WorldWideScience

Sample records for alpha spectrometers

  1. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  2. The Alpha Magnetic Spectrometer (AMS)

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS

  3. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  4. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  5. The Alpha Magnetic Spectrometer Silicon Tracker

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  6. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  7. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  8. A Feasibility Study of a Portable Alpha Particle Spectrometer

    International Nuclear Information System (INIS)

    Alpha spectroscopy is widely used for detecting undeclared nuclear facilities, activities, and materials. Due to the heavy equipment required to carry out this technique, its applications is limited. With the goal of quickly and efficiently responding to undeclared nuclear facilities, activities, and materials, the present authors have designed and built a portable α-particle spectrometer. This study was conducted in order to develop a new portable α-particle spectrometer with the purpose of detecting undeclared nuclear facilities, activities, and materials on site quickly and efficiently. All heavy and large components, which are typically required for a laboratory such as a αparticle spectrometry system, were minimized and placed in a small container with a weight of 14 kg and a size of 30 cm x 30 cm x 30 cm. In the feasibility study, the calculated enrichment values of 235U obtained from the portable α-particle spectrometer were 1.868 % and 3.083 %, similar to the results from a commercial spectrometry system used in laboratories, 2.049 % and 3.253 %. These differences were possibly caused by different channel setups for each system

  9. The Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Paniccia, M

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra up to TV region, with high energy photon detection capability up to few hundred GeV. With the large acceptance, the long duration (3 years) and the state of the art particle identification techniques, AMS will provide the most sensitive search for the existence of antimatter nuclei and for the origin of dark matter. The detector is being constructed with an eight layers Silicon Tracker inside a large superconducting magnet, providing a ~ 0.8 Tm2 bending power and an acceptance of ~ 0.5 m2sr. A Transition Radiation Detector and a 3D Electromagnetic Calorimeter allow for electron, positron and photon identification, while independent velocity measurements are performed by a Time of Flight scintillating system and a Ring Image Cherenkov detector. The overall construction is due to be completed by 2008.

  10. An Alpha spectrometer for measuring radon daughter individual activity concentration

    International Nuclear Information System (INIS)

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of 218Po, 214Pb and 214Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated

  11. Low-background spectrometer for the study of fast neutron-induced (n,alpha) reactions

    CERN Document Server

    Khriachkov, V A; Mitrofanov, V P; Semenova, N N

    2000-01-01

    An alpha-particle spectrometer based on an ionization chamber with Frisch grid and a waveform digitizer has been developed for studies of fast neutron-induced (n,alpha) reactions. The information on the energy of the alpha-particle and its emission angle can be obtained from the amplitude and rise time of the digitized anode signal. For a situation where both the solid target on the cathode of the ionization chamber and the working gas are the alpha-particle sources, a new method for the suppression of the neutron-induced background is proposed. The background due to gaseous alpha-particles was reduced by a factor of 30.

  12. Development and evaluation of an alpha spectrometer for precise measurement of activity ratio of plutonium

    International Nuclear Information System (INIS)

    In reprocessing plants, alpha spectrometry is used for the determination of plutonium concentration by isotope dilution alpha spectrometry. 238Pu content and for isotope correlations to calculate the specific activity and isotope composition of plutonium. All these studies involve the use of an alpha spectrometer to measure the activity ratio of 238Pu/(239Pu+240Pu) precisely. Technical Physics and Prototype Engineering Division (TPPED) of Bhabha Atomic Research Centre (BARC), Trombay, India has recently developed an alpha spectrometer, performance evaluation of which has been carried out by employing it to determine the activity ratio measurements of plutonium. Comparison of its performance with a commercially available system demonstrates that the indigenously developed instrument does provide acceptable levels of precision and accuracy for the activity ratio measurements of plutonium. (author)

  13. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  14. Antimatter search with AMS (Alpha Magnetic Spectrometer) during STS-91 precursor flight

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is designed to study the antimatter, matter and dark matter in space. AMS successfully flown on space shuttle Discovery during precursor flight STS-91 in a 51.7 degree sign orbit at altitudes between 320 and 390 km. No antimatter nuclei with Z ≥ 2 were detected. In this report we present the AMS performances during shuttle flight and we give new limits on antimatter/matter flux ratio

  15. The alpha magnetic spectrometer (AMS): search for antimatter and dark matter on the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, R. [Perugia Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Perugia (Italy)

    1998-06-01

    The alpha magnetic spectrometer (AMS) is a state of the art detector for the extraterrestrial study of anti-matter, matter and missing matter. After a precursor flight on STS91 in may 1998, AMS will be installed on the International Space Station where it will operate for three years. In this paper the AMS experiment is described and its physics potential reviewed. (orig.). 18 refs.

  16. The alpha magnetic spectrometer silicon tracker: Performance results with protons and helium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Alpat, B.; Ambrosi, G. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Azzarello, Ph. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Battiston, R.; Bertucci, B. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Bolmont, J. [Laboratoire de Physique Theorique et Astroparticules, IN2P3/CNRS, Universite de Montpellier II, F-34095 Montpellier (France); Bourquin, M. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Burger, W.J. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy)], E-mail: william.burger@cern.ch; Capell, M. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cardano, F. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Chang, Y.H. [National Central University, Jhungli 320, Taiwan (China); Choutko, V. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cortina, E. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Dinu, N. [Institute for Space Science (ISS), R-76900 Bucharest (Romania); Esposito, G.; Fiandrini, E. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Haas, D. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Haino, S. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Hakobyan, H. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland)] (and others)

    2008-08-11

    The Alpha Magnetic Spectrometer is designed for a long duration measurement of the cosmic-ray spectra at an altitude of 400 km. The particle rigidity and specific energy loss are measured by a silicon tracker located in a 0.8 T field. Ground results for the position resolution, detection efficiency and charge determination for singly and doubly charged relativistic particles are presented and discussed in the context of the spaceborne detector.

  17. The alpha magnetic spectrometer silicon tracker: Performance results with protons and helium nuclei

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer is designed for a long duration measurement of the cosmic-ray spectra at an altitude of 400 km. The particle rigidity and specific energy loss are measured by a silicon tracker located in a 0.8 T field. Ground results for the position resolution, detection efficiency and charge determination for singly and doubly charged relativistic particles are presented and discussed in the context of the spaceborne detector

  18. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    International Nuclear Information System (INIS)

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed

  19. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, C.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, S.R., E-mail: yhkim@kriss.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, G.B. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Lee, H.J. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Lee, M.K.; Lee, J.H. [Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); So, J.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, Y.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an {sup 241}Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  20. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    Science.gov (United States)

    Yoon, W. S.; Kang, C. S.; Kim, S. R.; Kim, G. B.; Lee, H. J.; Lee, M. K.; Lee, J. H.; So, J. H.; Kim, Y. H.

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  1. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  2. Three dimensional parametrization of electromagnetic shower in Alpha Magnetic Spectrometer Ⅱ ECAL

    Institute of Scientific and Technical Information of China (English)

    TAO Jun-Quan; CHEN He-Sheng; CHEN Gang; YANG Min; CHEN Guo-Ming; LI Zu-Hao; LI Xin-Qiao; TANG Zhi-Cheng; ZHANG Zhen; WANG Jian; L(U) Yu-Sheng

    2008-01-01

    We develop an empirical formula to parameterize the 3-dimension (3D) distribution of electromagnetic showers in the Alpha Magnetic Spectrometer Ⅱ electromagnetic calorimeter(ECAL). The formula was verified by ECAL test beam data in 2002 and found to perform well. The distribution of electron showers in the ECAL are well described by the formula, which has parameters that allow one to determine the 3D shape of electromagnetic showers in the ECAL. We use this formula to correct for lateral energy leakage and dead channels in the ECAL; good results are obtained.

  3. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Science.gov (United States)

    Alpat, Behcet

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  4. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  5. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  6. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  7. Experimental validation of an analytical method to obtain the response function of an alpha particle spectrometer

    International Nuclear Information System (INIS)

    In a previous paper, one of the authors suggested an analytical method for calculation of the response function of an alpha spectrometer for the case of large solid angles. This paper describes the experimental verification of the method. Spectra of a well-known natural uranium sample were measured with a 450 mm2 Si detector and compared to the theoretical predictions. The measurements were carried out with two different geometrical configurations. In both cases a good agreement was observed between experimental and theoretical results

  8. Development of the portable alpha-ray spectrometer based on the PIPS detector

    International Nuclear Information System (INIS)

    In order to maintain the needs of determining radiation contamination in-situ rapidly, we established a kind of portable alpha-ray spectrometer based on the PIPS detector. The instrument employs PIPS detector to capture α-ray, signals are collected and disposed by preamplifier circuit and the signal acquisition module, then spectra analysis is achieved by C8051F120 MCU control platform. Man-machine interface was organized by matrix keyboard and LCD display. Both lithium-ion batteries and power processing module were used to supply the system power. We designed a vacuum measurement chamber in order to obtain higher energy resolution and cleaner spectra. By performance testing we get that the whole power consumption of this instrument is 105 mA, energy resolution is 8.1% in normal air environment and 6.7% in vacuum. The instrument has high -precision, good stability, low power consumption, and is very suitable for in-situ measuring. (authors)

  9. Mariner 6, 7, and 9 ultraviolet spectrometer experiment - Analysis of hydrogen Lyman alpha data

    Science.gov (United States)

    Anderson, D. E., Jr.

    1974-01-01

    Four Lyman alpha airglow measurements of the limb and disk of Mars, made by ultraviolet spectrometers on Mariner 6 and 7 in 1969 and Mariner 9 in 1971, are analyzed to determine the amount and distribution of atomic hydrogen above 80 km. The variation of atomic hydrogen with altitude is calculated by using time-independent chemical diffusion models from 80 to 250 km, and an exospheric model is used above 250 km. By employing radiative transfer theory that includes effects of pure absorption and accounts for temperature variations in the atmosphere, a spherical model of the airglow Lyman alpha emission is used to produce theoretical intensities for comparison with the data. It is found that (1) the exospheric temperature and distribution in 1971 are consistent with those determined in 1969, (2) the vertical optical depth above 80 km was 2.2 in 1969 and 5 in 1971, and (3) the derived atomic hydrogen distribution from 80 to 250 km requires a source of atomic hydrogen above 80 km. Comparison of observed profiles with chemical diffusion models implies a large downward flow of atomic hydrogen at 80 km coupled with a large upward flow of molecular hydrogen.-

  10. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM241 source were compared to systems made with imported stages. (Author)

  11. An alpha–gamma coincidence spectrometer based on the photon–electron rejecting alpha liquid scintillation (PERALS®) system

    International Nuclear Information System (INIS)

    An alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics

  12. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm2. The rectifier and the ohmic contacts were prepared at high vacuum (10-2 to 10-3 Pa) evaporation with 40μg/cm2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR)2-(RC)4 shaping network and the unipolar output is obtained through a CR-(RC)4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  13. The WASTED Resolutions: exploration of the spatial and energy limits of the Webcam Alpha Spectrometer TEchnology Demonstrator

    Science.gov (United States)

    Fryman, Joseph; Pallone, Arthur

    2012-02-01

    Scientists and engineers build simple, low-cost, webcam-based instruments for use in many disciplines. Analysis of the optical signal received through the three broadband color filters -- red, green and blue -- form the basis of many of those instruments. The CMOS sensors in webcam pixels also produce signals in response to ionizing radiations -- such as alpha particles from a radioactive source. Simple alpha radiography has been demonstrated with an alpha source and a webcam modified to expose the sensors. The performance of the Webcam Alpha Spectrometer TEchnology Demonstrator (WASTED) built from such a modified webcam and a commercially available alpha source mounted to an optics rail is analyzed in terms of the energy upper-half-width-half-maximum and of the spatial modulation transfer function.

  14. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  15. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  16. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  17. Solvent extraction technique for the analysis of thorium-230 using the Photon-Electron Rejecting Alpha Liquid Scintillation Spectrometer (PERALS)

    International Nuclear Information System (INIS)

    A solvent extraction technique has been developed to improve the analysis and recoveries for Thorium-230. The emphasis of this technique is to improve productivity and precision over ion-exchange when using the Photon-Electron Rejecting Alpha Liquid Scintillation Spectrometer (PERALS). The Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) currently is involved in characterizing sites that are contaminated with alpha emitting radionuclides which can not be detected with field instrumentation. This technique and equipment demonstrates the ability to be used for in-the-field analysis for all alpha emitting radionuclides with only minor modifications of in-laboratory procedures. The PERALS system offers 99.7% detection capability which greatly reduces counting times previously required for low activity samples. The solvent extraction technique coupled with the PERALS system significantly increases sample productivity and decreases unit cost per analysis. A description of the solvent extraction technique, the analytical instrumentation, and typical applications are discussed

  18. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  19. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  20. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  1. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    International Nuclear Information System (INIS)

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  2. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, C. G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J.; Mileham, C.; Sangster, T. C.; Frenje, J. A.

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  3. Operations of the thermal control system for Alpha Magnetic Spectrometer electronics following the beta angle of the International Space Station

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) has been running and measuring cosmic rays on the International Space Station (ISS) since May 19, 2011. The thermal control system (TCS) plays an important role in keeping all components and equipment working in an operational temperature range. Since the AMS started working on the ISS, AMS thermal engineers have been monitoring the on-orbit status of the TCS. During normal operation, the local temperature of AMS components regularly varies along with the β angle of the ISS. Based on the collected temperature data, the general characteristics of local temperature variations of TCS for AMS Electronics following the β of the ISS are discussed with the statistics of the orbit-averaged temperature and the orbit standard deviation of temperature. Furthermore some temperature anomalies at specific β are also studied. - Highlights: • The variation of the main radiators temperature is statistically analyzed. • The hot case and cold case for the main radiators are found in normal operations. • The solar illumination falling on the inner sheet of RAM radiator leads to temperature jump. • The temperature anomalies on the WAKE radiator show a uniform trend except WR3 sensor. • The regularity of the temperature variation is described with fitted equations

  4. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Sun, Wenhao; Cai, Xudong; Meng, Qiao

    2016-04-01

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  5. Alpha Magnetic Spectrometer (AMS) for Extraterrestrial Study of Antimatter, Matter and Missing Matter on the International Space Station

    CERN Multimedia

    Valtonen, E; Lee, M W; Berdugo perez, J F; Borgia, B; Battarbee, M C; Valente, V; Bartoloni, A

    2002-01-01

    % RE1\\\\ \\\\ AMS is the first magnetic particle physics spectrometer to be installed on the International Space Station. With a superconducting magnetic spectrometer, AMS will provide accurate measurements of electrons, positrons, protons, antiprotons and various nuclei up to TeV region. NASA has scheduled to install this detector on the International Space Station in May 2003. The first flight of AMS was done with a permanent magnet and this prototype detector has provided accurate information on the limit of the existence of antihelium. It also showed that proton and electron -positron spectra exhibited a complicated behavior in the near earth orbit. The construction of AMS is being carried out in Switzerland, Germany, Italy, France, Finland, Spain, Portugal, Romania, Russia, Taiwan, China and the United States. NASA provides the use of the space shuttle and the space station, as well as mission management.

  6. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    Science.gov (United States)

    Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-01

    Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  7. Prof. Samuel ting presents results from AMS experiment at CERN main auditorium. Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS1) today announced the first results in its search for dark matter

    CERN Multimedia

    Samuel Morier-Genoud

    2013-01-01

    Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS) today announced the first results in its search for dark matter. The results, presented by AMS spokesperson Professor Samuel Ting in a seminar at CERN, are to be published in the journal Physical Review Letters. They report the observation of an excess of positrons in the cosmic ray flux

  8. Gas phase attachment of water and methanol to Ag(I) complexes with alpha-amino acids in an ion trap mass spectrometer.

    Science.gov (United States)

    Perera, B A; Ince, M P; Talaty, E R; Van Stipdonk, M J

    2001-01-01

    Electrospray ionization was used to generate gas phase complexes of Ag+ with selected alpha-amino acids. Following storage (isolation without collisional activation) in an ion trap mass spectrometer, the mass spectra produced from the complexes of Ag+ with alpha-amino acids such as alanine, valine and tert-leucine contained peaks consistent with the formation of water or methanol molecule adduct ions. The same adduct ions were not present, however, in the mass spectra generated from the Ag+ complexes with phenylalanine, tyrosine and tryptophan following isolation and storage under similar conditions. For those complexes that showed reactivity, the uptake of water and methanol increased with longer storage times in the ion trap. A preliminary molecular modeling study using phenylalanine demonstrated that the aromatic ring coordinates the Ag+ ion, and the interaction between the metal ion and pi-system, in part, is assumed to prohibit the binding of water or methanol during isolation in the gas phase. This conclusion is supported by a comparison of the adduct formation by the Ag+ complexes with phenylalanine, 4-fluorophenylalanine and alpha-aminocyclohexanepropionic acid. In addition, collision induced dissociation experiments involving the Ag+ complexes of phenylalanine, tyrosine and tryptophan suggest that limiting the coordination of the Ag ion by the complexing molecule (i.e. by loss of a coordinating functional group and/or change in structure due to dissociation) results in the binding of a water or methanol molecule during storage in the ion trap. Surprisingly, the bare Ag+ ion, when trapped and stored under identical experimental conditions, formed neither adduct species, suggesting that the attachment of water or methanol may be due to interactions with a molecular orbital within the Ag+/molecule complex. PMID:11312512

  9. Measure of exposure of short-lived radon products using an alpha spectrometer for measuring indoor aerosol activity concentration and dose evaluation

    International Nuclear Information System (INIS)

    A new italian law introduces the regulation of occupational exposure to radon. To evaluate the inhalation of radon daughters by the workers a sampling device has been assembled with the aim of evaluation of unattached and aerosol attached radon daughters' fractions. The instrument, based on selection of the aerosuspended particles by means of a wire screen type battery and subsequent collection on a total filter, allows to describe the behaviour of both fractions using defined temporal pattern of collecting particles and counting them by alpha spectroscopy. A measurement campaign to test the radon daughter dichotomous spectrometer in comparison with a commercial Radon Working Level meter, has been performed in a research laboratory of central Italy affected by high radon concentrations. The radon concentration during the measurement campaign has been also measured. The equilibrium factor Feq ad the attachment factor fp have been evaluated during 3 days campaign. Using the measured mean parameters (radon concentration, Feq, fp) the dose evaluation for workers using dosimetric approach has been performed. A comparison between the epidemiologic approach, based on the radon concentration, and dosimetric approach is also presented

  10. Refinement of the Compton-Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer: II - Extraction of invisible element content

    Science.gov (United States)

    Perrett, Glynis M.; Campbell, John L.; Gellert, Ralf; King, Penelope L.; Nield, Emily; O'Meara, Joanne M.; Pradler, Irina

    2016-02-01

    The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as 'unknowns' in order to evaluate the accuracy of ALIC concentrations derived in this manner.

  11. High voltage generator for the power supply of photomultipliers in the time of flight system of Alpha Magnetic Spectrometer-2 experiment

    International Nuclear Information System (INIS)

    In this report, the behaviour of the first prototype high voltage generator (HVG) that might be used in the time of flight (TOF) system for the AMS-2 experiment is described. The system receives a positive continuous voltage about 100-120 V as input, and it provides a programmable negative continuous voltage from -1600 to -2400 V as output, versus a total load of 50 MΩ. The most important aspect is the absence of a transformer which usually is used in the step-up DC-DC converters. In the TOF system of alpha magnetic spectrometer (AMS)-2 experiment there is a big magnetic field, higher than 2 kG, that does not allow to use a transformer, therefore this prompted us to use the Cockroft-Walton system. The power consumption is about 300 mW and the peak-to-peak high frequency ripple is lower than 0.3% of the output high voltage. We also estimated the reliability of the HVG and we obtained a failure probability lower than 0.5% after three years of continuous functioning. Besides, in this report, much importance was given to the calculation of a simple model of the system to estimate the stability margins

  12. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  13. Millimeter-Scale Chemistry of Observable Endmembers with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer and Mars Hand Lens Imager

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Thompson, Lucy; Berger, Jeff; Campbell, Iain; Edgett, Ken; McBride, Marie; Minitti, Michelle; Desouza, Elstan; Boyd, Nick

    2016-04-01

    The Alpha Particle X-ray Spectrometer (APXS) is a bulk chemistry instrument conducting high-precision in-situ measurements of Martian rocks and soils onboard both active NASA rovers [1]. Mounted at the end of the Curiosity rover arm, the APXS can conduct multi-spot (raster) investigations in a single morning or evening. Combining APXS raster spectra and Mars Hand Lens Imager (MAHLI) images, a modeled terrain is developed in which the positions of APXS field of views (FOV) can be localized, thereby mitigating arm placement uncertainty. An acquired APXS spectrum is the result of the weighted sum of the signals from within the FOV. The spatial sensitivity of the APXS consists of an off-nadir contribution in addition to a vertical separation (standoff with respect to the APXS detector) contribution [2, 3]. MAHLI images and focus merge (MFM) products facilitate a 3D surface model of the target [4] compensating for the effects of sample relief in an APXS spectrum. Employing a MFM relief map, APXS placement is modeled in three-dimensions, permitting variable APXS docking (standoff, deployment angle). Through minimization, we arrive at millimeter-scale chemistry of veins, diagenetic features and dust-free rock endmembers of Martian targets. Several rasters have been conducted with Curiosity's APXS on Mars including a study of the Garden City outcrop. The area is characterized by its contrasting light and dark veins of cm-scale surface relief. Three-dimensional localization and minimization indicated calcium sulfate as the major component of the light vein while the dark vein is enriched in CaO (without accompanying SO3), MnO, Ni and Zn, with respect to average Mars composition. References: [1] Gellert et al. (2014), LPSC XLV, #1876. [2] VanBommel et al. (2015), LPSC XLVI, #2049. [3] VanBommel et al. (2016), XRS #2681. [4] Edgett et al. (2015), MAHLI Tech Rept 0001. Acknowledgements: The MSL APXS is financed and managed by the Canadian Space Agency (CSA) with Mac

  14. Obsidian provenance determination using the beam stability controlled BSC-XRF and the PIXE-alpha portable spectrometers of the LANDIS laboratory: the case of the Via Capuana settlement in Licodia Eubea (Sicily)

    International Nuclear Information System (INIS)

    In the last decade about 800 obsidian artifacts coming from various archaeological sites of Sicily have been analyzed using the BSC-XRF (beam stability controlled-x-ray fluorescence) and PIXE-alpha (particle induced x-ray emission, using low-energy alpha particles) portable spectrometers developed at the Landis laboratory of the LNS–INFN and IBAM–CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on the above trace-element concentrations were deduced using a method that makes use of a multi-parameter linear regression. The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In this paper the updated versions of the instrumental devices and methods are presented together with a review of all the obtained data from various Sicilian sites. Results on compositional data for trace elements and major elements allowed us to identify Lipari and Pantelleria islands as the only two sources of the analyzed samples. Recent data about the Via Capuana settlement in Licodia Eubea are also presented and discussed for the first time. (paper)

  15. The Harvest and Enlightenment from International Cooperation Project- the Alpha Magnetic Spectrometer for Scientific Research%阿尔法磁谱仪重大国际合作项目给我们的启示

    Institute of Scientific and Technical Information of China (English)

    王玲俐; 尚智丛

    2011-01-01

    简要介绍由丁肇中教授发起的阿尔法磁谱仪重大国际合作项目(以下简称AMS)的国际合作的发展历程和中国科学家所做的贡献,并探讨AMS对我们的启示.%The Alpha -Magnetic Spectrometer (AMS) is a device to search antimatter, dark matter and dark energy in the space. The huge international project is led by Noble Laureate S. C. C. Ting, a professor of MIT, USA, we present the development of the project and the contribution from China, and also discuss the harvest and enlightenment from international cooperation.

