectra, we can monitor the impacts of chlorophyll, myoglobin, and hemoglobin on bananas, pork, and human hands, respectively. For human hand scanning, a 3D spectral image data cube, which exhibits excellent signal to background noise ratio, can be obtained within 16 sec. We envisage that the adaptation of imaging spectrometer devices to the widely-accepted smartphone technology will help to carry out on-site studies in various applications. Besides, our pencil-like imaging spectrometer is cost-effective (spectrometer can facilitate the collection of large amounts of spectral image data. With the help of machine learning, we can realize object recognition based on spectral classification in the future.

  14. A laboratory heterodyne emission spectrometer at submillimeter wavelengths.

    Science.gov (United States)

    Wehres, N; Maßen, J; Borisov, K; Schmidt, B; Lewen, F; Graf, U U; Honingh, C E; Higgins, D R; Schlemmer, S

    2018-02-21

    We present first results on a newly built broadband emission spectrometer for the laboratory making use of a double sideband (DSB) heterodyne receiver. The new spectrometer is perfectly suited for high-resolution emission spectroscopy of molecules of astrophysical importance. The current SIS receiver operates at RF frequencies between 270 and 390 GHz, coincident with Band 7 of the ALMA telescope. The instantaneous bandwidth is 5 GHz (DSB). In this work the full spectrometer and its components are described. Its performance, in particular its sensitivity, stability, reproducibility and systematic errors, is characterized in detail. For this purpose very broad band emission spectra of methyl cyanide have been recorded and compared to theoretical spectra. Isotopic variants are found in natural abundance and features attributed to vibrationally excited species are all recorded in the same spectrum. The performance of the new spectrometer is compared extensively to that of a traditional FM-absorption spectrometer and to recent versions of chirped-pulse spectrometers operated in the mm-wave regime. Further applications and future advancements of the current instrument are discussed.

  15. Extreme ultraviolet spectrometer for the Shenguang III laser facility.

    Science.gov (United States)

    Xiong, Gang; Yang, Guohong; Zhang, Jiyan; Wei, Minxi; Zhao, Yang; Qing, Bo; Lv, Min; Yang, Zhenghua; Wang, Feng; Liu, Shenye; Cai, Houzhi; Liu, Jinyuan

    2015-06-10

    An extreme ultraviolet spectrometer has been developed for high-energy density physics experiments at the Shenguang-III (SG-III) laser facility. Alternative use of two different varied-line-spacing gratings covers a wavelength range of 10-260 Å. A newly developed x-ray framing camera with single wide strip line is designed to record time-gated spectra with ~70 ps temporal resolution and 20 lp/mm spatial resolution. The width of the strip line is up to 20 mm, enhancing the capability of the spatial resolving measurements. All components of the x-ray framing camera are roomed in an aluminum air box. The whole spectrometer is mounted on a diagnostic instrument manipulator at the SG-III laser facility for the first time. A new alignment method for the spectrometer based on the superimposition of two laser focal spots is developed. The approaches of the alignment including offline and online two steps are described. A carbon spectrum and an aluminum spectrum have been successfully recorded by the spectrometer using 2400 l/mm and 1200 l/mm gratings, respectively. The experimental spectral lines show that the spectral resolution of the spectrometer is about 0.2 Å and 1 Å for the 2400 l/mm and 1200 l/mm gratings, respectively. A theoretical calculation was carried out to estimate the maximum resolving power of the spectrometer.

  16. Characterization of a time-of-flight mass spectrometer and its applications in the study of solid surfaces; Charakterisierung eines Flugzeitmassenspektrometers und seine Anwendungen in der Festkoerperoberflaechenuntersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P.

    2006-12-21

    The object and the purpose of the present work was to develop, to assemble and to start running a new TOF (time of flight) mass spectrometer for imaging SNMS analytic which is optimized for the analysis of highly molecular secondary ions. The most important purpose was the characterization of the TOF mass spectrometer. The obtained mass spectra of indium, tantalum and silver clusters reflect the excellent properties of the TOF mass spectrometer for the detection of large clusters with good detection efficiency up to masses of 16000 amu. The possibility of the deflection of selected saturated atom and cluster peaks serves for further improvement of the detection efficiency for large molecules. The accessible mass resolution was determined to be of the order of m/{delta}m=1000 in the high mass region. Numerous measurements were carried out to characterize the useful yield of this spectrometer. For a best possible adaptation of the TOF mass spectrometer for the detection of highly molecular particles, a device for post-acceleration of the detected particles by up to 10 keV were inserted directly before the MCP detector. The detection efficiency of positive secondary ions was determined for different post-acceleration voltages for the example of sputtered indium cluster ions. In addition, a new method was developed for the quantitative determination of the spectral ionization probability {alpha}{sup +}({nu}) of sputtered particles as a function of the emission velocity. The next application of the TOF mass spectrometer is the analysis of complicated organic molecules in solid state surfaces. During measurements of the photo-ionization behaviour of neutral tryptophan molecules, it was found out that a stable molecular ion signal is generated in the SNMS spectrum with h{nu}=7.9 eV can only be observed by the use of a continuous ion beam or very long (ms range) ion pulses. (orig.)