  16. First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV.

    Science.gov (United States)

    Aguilar, M; Alberti, G; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Anderhub, H; Arruda, L; Azzarello, P; Bachlechner, A; Barao, F; Baret, B; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Basili, A; Batalha, L; Bates, J; Battiston, R; Bazo, J; Becker, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Berges, P; Bertucci, B; Bigongiari, G; Biland, A; Bindi, V; Bizzaglia, S; Boella, G; de Boer, W; Bollweg, K; Bolmont, J; Borgia, B; Borsini, S; Boschini, M J; Boudoul, G; Bourquin, M; Brun, P; Buénerd, M; Burger, J; Burger, W; Cadoux, F; Cai, X D; Capell, M; Casadei, D; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, C R; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chernoplyiokov, N; Chikanian, A; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Commichau, V; Consolandi, C; Contin, A; Corti, C; Costado Dios, M T; Coste, B; Crespo, D; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirkoz, B; Dennett, P; Derome, L; Di Falco, S; Diao, X H; Diago, A; Djambazov, L; Díaz, C; von Doetinchem, P; Du, W J; Dubois, J M; Duperay, R; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eppling, F J; Eronen, T; van Es, J; Esser, H; Falvard, A; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Flood, K; Foglio, R; Fohey, M; Fopp, S; Fouque, N; Galaktionov, Y; Gallilee, M; Gallin-Martel, L; Gallucci, G; García, B; García, J; García-López, R; García-Tabares, L; Gargiulo, C; Gast, H; Gebauer, I; Gentile, S; Gervasi, M; Gillard, W; Giovacchini, F; Girard, L; Goglov, P; Gong, J; Goy-Henningsen, C; Grandi, D; Graziani, M; Grechko, A; Gross, A; Guerri, I; de la Guía, C; Guo, K H; Habiby, M; Haino, S; Hauler, F; He, Z H; Heil, M; Heilig, J; Hermel, R; Hofer, H; Huang, Z C; Hungerford, W; Incagli, M; Ionica, M; Jacholkowska, A; Jang, W Y; Jinchi, H; Jongmanns, M; Journet, L; Jungermann, L; Karpinski, W; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Koulemzine, A; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Laudi, E; Laurenti, G; Lauritzen, C; Lebedev, A; Lee, M W; Lee, S C; Leluc, C; León Vargas, H; Lepareur, V; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Lipari, P; Lin, C H; Liu, D; Liu, H; Lomtadze, T; Lu, Y S; Lucidi, S; Lübelsmeyer, K; Luo, J Z; Lustermann, W; Lv, S; Madsen, J; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masciocchi, F; Masi, N; Maurin, D; McInturff, A; McIntyre, P; Menchaca-Rocha, A; Meng, Q; Menichelli, M; Mereu, I; Millinger, M; Mo, D C; Molina, M; Mott, P; Mujunen, A; Natale, S; Nemeth, P; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oh, S; Oliva, A; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Park, W H; Pauluzzi, M; Pauss, F; Pauw, A; Pedreschi, E; Pensotti, S; Pereira, R; Perrin, E; Pessina, G; Pierschel, G; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pochon, J; Pohl, M; Poireau, V; Porter, S; Pouxe, J; Putze, A; Quadrani, L; Qi, X N; Rancoita, P G; Rapin, D; Ren, Z L; Ricol, J S; Riihonen, E; Rodríguez, I; Roeser, U; Rosier-Lees, S; Rossi, L; Rozhkov, A; Rozza, D; Sabellek, A; Sagdeev, R; Sandweiss, J; Santos, B; Saouter, P; Sarchioni, M; Schael, S; Schinzel, D; Schmanau, M; Schwering, G; Schulz von Dratzig, A; Scolieri, G; Seo, E S; Shan, B S; Shi, J Y; Shi, Y M; Siedenburg, T; Siedling, R; Son, D; Spada, F; Spinella, F; Steuer, M; Stiff, K; Sun, W; Sun, W H; Sun, X H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tassan-Viol, J; Ting, Samuel C C; Ting, S M; Titus, C; Tomassetti, N; Toral, F; Torsti, J; Tsai, J R; Tutt, J C; Ulbricht, J; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vargas Trevino, M; Vaurynovich, S; Vecchi, M; Vergain, M; Verlaat, B; Vescovi, C; Vialle, J P; Viertel, G; Volpini, G; Wang, D; Wang, N H; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Wallraff, W; Weng, Z L; Willenbrock, M; Wlochal, M; Wu, H; Wu, K Y; Wu, Z S; Xiao, W J; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J G; Zhang, Z; Zhang, M M; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zuccon, P; Zurbach, C

    2013-04-01

    A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8 × 10(6) positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼ 250  GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena. PMID:25166975

  17. Chopper spectrometers

    International Nuclear Information System (INIS)

    Chopper spectrometers are devices which measure the dynamics of condensed systems expressed in terms of the scattering function. The scattering function depends on the energy and momentum transfers which are related to the initial and final neutron wave vectors. The resolution of the instrument is limited by the time-of-flight measurements on the scattered beam but the wide range of accessible energy and momentum transfers make chopper spectrometers popular. Several examples of experiments using chopper spectrometers are presented

  18. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  19. Measurement of the cosmic $e^{+} + e^{-}$ Flux from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station

    CERN Document Server

    AUTHOR|(CDS)2080883

    2014-11-14

    The measurement of positrons and electrons (e+/-) in cosmic rays provides fundamental information about the origin and the propagation of cosmic rays in the Galaxy. The interest in the e measurements is enhanced by the possibility to observe indirect evidences of Dark Matter annihilation in the e spectral shapes and arrival directions. The most precise space experiment for the detection of cosmic rays is the Alpha Magnetic Spectrometer (AMS). AMS is a large acceptance cosmic ray detector which has been installed on the International Space Station in May 2011 to conduct an unique long-duration ( ~20 years) mission of fundamental physics research in space. In this thesis, the events collected by AMS in the first 30 months of data taking have been analyzed to measure the (e+ + e-) energy spectrum. A total of 10.6 million events have been identified as e+/- and have been used for the measurement of the (e+ + e-) flux from 0.5 GeV to 1 TeV. In this thesis the AMS detection capabilities, the e+/- identifica...

  20. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  1. Spectrometer gun

    International Nuclear Information System (INIS)

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters

  2. Moessbauer spectrometers

    International Nuclear Information System (INIS)

    The recent advances in Moessbauer spectrometers, their parameters and electronic circuits are reviewed. The transfer functions of two mathematical models of electromechanical transducers (with discrete and continuously distributed parameters) are given. The problems of drive and pick-up parts optimisation are discussed. The electronic circuits for reference triangle wave generators with reduced nonlinearity are described. The influence of the positive and negative corrections of the Moessbauer spectrometer feedback loop on the error-signal is discussed. A flow chart for adaptive minimization of the error-signal is presented. In addition a special drive system using piezoelements with an appropriate digital sinusoidal generator is also included. A flow chart of the system for data acquisition is shown. (author)

  3. Moessbauer spectrometers

    International Nuclear Information System (INIS)

    The recent advances in Moessbauer spectrometers, their parameters and electronic circuits are reviewed. The transfer functions of two mathematical models of electromechanical transducers (with discrete and continuously distributed parameters) are given. The problem of optimization of the drive and pick-up parts is discussed. The electronic circuits for reference triangle wave generators with reduced nonlinearity are described. A Moessbauer spectrometer with both positive and negative corrections in the feedback loop is described. The influence of these corrections on the error-signal is discussed. A flow chart for adaptive minimization of the error-signal is presented. In addition a special drive system using piezo elements with an appropriate digital sinusoidal generator is also included. A flow chart of the system using PC for data accumulation is shown. (author)

  4. Electron spectrometers

    International Nuclear Information System (INIS)

    Measurements made using electron spectrometers can lead to the determination of all the parameters that fully characterize the photoionization process. The measurements fall into three categories: the angular independent flux of the photoelectrons which leads to the partial cross section, the angular distribution of the photoelectrons, and the spin of the photoelectrons. The majority of this paper is concerned with electron energy analyzers which can be used to measure both the partial cross section and the angular distribution

  5. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  6. Coefficient Alpha

    OpenAIRE

    Panayiotis Panayides

    2013-01-01

    Heavy reliance on Cronbach’s alpha has been standard practice in many validation studies. However, there seem to be two misconceptions about the interpretation of alpha. First, alpha is mistakenly considered as an indication of unidimensionality and second, that the higher the value of alpha the better. The aim of this study is to clarify these misconceptions with the use of real data from the educational setting. Results showed that high alpha values can be obtained in multidimensional scale...

  7. An EUV spectrometer for atmospheric remote sensing

    International Nuclear Information System (INIS)

    This paper describes the Berkeley EUV Airglow Rocket Spectrometer (BEARS) experiment, designed to investigate the interactions between the solar ionizing radiation and the earth's upper atmosphere. The primary objective of this experiment is the verification the feasibility of using EUV observations as a quantitative diagnostic of the terrestrial atmosphere and its plasma environment. The expected information provided by spectroscopic measurements of EUV emission will include data on the excitation mechanisms, excitation rates, and branching ratios. The BEARS experimental package consists of a high-resolution EUV airglow spectrometer, a hydrogen Lyman-alpha photometer to measure both the solar radiations and the geocoronal emissions, and a moderate-resolution solar EUV spectrometer. In a test experiment, the instruments were carried aboard a four-stage sounding rocket to a peak altitude of about 960 km and obtained airglow spectra in the 980-1060 A range and in the 1300-1360 range. 34 refs

  8. Alpha fetoprotein

    Science.gov (United States)

    Fetal alpha globulin; AFP ... Greater than normal levels of AFP may be due to: Cancer in testes , ovaries, biliary (liver secretion) tract, stomach, or pancreas Cirrhosis of the liver Liver cancer ...

  9. The SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  10. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  11. High efficiency charged-particle spectrometer using gridded ionization chamber for fast-neutron induced reactions

    International Nuclear Information System (INIS)

    A high efficiency charged particle spectrometer for fast neutron induced reactions has been developed using a gridded-ionization chamber taking advantage of its large solid angle and capability of energy-angle determination. It is characterized by high stopping-power and low background to be applicable for alpha-particles emitted by 15 MeV neutrons and protons for MeV incident neutrons. The spectrometer has been applied successfully for (n, alpha) and (n, p) reactions. (orig.)

  12. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  13. Degradation Free Spectrometers for Solar EUV Measurements

    Science.gov (United States)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  14. Set-up of an alpha-spectrometry system

    International Nuclear Information System (INIS)

    Principle of operation of alpha-spectrometry system is described, using a solid state detector, which allows to precisely determine sample's activity and specify alpha-emitting radionuclides. Measurements which allow to define system performances are shown, that is energy resolution and real sensitivity of spectrometer

  15. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    Science.gov (United States)

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII. PMID:20733778

  16. $\\alpha_s$ review (2016)

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The current world-average of the strong coupling at the Z pole mass, $\\alpha_s(m^2_{Z}) = 0.1181 \\pm 0.0013$, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD "data", (ii) $\\tau$ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in $e^+e^-$ collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other $\\alpha_s$ extractions, usually with a lower level of theoretical and/or experimental precision today, have been proposed: pion, $\\Upsilon$, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and $\\gamma$-p collisions; and photon F$_2$ structure function in $\\gamma\\,\\gamma$ collisions. These 14 $\\alpha_s$ determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

  17. Magnetron mass spectrometer

    International Nuclear Information System (INIS)

    A magnetron mass-spectrometer characterized by increased sensitivity at low power is described. The mass-spectrometer contains ion source cylindrical analyzer located on its axis, ion collector and magnetic system. For decreasing consumed power the ion source is fixed at the end of the analyzer and it represents two coaXial cylinders located between plane electrodes, in one of which a ring slot takes place and the other one is connected with positive terminal of discharge voltage source. The magnetic system represents ring-form magnets fixed by similar poles to each other and separated by washers of magnetic-soft material, the washers being placed in the plane of the ion source. The analyzed ions in the described mass-spectrometer are obtained mainly at the expense of resonance recharge that increases accuracy of measurements due to decrease of fragment peak intensity

  18. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  19. The HERMES Spectrometer

    OpenAIRE

    Ackerstaff, K.

    1998-01-01

    The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of H, D, and He. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of ...

  20. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  1. The $\\alpha-\\alpha$ fishbone potential revisited

    CERN Document Server

    Day, J P; Elhanafy, M; Smith, E; Woodhouse, R; Papp, Z

    2011-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  2. Cyclotrons as mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  3. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  4. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  5. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  6. Spherical electrostatic electron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N. (Rutgers - the State Univ., New Brunswick, NJ (USA). Dept. of Physics)

    1982-06-15

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Moessbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  7. Alpha One Foundation

    Science.gov (United States)

    ... Tested Find Support Find Doctor What Is Alpha-1? Alpha-1 Antitrypsin Deficiency (Alpha-1) is a ... results for inhaled augmentation More News Our Number One Goal: Find a cure for Alpha-1. Website ...

  8. Alpha-1 Antitrypsin Test

    Science.gov (United States)

    ... helpful? Also known as: Alpha 1 -antitrypsin; A1AT; AAT Formal name: Alpha 1 Antitrypsin; α1-antitrypsin Related ... know? How is it used? Alpha-1 antitrypsin (AAT) testing is used to help diagnose alpha-1 ...

  9. Alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Felix; Wilsenach, Heinrich; Zuber, Kai [IKTP TU-Dresden, Dresden (Germany)

    2014-07-01

    Alpha decays from long living isotopes are one of the limiting backgrounds for experiments searching for rare decays with stringent background constrains, such as neutrinoless double beta decay experiments. It is thus very important to accurately measure the half-lives of these decays, in order to properly model their background contribution. Therefore, it is important to be able to measure half-lives from alpha decays of the order of 1 x 10{sup 15} yr. A measurement of such a long lived decay imposes, however, a series of challenges, where the correct discrimination between background and true signal is critical. There is also a more general interest in such long living half-life measurements, as their value depends crucially on the underlying nuclear model. This work proposes a setup to measure long lived alpha decays, based on the design of the Frisch-Grid ionisation chamber. It is shown that the proposed design provides a good separation of signal and background events. It is also demonstrated that, with pulse shape analysis, it is possible to constrain the source position of the decay, further improving the quality of the data. A discussion of the characterisation of the detector is also presented as well as some results obtained with calibration sources.

  10. Alpha spectroscopy

    International Nuclear Information System (INIS)

    Alpha decays from long living isotopes are one of the limiting backgrounds for experiments searching for rare decays with stringent background constrains, such as neutrinoless double beta decay experiments. It is thus very important to accurately measure the half-lives of these decays, in order to properly model their background contribution. Therefore, it is important to be able to measure half-lives from alpha decays of the order of 1 x 1015 yr. A measurement of such a long lived decay imposes, however, a series of challenges, where the correct discrimination between background and true signal is critical. There is also a more general interest in such long living half-life measurements, as their value depends crucially on the underlying nuclear model. This work proposes a setup to measure long lived alpha decays, based on the design of the Frisch-Grid ionisation chamber. It is shown that the proposed design provides a good separation of signal and background events. It is also demonstrated that, with pulse shape analysis, it is possible to constrain the source position of the decay, further improving the quality of the data. A discussion of the characterisation of the detector is also presented as well as some results obtained with calibration sources.

  11. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  12. Simulation of the SAGE spectrometer

    Science.gov (United States)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  13. Effective mass spectrometer

    International Nuclear Information System (INIS)

    The history and major accomplishments of the Effective Mass Spectrometer (EMS) are described. In the eight years since the EMS turned on, 21 experiments have been completed by groups from nine institutions in 32 months of operation. Over 400 million triggers have been recorded on magnetic tape, resulting in 29 journal publications to date. A list of experimental proposals for the EMS and a sampling of results are presented. 12 figures, 4 tables

  14. Spherical electrostatic electron spectrometer

    Science.gov (United States)

    Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.

    1982-06-01

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  15. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  16. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  17. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  18. Measure of exposure of short-lived radon products using an alpha spectrometer for measuring indoor aerosol activity concentration and dose evaluation; Misure di esposizione ai prodotti di decadimento del radon a breve vita tramite uno spettrometro alfa per la misura dell'attivita' del particolato atmosferico indoor e valutazioni dosimetriche

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Castellani, C.M.; Formignani, M. [ENEA, Divisione Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche Ezio Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    A new italian law introduces the regulation of occupational exposure to radon. To evaluate the inhalation of radon daughters by the workers a sampling device has been assembled with the aim of evaluation of unattached and aerosol attached radon daughters' fractions. The instrument, based on selection of the aerosuspended particles by means of a wire screen type battery and subsequent collection on a total filter, allows to describe the behaviour of both fractions using defined temporal pattern of collecting particles and counting them by alpha spectroscopy. A measurement campaign to test the radon daughter dichotomous spectrometer in comparison with a commercial Radon Working Level meter, has been performed in a research laboratory of central Italy affected by high radon concentrations. The radon concentration during the measurement campaign has been also measured. The equilibrium factor F{sub e}q ad the attachment factor fp have been evaluated during 3 days campaign. Using the measured mean parameters (radon concentration, F{sub e}q, f{sub p}) the dose evaluation for workers using dosimetric approach has been performed. A comparison between the epidemiologic approach, based on the radon concentration, and dosimetric approach is also presented. [Italian] L'esposizione a radon in ambiente lavorativo e la conseguente inalazione dei suoi prodotti di decadimento in forma particolata e' oggetto di una recente normativa italiana in materia di protezione dalle radiazioni ionizzanti. Per rispondere a questa necessita', presso l'Istituto per la Radioprotezione dell'ENEA di Bologna e' stato progettato e realizzato uno spettrometro alfa per la misura della progenie del radon con la finalita' di valutare, su brevi periodi di tempo, la concentrazione individuale dei suoi prodotti di decadimento e, con l'impiego di batterie a diffusione a reti, consentire inoltre la discriminazione della concentrazione della frazione attaccata e non

  19. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  20. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  1. AMS - a magnetic spectrometer on the international space station

    CERN Document Server

    Arruda, Luísa; Barão, Fernando; Barreira, Gaspar; Borges, João; Gonçalves, Patrícia; Pimenta, Mário

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle detector, designed to search for cosmic antimatter and dark matter and to study the elemental and isotopic composition of primary cosmic rays, that will be installed on the International Space Station (ISS) in 2008 to operate for at least three years. The detector will be equipped with a ring imaging Cherenkov detector (RICH) enabling measurements of particle electric charge and velocity with unprecedented accuracy. Physics prospects and test beam results are shortly presented.

  2. Triple axis spectrometers

    International Nuclear Information System (INIS)

    Conventional triple-axis neutron spectroscopy was developed by Brockhouse over thirty years ago' and remains today a versatile and powerful tool for probing the dynamics of condensed matter. The original design of the triple axis spectrometer is technically simple and probes momentum and energy space on a point-by-point basis. This ability to systematically probe the scattering function in a way which only requires a few angles to be moved under computer control and where the observed data in general can be analysed using a pencil and graph paper or a simple fitting routine, has been essential for the success of the method. These constraints were quite reasonable at the time the technique was developed. Advances in computer based data acquisition, neutron beam optics, and position sensitive area detectors have been gradually implemented on many triple axis spectrometer spectrometers, but the full potential of this has not been fully exploited yet. Further improvement in terms of efficiency (beyond point by point inspection) and increased sensitivity (use of focusing optics whenever the problem allows it) could easily be up to a factor of 10-20 over present instruments for many problems at a cost which is negligible compared to that of increasing the flux of the source. The real cost will be in complexity - finding the optimal set-up for a given scan and interpreting the data as the they are taken. On-line transformation of the data for an appropriate display in Q, ω space and analysis tools will be equally important for this task, and the success of these new ideas will crucially depend on how well we solve these problems. (author)

  3. Mossbauer spectrometer radiation detector

    Science.gov (United States)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  4. Broadband multimode fiber spectrometer

    CERN Document Server

    Liew, Seng Fatt; Choma, Michael A; Tagare, Hemant D; Cao, Hui

    2016-01-01

    A general-purpose all-fiber spectrometer is demonstrated to overcome the trade-off between spectral resolution and bandwidth. By integrating a wavelength division multiplexer with five multimode optical fibers, we have achieved 100 nm bandwidth with 0.03 nm resolution at wavelength 1500 nm. An efficient algorithm is developed to reconstruct the spectrum from the speckle pattern produced by interference of guided modes in the multimode fibers. Such algorithm enables a rapid, accurate reconstruction of both sparse and dense spectra in the presence of noise.

  5. Improvements to mass spectrometers

    International Nuclear Information System (INIS)

    This invention concerns mass spectrometers and, specifically, an ion beam analyser that facilitates the use of these spectrometers. Its object is to provide an improved apparatus for determining the desorption characteristics by field effect of a sample. It also aims to provide an improved system for carrying out sample analyses by using field effect desorption. Under the invention, facilities are added to the analyser to put out of action a part at least of the separation facilities so that the ion beam coming from the source of ions is not deflected. Detection means are located along the non deflected ion beam to detect the ions of the sample when they effectively appear and finally, actuating facilities are coupled to the out-of-action system so that the mass separation facilities may be brought back into action. This enables the operator to vary the parameters, such as the position of the source (emitter), the temperature and the electric field intensity until ions are released by the unknown sample

  6. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  7. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  8. Laser spectrometer of ion mobility

    International Nuclear Information System (INIS)

    The process of ion packet broadening in longitudinal laser spectrometer of ion mobility is studied. The contributions of diffusion, Coulomb and other broadening mechanisms are compared. The resolution of the developed spectrometer is measured (R ∼ 45) in atmospheres of both purified air and pure nitrogen. The dependence of the spectrometer resolution on the drift voltage is studied. The recorded spectra of some explosives with an extremely low pressure of saturated vapors indicate a high sensitivity of this spectrometer (no worse than 10-14 g/cm3)

  9. H$\\alpha$ and EUV observations of a partial CME

    CERN Document Server

    Christian, Damian J; Antolin, Patrick; Mathioudakis, Mihalis

    2015-01-01

    We have obtained H$\\alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {\\it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$\\alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatory's Dunn Solar Telescope. Our H$\\alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations ("blobs") returning to the solar surface at velocities of $\\approx$200 km s$^{-1}$ in both H$\\alpha$ and several SDO AIA band passes. The average derived size of these "blobs" in H$\\alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our "blob" widths to those found from coronal rain, indicate...

  10. Optical fiber smartphone spectrometer.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  11. BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed

  12. Thermoluminescence emission spectrometer.

    Science.gov (United States)

    Prescott, J R; Fox, P J; Akber, R A; Jensen, H E

    1988-08-15

    A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180pi mm(2), and it covers the 350-600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given. PMID:20539405

  13. Study and application of dual parameter spectrometer based on a gridded ionization chamber

    International Nuclear Information System (INIS)

    A dual parameter spectrometer is developed with which the anode and cathode signals of the gridded ionization chamber are recorded simultaneously, a computer program is designed to collect, display and store the two dimensional spectra. Alpha sources are measured with the spectrometer and the angle distribution of alpha particles are calculated. It is discussed how to correct the effects of back scattering and self absorption in the measurement of activity with the angle distribution and it is pointed out that the resolution of the energy spectra can be improved by using the angle distribution as well

  14. The Time-of-Flight Isochronous (TOFI) spectrometer for direct mass measurements of exotic light nuclei

    International Nuclear Information System (INIS)

    A new type of time-of-flight recoil spectrometer designed to measure the masses of neutron-rich light nuclei has recently been completed at LAMPF. The spectrometer relies on an isochronous design that directly correlates an ion's time-of-flight through the spectrometer with it's mass-to-charge ratio. Additional measurements of the ion's velocity and energy enable the charge state of the recoil to be uniquely defined and thus permit precision mass measurements given sufficient statistics. The performance of the spectrometer has been investigated in both off-line (using alpha sources) and on-line tests. The design resolution of Δm/M = 1/2000 (FWHM) has been achieved. Initial performance results of the spectrometer are described with emphasis placed on the techniques used to achieve the overall high mass resolution and large solid angle/momentum acceptance

  15. The time-of-flight isochronous (TOFI) spectrometer for direct mass measurements of exotic light nuclei

    International Nuclear Information System (INIS)

    A new type of time-of-flight recoil spectrometer designed to measure the masses of neutron-rich light nuclei has recently been completed at LAMPF. The spectrometer relies on an isochronous design that directly correlates an ion's time-of-flight through the spectrometer with its mass-to-charge ratio. Additional measurements of the ion's velocity and energy enable the charge state of the recoil to be uniquely defined and thus permit precision mass measurements given sufficient statistics. The performance of the spectrometer has been investigated in both-off line (using alpha sources) and on-line tests. The design resolution of ΔM/M=1/2000 (fwhm) has been achieved. Initial performance results of the spectrometer are described with emphasis placed on the techniques used to achieve the overall high mass resolution and large solid angle/momentum acceptance. (orig.)

  16. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  17. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  18. The OPERA muon spectrometers

    International Nuclear Information System (INIS)

    The OPERA experiment will study νμ to ντ oscillations through τ appearance on the 732km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70m2. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20Hz/m2. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given

  19. The OPERA muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Garfagnini, A. [Padova University and INFN, Padova (Italy)]. E-mail: alberto.garfagnini@pd.infn.it; Bergnoli, A. [Padova University and INFN, Padova (Italy); Brugnera, R. [Padova University and INFN, Padova (Italy); Carrara, E. [Padova University and INFN, Padova (Italy); Ciesielski, R. [Padova University and INFN, Padova (Italy); Dal Corso, F. [Padova University and INFN, Padova (Italy); Dusini, S. [Padova University and INFN, Padova (Italy); Fanin, C. [Padova University and INFN, Padova (Italy); Longhin, A. [Padova University and INFN, Padova (Italy); Stanco, L. [Padova University and INFN, Padova (Italy); Cazes, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Cecchetti, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Di Troia, C. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Dulach, B. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Felici, G. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mengucci, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Orecchini, D. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Paoloni, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Spinetti, M. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Terranova, F. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Ventura, M. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Votano, L. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Candela, A. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); D' Incecco, M. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gustavino, C. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lindozzi, M. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2007-03-01

    The OPERA experiment will study {nu}{sub {mu}} to {nu}{sub {tau}} oscillations through {tau} appearance on the 732km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70m{sup 2}. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20Hz/m{sup 2}. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given.

  20. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  1. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can...

  2. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  3. Ab initio alpha-alpha scattering.