  17. Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection

    CERN Document Server

    Aupiais, J; Dacheux, N

    2003-01-01

    Two common scintillating mixtures dedicated to alpha measurements by means of alpha liquid scintillation with pulse shape discrimination were tested: the di-isopropylnaphthalene - based and the toluene-based solvents containing the commercial cocktails Ultima Gold AB trademark and Alphaex trademark. We show the possibility to enhance the resolution up to 200% by using no-water miscible cocktails and by reducing the optical path. Under these conditions, the resolution of about 200 keV can be obtained either by the Tri Carb sup T sup M or by the Perals sup T sup M spectrometers. The time responses, e.g., the time required for a complete energy transfer between the initial interaction alpha particle-solvent and the final fluorescence of the organic scintillator, have been compared. Both cocktails present similar behavior. According to the Foerster theory, about 6-10 ns are required to complete the energy transfer. For both apparatus, the detection limits were determined for alpha emitters. The sensitivity of the...

  18. Calibration and operation of continuous air monitors for alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1993-01-01

    Spectrometer-based continuous air monitors have improved our capabilities for detecting aerosols of alpha-emitting radionuclides. This paper describes basic requirements and statistical limitations in the sensitivity of alpha continuous air monitors, and presents a technical basis for selecting the energy window for detection of uranium and plutonium aerosols, correcting for interference from airborne dust, selecting filters with low pressure drop and good front surface collection characteristics, and properly using electroplated calibration sources. Sensitivity limits are described for detecting uranium or plutonium aerosols in the presence of increased concentrations of naturally occurring, alpha-emitting radon progeny radionuclides. Decreasing the lower energy boundary of the detection window from 4.3 MeV to 2.7 MeV improves by a factor of three the detection of plutonium in the presence of dust, while causing minimal additional interference from ambient radon progeny. Selection of the Millipore Fluoropore teflon membrane filter reduces both pressure drop and interference from ambient radon progeny by up to a factor of two. Field collection of ambient radon progeny can be used to verify the proper energy of alpha emissions from electroplated calibration sources. In the absence of energy verification, errors in instrument calibration may result from solid state diffusion of the electroplated calibration radionuclide into the substrate plate

  19. Electron momentum density and band structure calculations of {alpha}- and {beta}-GeTe

    Energy Technology Data Exchange (ETDEWEB)

    Vadkhiya, Laxman [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Arora, Gunjan [Department of Physics, Techno India NJR Institute of Technology, Udaipur 313002, Rajasthan (India); Rathor, Ashish [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)

    2011-12-15

    We have measured isotropic experimental Compton profile of {alpha}-GeTe by employing high energy (662 keV) {gamma}-radiation from a {sup 137}Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of {alpha}- and {beta}-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT. - Highlights: > Compton profile of {alpha}-GeTe using a 20 Ci {sup 137}Cs Compton spectrometer. > Compared experimental Compton data with density functional theory. > Reported energy bands and density of states of {alpha}- and {beta}-GeTe. > EVED profiles analysed to check the covalent character.

  20. Gross alpha and beta activities in drinking water from Goias State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mingote, Raquel M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil); Nogueira, Regina A.; Costa, Heliana F. da, E-mail: raquel.mingote@cdtn.br, E-mail: rnogueira@cnen.gov.br, E-mail: heliana@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN), Abadia de Goias, GO (Brazil). Parque Estadual Telma Ortegal

    2017-07-01

    Detection of gross alpha and beta radioactivity is important for a quick surveying of both natural and anthropogenic radioactivity in water. Furthermore, gross alpha and gross beta parameters are included in Brazilian legislation on quality of drinking water. In this work, a low background liquid scintillation spectrometer was used to simultaneously determine gross alpha and gross beta in samples of the public water supplies in the state of Goias, Brazil, during 2010-2015. Sample preparation involved evaporation to concentrate the sample ten-fold. The results indicate that the water meets the radioactivity standards required by the regulations MS 2914/2011 of the Brazilian Department of Health. Concerning the high level of censored observations, a statistical treatment of data was conducted by using analysis methods of censored data to provide a reference value of the gross alpha and beta radioactivity in drinking water from the state of Goias. The estimated typical activities are very low, 0.030 Bq•L{sup -1} and 0.058 Bq•L{sup -1}, respectively. (author)