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  4. Ab initio alpha-alpha scattering

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  5. Study of semi-conductor spectrometers for high counting rates. Application to the study of the reaction {sup 31}P (p, {alpha}{sub 0}): E{sub p} < 2 MeV; Etude de spectrometres a semi-conducteurs pour forts taux de comptage application a l'etude de la reaction {sup 31}P (p, {alpha}0): E{sub p} < 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ligeon, E. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-10-01

    The study of nuclear reactions involving particles of low charge (E < 2 MeV) calls for spectrometers of high resolving power. In many experiments however, the counting rate is high because of Coulomb scattering at the target: this results in a distortion of the experimental spectra and a loss of resolving power in the detection equipment. The first part of the work is devoted to an evaluation of the resolving power obtained with silicon-detector spectrometers. A study of the elastic scattering of protons by {sup 31}P shows which are the factors limiting the resolving power. In the second part we examine the various types of spectrometer which can be used in the case of a high count-rate. We have built an apparatus which can be used for carrying out spectrometry on particles produced by nuclear reactions, for a total, count-rate of 10{sup 5} counts/sec. (author) [French] L'etude des reactions nucleaires avec particules chargees a basse energie (E < 2 MeV) exige des spectrometres de haute resolution. Cependant, dans de nombreuses experiences le taux de comptage est eleve, par suite de la diffusion coulombienne sur la cible; on observe alors une distorsion des spectres experimentaux et une perte de resolution de l'ensemble de detection. La premiere partie de ce travail est consacree a l'evaluation de la resolution obtenue avec des spectrometres utilisant des detecteurs au silicium. L'etude de la diffusion elastique des protons sur le {sup 31}P montre quels sont les facteurs qui limitent la resolution. Dans une deuxieme partie, nous etudions les differents types de spectrometres que l'on peut utiliser dans le cas d'un taux de comptage eleve. Nous avons construit un appareil qui permet de faire la spectrometrie de particules, provenant de reactions nucleaires, pour un taux de comptage total de 10{sup 5} c/s. (auteur)

  6. Automated transportable mass spectrometer

    International Nuclear Information System (INIS)

    The need has been identified for a Mass Spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of Special Nuclear Material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromatograph (GC) portions of a Hewlett-Packard (H-P) Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software. The single rhenium filament plug-in source is loaded with either a nominal microliter of sample solution and evaporated, or with a prepared resin bead. Using a resin bead in a specially dimpled filament, copious sensitivity is obtained with 30 nanogram uranium samples. After sample insertion the analysis is completely controlled by an H-P Model 9825 calculator. Source vacuum of 2 x 10-7 torr or better is regained within 2 minutes after sample insertion, and total time for a complete analysis is about 7 minutes. Accuracy is better than 1% for isotope ratios less than 20 and better than 2% for ratios of 100. Ions are accelerated at about 1.8 volts into the mass filter which has pole pieces of hyperbolic cross section. Collection is by a Galileo Channeltron multiplier into a log preamp. During a normal run, 1.4 x 106 data point are observed and averaged. Weight of the instrument excluding the calculator is 88 Kg which allows relatively easy transportation over short distances by two persons. The instrument can be carried into a facility and be ready to analyze samples in less than 3 hours

  7. High energy electron crystal spectrometer

    International Nuclear Information System (INIS)

    A spectrometer has been developed to measure relativistic electrons produced in different types of plasmas, such as tokamak plasmas and laser produced plasmas. The spectrometer consists of nine Y2SiO5:Ce crystals, which are shielded by stainless steel filters. The absolute calibration of the spectrometer was performed at the superconducting electron linear accelerator Electron Linac for beams with high Brilliance and low Emittance. The spectrometer can provide information about energy distribution of electrons and their numbers for the energy range between 4 and 30 MeV. The spectrum is analyzed by means of the Monte Carlo three-dimensional GEANT4 code. An energy resolution of about 10% is achieved.

  8. Semiconductor spectrometer for radiation protection

    International Nuclear Information System (INIS)

    The radiation fields on aircraft board and for other radiation protection application are complexes they contain the particles with energies up to few hundreds MeV. Obviously, one distinguishes the components with low resp. high linear energy transfer (LET). Recently, we have acquired a new measuring instrument, MDU-LIULIN, an energy deposition spectrometer base on a Si-detector. The spectrometer was originally developed and largely tested onboard of cosmic vehicles, its sensitive element is a Si-diode. The spectrometer has been calibrated in photon, neutron and high-energy radiation reference fields (CERN). The energy deposited in the detector by a particle is analysed by a 256-channel spectrum analyser, it permits to distinguish the contribution of different types of radiation to integral dosimetry quantities. The spectrometer has been, since April 2000 used for some radiation protection applications, mostly on aircraft board. Results obtained are presented, discussed and analysed. Materials and methods. (authors)

  9. An antimatter spectrometer in space

    International Nuclear Information System (INIS)

    We discuss a simple magnetic spectrometer to be installed on a satellite or space station. The purpose of this spectrometer is to search for primordial antimatter to the level of antimatter/matter ∼10-9, improving the existing limits obtained with balloon flights by a factor of 104 to 105. The design of the spectrometer is based on an iron-free, Nd-Fe-B permanent magnet, scintillation counters, drift tubes, and silicon or time projection chambers. Different design options are discussed. Typically, the spectrometer has a weight of about 2 tons and an acceptance of about 1.0 m2 sr. The availability of the new Nd-Fe-B material makes it possible for the first time to put a magnet into space economically and reliably. ((orig.))

  10. Polarimetric spectrometer for Italian Radiotelescopes .

    Science.gov (United States)

    Russo, A.

    A new spectrometer has been designed and tested at the Radioastronomy Laboratory of Arcetri Astrophysical Observatory. It provides a resolution of 4096 spectral points over a bandwidth selectable between 0.5 and 125 MHz. It can analyze up to 8 independent signals with full polarimetric capabilities. This spectrometer can be used as back-end for a 7 channels double polarization radio receiver,working in the frequency range 18-26 GHz, implemented in the same laboratory.

  11. Faddeev calculation of 3 alpha and alpha alpha Lambda systems using alpha alpha resonating-group method kernel

    CERN Document Server

    Fujiwara, Y; Kohno, M; Suzuki, Y; Baye, D; Sparenberg, J M

    2004-01-01

    We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are...

  12. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    Science.gov (United States)

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products. PMID:25734826

  13. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    Science.gov (United States)

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  14. Review of alpha_s determinations

    CERN Document Server

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupling is found to be alpha_s(M_Z^2)= 0.1186 \\pm 0.0007.

  15. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  16. Review of alpha_s determinations

    OpenAIRE

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupl...

  17. World Summary of $\\alpha_s$ (2015)

    CERN Document Server

    Bethke, Siegfried; Salam, Gavin P

    2015-01-01

    This is a preliminary update of the measurements of α s and the determination of the world average value of α s (M Z 2 ) presented in the 2013/2014 edition of the Review of Particle Properties [1]. A number of studies which became available since late 2013 provide new results for each of the (previously 5, now) 6 subclasses of measurements for which pre-average values of $\\alpha_s (M_Z^2)$ are determined.

  18. Portable smartphone optical fibre spectrometer

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  19. The Bruny Island Radio Spectrometer

    Science.gov (United States)

    Erickson, W. C.

    1997-11-01

    A radio spectrometer has been built on Bruny Island, south of Hobart, for the study of solar bursts in the rarely observed frequency range from 3 to 20 MHz. This spectrometer is an adaptive device that employs digital techniques to avoid most of the strong terrestrial interference prevalent in this frequency range. The residual interference that cannot be avoided is excised during off-line processing. As a result, successful observations are made down to the minimum frequency that can propagate through the ionosphere to the antenna. This minimum frequency depends upon the zenith distance of the Sun and it is usually between 4 and 8 MHz.

  20. JAERI Tandem neutron TOF spectrometer

    International Nuclear Information System (INIS)

    The layout of the neutron TOF spectrometer at JAERI Tandem Accelerator for the scattering measurement in 10-40 MeV and the data acquisition/process system are described. The result of the 28Si(n,n) and (n,n') at En=13 MeV is shown and the great improvement of the counting efficiency is obtained. (author)

  1. Mirrors for pion spectrometer DIRAC

    Czech Academy of Sciences Publication Activity Database

    Pech, Miroslav; Schovánek, Petr; Hrabovský, Miroslav; Řídký, Jan; Mandát, Dušan; Nožka, Libor; Palatka, Miroslav

    1. Olomouc : Univerzita Palackého v Olomouci, 2006 - (Křepelka, J.), s. 109-110 ISBN 80-244-1544-5 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : mirrors * pion spectrometer DIRAC Subject RIV: BH - Optics, Masers, Lasers

  2. The GRAD gamma ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rester, A.C.; Piercey, R.B.; Eichhorn, G.; Coldwell, R.L.; McKisson, J.M.; Ely, D.W.; Mann, H.M.; Jenkins, D.A.

    1986-02-01

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm/sup 3/ n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center.

  3. The GRAD gamma ray spectrometer

    International Nuclear Information System (INIS)

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm3 n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center

  4. G-Fresnel smartphone spectrometer.

    Science.gov (United States)

    Zhang, Chenji; Cheng, Gong; Edwards, Perry; Zhou, Ming-Da; Zheng, Siyang; Liu, Zhiwen

    2016-01-21

    We report a smartphone spectrometer with nanometer resolution working in the visible range. A G-Fresnel device with the dual functionality of focusing and dispersion is used to enable miniaturization. Proof of principle application to Bradford assay of protein concentration is also demonstrated. PMID:26645747

  5. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  6. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  7. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  8. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  9. Voyager Ultraviolet Spectrometers calibration and the heliosphere neutrals composition: reassessment

    CERN Document Server

    Ben-Jaffel, Lotfi

    2016-01-01

    The Voyagers (V) 1 and 2 Ultraviolet Spectrometers (UVS) data harvest covers outer planets encounters, heliosphere sky-background measurements, and stellar spectrophotometry. Because their operation period overlaps with many ultraviolet missions, the V1 and V2 UVS calibration with other spectrometers are invaluable. Here we revisit the UVS calibration to assess the intriguing 243 % (V1) and 156 % (V2) sensitivity enhancements recently proposed. Using the Saturn Lyman-$\\alpha$ airglow, observed in-situ by both Voyagers, and remotely by IUE, we match the Voyager values to IUE, taking into account the shape of the Saturn Lyman-$\\alpha$ line observed with the Goddard High Resolution Spectrograph onboard the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse HeI 58.4 nm emission. Our prescription is to keep the origi...

  10. Scintillation forward spectrometer of the SPHERE setup

    International Nuclear Information System (INIS)

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  11. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  12. Sample rotating turntable kit for infrared spectrometers

    Science.gov (United States)

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  13. Lessons learned with the SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper. (paper)

  14. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  15. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  16. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  17. New schemes of static mass spectrometers

    International Nuclear Information System (INIS)

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  18. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  19. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  20. Temporal dispersion of a spectrometer.

    Science.gov (United States)

    Visco, A; Drake, R P; Froula, D H; Glenzer, S H; Pollock, B B

    2008-10-01

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. PMID:19044687

  1. Temporal Dispersion of a Spectrometer

    International Nuclear Information System (INIS)

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., Full-Aperture Backscatter Station, Thomson Scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution can be calculated to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal dispersion, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated to the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks

  2. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  3. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  4. Velocity selector for SANS spectrometer

    International Nuclear Information System (INIS)

    Mechanical velocity selector, designed firstly at the beginning of the neutron age (the end of 40-th - 50-th, see and references herein) are nowadays of wide use at SANS spectrometers on steady state neutron sources. The present report is devoted to the description of the construction and parameters of the selector, designed for SANS spectrometer at the 1 MW research reactor (URGN, Draria, Algeria). The design of selector provides high transmission (more then 90%) and wavelength resolution of Δλ,/λ ∼ 14%, allowing the neutron wavelength to be selected between 4 A and 10 A. The rotor of selector is an aluminium cylinder rotating in a vacuum jacket around the horizontal axis. The rotor slits of helical shape are formed by absorbing plates with thickness 0.5 mm and made of Gd (10%)-Al alloy. (author)

  5. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    □ Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  6. A Double Slow Neutron Spectrometer

    International Nuclear Information System (INIS)

    The neutron spectrometer described in the paper is intended for measurements of the angular and energy distribution of monochromatic slow neutrons, inelasticaily scattered by liquid and solid bodies. Experiments of this type permit detailed information to be obtained concerning the dynamics of the atoms in various aggregate states of a substance. The spectromeeter is based on the time-of-flight method. The pulse source of neutrons is the IBR (1) reactor. A mechanical interrupter, rotating synchronously with the disc of the IBR and having a prescribed phase shift, serves as the monochromator. A special phasing system ensures a phasee stability better than 0.5o. The neutrons scattered by the sample are recorded by a scintillation detector set at a given angle to the neutron beam. The resolving power of the spectrometer is - 15 μs/m. The paper gives a detailed description of the construction of the spectroscope and its characteristics. (author)

  7. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  8. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)

  9. Very large solid angle spectrometers

    International Nuclear Information System (INIS)

    The basic conditions of coincidence experiments are discussed and some of the properties of specific detectors covering up to 90% of 4π steradian and presenting a very large momentum bite are shown. It will appear that such detectors, compared to classical iron dipole spectrometers, present larger acceptances, but a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiments

  10. The alpha channeling effect

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  11. Deformation of α-emitting nuclei from spin alignment with the spin spectrometer

    International Nuclear Information System (INIS)

    The Spin Spectrometer was used to measure the angular distribution of alpha particles with respect to the spin direction of residual nuclei from fusion of 176-MeV 20Ne with 150Nd. The results show an enhancement of the ratio of 900 to 00 alpha yields with respect to spin direction with decreasing E/sub α/ at subbarrier energies. This effect is not reproduced by statistical-model calculation made with transmission coefficients for spherical potentials, which may indicate that the α-emitting nuclei are deformed with their longest axis perpendicular to the spin direction. 15 references

  12. New miniaturized alpha/beta spectrometric system for the surface contamination monitoring and radon personal dosimeter

    International Nuclear Information System (INIS)

    The heart of the new miniaturized alpha/beta spectroscopic system is a Smart Card MCA having a 12 bit resolution and a 32 bit memory for each channel with the size of a cheque card. The system consists of a single or up to 12 alpha spectrometers in a battery powered casing with connectors for direct detector/amplifier module plugging. Surface contamination in the order of 1 Bq/cm2 of 239Pu can be measured. (M.D.)

  13. Local versus nonlocal $\\alpha\\alpha$ interactions in $3\\alpha$ description of $^{12}$C

    CERN Document Server

    Suzuki, Y; Descouvemont, P; Fujiwara, Y; Matsumura, H; Orabi, M; Theeten, M

    2008-01-01

    Local $\\alpha \\alpha$ potentials fail to describe $^{12}$C as a $3\\alpha$ system. Nonlocal $\\alpha \\alpha$ potentials that renormalize the energy-dependent kernel of the resonating group method allow interpreting simultaneously the ground state and $0^+_2$ resonance of $^{12}$C as $3\\alpha$ states. A comparison with fully microscopic calculations provides a measure of the importance of three-cluster exchanges in those states.

  14. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  15. Bremsstrahlung in $\\alpha$ Decay

    CERN Document Server

    Takigawa, N; Hagino, K; Ono, A; Brink, D M

    1999-01-01

    A quantum mechanical analysis of the bremsstrahlung in $\\alpha$ decay of $^{210}$Po is performed in close reference to a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions and from the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.

  16. The VERDI fission fragment spectrometer

    OpenAIRE

    Frégeau M.O.; Bryś T.; Gamboni Th.; Geerts W.; Oberstedt S.; Oberstedt A.; Borcea R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This conf...

  17. High-Resolution Imaging Spectrometer

    Science.gov (United States)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  18. Unified model for alpha-decay and alpha-capture

    International Nuclear Information System (INIS)

    A unified model for alpha-decay and alpha-capture is discussed. Simultaneously the half-lives for alpha-transition between ground states as well as ground and excited states and alpha-capture cross-sections by spherical magic or near-magic nuclei are well described in the framework of this model. Using these data the alpha-nucleus potential is obtained. The simple empirical relations for handy evaluation of the half-lives for alpha-transition, which take into account both the angular momentum and parity of alpha-transition, are presented

  19. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  20. Alpha Particle Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  1. Resting alpha activity predicts learning ability in alpha neurofeedback

    OpenAIRE

    Wenya eNan; Feng eWan; Mang I eVai; Agostinho eRosa

    2014-01-01

    Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the tr...

  2. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  3. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  4. Characteristics of the GALLEX spectrometer

    International Nuclear Information System (INIS)

    A description is given of the spectrometer used for the detection of 71Ge in the Solar Neutrino experiment GALLEX being performed in the Gran Sasso Underground Laboratory. The spectrometer consists of miniaturized proportional counters and a shield with a large well-type NaI pair (Tl) detector (active side) and an inner pure copper shield (passive side). Very careful material selection for the proportional counter- and shield-construction and radon suppression resulted in total background rates (>0.5 keV) between 0.4 and 1 count per day for many proportional counters. With energy and rise time cuts, the average rates for the relevant L- and K-peak of the 71Ge spectrum are 0.1 cpd and 0.03 cpd, respectively, and thus, are far below the signal predicted by the Standard Solar Model. Eight counter positions within the NaI pair detector have the option to detect also 69Ge and 68Ga (positron emitteres) in the coincidence mode, though with slightly higher background for the 71Ge decay mode. An analysis of the different background components cannot fully account for the measured background of the proportional counters so that presumably a part of it is due to contamination during the assembling process. Here is a potential for further background reduction. After introduction, the basic concept of the experiment and the present status as of December 1991 are briefly outlined. (orig.)

  5. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  6. Characterization of a alpha particle detector CR-39 exposed to a source of radium

    International Nuclear Information System (INIS)

    In this project, the main goal is the characterization of a alpha particle detector CR-39 exposed to a source of radio. Three detectors were exposed to a source of radium and then chemically treated for different periods. This way, we could analyze these samples and collect the information needed to verify that at least one of the chemical attack, there has been a separation of the energies alpha particles incident with distinct peaks, thus characterizing the CR-39 as alpha spectrometer in the range 2.5 to 6.3 MeV . (author)

  7. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  8. A computer controlled Moessbauer spectrometer

    International Nuclear Information System (INIS)

    This paper describes a computer controlled data acquisition system for Moessbauer spectroscopy. In addition to reporting the fundamental ideas behind, and the construction of the system, this paper intends to serve as a manual for the user. The main unit is the 'Mark-VII' multiscaler/function generator, constructed as a double width NIM-unit. For the control of this unit we use an Apple IIe++ microcomputer equipped with a specially designed interface 'Kart-7'. The information supplied here should, however, be sufficient to interface other suitable microcomputers to the Mark-VII unit. The Kart-7 interface is described in this paper together with some details concerning its programming. The system is controlled by a program called 'HIN-5', which is also described in some detail. The manual section gives the details of how to start up and operate the spectrometer. (author)

  9. Multimode optical fiber based spectrometers

    CERN Document Server

    Redding, Brandon; Cao, Hui

    2013-01-01

    A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The mu...

  10. Neutron measurement by transportable spectrometer

    International Nuclear Information System (INIS)

    Two levels of neutron spectrometry are in regular use at nuclear power plants: some techniques used in the laboratory produce detailed spectra but require specialist operators, while simple instruments used by non-specialists to measure the neutron dose-rate to operators provide little spectral information. The standard portable instruments are therefore of no use when anomalous readings are obtained which require further investigation. AEA Technology at Winfrith has developed a Transportable Neutron Spectrometer (TNS) which is designed to produce reasonable spectra in routine use by staff with no specialist skill in spectroscopy, and high-quality spectra in the hands of skilled staff. The TNS provides a level of information intermediate between those currently available, and is also designed to solve the problem of imperfect dose response which is common in portable dosimeters. The TNS system consists of a power supply, a probe and a signal processing and data acquisition unit. (author)

  11. ALPHA MIS: Reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  12. A colloidal quantum dot spectrometer

    Science.gov (United States)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  13. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.; Rasmussen, Ib Lundgaard; Schnopper, Herbert W.; Wiebicke, Hans-Joachim; Halm, Ingolf; Geppert, U.R.; Borozdin, K.N.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  14. High resolution magnetic spectrometer SHARAQ in RIBF

    International Nuclear Information System (INIS)

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented

  15. Spin Spectrometer at the ALS and APS

    OpenAIRE

    Tobin, James G; Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies

    2008-01-01

    A spin-resolving photoelectron spectrometer, the "Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  16. A compact lightweight aerosol spectrometer probe (CLASP)

    NARCIS (Netherlands)

    Hill, M.K.; Brooks, B.J.; Norris, S.J.; Smith, M.H.; Brooks, I.M.; Leeuw, G. de

    2008-01-01

    The Compact Lightweight Aerosol Spectrometer Probe (CLASP) is an optical particle spectrometer capable of measuring size-resolved particle concentrations in 16 user-defined size bins spanning diameters in the range 0.24 < D < 18.5 μm at a rate of 10 Hz. The combination of its compact nature and ligh

  17. Laboratory EXAFS Spectrometer, Principles and Applications

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kampers, F.W.H.; Duivenvoorden, F.B.M.; Zon, J.B.A.D. van; Brinkgreve, P.; Viegers, M.P.A.

    1985-01-01

    In order to be independent of poor availability of synchrotron beamtime a laboratory EXAFS spectrometer has been developed. The X-ray source is a rotating anode generator (max. voltage 60 kV, max. current 300 mA). Monochromatisation and focusing is done with a linear spectrometer, based upon the Row

  18. Introductory lecture on triple-axis spectrometer

    International Nuclear Information System (INIS)

    Triple-axis spectrometer is a multi-purpose instrument for powder neutron diffraction, single crystal neutron diffraction, powder inelastic neutron scattering, single crystal inelastic neutron scattering, and neutron polarization analysis. In this lecture how to use the triple-axis spectrometer is explained for the beginners. (author)

  19. Detector and spectrometer development for QED tests

    International Nuclear Information System (INIS)

    Full text: The curved crystal spectrometer will be implemented, calibrated and analyzed for further work to be carried out upon it at NIST in Washington for accurate precision tests of QED in highly charged ions. At the moment using the fluorescent source we are able to resolve characteristic x-ray lines for inner shell transitions Ka1, Ka2, and Kβ1,3 for differing elements. The curved crystal spectrometer has a Germanium crystal operating along the principle of Bragg's law. Using this spectrometer a second stage will be combining the backgammon detector with the curved crystal spectrometer and therefore experimental and theoretical work on curved crystal dynamical diffraction for the state of the art spectrometer will also be achieved

  20. Alpha and evangelical conversion

    OpenAIRE

    Stout, A.; Dein, S.

    2013-01-01

    A semi-structured interview study was conducted among 11 ‘Born Again’ Christians eliciting their conversion narratives. Informants emphasised the importance of embodying the Holy Spirit and developing a personal relationship with Christ in the process of conversion. The Alpha Course played an important role in this process.

  1. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line; Stensland, Hilde Monica Frostad Riise; Olsen, Klaus Juul;

    2015-01-01

    the three subgroups of genotype/subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed to...

  2. The $\\alpha_S$ Dependence of Parton Distributions

    OpenAIRE

    Martin, A. D.; Stirling, W. J.; Roberts, R G

    1995-01-01

    We perform next-to-leading order global analyses of deep inelastic and related data for different fixed values of $\\alpha_S (M_Z^2)$. We present sets of parton distributions for six values of $\\alpha_S$ in the range 0.105 to 0.130. We display the $(x, Q^2)$ domains with the largest parton uncertainty and we discuss how forthcoming data may be able to improve the determination of the parton densities.

  3. Miniature Ion-Mobility Spectrometer

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  4. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... for Disease Control and Prevention Centre for Genetics Education (Australia) Cooley's Anemia Foundation: Fact sheet about alpha thalassemia Disease InfoSearch: Alpha-Thalassemia Genomics Education Programme (UK) Information Center for Sickle Cell and ...

  5. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  6. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  7. $\\alpha$-minimal Banach spaces

    CERN Document Server

    Rosendal, Christian

    2011-01-01

    A Banach space with a Schauder basis is said to be $\\alpha$-minimal for some countable ordinal $\\alpha$ if, for any two block subspaces, the Bourgain embeddability index of one into the other is at least $\\alpha$. We prove a dichotomy that characterises when a Banach space has an $\\alpha$-minimal subspace, which contributes to the ongoing project, initiated by W. T. Gowers, of classifying separable Banach spaces by identifying characteristic subspaces.

  8. A spark-chamber spectrometer

    International Nuclear Information System (INIS)

    A programme of developing techniques for the construction and use of spark chambers in high-energy physics experiments has been undertaken. Several methods of construction have been tested and found satisfactory. One method is to cement aluminium plates to frames made from glass or Plexiglas strips. Another is to place the aluminium plates in grooves machined in Plexiglas, forming a ''shelf'' design. A chamber made of rows of wires was successfully operated with a He-alcohol mixture. These chambers can either be filled with gas and sealed, or gas can be passed through them continuously. Chambers have been constructed with plates of various thicknesses ranging from 0.032 in downwards. The operation of the chambers with various spacings between the plates was also investigated. The performance of these chambers, when filled with several different gases (Ne, He, A) and with gas-alcohol mixtures, has been investigated. Several methods of applying high-voltage pulses to the chambers have been attempted. The results of these investigations are presented. Spark chambers placed in a magnetic field can be used in principle to determine the momentum of charged particles and if lead converter-plates are incorporated with them, the resulting system should serve as a gamma-ray spectrometer of high resolution and high efficiency. A magnet with an 18-in useful diameter and a 13000-G field is being fitted with spark chambers, whose performance will be tested with cosmic rays and with an accelerator beam. Results from such tests are presented. (author)

  9. Airborne fourier infrared spectrometer system

    International Nuclear Information System (INIS)

    A commercial Fourier Transform Infrared (FTIR) spectrometer has been interfaced to a 35 cm aperture telescope and a digital data processing and display system and flown in a downward-viewing configuration on a Queen Air aircraft. Real-time spectral analysis and display software were developed to provide the means to direct aircraft flight operations based on atmospheric and/or surface features identified on 1 to 8 cm-1 resolution infrared spectra. Data are presented from ground-based tests consisting of simultaneous horizontal path measurements by the FTIR system and an infrared differential absorption lidar (DIAL) observing gas volumes generated in an open-ended chamber. Airborne FUR data are presented on the tracking of a surface-released puff of SF6 gas to a downwind distance of 45 km in a time period of 1.5 hours. The experiment demonstrated the real time tracking of a gas tracer cloud to provide atmospheric transport and diffusion information and for directing airborne in-situ sensors for optimum cloud sampling. 5 refs., 5 figs

  10. A semiconductor beta ray spectrometer

    International Nuclear Information System (INIS)

    Measurement of energy spectra of beta particles emitted from nuclei in beta-decay processes provides information concerning the mass difference of these nuclei between initial and final state. Moreover, experimental beta spectra yield information on the feeding of the levels in the daughter nucleus. Such data are valuable in the construction and checking of the level schemes. This thesis describes the design, construction, testing and usage of a detector for the accurate measurement of the mentioned spectra. In ch. 2 the design and construction of the beta spectrometer, which uses a hyper-pure germanium crystal for energy determination, is described. A simple wire chamber is used to discriminate beta particles from gamma radiation. Disadvantages arise from the large amounts of scattered beta particles deforming the continua. A method is described to minimize the scattering. In ch. 3 some theoretical aspects of data analysis are described and the results of Monte-Carlo simulations of the summation of annihilation radiation are compared with experiments. Ch. 4 comprises the results of the measurements of the beta decay energies of 103-108In. 87 refs.; 34 figs.; 7 tabs

  11. The high sensitivity double beta spectrometer TGV

    Science.gov (United States)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  12. The high sensitivity double beta spectrometer TGV

    International Nuclear Information System (INIS)

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 x 6 mm3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided. (orig.)

  13. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  14. Mini-orange spectrometer at CIAE

    Science.gov (United States)

    Zheng, Yun; Wu, Xiao-Guang; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-08-01

    A mini-orange spectrometer used for in-beam measurements of internal conversion electrons, consisting of a Si(Li) detector and different sets of SmO5 permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at the China Institute of Atomic Energy. The working principles and configuration of the mini-orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the mini-orange spectrometer. Supported by National Natural Science Foundation of China (11305269, 11375267, 11475072, 11405274, 11205068, 11175259)

  15. Complex Response Function of Magnetic Resonance Spectrometers

    CERN Document Server

    Annino, G; Fittipaldi, M; Martinelli, M

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed modelization, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary responsivity law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detail for different scalar detectors. The developed approach allows to optimize the performances of the spectrometer and to obtain the intrinsic lineshape of the sample in a very broad range of working conditions. More complex setups can be modelized following the proposed scheme.

  16. Computer-controlled neutron spectrometer SV 22

    International Nuclear Information System (INIS)

    The neutron spectrometer SV22 is a combined time of flight and back scattering spectrometer. It is located at the tangential beam tube TAN2 of the research reactor FRJ2 DIDO at Kernforschungsanlage Juelich (West-Germany). Both versions are described in their hardware layout. The neutron optical characteristics of the already functioning time of flight spectrometer are summarized. Selected experiments show some possible fields for further research with this instrument. Experimental data for the backscattering version is not yet available. The features of the operating system RSX11M are explained. Examples show the use of indirect command files in control of the experiment. (orig.)

  17. PAC Spectrometer for Condensed Matter Study

    CERN Document Server

    Kochetov, O I; Tsvyashchenko, A V; Akselrod, Z Z; Antuhov, V A; Busa, J; Velichkov, A I; Korolev, N A; Milanov, M V; Novgorodov, A F; Ostrovskii, I V; Pavlov, V N; Skrivanek, J; Timkin, V V; Filossofov, D V; Fomicheva, L N; Shirani, E N; Stekl, I; Brudanin, V B

    2002-01-01

    A four-detector perturbed angular \\gamma\\gamma-correlations (PAC) spectrometer for condensed matter study is described. The timing resolution (full-width at half-maximum) is 200 ps for ^{60}Co if BaF_2 scintillators coupled to photomultiplier XP2020Q are used. The spectrometer is equipped with a press; a specially-designed pressure vessel permits one to perform PAC-studies of samples under pressure up to 60 GPa in the on-line mode. In contrast to the common case (usage of single-channel analyzers) the software-controlled energy selection makes the spectrometer easy to use, to control and to adjust.

  18. Resting alpha activity predicts learning ability in alpha neurofeedback

    Directory of Open Access Journals (Sweden)

    Wenya eNan

    2014-07-01

    Full Text Available Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the training parameter changes between two periods, within a short period and across the whole training time. It was found that the resting alpha amplitude measured before training had significant positive correlations with all learning indices and could be used as a predictor for the learning ability prediction. This finding would help the researchers in not only predicting the training efficacy in individuals but also gaining further insight into the mechanisms of alpha neurofeedback.

  19. Comparison study on theoretical and experimental track density using an electrostatic spectrometer

    International Nuclear Information System (INIS)

    Several investigators have reported monitoring for environmental radon measurement using the method in which the radon concentration is deduced from the collected activity by electrostatic techniques. The collection efficiency of these monitors to a greater or lesser degree depends on the electric mobility of the polonium ions, which is a function of their size and charge. A knowledge of the size of the polonium atom immediately after formation is determined using the electrostatic techniques. To develop a technique of theoretical alpha track density calculation for comparison with measured track density, an electrostatic spectrometer was specially designed and fabricated. The mobility spectrum of the first radon daughter (Po-218) in the range of 0.07-5.0 cm2/Vs from the radon chamber was measured using the electrostatic spectrometer. Measurements were taken in a radon chamber operated using dry particle-free air passed through silica gel, activated charcoal and molecular sieve filters. The mobility of a new-born Po-218 ion measured by the electrostatic spectrometer was determined to be 1.92 cm2/Vs. A comparison of the theoretical and measured alpha track densities was completed and uncertainties concerning the shape of the spectrum were analysed. It was found that the difference between these track densities is primarily due to the neglect of consideration of wall loss of ions in the theoretical track density calculation. (author)

  20. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222Rn and 226Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  1. Rossi Alpha Method

    International Nuclear Information System (INIS)

    The Rossi Alpha Method has proved to be valuable for the determination of prompt neutron lifetimes in fissile assemblies having known reproduction numbers at or near delayed critical. This workshop report emphasizes the pioneering applications of the method by Dr. John D. Orndoff to fast-neutron critical assemblies at Los Alamos. The value of the method appears to disappear for subcritical systems where the Rossi-α is no longer an α-eigenvalue

  2. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  3. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239Pu, 187Re, and 238U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  4. The GIANO-TNG spectrometer

    Science.gov (United States)

    Oliva, E.; Origlia, L.; Baffa, C.; Biliotti, C.; Bruno, P.; D'Amato, F.; Del Vecchio, C.; Falcini, G.; Gennari, S.; Ghinassi, F.; Giani, E.; Gonzalez, M.; Leone, F.; Lolli, M.; Lodi, M.; Maiolino, R.; Mannucci, F.; Marcucci, G.; Mochi, I.; Montegriffo, P.; Rossetti, E.; Scuderi, S.; Sozzi, M.

    2006-06-01

    GIANO is an infrared (0.9-2.5 μm cross-dispersed echelle spectrometer designed to achieve high resolution, high throughput, wide band coverage and very high stability for accurate radial velocity measurements. It also includes polarimetric capabilities and a low resolution mode with RS ~ 400 and complete 0.75-2.5 μm coverage. This makes it a very versatile, common user instrument which will be permanently mounted and available on the Nasmyth-B foci of the Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory (ORM), La Palma, Spain. The project is fast-track and relies on well known, relatively standard technologies. It has been recognized as one of the top priority instrumental projects of INAF (the Italian National Institute of Astronomy) and received its first financing for the phase-A study in October 2003. Integration in the laboratory is planned to start before the end of 2006, commissioning at the telescope is foreseen within 2007 and scientific operations in 2008. One of the most important scientific goals is the search for rocky planets with habitable conditions around low-mass stars. If completed on time, GIANO will be the first and only IR instrument operating worldwide providing the combination of efficiency, spectral resolution, wavelength coverage and stability necessary for this type of research. With its unique combination of high and low resolution modes, GIANO will also be a very flexible common-user instrument ideal e.g. for quantitative spectroscopy of brown dwarfs, stars and stellar clusters as well as for the determination of the spectral energy distribution of faint/red objects such as high redshift galaxies. The expected limiting magnitudes are such that GIANO will be able to deliver good quality HR spectra of any 2MASS object and LR spectra of any object detected in the UKIDSS large area survey.

  5. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  6. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  7. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  8. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  9. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  10. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  11. Temporal evolution of mottles observed in H_alpha

    CERN Document Server

    Bostanci, Z F; Erdogan, Nurol Al

    2007-01-01

    In April 2002, H_alpha observations of the solar chromosphere with high spatial and spectral resolution were obtained with the Gottingen Fabry-Perot Spectrometer mounted in the Vacuum Tower Telescope (VTT) at the Observatorio del Teide/Tenerife. In this work, we analyze a short time sequence of a quiet region with chains of mottles. Some physical parameters of dark mottles are determined by using Beckers' cloud model which takes the source function, the Doppler width, and the velocity to be constant within the cloud along the line of sight. Here, we present the results of our study.

  12. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  13. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  14. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  15. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  16. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  17. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  18. Complex Response Function of Magnetic Resonance Spectrometers

    OpenAIRE

    Annino, G.; Cassettari, M.; Fittipaldi, M.; M. Martinelli

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed model, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary response law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detai...

  19. Development of multi-channel electron spectrometer

    International Nuclear Information System (INIS)

    In order to obtain the angular dependent electron energy distributions, we developed a multichannel electron spectrometer (MCESM) with high energy and angular resolutions. The MCESM consists of seven small electron spectrometers set in every 5 deg. on the basement, each of which detection range is up to 25 MeV. In the experiment, we successfully obtained electron spectra from imploded cone-shell target as well as gold plane target irradiated by ultraintense (300 J/5 ps) laser beam.

  20. The TNG Near Infrared Camera Spectrometer

    OpenAIRE

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.

    2001-01-01

    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  1. Alpha-globin loci in homozygous beta-thalassemia intermedia.

    Science.gov (United States)

    Triadou, P; Lapoumeroulie, C; Girot, R; Labie, D

    1983-01-01

    Homozygous beta-thalassemia intermediate (TI) differs from thalassemia major (TM) in being less severe clinically. Associated alpha-thalassemia could account for the TI phenotype by reducing the alpha/non-alpha chain imbalance. We have analyzed the alpha loci of 9 TI and 11 TM patients by restriction endonuclease mapping. All the TM and 7 of the TI patients have the normal complement of four alpha-globin genes (alpha alpha/alpha alpha). One TI patient has three alpha-globin genes (alpha alpha/-alpha), and another TI patient has five alpha genes (alpha alpha/alpha alpha alpha). PMID:6305827

  2. Calibration of the San Marco airglow-solar spectrometer instrument in the extreme ultraviolet

    Science.gov (United States)

    Worden, John; Woods, Thomas N.; Rottman, Gary J.; Schmidtke, Gerhard; Tai, Hongsheng; Doll, Harry G.; Solomon, Stanley C.

    1996-02-01

    The San Marco 5 carried the airglow-solar spectrometer instrument (ASSI). This 18-channel spectrometer measured the solar and terrestrial radiation in the wavelength region between 20 and 700 nm for 9 months in 1988. The ASSI extreme ultraviolet (EUV) channels showed significant sensitivity changes during the mission. The sensitivity changes of the EUV channels are quantified by comparing ASSI solar EUV irradiance measurements to the solar EUV irradiance derived from a solar proxy model. A sensitivity change model is developed that shows that exponential curves can adequately describe the sensitivity changes of the ASSI optics and detectors. The November 10 calibration parameters and the sensitivity change model can be used to derive the EUV terrestrial airglow brightness for the time period of the ASSI mission. Analysis of the solar Lyman-(alpha) irradiance measured by the ASSI, the solar mesospheric explorer (SME), and the upper atmosphere research satellite has led to a revised Lyman-(alpha) irradiance for the San Marco mission. For example, the ASSI November 10, 1988, Lyman-(alpha) measurement is 5.3 X 1011 photons cm-2 s-1 versus the reported SME measurement of 3.35 X 1011 photons cm-2 s-1.

  3. Study of neutron spectrometers for ITER

    International Nuclear Information System (INIS)

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation

  4. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    Science.gov (United States)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  5. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  6. Commissioning Measurements of the KATRIN Main Spectrometer

    Science.gov (United States)

    Wierman, Kevin; Katrin Collaboration

    2013-10-01

    Beginning in May 2013, the KArlsruhe TRItium Neutrino experiment (KATRIN) collaboration began measurements to commission the 10-m diameter main spectrometer. KATRIN utilizes the spectrometer to provide magnetic adiabatic collimation and electrostatic filtering designed to analyze the tritium beta decay spectrum for contributions from the neutrino mass. In order to achieve an order-of-magnitude improvement on previous neutrino mass experiments the desired sensitivity of the apparatus must be 200 meV in the decay endpoint region. Goals of the recent measurements include identification and reduction of backgrounds and determination of the spectrometer transfer function. Backgrounds have been probed by utilizing electromagnetic field configurations to explore decays in the spectrometer, Penning traps and field emission. A 148-pixel PIN diode array is employed to detect particles exiting the spectrometer, which permits angular and radial distributions of particles to be analyzed. This has allowed for high precision comparison between measurements and simulations of expected backgrounds to be investigated in order to commission the spectrometer. This work is supported by grants from the DOE Office of Nuclear Physics and the Helmholtz Association.

  7. Unfolding domains of recombinant fusion alpha alpha-tropomyosin.

    OpenAIRE

    Ishii, Y; Hitchcock-DeGregori, S.; Mabuchi, K; Lehrer, S S

    1992-01-01

    The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more ...

  8. The performance of the AMS-02 silicon tracker evaluated during the pre-integration phase of the spectrometer

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer is a large acceptance cosmic-ray detector (0.5 m2 sr) designed to operate at an altitude of 400 km on the International Space Station. The AMS-02 silicon tracker contains 2264 silicon microstrip sensors (total active area 6.75 m2). The internal alignment parameters of the assembled tracker have been determined on the ground with cosmic-ray muons. The results for the alignment precision and position resolution are reported.

  9. Bi209 alpha activity

    International Nuclear Information System (INIS)

    The study for measuring Bi209 alpha activity is presented. Ilford L4 nuclear emulsion pellicles loaded with bismuth citrate to obtain a load of 100 mg/cm3 of dry emulsion, were prepared. Other pellicles were prepared with the same. Ilford L4 gel to estimate the background radiation. To observe 'fading' effect, pellicles loaded with bismuth were submitted to neutrons of high energy, aiming to record recoil proton tracks. The pellicles were confined in nitrogen atmosphere at temperature lower than -100C. The Bi209 experimental half-life was obtained and compared with the estimated theoretical data. (M.C.K.)

  10. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K+ and K- interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K-p interactions during 1977 and 1978, which is also described briefly

  11. Background canceling surface alpha detector

    International Nuclear Information System (INIS)

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs

  12. Alpha activity measurement with lsc

    International Nuclear Information System (INIS)

    Recently, we showed that the alpha activity in liquid samples can be measured using a liquid scintillation analyzer without alpha/beta discrimination capability. The purpose of this work was to evaluate the performances of the method and to optimize the procedure of the sample preparation. A series of tests was performed to validate the procedure of alpha emitting radionuclides extraction in aqueous samples with Actinide Resin, especially regarding to the contact time required to extract all alpha nuclides. The main conclusions were that a minimum 18 hours stirring time is needed to achieve a percent recovery of the alpha nuclides grater than 90% and that the counting efficiency of alphas measurements with LSC is nearly 100%. (authors)

  13. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Science.gov (United States)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20-55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for 241Am.

  14. Robust Estimation of Cronbach's Alpha

    OpenAIRE

    Christmann, A.; Van Aelst, Stefan

    2002-01-01

    Cronbach’s alpha is a popular method to measure reliability, e.g. in quantifying the reliability of a score to summarize the information of several items in question- naires. The alpha coefficient is known to be non-robust. We study the behavior of this coefficient in different settings to identify situations, which can easily occur in practice, but under which the Cronbach’s alpha coefficient is extremely sensitive to violations of the classical model assumptions. Furthermore,...

  15. New gas-filled mode of the large-acceptance spectrometer VAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, C., E-mail: schmitt@ganil.f [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Rejmund, M.; Navin, A.; Lecornu, B.; Jacquot, B.; France, G. de; Lemasson, A.; Shrivastava, A. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Greenlees, P.; Uusitalo, J. [Department of Physics, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla (Finland); Subotic, K. [VINCA Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Gaudefroy, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Theisen, Ch.; Sulignano, B. [CEA-Saclay DSM/IRFU/SPhN, F-91191 Gif/Yvette Cedex (France); Dorvaux, O.; Stuttge, L. [IPHC, UMR7178, IN2P3-CNRS et Universite Louis Pasteur, BP28, F-67037 Strasbourg (France)

    2010-09-21

    A new gas-filled operation mode of the large-acceptance spectrometer VAMOS at GANIL is reported. A beam rejection factor greater than 10{sup 10} is obtained for the {sup 40}Ca+{sup 150}Sm system at 196 MeV. The unprecedented transmission efficiency for the evaporation residues produced in this reaction is estimated to be around 80% for {alpha}x n channels and above 95% for x ny p channels. A detailed study of the performance of the gas-filled VAMOS and future developments are discussed. This new operation mode opens avenues to explore the potential of fusion reactions in various kinematics.

  16. A high resolution TOF diffractometer and spectrometer

    International Nuclear Information System (INIS)

    A combined high resolution TOF-diffractometer and -spectrometer is proposed for the new Munich reactor FRM II. The setup consists of a back scattering detector for the diffractometer and analyser crystals around the sample for the spectrometer (similar to IRIS from ISIS). The instrument uses a time of flight monochromator with a long flight path and a fast first chopper. The resolution of the diffractometer will be Δd/d ∼ 2 x 10-4 and the best energy resolution of the spectrometer will be 1-2 μeV with a silicon analyser system in near back scattering geometry. The dynamic range of the silicon system will be 110 μeV, but it can be shifted with the TOF monochromator in the range of several meV. With a second analyser system of graphite out of back scattering the energy resolution of the secondary spectrometer can be relaxed. One of the main applications of the diffractometer may be line shifts and line shape modifications relating to defect structures in crystals. The spectrometer opens up the possibility of inelastic measurements with μeV resolution and the investigation of diffusion and relaxation from ns to ps in one instrument. (author)

  17. Scintillation time-of-flight spectrometers

    International Nuclear Information System (INIS)

    The time characteristics of time-of-flight scintillation spectrometers fo two types, which differ in the scintillator size, the length of the light guides, and the distance between the PM, are described. The investigations were carried out on π-meson beams at a current feeding the analyzing magnet of the meson track of 550 and 485 A. The time resolution for the C1 spectrometer, as determined from the electron spectrum, is 130 ns, and for the C2 spectrometer 280 ns. The results obtained in this work are compared with those of other investigations. The mean energies of the π--meson beams have been measured, and the analyzing magnet of the meson track has been calibrated. It is demonstrated that the simplest and most reliable method for accurate determination of the energy of the beam particles is the time-of-flight measurement. The initial values of the mean energies of the π--mesons are found to be 274.5+-2.0 MeV for the C1F spectrometer and 227.3+-1.5 MeV for the C2 spectrometer

  18. Large-area fast-timing detectors developed for the TOFI spectrometer

    International Nuclear Information System (INIS)

    Large-area fast-timing detectors have been developed for use in the TOFI spectrometer. A gridless detector was constructed in which secondary electrons emitted from a thin (≅ 80 μg/cm2) target foil were transported isochronously to microchannel plate electron multipliers by crossed electric and magnetic fields. A novel convex anode was designed to reduce the time dispersion caused by the position at which the secondary electrons were collected. Timing performance for aluminium oxide target foils was found to be superior to that of carbon foils. Intrinsic timing resolutions of 68 and 109 ps fwhm have been measured for 5.4 MeV alpha particles from a thin 241Am source for two different detectors with active areas of 270 and 1000 mm2, respectively. Detection efficiencies in excess of 75% for alpha particles were measured. (orig.)

  19. Investigation of Martian Aqueous Processes Using Multiple Alpha Particle X-ray Spectrometer (APXS) Datasets

    Science.gov (United States)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Vaniman, D.; Clark, B.; Morris, R. V.; Mittlefehldt, D. W.; Arvidson, R. E.

    2014-01-01

    The APXS instruments flown on the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Science Laboratory (MSL) Curiosity were based on the same fundamental design. The calibration effort of the MSL APXS used the same reference standards analyzed in the MER calibration which ensures that data produced by all three instruments provide the same compositional results for the same sample. This cross-calibration effort is unprecedented and allows direct comparisons and contrasts of samples analyzed at Gusev Crater by Spirit, Meridiani Planum by Opportunity, and Gale Crater by Curiosity.

  20. The SlowControl System for the TRD Gas Circuit of the Alpha Magnetic Spectrometer

    International Nuclear Information System (INIS)

    The AMS-02 detector was installed on May 2011 on the International Space Station and has since collected billions of cosmic ray events. The Transition Radiation Detector (TRD) of AMS-02 is a key element to identify positrons in Cosmic Rays with respect to the much more abundant protons. The transition radiation generated by charged particles going through a fleece of propylene radiator is captured by modules of straw tubes interleaved with the fleece layers. The straw tubes are filled with a Xe/CO2 mixture. Due to gas diffusion, such mixture has to be refilled periodically in space during the entire life cycle of AMS. The TRD is equipped with a GasCircuit, containing vessels for Xe and CO2 storage, and all the actuators and sensors needed for the composition of the mixture and to refill the TRD straw tubes. This paper describes the architecture of the (GasCircuitSlowControlsystem (the UGC) that is used to monitor and control the GasCircuit, the qualification procedure for use in space, and the performance of the system after one year of operation on the International Space Station

  1. Possibility of Testing the Light Dark Matter Hypothesis with the Alpha Magnetic Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Xue, Wei

    2013-01-01

    The spectrum and morphology of gamma-rays from the Galactic Center and the spectrum of synchrotron emission observed from the Milky Way's radio filaments have each been interpreted as possible signals of $\\sim$7-10 GeV dark matter particles annihilating in the Inner Galaxy. In dark matter models capable of producing these signals, the annihilations should also generate significant fluxes of $\\sim$7-10 GeV positrons which can lead to a distinctive bump-like feature in local cosmic ray positron spectrum. In this letter, we show that while such a feature would be difficult to detect with PAMELA, it would likely be identifiable by the currently operating AMS experiment. As no known astrophysical sources or mechanisms are likely to produce such a sharp feature, the observation of a positron bump at around 7-10 GeV would significantly strengthen the case for a dark matter interpretation of the reported gamma-ray and radio anomalies.

  2. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  3. Miniature, sub-nanometer resolution Talbot spectrometer.

    Science.gov (United States)

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum. PMID:27244382

  4. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  5. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Partial pressure neutral gas measurements have been made using a commercial Penning gauge in conjunction with an open-quotes active spectrometer.close quotes In prior work utilizing band pass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne, and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitation by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra. copyright 1999 American Institute of Physics

  6. An All-Cryogenic THz Transmission Spectrometer

    CERN Document Server

    Burke, P J; Pfeiffer, L N; West, K W

    2001-01-01

    This paper describes a THz transmission spectrometer for the spectral range of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8 cm^-1 (50 GHz) where the source, sample, and detector are all fully contained in a cryogenic environment. Cyclotron emission from a two-dimensional electron gas heated with an electrical current serves as a magnetic field tunable source. The spectrometer is demonstrated at 4.2 K by measuring the resonant cyclotron absorption of a second two dimensional electron gas. Unique aspects of the spectrometer are that 1) an ultra-broadband detector is used and 2) the emitter is run quasi-continuously with a chopping frequency of only 1 Hz. Since optical coupling to room temperature components is not necessary, this technique is compatible with ultra-low temperature (sub 100 mK) operation.

  7. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  8. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    Science.gov (United States)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  9. Compact snapshot birefringent imaging Fourier transform spectrometer

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  10. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  11. NQR spectrometer controlled by a computer

    International Nuclear Information System (INIS)

    The design of a pulsed nuclear quadrupole resonance (NQR) spectrometer prototype is presented. All operations performed by the spectrometer will be controlled by a computer. Main features of the software and hardware design are reported. The scanning frequency range, amplitude and width of the RF pulse and sample temperature can be controlled by the software. Also it is possible to improve the ratio signal-to-noise using digital filtering applied to the data stored. Automatic operation eliminates operator skill and uncertainty of manual operation. The software is a stand alone executable file, runs on Windows 95/98 platform and does not require the existence of another software package. A graphical interface allows to user an easy control over the spectrometer operations

  12. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  13. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  14. Miniaturized Energy Spectrometer for Space Plasma Measurements

    Science.gov (United States)

    Goes de Lima, Raphaela; Scime, Earl; Keesee, Amy; Lusk, Greg

    2015-11-01

    Taking advantage of technological developments in lithographic fabrication techniques over the past two decades, we have designed an ultra-compact plasma spectrometer that requires only low voltage power supplies, no microchannel plates, and has a high aperture area to instrument area ratio. The designed target is for ions in the 3- 20 keV range with a highly directional field of view. In addition to reducing mass, size, and voltage requirements, the new design will revolutionize the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for Heliophysics plasma investigations, particularly for small satellite and multi-spacecraft missions. Here we present initial measurements of the performance of the instrument components and designs of the electronics for the low energy threshold solid state detector. Work Support under NASA grant - NNX14AJ36G.

  15. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis

    NARCIS (Netherlands)

    Sysoev, A; Adamov, A; Vildanoja, J; Ketoja, RA; Kostiainen, R; Kotiaho, T

    2004-01-01

    An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility sp

  16. Dyson spectrometers for infrared earth remote sensing

    Science.gov (United States)

    Warren, David W.; Gutierrez, David J.; Hall, Jeffrey L.; Keim, Eric R.

    2008-08-01

    The Dyson spectrometer form is capable of providing high throughput, excellent image quality, low spatial and spectral distortions, and high tolerance to fabrication and alignment errors in a compact format with modest demands for weight, volume, and cooling resources. These characteristics make it attractive for hyperspectral imaging from a space-based platform. After a brief discussion of history and basic principles, we present two examples of Dyson spectrometers being developed for airborne applications. We conclude with a concept for an earth science instrument soon to begin development under the Instrument Incubator Program of NASA's Earth Science Technology Office.

  17. Time-of-flight Fourier UCN spectrometer

    CERN Document Server

    Kulin, G V; Goryunov, S V; Kustov, D V; Geltenbort, P; Jentschel, M; Lauss, B; Schmidt-Wellenburg, Ph

    2016-01-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60$\\div$200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of $10^{-10}$ eV

  18. Single spectrometer station for neutrino-tagging

    International Nuclear Information System (INIS)

    A neutrino tagging station built with respect to the following scheme is proposed. A beam of muons and kaons passes through a magnetic spectrometer, where the energy of each particle is measured. There are coordinate detectors behind the spectrometer in several planes, where the direction of the trajectory of a given particle is determined. Thus, mesons enter the decay point wth the known 4-momentum. Behind the decay point the direction of μ-meson generated by the decay of parent mesons is measured. It is shown that information is sufficient for determining the kind of parent particle (pion or kaon), the energy and the direction of trajectory of the neutrino

  19. An all-cryogenic THz transmission spectrometer

    OpenAIRE

    Burke, P. J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K.W.

    2002-01-01

    This paper describes a THz transmission spectrometer for the spectral range of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8 cm^-1 (50 GHz) where the source, sample, and detector are all fully contained in a cryogenic environment. Cyclotron emission from a two-dimensional electron gas heated with an electrical current serves as a magnetic field tunable source. The spectrometer is demonstrated at 4.2 K by measuring the resonant cyclotron absorption of a second two di...

  20. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.;

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...... Si crystals will be coated with a multilayer that will allow spectroscopy with an energy resolution of approximately 80 in the energy band immediately below the C-K absorption edge of 0.284 keV. All the flight crystals are available and detailed calibrations have been obtained for each crystal. They...

  1. Time-of-flight Fourier UCN spectrometer

    Science.gov (United States)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  2. Software Polarization Spectrometer "PolariS"

    OpenAIRE

    Mizuno, Izumi; Kameno, Seiji; Kano, Amane; Kuroo, Makoto; Nakamura, Fumitaka; KAWAGUCHI, Noriyuki; Shibata, Katsunori M.; Kuji, Seisuke; Kuno, Nario

    2014-01-01

    We have developed a software-based polarization spectrometer, PolariS, to acquire full-Stokes spectra with a very high spectral resolution of 61 Hz. The primary aim of PolariS is to measure the magnetic fields in dense star-forming cores by detecting the Zeeman splitting of molecular emission lines. The spectrometer consists of a commercially available digital sampler and a Linux computer. The computer is equipped with a graphics processing unit (GPU) to process FFT and cross-correlation usin...

  3. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  4. A proposed neutron spectrometer system for JET

    International Nuclear Information System (INIS)

    A neutron spectrometer system is proposed primarily for measurements of ion temperature and density and ion beam energy distribution in extended fusion plasmas like e.g. in JET. Three different spectrometers are involved: time of flight, proton recoil and 3He. Energy resolutions of a few percent both for DD and DT neutrons are provided. Six order of magnitudes in flux ranges will be covered by the system when employing multi-target systems. A neutron collimator and shielding system will be desirable in order to obtain relevant information. Due to the entire differences in energy and fluxes for DD and DT plasmas a flexible collimator-shielding system is recommended

  5. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  6. Compact Imaging Spectrometer Utilizing Immersed Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  7. Alpha glucosidase inhibitors.

    Science.gov (United States)

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  8. Insurance - Piper Alpha ''et al''

    International Nuclear Information System (INIS)

    This paper opens with some brief information about the Piper Alpha loss, how the loss was handled and its final cost. More importantly, it discusses the effect of the Piper Alpha loss on the world insurance market including the oil insurance captives such as O.I.L Limited. Finally, the insurance market current status and prognosis for the future are considered. (Author)

  9. Long-range alpha detector

    International Nuclear Information System (INIS)

    Historically, alpha-particle and alpha-contamination detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity even if the particles are intercepted. Alpha detectors have had to be operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. Alpha particles interact with the ambient air, producing ionization in the air at the rate of ∼30,000 ion pairs per mega-electron-volt of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The long-range alpha detector (LRAD) offers several advantages over more traditional alpha detectors. First and foremost, it can operate efficiently even if the contamination is not easily accessible. Second, ions generated by contamination in crevices and other unmonitorable locations can be detected if the airflow penetrates those areas. Third, all of the contamination on a large surface will generate ions that can be detected in a single detector; hence, the detector's sensitivity to distributed sources is not limited by the size of the probe. Finally, a simple ion chamber can detect very small electric currents, making this technique potentially quite sensitive

  10. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  11. The Lyman alpha reference sample

    DEFF Research Database (Denmark)

    Hayes, M.; Östlin, G.; Schaerer, D.; Verhamme, A.; Mas-Hesse, J.M.; Adamo, A.; Atek, H.; Cannon, J.M.; Duval, F.; Guaita, L.; Herenz, E.C.; Kunth, D.; Laursen, Peter; Melinder, J.; Orlitová, I.; Otí-Floranes, H.; Sandberg, A.

    2013-01-01

    We report on new imaging observations of the Lyman alpha emission line (Lyα), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028

  12. Alpha spectrometry for particle size determination of mineral sands dust samples

    International Nuclear Information System (INIS)

    A method is proposed for assessing the size distribution of the radioactive particles directly from the alpha spectrum of a dust sample. The residual range distribution of alpha particles emerging from a sphere containing a monoenergetic alpha emitter is simply a quadratic function of the diameter of the sphere. The residual range distribution from a typical dust particle closely approximates that of a sphere of the same mass. For mixtures of various size particles of similar density the (multiparticle) residual range distribution can thus readily be calculated for each of the alpha emitters contained in the particles. Measurement of the composite residual range distribution can be made in a vacuum alpha spectrometer provided the dust sample has no more than a monolayer of particles. The measured energy distribution is particularly sensitive to upper particle size distributions in the diameter region of 4μm to 20μm of 5 mg/cm3 density particles, i.e. 2 to 10 mg/ch2. For dust particles containing212Po or known ratios of alpha emitters a measured alpha spectrum can be unraveled to the underlying particle size distribution. Uncertainty in the size distribution has been listed as deserving research priority in the overall radiation protection program of the mineral sands industry. The proposed method had the potential of reducing this uncertainty, thus permitting more effective radiation protection control. 2 refs., 1 tabs., 1 figs

  13. Alpha Schottky junction energy source

    Science.gov (United States)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  14. Using a fully automatic mass spectrometer for fissile material control

    International Nuclear Information System (INIS)

    The demand for higher accuracy and a shorter delay in the analysis together with better objectifiability and data security needed in safeguards, lead to the automation of a mass spectrometer. Starting with a continuous feeding of samples via a high vacuum lock and including the subsequent heating, focussing and scanning of the samples as well as the final evaluation of the source data (taking alpha spectrometry and the weights required for the isotope dilution technique into account), the mass spectrometric procedure was completely automated. For this purpose, a serial CH-5 instrument of varian mat was modified to be operated by a varian 620/I computer. A newly developed three chamber high vacuum lock was attached to this system and the final evaluation is made with an IBM 370. The system has been used in operation for the isotope analysis of U, Pu and Nd for one year. Major breakdowns of the hardware did not occur, however, the computer programmes had to be steadily improved according to the changing characteristics of the samples. Compared to manual operation, the automat is superior in its throughput and speed of analysing series of similar samples. The automatic procedure objectifies the analysis and the complete evaluation ensures a better data security. (Orig./HP). (author)

  15. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    electric field accelerates and then decelerates the emitted secondary electron beam, the magnetic field steers the beam away from the source and focuses it onto the electron microchannel plate detector. The initial momentum distribution of the electron beam is observed to have profound effect on the electron transport time. Hence, the CEM field spectrometer measurements suffer more from spectral broadening at similar operating parameters. The CEM field spectrometer measurements were obtained with a 210Po alpha source at the Penn State Radiation Science and Engineering Center, University Park, PA. Although the PEM field spectrometer suffers less from electron transport time dispersion, the CEM field spectrometer is more suited for application to neutron depth profiling. The multiple small-diameter apertures used in the PEM field configuration considerably reduces the geometric efficiency of the spectrometer. Most of the neutron depth profiling measurements, where isotropic emission of charged particles is observed, have relatively low count rates; hence, high detection efficiency is essential.

  16. LRAD, semiconductor, and other radiation detectors applied to environmental monitoring for alpha and beta contamination

    International Nuclear Information System (INIS)

    The very short range of alpha particles in air (typically 2 to 3 cm) has severely limited the use of traditional alpha monitors for detecting and identifying small amounts of alpha-producing contamination in soil, water, and other materials. Monitors based on the traditional alpha detector technology are often hard pressed to meet continually increasing sensitivity requirements. The long-range alpha detector (LRAD) avoids the distance restriction by detecting the ions produced by the interaction of alpha particles with air, rather than the alpha particles directly. The ions are swept into an ion detector either by a moving air current (generated by a fan) or a weak electric field. The LRAD is limited by the distance the ions can travel in the ∼5-s ion lifetime (1 to 100 m), rather than by the several-centimeter range of the alpha particles. The LRAD can be used to perform sensitive (less than 10 disintegrations per minute per 100 cm2) field scans of large surface areas (ranging from hundreds of square meters of concrete floor to thousands of square meters of soil). Because the 'active' element in a LRAD is a solid-metal ion collection plate, the detector is relatively inexpensive, easy to service, and quite rugged. However, the LRAD cannot supply any spectroscopic information to help identify the contaminant. Semiconductor, ionization chamber, and other types of particle detector can generate clean spectra from small samples of material and can identify trace amounts of surface contamination. Furthermore, these detectors are rugged enough to use routinely in a mobile laboratory for isotope identification of 'hot spots' located by the LRAD system. The combination of the LRAD with either an alpha spectrometer or a mobile laboratory with other particle detectors has applications for field beta-particle monitoring (such as would result from tritium contamination) as well as alpha particle detection. (author)

  17. Gamma spectrometer for studying the MCF reactions

    International Nuclear Information System (INIS)

    A gamma spectrometer composed of two identical BGO-based gamma detectors and associated electronics is described. The main characteristics of the spectrometer are its high detection efficiency in the energy range of gamma rays Eγ≤ 30 MeV and low sensitivity to the accidental background. A distinctive feature of the detector is a plastic scintillator, which surrounds a BGO crystal and is viewed by the same photomultiplier tube. This provides effective protection of the detector against the charged particle background. The detector design allows for a compact experimental setup with a large solid angle of gamma-ray registration. The simulation of the spectrometer response function has been performed and experimentally verified using GEANT4 program. The spectrometer was used in a search for the rare muon-catalyzed fusion (MCF) reaction ddμ→4He+γ+23.8 MeV and is designed to study the ptμ→4He + γ + 19.8 MeV reaction

  18. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  19. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian or...

  20. Triple-axis spectrometer DruechaL

    International Nuclear Information System (INIS)

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs

  1. Evaluation of Small Mass Spectrometer Systems

    Science.gov (United States)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.

  2. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V.L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  3. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  4. Development of a portable neutron spectrometer

    International Nuclear Information System (INIS)

    A new portable neutron spectrometer has been developed for the evaluation of neutron background and the exposure dose in case of accident at the surrounding areas of power plants or accelerator facilities. This spectrometer consists of one Bonner sphere, a Position Sensitive 3He Proportional Counter (PSPC), an electronic circuit for pulse processing and a PC for spectrum unfolding and displaying. The total weight is 25.7 including boxes and cables. This spectrometer is small and light enough for high portability and available for obtaining accurate neutron spectra in the energy range between thermal and 15 MeV neutron. The Bonner sphere is minimized so as to evaluate a spectrum with reasonable accuracy and decided 23 cm in diameter of polyethylene. The PSPC was divided into 6 regions and one of the regions was outside of Bonner sphere to have higher sensitivity for thermal neutrons in the spectrum. The response functions for each regions were calculated using Monte Carlo Method. It was found that the unfolded spectrum data reasonably agreed with the slowing down neutron spectrum from 252Cf fission and would contribute to the exposure neutron dose estimation in case of accident. In this paper, the general specification and capability of this portable neutron spectrometer is described. (author)

  5. Status of the CDF small angle spectrometer

    International Nuclear Information System (INIS)

    During the 1987 Tevatron collider period the CDF small angle spectrometer system was partially installed and elastic scattering events were recorded in a special high-β run. The design and physics goals of this system are described and results from an analysis of the elastic scattering data are discussed

  6. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  7. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  8. Design of focusing SANS spectrometer at BNC

    International Nuclear Information System (INIS)

    A new SANS spectrometer is being constructed on a guide viewing the cold source at BNC. Focusing options of this instrument are investigated, taking into account the geometrical and flux constraints as well as feasibility. Reflective/selective, magnetic and geometric focusing options respectively are considered, while polarized neutron and time-resolved experiments are envisaged

  9. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  10. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  11. Multi-channel electric aerosol spectrometer

    Science.gov (United States)

    Mirme, A.; Noppel, M.; Peil, I.; Salm, J.; Tamm, E.; Tammet, H.

    Multi-channel electric mobility spectrometry is a most efficient technique for the rapid measurement of an unstable aerosol particle size spectrum. The measuring range of the spectrometer from 10 microns to 10 microns is achieved by applying diffusional and field charging mechanisms simultaneously. On-line data processing is carried out with a microcomputer. Experimental calibration ensures correctness of measurement.

  12. Spherical electrostatic electron spectrometer for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Benczer-Koller, N.; Kolk, B.

    1977-01-01

    A high transmission spherical electrostatic electron spectrometer was constructed for combined Moessbauer and conversion electron spectroscopies. To date, a transmission of 7% and an energy resolution of 2.5% at 14 keV were achieved for a source of 1 cm diameter.

  13. Time of flight spherotron mass spectrometer

    International Nuclear Information System (INIS)

    The possibility of using the spherotron, the mass spectrometer with crossed spherical electric and inhomogeneous magnetic fields, as a TOF mass spectrometry instrument has been analyzed. The possibility of achieving triple isochronous focusing has been shown. The estimates for the mass dispersion and resolutions are derived. (author)

  14. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  15. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author)

  16. ALPHA freezes antiprotons

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Laboratories like CERN can routinely produce many different types of antiparticles. In 1995, the PS210 experiment formed the first antihydrogen atoms and a few years later, in 2002, ATRAP and ATHENA were already able to produce several thousand of them. However, no experiment in the world has succeeded in ‘trapping’ these anti-atoms in order to study them. This is the goal of the ALPHA experiment, which has recently managed to cool down the antiprotons to just a few Kelvin. This represents a major step towards trapping the anti-atom, thus opening a new avenue into the investigation of antimatter properties.   Members of the ALPHA collaboration working on the apparatus in the Antiproton Decelerator experimental hall at CERN. Just like the atom, the anti-atom is neutral. Unlike the atom, the anti-atom is made up of antiprotons (as opposed to protons in the atom) and positrons (as opposed to electrons). In order to thoroughly study the properties of the anti-atoms, scien...

  17. Synthesis of a precursor for the preparation of 9 alpha,11 alpha-tritiated 5 alpha-androstane-3 alpha,17 beta-diol 17-glucuronide

    International Nuclear Information System (INIS)

    Starting from 11 beta-hydroxytestosterone, the synthesis of a strategic precursor, C-9 (11) unsaturated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide (9a), for the preparation of 9 alpha,11 alpha-tritiated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide has been achieved. The authors optimized the reaction conditions for catalytic reduction employing hydrogen and subsequent base hydrolysis followed by purification on Amberlite XAD-2 resin to obtain the saturated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide

  18. Measurement of $\\alpha_{s}$ with Radiative Hadronic Events

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, R J; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, S; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; Dallavalle, M; de Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkays, A Jr; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schiecks, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, J; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2008-01-01

    Hadronic final states with a hard isolated photon are studied using data taken at centre-of-mass energies around the mass of the Z0 boson with the OPAL detector at LEP. The strong coupling alpha S is extracted by comparing data and QCD predictions for event shape observables at average reduced centre-of-mass energies ranging from 24 GeV to 78 GeV, and the energy dependence of alpha S is studied. Our results are consistent with the running of alpha S as predicted by QCD and show that within the uncertainties of our analysis event shapes in hadronic Z0 decays with hard and isolated photon radiation can be described by QCD at reduced centre-of-mass energies. Combining all values from different event shape observables and energies gives alpha S (Mz)=0.1182 pm 0.0015(stat.) pm 0.0101(syst.).

  19. Optimization of operating parameters for low level measurements of alpha emitters by alpha spectrometry

    International Nuclear Information System (INIS)

    The members of public are exposed to both natural and anthropogenic sources of radiation. Naturally occurring radioactive materials comprises of uranium, thorium and their decay products with other radionuclides such as 40K, 3H, 22Na, 7Be, etc. Anthropogenic radionuclides comprises of 137Cs, 90Sr, 239Pu, 241Am, etc. They emit alpha, beta and gamma radiations. Measurement at low level radioactivity is challenging due to interference and other inherent uncertainties. Alpha emitters comprises of 238U and 232Th with their daughters along with those of anthropogenic origin like 239Pu, 241Am, etc. Measurement of alpha emitters is essential by considering the adverse effects of alpha radiation while inside the body. Alpha spectrometry is a sensitive and direct technique to identify and quantify the alpha emitters having detection limit, two to three order of magnitude lower than gamma spectrometry. Standardization of operating parameters is imperative prior to analysis. An attempt has been made to optimize the parameters for an Eight Chamber Alpha Spectrometer (ORTEC) with 450 mm2PIPS detector surface area, with an operating voltage of 50 volt and current of 20-30 nano amperes. Energy calibration of each chamber was done with Pu-Am mixed source and natural uranium standard source. Efficiency of each detector measured with various sources to detector distance for the standard sources was nearly same at equivalent distances, e.g. it is coming around 16% at 8 mm source to detector distance (Rack 2) of each chamber. At 4 mm source to detector distance (Rack-1) it is 25% and gradually it decreases upto 2% at 40 mm source to detector distance (Rack-10). Resolution of 241Am peak was found to 20-25 keV at 8 mm source to detector distance and varies with distance from the detector. It was found that 50% decrease in resolution i.e. FWHM value with the increase in source to detector distance. In the energy range of 4-10 MeV, 8 counts is obtained as background count per 86,000 secs

  20. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  1. What Powers Lyman alpha Blobs?

    OpenAIRE

    Ao, Y.; Matsuda, Y; Beelen, A.; Henkel, C.; Cen, R.; De Breuck, C.; Francis, P; Kovacs, A.; Lagache, G.; Lehnert, M.; Mao, M; Menten, K. M.; Norris, R; Omont, A.; Tatemastu, K.

    2015-01-01

    Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the rad...

  2. Sparse Coding for Alpha Matting

    OpenAIRE

    Johnson, Jubin; Varnousfaderani, Ehsan Shahrian; Cholakkal, Hisham; Rajan, Deepu

    2016-01-01

    Existing color sampling based alpha matting methods use the compositing equation to estimate alpha at a pixel from pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measur...

  3. DEFPOS H${\\alpha}$ Observations of W80 Complex

    CERN Document Server

    Aksaker, Naz\\im

    2012-01-01

    We present H${\\alpha}$ emission line measurements of the W80 nebular complex. A total of 26 regions have been observed inside the nebula with the Dual Etalon Fabry-Perot Optical Spectrometer (DEFPOS) system at the f/48 Coude focus of 150 cm RTT150 telescope located at TUBITAK National Observatory (TUG) in Antalya/Turkey. The intensities, the local standard of rest (LSR) velocities ($V_{LSR}$), heliocentric radial velocities ($V_{HEL}$) and the linewidths at Full Width at Half Maximum (FWHM) of the H${\\alpha}$ emission lines have been determined from these observations. They lie in the range of 259 to 1159 Rayleigh {1R = 10$^{6}/4\\pi$ photons cm$^{-2}$ sr$^{-1}$ s$^{-1}$ = 2.4110$^{-7}$ erg cm$^{-2}$ sr$^{-1}$ s$^{-1}$ at H${\\alpha}$.} (R), 4 to 12 km s$^{-1}$ and 44 to 55 km s$^{-1}$, respectively. The radial velocity measurements show that there are several maxima and minima inside the W80. The new results confirm the literature that complex seems to be rather a uniform in radial velocity and no seen turbule...

  4. Alpha spectrometry and the secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    The main objective of this master thesis was preparation of samples with thorium content on the steel discs by electrodeposition for determination of natural thorium isotope by alpha spectrometry and the secondary ion mass spectrometry and finding out their possible linear correlation between these methods. The samples with electrolytically excluded isotope of 232Th were prepared by electrodeposition from solution Th(NO3)4·12H2O on steel discs in electrodeposition cell with use of solutions Na2SO4, NaHSO4, KOH and (NH4)2(C2O4) by electric current 0.75 A. Discs were measured by alpha spectrometer. Activity was calculated from the registered impulses for 232Th and surface's weight. After alpha spectrometry measurements discs were analyzed by TOF-SIMS IV which is installed in the International Laser Centre in Bratislava. Intensities of isotope of 232Th and ions of ThO+, ThOH+, ThO2H+, Th2O4H+, ThO2-, ThO3H-, ThH3O3- and ThN2O5H- were identified. The linear correlation is between surface's weights of Th and intensities of ions of Th+ from SIMS, however the correlation coefficient has relatively low value. We found out with SIMS method that oxidized and hydride forms of thorium are significantly represented in samples with electroplated thorium. (authors)

  5. Hand-held high resolution gamma ray spectrometer

    International Nuclear Information System (INIS)

    A fully portable and a semi-portable high resolution gamma spectrometer are described. These instruments have the resolving capabilities that are inherent to germanium spectrometers and have the portability needed for health physics. The instruments are usable as a gamma-ray or x-ray fluorescence spectrometer

  6. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  7. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  8. Dynamic fibrils in Ly alpha

    CERN Document Server

    Koza, J; Vourlidas, A

    2008-01-01

    The solar chromosphere and transition region are highly structured regimes of large complexity. A recent breakthrough concerns the identification of dynamic fibrils seen in Halpha. An aim is to find out whether dynamic fibrils are also observable in Ly alpha. We use a brief sequence of four high-resolution Ly alpha filtergrams of the solar limb taken by the Very high Angular resolution ULtraviolet Telescope (VAULT) to identify 50 dynamic fibrils, measure their top trajectories, and fit these with parabolas. Most fibril tops move supersonically. Their decelerations vary from sub- to superballistic. About half show outward acceleration, which may be an artifact from the poor sampling. The similarity between these dynamic fibrils observed in Ly alpha and the ones observed in Halpha suggests that the magnetoacoustic shock excitation proposed for the Halpha dynamic fibrils is also valid for the Ly alpha ones.

  9. Almost Redundant Components in the 3 alpha Faddeev Equation for the Buck, Friedlich and Wheatly alpha alpha Potential

    CERN Document Server

    Fujiwara, Y; Kohno, M

    2004-01-01

    The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.

  10. Alpha thalassaemia in British people.

    OpenAIRE

    Higgs, D R; Ayyub, H.; Clegg, J B; Hill, A V; Nicholls, R D; Teal, H; Wainscoat, J.S. (James S.); Weatherall, D. J.

    1985-01-01

    Although alpha thalassaemia is rare in north Europeans, it has been identified in British people with no known foreign ancestry. Twelve such patients were studied, of whom eight shared a distinctive molecular defect, which was clearly different from defects seen in subjects of Mediterranean or South East Asian origin. A rare but specific form of alpha thalassaemia is therefore present in the British population. In addition, two patients from families of mixed racial origin were encountered wh...

  11. The Harwell back-scattering spectrometer

    International Nuclear Information System (INIS)

    Neutron diffraction spectra in which both high resolution (Δ Q/Q approximately equal to 0.003) and high intensity are maintained up to scattering vectors as high as 30A-1(sin theta/lambda = 2.5) have been obtained with the back-scattering spectrometer (BSS) recently installed on the Harwell electron linac. The theory behind the spectrometer design is described, and it is shown how the above resolution requirement leads to its basic features of a 12m incident flight path, a 2m scattering flight path and a scattering angle (2theta) acceptance from 1650 to 1750. Examples of the resolution, intensity and background are given. It is shown that the problem of frame overlap may be overcome by using an absorbing filter. (author)

  12. Quench anaylsis of MICE spectrometer superconducting solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

    2011-09-01

    MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

  13. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  14. Semiconductor telescope spectrometer for β ray spectra

    International Nuclear Information System (INIS)

    A semiconductor telescope spectrometer for β ray spectra and the associated program for analysis of δ spectra have been built and tested. The spectrometer consists of a ΔE detector (0.3 mm x 200 mm2 Si (Au)) and an E detector (15 mm x 500 mm2 Hp Ge). Its energy resolution for single energy electrons is 20 keV. Multibranch β spectra can conveniently be analyzed, and then their endpoint energies and branching ratios can be obtained by means of the program, in which the response function of the telescope has been taken into account. The endpoint energies and branching ratios for three well known β emitters, i. e. 152Eu, 90Y and 56Mn, have been extracted experimentally, which are in good agreement with published results. Since the HP Ge detector is rather thin, it can also be used as a low energy γ ray detector

  15. Mapping Imaging Spectrometer for Europa (MISE)

    Science.gov (United States)

    Blaney, D. L.; Clark, R. N.; Dalton, J. B.; Davies, A. G.; Green, R. O.; Hedman, M. M.; Hibbits, C. A.; Langevin, Y. J.; Lunine, J. I.; McCord, T. B.; Soderblom, J. M.; Cable, M. L.; Mouroulis, P.; Kim, W.; Dorsky, L. I.; Strohbehn, K.

    2015-10-01

    The Mapping Imaging Spectrometer for Europa(MISE) instrument is designed to be able to unravel the composition of Europa, and to provide new insight into the processes that have in the past and continue to shape Europa, and on the habitability of Europa's ocean. The MISE design is the result of collaboration between NASA's Jet Propulsion Laboratory (California Institute of Technology) and the Applied Physics Laboratory (John Hopkins' University). JPL's Discovery Moon Mineralogy Mapper (M3) on Chandrayan-1 and APL's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) comprise the technical basis for MISE. Internal JPL and APL investments in conjunction with NASA support under the ICEE program has allowed for instrument technology development and testing to achieve a design which would perform in Europa's radiation environment and meet potential sterilization requirements due to planetary protection.

  16. High efficiency neutron spectrometer with low background

    International Nuclear Information System (INIS)

    A neutron energy spectrometer with a geometry close to 4π solid angle operated in the (1-5) MeV energy range at a suitable for a cold fusion experiment configuration and a very good n/γ discrimination, has been constructed. Tests of registration efficiency, energy resolution and radiation type identification have been made with a help of low intensity neutron and gamma sources. The spectrometer has shown the efficiency of about 10% at the 2x10-3s-1 background level and permits one to measure a neutron energy spectrum at a very low intensity of the source. Physical principles, design of the neutron detector system and results of its testing are described. 6 refs.; 6 figs.; 1 tab

  17. Nuclear magnetic resonance spectrometer and method

    International Nuclear Information System (INIS)

    A nuclear magnetic resonance techniis described that allows simultaneous temperature determination and spectral acquisition. The technique employs a modification of the lock circuit of a varian xl-100 spectrometer which permits accurate measurement of the difference in resonance frequency between a primary lock nucleus and another , secondary, nucleus. The field stabilization function of the main lock circuit is not compromised. A feedback signal having a frequency equal to the frequency difference is substituted for the normal power supply in the spectrometer's existing radio frequency transmitter to modulate that transmitter. Thus, the transmitter's radio frequency signal is enhanced in a frequency corresponding to the resonance peak of the secondary nucleus. Determination of the frequency difference allows the determination of temperature without interference with the observed spectrum. The feedback character of the circuit and the presence of noise make the circuit self-activating

  18. Miniaturization of holographic Fourier-transform spectrometers.

    Science.gov (United States)

    Agladze, Nikolay I; Sievers, Albert J

    2004-12-20

    Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777

  19. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  20. Thomson parabola: a high resolution ion spectrometer

    International Nuclear Information System (INIS)

    A compact high resolution and high dispersion Thomson parabola ion spectrometer (TPS) comprising of Time-of-Flight diagnostics has been developed for simultaneously resolving protons and low-Z ions of energy from 1 keV/nucleon to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer was optimized with carbon target. The carbon ions of charge states 1+ to 6+ were measured in the energy range from 3 keV to 300 keV, which were verified by time-of-flight measurements. The energy resolution (E/dE) of TPS was achieved up to 50 depending on the energy and charge states of the ions. The experimental results were in fairly good agreement with the theoretical simulations. (author)

  1. Dds-Based Fast Scan Spectrometer

    Science.gov (United States)

    Alekseev, E. A.; Motiyenko, R. A.; Margulès, L.

    2010-06-01

    The technique of direct digital synthesis (DDS) has two important features which enable its application in microwave spectroscopy: micro-Hz tuning resolution and extremely fast frequency switching with continuous phase. We have applied a direct digital synthesizer in a PLL-spectrometer based on backward-wave oscillator (BWO). As result we have obtained an instrument that can cover a 100 GHz bandwidth in less than one hour with high spectral resolution and high precision of frequency measurement. The application of the spectrometer to sub-millimeter wave survey spectra records of several isotopic species of astrophysical molecules (methanol, formamide, methyl formate, aziridine) will be discussed. The support of Université de Lille 1 and le Programme National de Physique Chimie du Milieu Interstellaire is gratefully acknowledged.

  2. High-resolving mass spectrographs and spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wollnik, Hermann, E-mail: hwollnik@gmail.com [New Mexico State University, Department of Chemistry & Biochemistry (United States)

    2015-11-15

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  3. Description of a multimode gamma spectrometer

    International Nuclear Information System (INIS)

    A 'multimode' gamma spectrometer known as the 'SGMM 10' has been studied and built. It can detect photons by one of three different modes: total absorption, photoelectric and anti-Compton effect, or the pair effect. These results are recorded in such a way that the experimenter can interpret the measurements according to the mode which is the best adapted to the energy of the photons under study. The instrument is made up of a central detector, a Ge(Li) semi-conductor with its cryostat, and an annular crystal, a large volume NaI(Tl) scintillator consisting of four optically isolated sectors. The energy and time data produced by these detectors are processed by an electronic unit. The document entitled 'description of a multi-mode gamma spectrometer' gives an overall description of the SGMM 10 type device and its mode of operation; it also details the laboratory results obtained with this apparatus. (authors)

  4. High-resolving mass spectrographs and spectrometers

    Science.gov (United States)

    Wollnik, Hermann

    2015-11-01

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  5. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  6. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  7. Biopolymer mass spectrometer with cryogenic particle detectors

    International Nuclear Information System (INIS)

    A novel type of biopolymer mass spectrometer is proposed for massive proteins, polypeptides and DNA-fragments by replacing standard ionizing detectors with cryogenic particle detectors. The detection efficiency in ionizing detectors decreases rapidly with increasing biopolymer mass owing to the biopolymer's decreasing velocity. Cryogenic particle detectors, however, record the total kinetic energy deposited by the accelerated biopolymer. In a given electric acceleration field, this kinetic energy is independent of mass and depends only on the biopolymer's charged state. Using the intrinsic properties of cryogenic particle detectors and their specific fabrication techniques, a mass spectrometer has been designed specifically for high-throughput DNA-sequencing. The calculated DNA-fragment separation rate would be increased by several orders of magnitude as compared to standard gel-electrophoresis DNA-sequencers. (orig.)

  8. The QQDDQ magnet spectrometer 'BIG KARL'

    International Nuclear Information System (INIS)

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q2 4 and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. (orig.)

  9. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  10. High-resolution spectrometer for atmospheric studies

    Science.gov (United States)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  11. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  12. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  13. Compact imaging spectrometer utilizing immersed gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  14. Alpha Particle Emission in Fission

    International Nuclear Information System (INIS)

    Soon after it was discovered that alpha particles are occasionally emitted in fission, it was concluded, on the basis of the energy and angular distributions of these particles, that they are emitted from the space between the fragments at times close to that of the snapping of the neck that connects them. It is shown that, independent of any (still unknown) dynamic features of the alpha-particle ejection process, the energy required to emit alpha particles from between the fragments at the indicated time is barely available. Presumably the rareness of alpha particles in fission, and the apparent absence of still heavier ''third'' particles, is associated with the marginal energy supply at the time of actual fragment division. The fact that the total kinetic energy release in so-called ternary fission is roughly equal to that in normal binary fission instead of being about 20 MeV larger is shown to imply that the mean fragment separation at the division time is larger in ternary fission. This is interpreted to indicate that alpha particles are emitted with greatest probability n those fissions where ample energy happens to be provided through the stretching of an abnormally long neck between the fragments before they actually divide. It is suggested that the release of the alpha particles is a sudden rather than adiabatic process. (author)

  15. Alpha particle physics for ITER

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of a variety of physical processes which, in the ITER EDA configuration, determine the nature of alpha particle heating in the plasma interior and alpha particle losses to the first wall. The paper consists of results from the alpha particle toroidal field (TF) ripple loss calculations and an analysis of alpha particle collective effects including Alfven modes, sawtooth stabilization, etc. It is shown that the ripple loss in the present ITER configuration is only a few per cent, which cannot directly affect the achievement of ignition. In spite of the up-down asymmetry, the loss fraction does not strongly depend on the toroidal drift direction. However, the heat load is highly localized and can be as high as 1 MW/m2 on the top of the protective limiters. Preliminary calculations of toroidicity induced Alfven eigenmode (TAE) stability indicate that high n numbers may be unstable, but the computational tools, needed for reliable quantitative predictions, are still in a state of development. The likelihood of appreciable alpha particle loss will depend on whether TAE modes produce stochastic alpha particle diffusion or not. The effect of fast particles on the m = 1 mode is also discussed. (author). 15 refs, 2 figs, 1 tab

  16. Mass spectrometer for the analyses of gases

    International Nuclear Information System (INIS)

    A 6-in-radius, 600 magnetic-sector mass spectrometer (designated as the MS-200) has been constructed for the quantitative and qualitative analyses of fixed gases and volatile organics in the concentration range from 1 ppM (by volume) to 100%. A partial pressure of 1 x 10-6 torr in the inlet expansion volume is required to achieve a useful signal at an electron-multiplier gain of 10,000

  17. Midrapidity measurements with the BRAHMS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The forward- and midrapidity-arms of the BRAHMS experiment are designed to measure charged particle production over a wide range of transverse momentum for rapidities, 0{le}y{le}4. Details of the midrapidity spectrometer, which provides coverage for 0{le}{eta}{le}1.3, are presented here. The capabilities for inclusive {pi}{sup +-}, K{sup +-}, and p{sup +-} measurements and boson pair correlations are discussed.

  18. Compact, self-contained optical spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Baird, W.; Nogar, N.S. [Chemical Sciences and Technology, CST-1 MSJ565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-11-01

    We describe the construction and performance of a self-contained, battery-operated, hand-held optical spectrometer. This unit contains an on-board optical excitation source, miniaturized monochromator, CCD detector, Peltier cooler, LCD display module, and microprocessor control. We demonstrate capabilities for qualitative fluorescence determinations and semiquantitative fluorescence and absorption measurements. Resolution is {lambda}/{delta}{lambda}{approx_equal}1200 at 434 nm. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  19. An intense transmission spectrometer for ISIS

    International Nuclear Information System (INIS)

    The report seeks to outline a design for an intense transmission spectrometer (ITS) suitable for installation on the pulsed neutron source ISIS. The performance of the instrument is evaluated and several examples of the areas of science made accessible are discussed. It is shown that the proposed design will represent a scientifically valuable and cost-effective addition to the present suite of ISIS instruments. (author)

  20. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  1. Calibration of a leak detection spectrometer

    International Nuclear Information System (INIS)

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author)

  2. Paramagnetic resonance spectrometers operating under irradiation

    International Nuclear Information System (INIS)

    Two laboratory-constructed paramagnetic resonance spectrometers for in-situ studies of radiation induced defects are described, One of these instruments is associated with the core of a nuclear reactor, operating in a mixed flux of neutrons and gamma rays. The other is used in a gamma radiation source. Several experimental results obtained with these instruments are discussed as examples of their use. (author)

  3. Double focussing stigmatic image mass spectrometer

    International Nuclear Information System (INIS)

    The mass spectrometer for the analysis of ions, which occur in matetial pulverisation by a radiation micro probe, contains one lens a 450 spherical condenser lens, from which the ion beam emerhes as a parallel beam, an intermediate shutter, a 900 magnetic field and an outlet shutter. The angle of entry and energy bandwidth can be set independently of each other. An optimum transmission is obtained with the least possible image errors. (DG)

  4. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  5. The heavy-ion magnetic spectrometer PRISMA

    International Nuclear Information System (INIS)

    PRISMA is a magnetic spectrometer for heavy ions under construction at Legnaro, with very large solid angle (80 msr), wide momentum acceptance (± 10%) and good mass resolution via TOF measurement; it will be dedicated to the study of nuclear dynamics and nuclear structure with stable and exotic ion beams. This is a review of its main features and of the present status of the project

  6. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  7. Design of modern high resolution magnetic spectrometers

    International Nuclear Information System (INIS)

    The choice of correcting nonlinear aberrations in high resolution magnetic spectrometers with software or hardware is examined. The ability of raytracing methods, using realistic focal plane detector resolutions, is demonstrated for the S800 spectrograph under construction at the National Superconducting Cyclotron Laboratory (NSCL). Furthermore, Differential Algebraic methods are shown to reproduce the results for accurately known fields at a considerable savings in design time. (Author)

  8. Introduction to Subatomic-Particle Spectrometers

    OpenAIRE

    Kaplan, Daniel M.; Lane, Charles E.; Nelson, Kenneth S.

    1998-01-01

    An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of several detection techniques to cha...

  9. Effective mass spectrometer. [History and accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D.

    1979-10-12

    The history and major accomplishments of the Effective Mass Spectrometer (EMS) are described. In the eight years since the EMS turned on, 21 experiments have been completed by groups from nine institutions in 32 months of operation. Over 400 million triggers have been recorded on magnetic tape, resulting in 29 journal publications to date. A list of experimental proposals for the EMS and a sampling of results are presented. 12 figures, 4 tables.

  10. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, Paul; Wadsworth, W.; Levy, R.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  11. The Bragg Crystal Spectrometer for AXAF

    International Nuclear Information System (INIS)

    MIT's High Resolution X-ray Spectroscopy investigation on AXAF involves two complementary dispersive instruments, a Bragg Crystal Spectrometer (BCS) and a High Energy Transmission Grating Spectrometer (HETGS). The overall goal of the investigation is to study the physical conditions in celestial sources by means of detailed measurements of their X-ray spectra. High spectral resolution measurements can be used to perform diagnostics of emitting and absorbing matter, leading to knowledge of temperature, ionization state, elemental abundance, density and optical depth. The Bragg Crystal Spectrometer gives resolving powers of 200-2000 over the energy band 0.5-8 keV and resolving powers of 50-70 over 0.14-0.5 keV. The effective collecting areas in a typical scanning observation are 4-60 cm/sup 2/, and the minimum detectable line flux is 4-30 X 10/sup -6/ photons cm/sup -2/ s/sup -1/. The BCS will be located at the AXAF focal plane. The instrument consists of 10 curved diffractors each of which has a quasi-toroidal geometry, two types of imaging proportional counters optimized for low background (one sealed and one flow), an internal monitor counter that can be inserted into the beam to measure total source flux, a mechanical system that maintains Rowland circle geometry and an appropriate command and data system. The BCS is an upgraded and improved version of the Focal Plane Crystal Spectrometer flown on the Einstein Observatory. It will be used to measure the strengths of individual lines from both point and extended objects in order to apply plasma diagnostic techniques to the study of cosmic X-ray sources

  12. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  13. Multislit optimized spectrometer: fabrication and assembly update

    Science.gov (United States)

    Valle, Tim; Hardesty, Chuck; Good, William; Seckar, Chris; Shea, Don; Spuhler, Peter; Davis, Curtiss O.; Tufillaro, Nicholas

    2013-09-01

    The NASA ESTO funded Multi-slit Optimized Spectrometer (MOS) Instrument Incubator Program will advance a spatial multiplexing spectrometer for coastal ocean remote sensing from lab demonstration to flight like environment testing. Vibration testing to meet the GEVS requirements for a geostationary orbit launch will be performed. The multiple slit design reduces the required telescope aperture leading to mass and volume reductions over conventional spectrometers when applied to the GEO-CAPE oceans mission. The MOS program is entering year 3 of the 3-year program where assembly and test activities will demonstrate the performance of the MOS concept. This paper discusses the instrument design, fabrication and assembly. It outlines the test plan to realize a technology readiness level of 6. Testing focuses on characterizing radiometric impacts of the multiple slit images multiplexed onto a common focal plane, and assesses the resulting uncertainties imparted to the ocean color data products. The MOS instrument implementation for GEO-CAPE provides system benefits that can lead to cost savings and risk reduction while meeting the science objectives of understanding the dynamic coastal ocean environment.

  14. Sensing systems using chip-based spectrometers

    Science.gov (United States)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  15. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  16. Automation of a thermal ionisation mass spectrometer

    International Nuclear Information System (INIS)

    A thermal ionization mass spectrometer was upgraded in order to be monitored by a PC. A PC-LMP-16 National Instruments data acquisition board was used for the ion current channel and the Hall signal channel. A dedicated interface was built to allow commands from the computer to the current supply of the analyzing magnet and to the high voltage unit of the mass spectrometer. A software application was worked out to perform the adjustment of the spectrometer, magnetic scanning and mass spectra acquisition, data processing and isotope ratio determination. The apparatus is used for isotope ratio 235 U/238 U determination near the natural abundance. A peak jumping technique is applied to choose between the 235 U and 238 U signal, by switching the high voltage applied to the ion source between two preset values. This avoids the delay between the acquisition of the peaks of interest, a delay that would appear in the case of a 'pure' magnetic scanning. Corrections are applied for the mass discrimination effects and a statistical treatment of the data is achieved. (authors)

  17. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  18. Cooled grating infrared spectrometer for astronomical observations

    Science.gov (United States)

    Houck, J. R.; Gull, G. E.

    A liquid helium-cooled infrared spectrometer for the 16 to 50 micron range is described. The instrument has six detectors, three each of Si:Sb and Ge:Ga and two diffraction gratings mounted back-to-back. Cold preoptics are used to match the spectrometer to the telescope. In its nominal configuration the system resolution is 0.03 micron from 16 to 30 microns and 0.07 micron from 28 to 50 microns. A cooled filter wheel is used to change order sorting filters. The gratings are driven by a steel band and gear train operating at 4 K. The detector outputs are amplified by a TIA, employing a matched pair of JFETs operating at 70 K inside the dewar. The external warm electronics include a gain stage for the TIA and dc-coupled gating circuit to remove charged-particle (cosmic-ray secondary)-induced noise spikes. The gating circuit reduces the overall system noise by a factor of two when the spectrometer is used on NASA's Kuiper Airborne Observatory. Sample spectra are presented and the deglitcher performance is illustrated.

  19. Prismatic analyser concept for neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Birk, Jonas O.; Jacobsen, Johan; Hansen, Rasmus L.; Lefmann, Kim [Nano Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø (Denmark); Markó, Márton; Niedermayer, Christof [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Freeman, Paul G. [Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Christensen, Niels B. [Institute of Physics, Technical University of Denmark, DK-2800-Kgs. Lyngby (Denmark); Månsson, Martin [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rønnow, Henrik M. [Nano Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø (Denmark); Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-11-15

    Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab.

  20. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  1. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  2. Copernicus measurement of the Jovian Lyman-alpha emission and its aeronomical significance

    Science.gov (United States)

    Atreya, S. K.; Kerr, R. B.; Upson, W. L., II; Festou, M. C.; Donahue, T. M.; Barker, E. S.; Cochran, W. D.; Bertaux, J. L.

    1982-01-01

    It is pointed out that the intensity of the Lyman-alpha emission is a good indicator of the principal aeronomical processes on the major planets. The high-resolution ultraviolet spectrometer aboard the Orbiting Astronomical Observatory Copernicus was used in 1980 April and May to detect the Jovian Lyman-alpha emission by spectroscopically discriminating it from other Doppler shifted Lyman-alpha emissions such as those of the geocorona, and the interplanetary medium. Taking into consideration the reported emission data, it appears that an unusually large energy input due to the particle precipitation in the auroral region must have been responsible for the large observed Lyman-alpha intensity during the Voyager encounter. At most other times, the observed Jovian Lyman-alpha intensity can be explained, within the range of statistical uncertainty, by a model that takes into consideration the solar EUV flux, the solar Lyman-alpha flux, the high exospheric temperature, and the eddy diffusion coefficient without energy input from the auroral sources.

  3. Systematics of Alpha-Radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Perlman, I.; Ghiorso, A.; Seaborg, G.T.

    1949-09-12

    Correlations of alpha-decay energies in terms of mass number and atomic number have been made for all of the alpha-emitting species now numbering over 100. For each element isotopes show increase in alpha-energy with decrease in mass number except in the region of 126 neutrons where there is an explainable reversal. This reversal has the effect of creating a region of relatively low alpha-energy and long half-life at low mass numbers for such elements as astatine, emanation, francium, and possibly higher elements as had been noted already for bismuth and polonium. Methods and examples of using alpha-decay data to define the energy surface in the heavy element region are discussed. The regularities in alpha-decay are used for predictions of nuclear properties including prediction of the beta-stable nuclides among the heavy elements. The half-life vs. energy correlations show that the even-even nuclides conform well with existing alpha-decay theory, but all nuclear types with odd nucleons show prohibited decay. The reason for this prohibition is not found in spin changes in the alpha-emission but in the assembly of the components of the alpha particle, and this theory is discussed further in terms of observations made on nuclides having two or more alpha-groups. Using most of the even-even nuclei to define 'normal nuclear radius' calculations are now able to show the shrinkage in the regions of lead and of 126 neutrons to amount to about 10%. The much greater change in 'effective radius' for bismuth isotopes can be dissociated into the effects of odd nucleons superimposed on the actual decrease in nuclear radius. The simple expression r = 1.48 A{sup 1/3} {center_dot} 10{sup -13} cm seems to fit the data for the even-even nuclei outside of the region of 126 neutrons better than more complex functions.

  4. $\\alpha $ -Skew $\\pi $ -McCoy Rings

    OpenAIRE

    Areej M. Abduldaim; Chen, Sheng

    2013-01-01

    As a generalization of $\\alpha $ -skew McCoy rings, we introduce the concept of $\\alpha $ -skew $\\pi $ -McCoy rings, and we study the relationships with another two new generalizations, $\\alpha $ -skew ${\\pi }_{1}$ -McCoy rings and $\\alpha $ -skew ${\\pi }_{2}$ -McCoy rings, observing the relations with $\\alpha $ -skew McCoy rings, $\\pi $ -McCoy rings, $\\alpha $ -skew Armendariz rings, $\\pi $ -regular rings, and other kinds of rings. Also, we investigate conditions such that $\\alpha $ -skew ${...

  5. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers. PMID:26717779

  6. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  7. Mathematical simulation for integrated linear Fresnel spectrometer chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargsoon; Lee, Uhn; King, Glen C.; Choi, Sang

    2012-04-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1mm3 of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/λ), while the conventional spectrometers are proportional to the wavelength scale (λ). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  8. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  9. Gaseous alpha emitter diffusion studies using alpha track method

    International Nuclear Information System (INIS)

    Using a very accurate and sensitive analysis method such as alpha track method, the SSNTD group was able to undertake studies on the atomic and molecular processes taking place at low speed and/or very low concentrations, such as diffusion of gaseous alpha radionuclides in gaseous media. For practical application reasons, we began to study the diffusion in air for gaseous alpha radionuclides and aerosols carrying solid alpha radionuclides. The used alpha radionuclides were: Rn-222, as gaseous radionuclide and its solid descendants genetically related, attached to different particles from air, as radioactive aerosols. The source was included into an air tight device with a very well known volume. After 40 days, the radioactive equilibrium was established for all descendants, so that in the device there were the Rn-222 and its descendants, each of them having the same activity. The relative amount/activity ratio of each decay product, at any duration, for any initial mass of Ra-226 parent radionuclide, were calculated using the code UURASE, based on the Bateman general equations, for computing the U-238 radioactive series gamma accumulation. This was adapted for alpha accumulation as ALFAURASE programme. The device which contains the Ra-226 source can be coupled to the calibration system or to the diffusion system, without destroying the radioactive equilibrium. At this coupling, only the radioactive concentration is changed due to the variation of the volume. First of all the device was used for calibrating the CR-39 track detectors for both Rn-222 gaseous radionuclide and aerosol concentration measurements using, in the coupled calibration system, a special 'detector-container' equipped/or not with a filter used for radioactive aerosol stopping. The track detectors CR-39 were etched in NaOH 30%, for 7 hours at 70 deg. C and their studies were performed by optical microscopy using a stereo-microscope Wild M7S and a binocular Zeiss Jena microscope. (authors)

  10. Contribution to the study of the alpha-alpha interaction

    International Nuclear Information System (INIS)

    The new variable energy cyclotron at Berkeley that can accelerate an alpha beam up to an energy of 130 MeV and the mass production of lithium diffused junctions have enabled us to perform 2 series of measurement, in the first one we use alpha beams with an energy ranging between 50 and 120 MeV to study alpha-alpha forces in the second one we use the flexibility of the variable energy cyclotron the resonances around 40 MeV, region that can not yet be reached by tandem accelerators. This work is divided into 6 chapters. The first chapter is dedicated to the formalism of partial wave analysis and the theory of the compound nucleus. In the second chapter the author presents the 88 cyclotron at Berkeley and the diffusion chamber, the alpha detectors are lithium diffused junctions made of silicon. The third chapter deals with the experimental methods used and the issue of the reduction of the volume of data. In the fourth chapter the results obtained in the upper part of the energy range are described in terms of complex shifts that allow the description of the α-α interaction at high energy. The very low impact parameter has enabled us to find 2 new components (l=6 and l=8) of the rotational spectrum and to define a more accurate phenomenological potential. The fifth chapter is dedicated to the narrow resonances we have found between 12 and 27 MeV. We present in the last chapter a calculation of the binding energy of C12 in which we have considered the 12C nucleus as formed by 3 alpha particles interacting with each other through the phenomenological potential defined above

  11. Workshop on Precision Measurements of $\\alpha_s$

    Energy Technology Data Exchange (ETDEWEB)

    Bethke, Siegfried; /Munich, Max Planck Inst.; Hoang, Andre H.; /Vienna U.; Kluth, Stefan; /Munich, Max Planck Inst.; Schieck, Jochen; /Munich U.; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  12. Realisation of a β spectrometer solenoidal and a double β spectrometer at coincidence

    International Nuclear Information System (INIS)

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of β spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports αK / αL and it is especially efficient for the accurate energy levels of the γ rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the β and γ emission is rather little lower to 4π steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations βγ and e-γ. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e-e-, e-β of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e-e-, e-β. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: 76As (26 h), 122Sb (2,8 j), 124Sb (60 j), 125Sb (2,7 years). (M.B.)

  13. Ion optics for large-acceptance magnetic spectrometers application to the MAGNEX spectrometer

    CERN Document Server

    Cunsolo, A; Foti, A; Lazzaro, A; Melita, A L; Nociforo, C; Shchepunov, V A; Winfield, J S

    2002-01-01

    The ion optics of large-acceptance magnetic spectrometers are discussed. General techniques based on a minimum of multi-purpose magnetic elements are described. The aberrations should be minimised by shaping the entrance and exit effective field boundaries of bending magnets, the residual terms being corrected by software. Field clamps, shims and surface coils (the latter to provide kinematic compensation) are also discussed. The results and formulae which we obtain are applied to the case of the large-acceptance (approx 50 msr) high-resolution magnetic spectrometer 'MAGNEX' at INFN-LNS Catania.

  14. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  15. ALPHA: antihydrogen and fundamental physics

    Science.gov (United States)

    Madsen, Niels

    2014-02-01

    Detailed comparisons of antihydrogen with hydrogen promise to be a fruitful test bed of fundamental symmetries such as the CPT theorem for quantum field theory or studies of gravitational influence on antimatter. With a string of recent successes, starting with the first trapped antihydrogen and recently resulting in the first measurement of a quantum transition in anti-hydrogen, the ALPHA collaboration is well on its way to perform such precision comparisons. We will discuss the key innovative steps that have made these results possible and in particular focus on the detailed work on positron and antiproton preparation to achieve antihydrogen cold enough to trap as well as the unique features of the ALPHA apparatus that has allowed the first quantum transitions in anti-hydrogen to be measured with only a single trapped antihydrogen atom per experiment. We will also look at how ALPHA plans to step from here towards more precise comparisons of matter and antimatter.

  16. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  17. Compact snapshot real-time imaging spectrometer

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2011-11-01

    The described spectral imaging system, referred to as a Snapshot Hyperspectral Imaging Fourier Transform (SHIFT) spectrometer, is capable of acquiring spectral image data of a scene in a single integration of a camera, is ultra-compact, inexpensive (commercial off-the-shelf), has no moving parts, and can produce datacubes (x, y, λ) in real time. Based on the multiple-image FTS originally developed by A. Hirai [1], the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. By combining a birefringent interferometer with a lenslet array, the entire spectrometer consumes approximately 15×15×20 mm3, excluding the imaging camera. The theory of the birefringent FTS is provided, followed by details of its specific embodiment and a laboratory proof of concept of the sensor. Post-processing is currently accomplished in Matlab, but progress is underway in developing real-time reconstruction capabilities with software programmed on a graphics processing unit (GPU). It is anticipated that processing of >30 datacubes per second can be achieved with modest GPU hardware, with spatial/spectral data of or exceeding 256×256 spatial resolution elements and 60 spectral bands over the visible (400-800 nm) spectrum. Data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions as well as retinal imaging.

  18. Bonner sphere spectrometer: A CONRAD project intercomparison

    International Nuclear Information System (INIS)

    The most widely used system in neutrons measurements for radiological protection is the Bonner Sphere Spectrometer (BSS). The BSS is applied to characterise neutron fields from thermal to hundreds of MeVs. The Nuclear Regulatory Authority of Argentina has developed and calibrated its own BSS system, which has been used in many Argentine facilities during the last eleven years when the regulatory activities have been carried out. Following this line of work, the present development has been done in the framework of the International Intercomparison ''Uncertainty Assessment in Computational Dosimetry: A Comparison of Approaches'', organised by the CONRAD project (Coordinated Network for Radiation Dosimetry). The aim of intercomparison was to study the response of a proposed widespread neutron spectrometer exposed to arbitrary neutron sources. With this goal in mind, the experimental system has been modelled in detail according to the provided layout. The modelled neutron spectrometer consists of 8 Bonner spheres made of high-density polyethylene (δ=0.95gc/m3). The spheres diameter range between 2' and 12' in addition to a 12' diameter leadloaded sphere. The defined active thermal neutron detector, a 6LiI(Eu) scintillation crystal, was according to provided dimensions (4 mm (diameter) by 4 mm (height)), and located at each sphere centre. Irradiation geometry has been according to measurements carried out during the experimental part of the intercomparison. The theoretical neutron response has been calculated applying the well-known MCNPX code. The complete response matrix of the system has been obtained in the energy range between thermal neutron and 17.77 MeV. The obtained system theoretical response to ISO standard 241Am-Be and 252Cf sources shows an excellent agreement with experimental results provided by EURADOS. This response can be used to calibrate the system. The obtained matrix response can be coupled to any unfolding code to complete the BSS system used in

  19. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  20. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These

  1. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  2. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  3. Calibration and intercomparison of neutron moderation spectrometers

    International Nuclear Information System (INIS)

    Results have been reported of comparative measurements of neutron fields from bare PuBe and Cf sources using multisphere (Bonner) spectrometers. The experiments were carried out by the Institute of Biophysics and Nuclear Medicine at Charles University in Prague and the National Board for Atomic Safety and Radiation Protection in Berlin. Both sides agreed upon uniform measuring conditions and calibration factors thus rendering possible the comparability of the dosimetric parameters which have been determined and verified, respectively, to an accuracy of ± 10%. 20 refs., 10 tabs., 2 figs. (author)

  4. The Omega spectrometer in the West Hall.

    CERN Multimedia

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  5. Recent developments in thick mercuric iodine spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; Van den Berg, L.

    1983-02-01

    Thick (about 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (about 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  6. Recent developments in thick mercuric iodide spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; van den Berg, L.

    1982-01-01

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  7. Micro-optical-mechanical system photoacoustic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  8. Gamma ray spectrometer for Lunar Scout 2

    Science.gov (United States)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  9. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  10. Compact proton spectrometers for measurements of shock

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  11. The crystal barrel spectrometer at LEAR

    International Nuclear Information System (INIS)

    The Crystal Barrel spectrometer used at LEAR, CERN to study the products of anti pp and anti pd annihilations is described. A 1380 element array of CsI crystals measures photons from the decay of π0, η, η' and ω mesons. A segmented drift chamber in a 1.5 T magnetic field is used to identify and measure charged particles. A fast on-line trigger on charged and neutral multiplicities and on the invariant mass of secondary particles is available. The performance of the detector is discussed. (orig.)

  12. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  13. Remote Nuclear Spectrometer for Martian Moon Exploration

    Science.gov (United States)

    Hasebe, Nobuyuki; Okada, Tatsuaki; Kameda, Shingo; Karouji, Yuzuru; Amano, Yoshiharu; Shibamura, Eido; Cho, Yuichiro; Ohta, Toru; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Kuno, Haruyoshi; Martínez-Frías, Jesus; Nakamura, Tomoki; Takashi, Mikouchi; Shimizu, Sota; Shirai, Naoki; Fagan, Timothy J.; Hitachi, Akira; Matias Lopes, José A.; Miyamoto, Hideaki; Niihara, Takafumi; Kim, Kyeong

    2016-07-01

    The Gamma-ray and Neutron Spectrometer (GNS) on the Mars Moon eXploration (MMX) forms part of the geochemistry investigation. The remote observation from spacecraft orbit provides us global information of the Moons showing evidence of their origin. The Gamma-Ray Sensor (GS) detects gamma-ray emissions in the 0.2- to 10-MeV energy range with an energy resolution of solar system and low values of Ca/F and Si/Fe-ratios also suggest the primordial origin. The present status of the GNS development will be reviewed.

  14. The High Rigidity Spectrometer for FRIB

    Science.gov (United States)

    Baumann, T.

    2016-06-01

    The High Rigidity Spectrometer (HRS) is being developed to make optimum use of the fast rare-isotope beams that will be available at the Facility for Rare-Isotope Beams (FRIB) and will be the key experimental tool to study the most exotic, neutron-rich nuclei. The HRS will accommodate detector systems for charged particles, neutrons, and gamma rays. This will enable coincidence measurements of reaction products that stem from a variety of reactions such as knockout, breakup, charge exchange or Coulomb excitation. First-order ion optical studies are under way and this paper will offer some details on the current design ideas.

  15. Electrical aerosol spectrometer of Tartu University

    Science.gov (United States)

    Tammet, H.; Mirme, A.; Tamm, E.

    The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.

  16. The 8-18 GHz radar spectrometer

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  17. Geochronology of recent sediments from the Cariaco Trench (Venezuela) by Alpha Spectrometry of 210Pb (210Po)

    International Nuclear Information System (INIS)

    210Pb concentration in marine sediments of the Cariaco Trench (North-East of Venezuela) was measured through the analysis of 210Po alpha emissions, which can be assumed to be in secular equilibrium with 210Pb. The analysed sediment core has a length of 1.9 m. The results allowed to apply the CF:CS dating model (Constant Flux and Constant Supply). The sedimentation rate was estimated to be 0.25 cm/y. As far as we know this is the first α- dating carried out in the country, performed with an alpha spectrometer recently funded by the IAEA.

  18. Alpha decay of At-194

    OpenAIRE

    Andreev, Andrei; Antalic, S; Ackermann, D.; Bianco, L.; Franchoo, S.; S. Heinz; F. P. Hessberger; Hofmann, S.; Huyse, Marc; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Nishio, K; R.D.Page

    2009-01-01

    Detailed alpha-decay studies of the neutron-deficient isotope At-194 have been performed in the complete fusion reaction Fe-56+Pr-141 -> At-194+3n at the velocity filter SHIP. Two alpha-decaying isomeric states with half-lives of T-1/2(At-194(m1))=310(8) ms and T-1/2(At-194(m2))=253(10) ms were identified in this nucleus. Their complex decays to the states in the daughter nucleus Bi-190 are discussed in the article. We propose that similar to the case of the neighboring At-191,At-192,At-193,A...

  19. Test chamber for alpha spectrometry

    Science.gov (United States)

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  20. Influence of the repulsive coefficient {alpha} and approximate corresponding states in Mie {alpha}-6 and exponential {alpha}-6 fluids

    Energy Technology Data Exchange (ETDEWEB)

    Galliero, Guillaume [Universite de Marne-la-Vallee, Laboratoire d' Etude des Transferts d' Energie et de Matiere (EA 2546), Bat. Lavoisier, Cite Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallee Cedex 2 (France)], E-mail: galliero@univ-mlv.fr; Boned, Christian; Baylaucq, Antoine [Universite de Pau et des Pays de l' Adour, Laboratoire des Fluides Complexes (UMR-5150), BP 1155, F-64013 Pau Cedex (France); Montel, Francois [TOTAL, CSTJF, Avenue Larribau, F-64018 Pau (France)

    2007-03-30

    Non-equilibrium molecular dynamics (NEMD) simulations of the Mie {alpha}-6 and the exponential {alpha}-6 (exp {alpha}-6) fluids have been carried out for 42 thermodynamic states. Various repulsive coefficients have been studied, {alpha} ranging from 9 to 14 for the Mie {alpha}-6 potentials and from 11 to 16 for the exp {alpha}-6 ones, which corresponds to a total of 603 points of simulation of stable phases. The simulations have shown that, for a given set of reduced temperature and density (using an appropriate scaling procedure), the reduced pressure varies linearly with {radical}({alpha}-6) for the Mie {alpha}-6 potentials and with {radical}({alpha}-7) for the exp {alpha}-6 potentials. Concerning the viscosity, it is shown that, for both potential families, the variation is linear with {alpha}. Thus, an approximate corresponding states scheme exists on pressure and on viscosity for fluids modelled by both potentials families, but only for each property separately. In addition, it appears that, approximate corresponding states exist between fluids modelled by a Mie {alpha}-6 potential and an exp ({alpha} + 2)-6 one for pressure, and between fluids modelled by a Mie {alpha}-6 potential and an exp ({alpha} + 2.5)-6 one for viscosity. So, despite obvious similarities, the influence of the shape of the potential on pressure and on viscosity is not strictly the same. Hence, a complete perfect corresponding states scheme (including both the pressure and the viscosity) seems hardly feasible between fluids modelled by the Mie {alpha}-6 and the exp {alpha}-6 potential families.

  1. The MAGNEX spectrometer: results and perspectives

    CERN Document Server

    Cappuzzello, F; Carbone, D; Cavallaro, M

    2016-01-01

    This article discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long search...

  2. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  3. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10‑11 cm‑1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10‑23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  4. A rotatable electron spectrometer for multicoincidence experiments

    International Nuclear Information System (INIS)

    We have developed a rotatable hemispherical spectrometer with good energy and angular resolution, which can be positioned with the lens axis arbitrarily within a solid angle of 1 π. The collection angle of the emitted electrons with respect to the polarization axis of the light is set by means of a three-axes goniometer, operating under vacuum. An important requirement for this setup was the possibility to perform coincidences between the electron analyzed by the spectrometer and one or several other particles, such as ions, electrons, or photons. The lens system and the hemispheres have been designed to accommodate such experimental demands, regarding parameters such as the resolving power, the acceptance angle, or the width of the kinetic energy window which can be recorded for a given pass energy. We have chosen to detect the impact position of the electron at the focal plane of the hemispherical analyzer with a delay line detector and a time-to-digital converter as acquisition card rather than using a conventional charge-coupled device camera.

  5. A rotatable electron spectrometer for multicoincidence experiments.

    Science.gov (United States)

    Céolin, D; Forsell, J-O; Wannberg, B; Legendre, S; Palaudoux, J; Ohrwall, G; Svensson, S; Piancastelli, M N

    2010-06-01

    We have developed a rotatable hemispherical spectrometer with good energy and angular resolution, which can be positioned with the lens axis arbitrarily within a solid angle of 1 pi. The collection angle of the emitted electrons with respect to the polarization axis of the light is set by means of a three-axes goniometer, operating under vacuum. An important requirement for this setup was the possibility to perform coincidences between the electron analyzed by the spectrometer and one or several other particles, such as ions, electrons, or photons. The lens system and the hemispheres have been designed to accommodate such experimental demands, regarding parameters such as the resolving power, the acceptance angle, or the width of the kinetic energy window which can be recorded for a given pass energy. We have chosen to detect the impact position of the electron at the focal plane of the hemispherical analyzer with a delay line detector and a time-to-digital converter as acquisition card rather than using a conventional charge-coupled device camera. PMID:20590230

  6. Software Polarization Spectrometer "PolariS"

    CERN Document Server

    Mizuno, Izumi; Kano, Amane; Kuroo, Makoto; Nakamura, Fumitaka; Kawaguchi, Noriyuki; Shibata, Katsunori M; Kuji, Seisuke; Kuno, Nario

    2014-01-01

    We have developed a software-based polarization spectrometer, PolariS, to acquire full-Stokes spectra with a very high spectral resolution of 61 Hz. The primary aim of PolariS is to measure the magnetic fields in dense star-forming cores by detecting the Zeeman splitting of molecular emission lines. The spectrometer consists of a commercially available digital sampler and a Linux computer. The computer is equipped with a graphics processing unit (GPU) to process FFT and cross-correlation using the CUDA (Compute Unified Device Architecture) library developed by NVIDIA. Thanks to a high degree of precision in quantization of the analog-to-digital converter and arithmetic in the GPU, PolariS offers excellent performances in linearity, dynamic range, sensitivity, bandpass flatness and stability. The software has been released under the MIT License and is available to the public. In this paper, we report the design of PolariS and its performance verified through engineering tests and commissioning observations.

  7. Development of a junction β - spectrometer

    International Nuclear Information System (INIS)

    A β spectrometry unit using junctions of the silicon surface barrier type has been built. The resolving power of this spectrometer has been studied as well as the influence of a certain number of parameters (temperature, polarization voltage) on its characteristics. A study with this unit of some internal conversion electron spectra (113Sn, 137Cs, 139Ce, 195Au, 207Bi) has led both to a determination of its characteristics and of an energy calibration, and to the determination of certain internal conversion ratios of these radionuclides. This spectrometer was then used for a study of (5-spectra in particular that of 35S and 14C. The calculations and corrections required for the setting-up of Kuries representation are described. The programmes required for the carrying-out of these calculations with an I.B.M. computer are given. It has been verified that Kuries representation for 14C above 90 keV is in fact linear. The non-linear aspect observed by certain authors is probably due to the 'quality' of the sources used. The Fierz interference term has been determined. The maximum β energies found are respectively: 167 ± 1 keV for 35S and 155 ± 2 keV for 14C. (author)

  8. Neutron Beam Conditioning for Focusing SANS Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, Janos; Rosta, Laszlo, E-mail: fuzi@szfki.hu

    2010-11-01

    Multibeam focusing offers an appealing compromise between high resolution and high incident flux configurations for SANS spectrometers. In fact so many 'spectrometers' operate in parallel as the number of channels in the collimator. Each channel provides high resolution by small spot size on the detector and long sample-to-detector distance, involving significant limitation of the transmitted beam phase space volume, thus reducing the flux. The flux on the sample is increased by the large number of channels. In view of the multibeam collimation it is beneficial to increase the beam cross section and decrease the divergence at the same time. Two aspects related to the use of rotational velocity selectors are investigated. First the transmitted phase space is determined from the selector parameters. It is found that the beam azimuthal divergence with respect to the rotor axis has a significant effect on the selectivity. Neutrons flying along different paths are treated differently, leading eventually to energetic non-uniformity of the illumination of various collimator channels. Then the effect of the gap in the neutron guide at the selector location on the phase space uniformity at the collimator entrance is investigated and optimal selector location along the beam is proposed together with optimal neutron guide shape in the vicinity of the gap, which accommodates the selector.

  9. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  10. The performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Full text: The ATLAS muon spectrometer is designed to measure muons with a momentum resolution of 10 % for a transverse momentum of pt = 1 TeV. The main components needed to master the stand-alone performance in a field of a super-conducting magnet system are the 1200 high precision drift chambers. An air core toroid magnet configuration will provide an integrated bending power, B.dl ranging from 2 Tm to 9 Tm. To fully exploit the chamber resolution of 80 micron, a complex alignment system is needed to constantly monitor the position of these chambers spaced in a volume of 10000 cubic meters. An optical alignment system is employed to determine the positions of these muon chambers with a precision of 30 micron. An example of the alignment system in the forward region of the spectrometer will be given, where the shape of the mechanical structures with a length of 10 m has to be known to 20 micron. The performance of a full-scale set up in a test beam will be presented. (author)

  11. MEMS mass spectrometers: the next wave of miniaturization

    Science.gov (United States)

    Syms, Richard R. A.; Wright, Steven

    2016-02-01

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented.

  12. MEMS mass spectrometers: the next wave of miniaturization

    International Nuclear Information System (INIS)

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented. (topical review)

  13. Wide swath imaging spectrometer utilizing a multi-modular design

    Science.gov (United States)

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  14. Study and operation of a mini portable germanium spectrometer

    International Nuclear Information System (INIS)

    The study allowed us to master a technique for analysis of radioactive element: this is the gamma ray spectrometry. The Gamma ray spectrometry allows us to determine the activities of gamma emitters. In this study we used a portable gamma spectrometer for measurements on site. The spectrometer requires two types of calibration. We conducted a comparative study of activity of soil samples obtained in the laboratory and the results made by the portable spectrometer.

  15. What Powers Lyman alpha Blobs?

    CERN Document Server

    Ao, Y; Beelen, A; Henkel, C; Cen, R; De Breuck, C; Francis, P; Kovacs, A; Lagache, G; Lehnert, M; Mao, M; Menten, K M; Norris, R; Omont, A; Tatemastu, K; Weiss, A; Zheng, Z

    2015-01-01

    Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both ...

  16. Alcoholism, Alpha Production, and Biofeedback

    Science.gov (United States)

    Jones, Frances W.; Holmes, David S.

    1976-01-01

    Electroencephalograms of 20 alcoholics and 20 nonalcoholics were obtained. Data indicated that alcoholics produced less alpha than nonalcoholics. In one training condition subjects were given accurate biofeedback, whereas in the other condition subjects were given random (noncontingent) feedback. Accurate biofeedback did not result in greater…

  17. Alpha Testing Escape from Diab

    Science.gov (United States)

    Alpha testing was conducted of sessions 2 and 3 from Diab to assess whether the activities worked as expected, and whether children in the target ages enjoyed it. Data include both RA observations of child performance while playing the games and cognitive interview responses from the players after t...

  18. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  19. Uncooled near- and mid-IR spectrometer engine. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Agiltron proposes to develop an extremely compact and high sensitivity uncooled near- and mid-infrared (NMIR) spectrometer engine for planetary compositional...

  20. The Results of Tests of the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  1. A synopsis of collective alpha effects and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sigmar, D.J.

    1990-10-01

    This paper discusses the following: Alpha Interaction with Toroidal Alfven Eigenmodes; Alpha Interaction with Ballooning Modes; Alpha Interaction with Fishbone Oscillations; and Implications for ITER.

  2. NQR spectrometer controlled by a computer

    International Nuclear Information System (INIS)

    Nuclear quadrupole resonance (NQR) is one of the sensitive methods for studying physical and chemical properties of a substance, such as chemical composition, molecular structure, molecular motion and electronic environment. The specifications of the research project require the use of a nuclear quadrupole resonance spectrometer. Design and performances of a pulsed nuclear quadrupole resonance spectrometer prototype covering the range 1-10 MHz are presented. The pulsed NQR method offers considerably higher sensitivity than either the marginal oscillator or super-regenerative methods. Strong echoes are often observed directly with an oscilloscope or a simple receiver. The method allows us to observe two signal categories: free induction decay (fid) and echoes. The block diagram of the pulsed nuclear quadrupole resonance spectrometer is shown. All operations performed by the spectrometer are controlled by a computer. The scanning frequency range, amplitude and width of the RF pulse, additional magnetic field and sample temperature can be controlled by the software. Also it is possible to improve the signal-to-noise ratio using digital filtering applied to the data stored. Automatic operation eliminates operator skill and uncertainty of manual operation. The NQR spectrometer control software is a stand alone executable file, runs on Windows 95/98 platform and does not require the existence of another software package. A graphical interface allows to user an easy control over the spectrometer operations. All measured parameters by the control system interface are saved in the standard data files and can be processed further. The design is readily adaptable for other applications. The sample is contained within an aluminum cylindrical case. The upper end cap of the case can be removed and it allows introducing the sample. On the upper end cap RF and main temperature sensor connector are placed. On the internal side of the bottom end cap a thermoelectric cooler (MELCOR

  3. Large area timing detectors developed for the time-of-flight isochronous (TOFI) Spectrometer

    International Nuclear Information System (INIS)

    Large area fast timing detectors have been developed for use in the TOFI Spectrometer. A gridless detector was constructed in which secondary emission electrons emitted from a thin (approx. 30 μg/cm2) target foil are transported isochronously to channel plate electron multipliers by crossed electric and magnetic fields. A novel convex anode was designed to reduce any time dependence on the position at which secondary electrons were emitted. Timing performance for aluminum oxide foils was found to be superior to carbon foils. Intrinsic timing resolution of 75 to 120 ps FWHM has been measured for 5.4 MeV alpha particles from a thin 241Am source for two different detectors with 4.9 cm2 and 12.6 cm2 active areas, respectively. Detection efficiencies were measured to be in excess of 75%

  4. How Is Alpha-1 Antitrypsin Deficiency Diagnosed?

    Science.gov (United States)

    ... Alpha-1 Antitrypsin Deficiency Diagnosed? Alpha-1 antitrypsin (AAT) deficiency usually is diagnosed after you develop a ... related to the condition. Your doctor may suspect AAT deficiency if you have signs or symptoms of ...

  5. How Is Alpha-1 Antitrypsin Deficiency Treated?

    Science.gov (United States)

    ... Alpha-1 Antitrypsin Deficiency Treated? Alpha-1 antitrypsin (AAT) deficiency has no cure, but its related lung ... pulmonary disease). If you have symptoms related to AAT deficiency, your doctor may recommend: Medicines called inhaled ...

  6. What Causes Alpha-1 Antitrypsin Deficiency?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. What Causes Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (AAT) ... develop. The most common faulty gene that can cause AAT deficiency is called PiZ. If you inherit ...

  7. Monitor for alpha beta contamination of hands

    International Nuclear Information System (INIS)

    The following specifications of hands alpha beta contamination monitor are presented: the position of the hands, the detection and separation of alpha and beta, the information processing, the programming, the results presentation and general characteristics. (A.L.B.)

  8. \\alpha $ $^m $ Continuous Maps in Topological Spaces

    OpenAIRE

    Mathew, Milby; Parimelazhagan, R.; S Jafari

    2016-01-01

    The main aim of the present paper is to introduce new classes of functions called $ \\alpha $ $^m $ continuous maps and $ \\alpha $ $^m $ irresolute maps. We obtain some characterizations of these classes and properties are studied.

  9. A compact neutron–gamma spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: dcester@pd.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Stevanato, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F.; Sajo-Bohus, L. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Viesti, G. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-11

    A compact neutron/gamma detector has been developed using a liquid scintillator cell coupled to a Flat Panel PMT; performances have been compared with a second cell coupled to a traditional linearly-focused 12 dynodes PMT. Energy resolution and pulse shape discrimination (PSD) measured by using a fast digitizer are very similar for the two detectors with the time resolution of the Flat Panel PMT slightly worse. The new detector results to be weakly affected by the influence of a moderate magnetic field while the traditional PMT exhibits strong pulse reduction. The compact size and the low power consumption obtained by using the Flat Panel PMT are very useful in portable neutron/gamma spectrometers.

  10. A solid state pulsed NMR spectrometer

    International Nuclear Information System (INIS)

    A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of approximately 2 kW with a 75Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is approximately 7μsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are approximately 2 mV and approximately 0.1% respectively. (auth.)

  11. Results from a Bragg Curve Spectrometer

    International Nuclear Information System (INIS)

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. We have constructed and tested several versions of the BCS. The results are described

  12. The 4π-fragment-spectrometer FOBOS

    International Nuclear Information System (INIS)

    The 4π-fragment-spectrometer FOBOS developed for heavy ion research at beam energies of 10-100AMeV has been commissioned for physical experiments at the FLNR of the Joint Institute for Nuclear Research. Based on the logarithmic detector principle, it is able to register charged fragments from protons up to heavy residual nuclei in a large dynamic range. Position sensitive avalanche counters, axial ionization chambers and CsI(Tl) scintillation detectors are arranged in three concentric detector shells. An array of phoswich detectors is used as a more granular forward detector at narrow polar angles. The modular concept of FOBOS allows for different experimental application in the field of exclusive fragment spectroscopy at medium multiplicities

  13. Results from a Bragg curve spectrometer

    Science.gov (United States)

    Leach, D. D.; Davis, K. J.

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. Several versions of the BCS have been constructed and tested. The results are described.

  14. A Bonner Sphere Spectrometer for pulsed fields.

    Science.gov (United States)

    Aza, E; Dinar, N; Manessi, G P; Silari, M

    2016-02-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828

  15. Position Sensitive Detector for Polarized Neutrons Spectrometer

    CERN Document Server

    Cheremukhina, G A; Kozhevnikov, S V; Lauter, H J; Lauter, V V; Nikitenko, Yu V; Petrenko, A V; Zanevsky, Yu V

    2000-01-01

    The linear detector of thermal neutrons described in this paper, as well as the readout electronics and data acquisition system were developed at High Energy Laboratory of Joint Institute for Nuclear Reserach. The detector is intended for registration of thermal neutrons on the polarized neutrons spectrometer of IBR-2 reactor in JINR. Data readout is carried out in the frame survey routine for separation of neutrons with wavelength \\lambda = 1\\div 12\\AA by time of flight. Efficiency of neutrons registration is \\sim 70% for wavelength 2\\AA. The detector has low gamma radiation sensitivity, differential nonlinearity \\sim 1.5% and spatial resolution \\sim 1.5 mm under count rate up to \\sim 10^5 ev/s.

  16. Recent exploits of the ISOLTRAP mass spectrometer

    CERN Document Server

    Kreim, S; Naimi, S; Blaum, K; Breitenfeldt, M; Rossel, R E; Fink, D; Stanja, J; Atanasov, D; Borgmann, Ch; Cocolios, T E; Zuber, K; Wolf, R N; George, S; Neidherr, D; Nicol, T; Rosenbusch, M; Lunney, D; Boehm, Ch; Manea, V; Herlert, A; Koester, U; Beck, D; Wienholtz, F; Kellerbauer, A; Ramirez, E Minaya; Schweikhard, L

    2013-01-01

    The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis. (C) 2013 Elsevier B.V. All rights reserved.

  17. Progress with the PENTATRAP mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, Hendrik; Crespo Lopez-Urrutia, Jose; Doerr, Andreas; Eliseev, Sergey; Goncharov, Mikhail; Repp, Julia; Rischka, Alexander; Roux, Christian; Sturm, Sven; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); ExtreMe Matter Institute EMMI, Helmholtz Gemeinschaft, 64291 Darmstadt (Germany); Novikov, Yuri [PNPI, Gatchina, 188300 St. Petersburg (Russian Federation)

    2014-07-01

    The five-trap mass spectrometer PENTATRAP has been constructed and is currently being characterized at the Max-Planck-Institut fuer Kernphysik, Heidelberg. It aims for high-precision mass ratio measurements with a relative mass uncertainty of a few 10{sup -12}. Long-lived and stable, highly charged nuclides with masses up to uranium will be addressed to perform e.g. stringent tests of quantum electrodynamics and neutrino oriented mass measurements. The main part of the experiment is a stack of five cylindrical cryogenic Penning traps. An ultra-stable voltage source is required to supply the Penning trap electrodes with appropriate and stable potentials. Therefore, an elaborated source was developed and built at MPIK. Recently, first ions have been successfully trapped. Details about the progress of the installation, especially the status of the voltage source and first ion signals are presented in the talk.

  18. Large magnetic spectrometer group. Convenors report

    International Nuclear Information System (INIS)

    This working group concentrated its efforts on possible large magnetic spectrometers for studying charged particle production in high energy nucleus-nucleus collisions at RHIC. In particular, the major efforts of the group were divided into two parts: (1) one group concentrated on a detector for tracking charged particles near mid-rapidity only, while (2) the other group considered a device for tracking particles over as much of the 4π solid angle as possible. Both groups were interested in being able to detect and track as wide a range of particles (primarily hadrons) as practical, in order to isolate the possible production of a quark-gluon phase in central nucleus-nucleus collisions

  19. Recent exploits of the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Highlights: • Update on ISOLTRAP. • Reference carbon clusters for heavy species. • Ion-beam yield analysis with MR-TOF MS. Q -- Abstract: The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis

  20. Imaging spectrometer for process industry applications

    Science.gov (United States)

    Herrala, Esko; Okkonen, Jukka T.; Hyvarinen, Timo S.; Aikio, Mauri; Lammasniemi, Jorma

    1994-11-01

    This paper presents an imaging spectrometer principle based on a novel prism-grating-prism (PGP) element as the dispersive component and advanced camera solutions for on-line applications. The PGP element uses a volume type holographic plane transmission grating made of dichromated gelatin (DCG). Currently, spectrographs have been realized for the 400 - 1050 nm region but the applicable spectral region of the PGP is 380 - 1800 nm. Spectral resolution is typically between 1.5 and 5 nm. The on-axis optical configuration and simple rugged tubular optomechanical construction of the spectrograph provide a good image quality and resistance to harsh environmental conditions. Spectrograph optics are designed to be interfaced to any standard CCD camera. Special camera structures and operating modes can be used for applications requiring on-line data interpretation and process control.

  1. Data analysis for Skylab proton spectrometer

    Science.gov (United States)

    Hill, C. W.

    1975-01-01

    The measured values are compared to values derived from a proton environment model. Spectral data are compared, the omni-directional fluxes are found, a range of assumed pitch angle distributions are established, and the values which would be seen by an idealized proton spectrometer immersed in the model environment are computed. The measured values and calculated values are summed over time, then ratiod to provide spectral correction factors. The data are tabulated according to location, pitch angle, energy, assumed pitch angle distribution, and orientation in the earth-fixed coordinate system. With the aid of this data, detailed corrections to the proton model environment are derived. Best-fit, energy-dependent pitch angle distributions are also obtained. Some information is derived concerning the east-west asymmetry.

  2. Transport efficiency in large acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, M., E-mail: manuela.cavallaro@lns.infn.i [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cappuzzello, F.; Carbone, D.; Cunsolo, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Linares, R. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, RJ 24210-340 (Brazil)

    2011-05-01

    A general technique to study the transmission efficiency of charged particles through a large acceptance magnetic device is presented. This basically involves the measurement of the impact positions and angles of the particles in any plane normal to the optical axis and the use of a powerful algorithm for the reconstruction of the trajectories. This latter is designed to perform the calculations of highly non-linear transport functions and is essential when high-order aberrations are not negligible. The technique is applied to study the transport efficiency of the heavy ions produced in different nuclear reactions and analyzed by the MAGNEX large acceptance spectrometer. Both the angular integral and differential efficiency have been deduced with overall accuracy of about {+-}1.5% and {+-}5%, respectively.

  3. Spectrometer for new gravitational experiment with UCN

    CERN Document Server

    Kulin, G V; Goryunov, S V; Kustov, D V; Geltenbort, P; Jentschel, M; Strepetov, A N; Bushuev, V A

    2015-01-01

    We describe an experimental installation for a new test of the weak equivalence principle for neutron. The device is a sensitive gravitational spectrometer for ultra-cold neutrons allowing to precisely compare the gain in kinetic energy of free falling neutrons to quanta of energy ${\\hbar}{\\Omega}$ transferred to the neutron via a non stationary device, i.e. a quantum modulator. The results of first test experiments indicate a collection rate allowing measurements of the factor of equivalence $ { \\gamma}$ with a statistical uncertainty in the order of $5{\\times}10^{-3}$ per day. A number of systematic effects were found, which partially can be easily corrected. For the elimination of others more detailed investigations and analysis are needed. Some possibilities to improve the device are also discussed.

  4. Moessbauer-Spectrometer MIMOS II: Future applications

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, Goestar; Blumers, Mathias; Schroeder, Christian; Fleischer, Iris; Lopez, Jordi G.; Sanchez, Jose F.; Hahn, Michaela; Upadhyay, Chandan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Space Research Institute IKI, 117997 Moskau (Russian Federation)

    2007-07-01

    The Miniaturized Moessbauer Spectrometer MIMOS II operates on the surface of Mars for the last three years (part of NASA Mars Exploration Rovers scientific payload). Successful application of MIMOS II as a tool for detection/analysis of Fe-bearing minerals on the extraterrestrial surfaces has proven its use for other missions. Currently MIMOS II is a part of ExoMars and Phobos-Grunt missions. ExoMars is managed by the European Space Agency and planned to be launched in 2013. It involves the development of a sophisticated Mars rover with set of instruments to further characterize the biological environment on Mars in preparation for robotic missions and human exploration. Data from the mission should provide an input for broader studies of exobiology. Phobos-Grunt is developed by Russian Space Agency. Currently, launch is planned in 2009. The main goals of the mission are Phobos regolith sample return, Phobos in situ study and Mars/Phobos remote sensing.

  5. Research highlights with the spin spectrometer

    International Nuclear Information System (INIS)

    The excitation energy and angular momentum dependence of the entry states in fusion reactions measured with the spin spectrometer is discussed. A new decay mode involving the onset of localized stretched dipole radiation at half the accompanying stretched E2 collective radiation is found in 157-161Yb. The appearance of this mode correlates smoothly with neutron number and spin. Possible interpretations are presented in terms of the evolution of the nuclear shapes from prolate to aligned-quasiparticle oblate to collective oblate and then to triaxial. Evidence for nuclear deformation that increases with spin at very high excitation is presented based on α-particle angular distributions measured relative to the spin direction, using a new method for deriving the spin alignment

  6. Fourier transform spectrometer controller for partitioned architectures

    Science.gov (United States)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  7. Automatic Gain Control in Compact Spectrometers.

    Science.gov (United States)

    Protopopov, Vladimir

    2016-03-01

    An image intensifier installed in the optical path of a compact spectrometer may act not only as a fast gating unit, which is widely used for time-resolved measurements, but also as a variable attenuator-amplifier in a continuous wave mode. This opens the possibility of an automatic gain control, a new feature in spectroscopy. With it, the user is relieved from the necessity to manually adjust signal level at a certain value that it is done automatically by means of an electronic feedback loop. It is even more important that automatic gain control is done without changing exposure time, which is an additional benefit in time-resolved experiments. The concept, algorithm, design considerations, and experimental results are presented. PMID:26810181

  8. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  9. Geometrically weighted semiconductor Frisch grid radiation spectrometers

    International Nuclear Information System (INIS)

    A new detector geometry is described with relatively high gamma ray energy resolution at room temperature. The device uses the geometric weighting effect, the small pixel effect and the Frisch grid effect to produce high gamma ray energy resolution. The design is simple and easy to construct. The device performs as a gamma ray spectrometer without the need for pulse shape rejection or correction, and it requires only one signal output to any commercially available charge sensitive preamplifier. The device operates very well with conventional NIM electronic systems. Presently, room temperature (23 deg. C) energy resolutions of 2.68% FWHM at 662 keV and 2.45% FWHM at 1.332 MeV have been measured with a 1 cm3 prism shaped CdZnTe device

  10. An imaging spectrometer for microgravity application

    Science.gov (United States)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  11. The CEBAF Large Acceptance Spectrometer (CLAS)

    CERN Document Server

    Mecking, B

    2003-01-01

    The CEBAF Large Acceptance Spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about thirty institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cerenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data acquisition rates allow operation at a luminosity of 10 sup 3 sup 4 nucleon cm sup - sup 2 s sup - sup 1. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarize...

  12. A wide bandpass low energy electron spectrometer

    International Nuclear Information System (INIS)

    We have developed a high efficiency, wide bandpass solenoid spectrometer for the detection of electrons between 1 and 20 keV. The apparatus utilizes baffles to impose minimum and maximum constraints on the radii of the electron trajectories, and therefore on the component of their momentum perpendicular to the magnetic field. Electric fields parallel to the magnetic field and time-of-flight information are used to constrain the electron's momentum component along the magnetic axis. A microchannel plate detects the electrons with high efficiency and provides fast timing. The performance of the apparatus was studied through a comparison between binary encounter approximation (BEA) calculations and measurements of delta-electron emission in 5 MeV proton collisions with thin solid carbon targets. (orig.)

  13. The Radar Ocean-Wave Spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-03-01

    The scanning-beam Radar Ocean-Wave Spectrometer (ROWS) technique is described. The derivation of a spectrum for the reflectivity modulation as a function of range is examined. The usefulness of the ROWS technique was initially validated using aircraft data obtained in 1978 with the GSFC Ku-band pulse-compression radar; additional examples of aircraft data which verify the effectiveness of the ROWS technique are presented. The development of a ROWS mode for Spectrasat is discussed. Consideration is given to the incidence angle, twin beam option for cross-section roll-off and wind vector determination, rotation rate, antenna and footprint dimensions, integration time, sphericity effects, and a processor configuration. A design for the ROWS-mode time-domain processor on Spectrasat is proposed. The performance of the system is evaluated, and it is determined that the system performs well.

  14. Air-ion counter and mobility spectrometer

    International Nuclear Information System (INIS)

    Mono-electrode self “zeroing” air-ion counter and mobility (size) scanning spectrometer (CDI-011) based on the Gerdien aspirated condenser principle has been developed. Instrument is intended for short- and long-term indoor and outdoor air-ion concentration measurements and scanning of air-ions by mobility. Measuring small currents (typically 10−14 A) generated by the air-ions in outdoor conditions is demanding and causes many problems related to change of temperature, relative humidity, wind and electromagnetic noise. Also, measuring of both ion polarities with mono electrode detector require alternate changes of the polarizing voltage sign which produces capacitive current spikes. Various techniques, including “zeroing” method, have been applied to successfully overcome most of these measuring interferences.

  15. Air-ion counter and mobility spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kolarz, Predrag, E-mail: kolarz@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Miljkovic, Budimir [Merni Instrumenti D.O.O., Ljube Stojanovica 38, 11000 Belgrade (Serbia); Curguz, Zoran [Faculty of Transport and Traffic Engineering, University of East Sarajevo, Vojvode Misica 52, 74000 Doboj (Bosnia and Herzegowina)

    2012-05-15

    Mono-electrode self 'zeroing' air-ion counter and mobility (size) scanning spectrometer (CDI-011) based on the Gerdien aspirated condenser principle has been developed. Instrument is intended for short- and long-term indoor and outdoor air-ion concentration measurements and scanning of air-ions by mobility. Measuring small currents (typically 10{sup -14} A) generated by the air-ions in outdoor conditions is demanding and causes many problems related to change of temperature, relative humidity, wind and electromagnetic noise. Also, measuring of both ion polarities with mono electrode detector require alternate changes of the polarizing voltage sign which produces capacitive current spikes. Various techniques, including 'zeroing' method, have been applied to successfully overcome most of these measuring interferences.

  16. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J;

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly intrave...... intravenous enzyme replacement therapy (ERT). We present the preliminary data after 12 months of treatment....

  17. The MAGNEX spectrometer: Results and perspectives

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  18. EPR spectrometer installed in a soft X-ray beamline at SPring-8 for biophysical studies

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Akinari E-mail: yokoya@spring8.or.jp; Akamatsu, Ken

    2001-07-21

    We have developed an Electron paramagnetic resonance (EPR) system combined with a synchrotron beamline (Synchrotron Light Excited Electron Paramagnetic Resonance Spectrometer (SLEEPRS)) to detect radicals in biomolecules caused by irradiating with soft X-rays below 2 keV. SLEEPRS was installed in a soft X-ray undulator beamline equipped with a grazing incidence grating monochromator (BL23SU, SPring-8). The cavity of the X-band microwave was set in a high vacuum chamber connected with the beamline transport channel. The sample temperature was controlled from 10 to 300 K by a closed-cycle cryogenic system during the soft X-ray irradiation and the EPR measurements. Typical EPR signals of a deaminated alanine radical from L-{alpha}-alanine were observed by irradiating 1.5 keV soft X-rays. The calculated absorbed dose shows that a dose of the same order or less gives the same EPR signal intensity as that generated by a conventional 100 kVp X-ray source. Thus the combination of an EPR spectrometer and synchrotron soft X-ray beamline may open a way for investigating the radical processes involved in biomolecular damages induced by a selective K-photoabsorption of a specific atom.

  19. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  20. Standalone vertex finding in the ATLAS muon spectrometer

    NARCIS (Netherlands)

    G. Aad; . et al; R. Aben; L.J. Beemster; S. Bentvelsen; E. Berglund; G.J. Bobbink; K. Bos; H. Boterenbrood; A. Castelli; A.P. Colijn; P. de Jong; L. de Nooij; C. Deluca; P.O. Deviveiros; S. Dhaliwal; P. Ferrari; S. Gadatsch; D.A.A. Geerts; F. Hartjes; N.P. Hessey; N. Hod; O. Igonkina; P. Kluit; E. Koffeman; H. Lee; T. Lenz; F. Linde; J. Mahlstedt; J. Mechnich; I. Mussche; K.P. Oussoren; P. Pani; D. Salek; N. Valencic; P.C. van der Deijl; R. van der Geer; H. van der Graaf; R. van der Leeuw; I. van Vulpen; W. Verkerke; J.C. Vermeulen; M. Vranjes Milosavljevic; M. Vreeswijk; H. Weits

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perform

  1. Wide-aperture magnetic spectrometer with face position of MWPC

    International Nuclear Information System (INIS)

    A pair magnetic spectrometer with automated wire chambers for studying electron and positron interactions with monocrystals at the Erevan synchrotron is described. As a working gas the argon-methane mixture with methylal vapor addition is used. Results of modelling and experiments with spectrometer are presented. 2 refs.; 6 figs

  2. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland; Rasmussen, Inga; Rasmussen, H.E.

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  3. 34 First Callisto solar burst spectrometer station in Greenland

    Science.gov (United States)

    Monstein, Christian

    2016-04-01

    In mid of March 2016 a new long wavelength station in Greenland was set into operation. It is a dual circular polarization, frequency agile solar radio burst spectrometer based on two Callisto spectrometers and the Long Wavelength Array antenna. During the commissioning phase several nice radio burst observations proved that the system works as expected.

  4. BNL hypernuclear spectrometers and instrumentation present and future

    International Nuclear Information System (INIS)

    During the period 1981 to 1984 the BNL hypernuclear spectrometer system was upgraded resulting in an increase in kaon flux and an increase in solid angle and momentum acceptance. The modifications require drift chambers to be operated at rates up to 107 s-1. The performance of the spectrometer-drift chamber systems will be discussed

  5. Calibration of the fast 12-channel ECE spectrometer at JET

    International Nuclear Information System (INIS)

    Measurements on the 12-channel ECE grating polychromator at the Joint European Torus are reported. This report describes the performance of the spectrometer in terms of sensitivity and spectral resolution. Measures to improve the systems responsivity and to overcome some characteristic problems of the spectrometer are reported. In addition, a comparison between different methods of absolute calibration of the system is presented. (orig.)

  6. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland;

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  7. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    Science.gov (United States)

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  8. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  9. Analysis of corrosive materials on GD-150 mass spectrometer

    International Nuclear Information System (INIS)

    A study has been made to extend the use of Varian Mat GD-150 mass/spectrometer for the corrosive gas analysis. Chlorine, bromine and thiophosgene have been used for this purpose. The feasibility studies, calibration of mass spectrometer and the measuring techniques have been discussed for the aforesaid analysis. (author)

  10. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  11. Testing and installation of ZEUS Leading Proton Spectrometer detector planes

    International Nuclear Information System (INIS)

    The assembly and testing of the components which make up a detector plane for the Leading Proton Spectrometer is described. The spectrometer, a part of the ZEUS detector, utilizes single-sided DC-coupled silicon strip detectors and custom VLSI front-end electronics for readout. (orig.)

  12. Estimation of the Beam Width in Magnetic Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    O.N. Peregudov

    2010-01-01

    Full Text Available A method for estimation of the beam width in magnetic sector mass spectrometers is proposed. This method consists in the restoration of the initial ion density distribution function in a beam cross-section before the receiving collector slit and can be used for the qualitative estimation of the mass spectrometer ion-optical scheme.

  13. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  14. Recent developments of multi e-gamma spectrometers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Gueorguieva, E; Kaci, M; Kharraja, EB; Porquet, MG; Schuck, C; Lagrange, JM; Pautrat, M; Phillips, WR; Durell, JL; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Varley, BJ; Bacelar, JCS; Rzaca-Urban, T; Minkova, A; Venkova, T; Folger, H; Vanhorenbeeck, J; Passoja, A; Urban, W

    1999-01-01

    A brief introductory survey of gamma-ray detector arrays and in-beam electron spectrometers developed during the last three lustra is followed by a broad discussion of the general requirements for single and multiple in-beam e-gamma spectrometers. A detailed analysis is made of a few important tools

  15. Damped Lyman-Alpha Galaxies

    CERN Document Server

    Turnshek, D A; Lane, W; Monier, E M; Nestor, D; Bergeron, J; Briggs, F; Smette, A

    2000-01-01

    Some results from an imaging program to identify low-redshift (0.09alpha (DLA) galaxies are presented. The standard paradigm that was widely accepted a decade ago, that DLA galaxies are the progenitors of luminous disk galaxies, is now being seriously challenged. The indisputable conclusion from imaging studies at low redshift is that the morphological types of DLA galaxies are mixed and that they span a range in luminosities and surface brightnesses.

  16. Diabetes and alpha lipoic acid

    OpenAIRE

    IssyLaher

    2011-01-01

    Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complicatio...

  17. Diabetes and Alpha Lipoic Acid

    OpenAIRE

    Golbidi, Saeid; Badran, Mohammad; Laher, Ismail

    2011-01-01

    Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complicatio...

  18. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    Science.gov (United States)

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  19. The Astro-E2 X-ray spectrometer/EBIT microcalorimeter x-ray spectrometer

    International Nuclear Information System (INIS)

    The x-ray spectrometer (XRS) instrument is a revolutionary nondispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare XRS microcalorimeter spectrometer at the EBIT-I and SuperEBIT facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolving power. The XRS microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06 K and by carefully engineering the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration 'library' for the Astro-E2 observatory

  20. $Gamma(H\\to b\\bar{b})$ to order $\\alpha\\alpha_s$

    CERN Document Server

    Mihaila, Luminita; Steinhauser, Matthias

    2015-01-01

    We compute the decay rate of the Standard Model Higgs boson to bottom quarks to order $\\alpha\\alpha_s$. We apply the optical theorem and calculate the imaginary part of three-loop corrections to the Higgs boson propagator using asymptotic expansions in appropriately chosen mass ratios. The corrections of order $\\alpha\\alpha_s$ are of the same order of magnitude as the ${\\cal O}(\\alpha_s^3)$ QCD corrections but have the opposite sign.