WorldWideScience

Sample records for alpha particle irradiated

  1. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  2. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  3. Study on cytotoxicities induced by alpha particle irradiation combined with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiyin; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cytotoxicities of alpha-particle irradiation combined with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into normal control group (NC), alpha particle irradiation group (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particle irradiation group (NNK + α), and alphaparticle irradiation followed by NNK administration (100 μg/ml) group (α + NNK). Cell survival fractions were measured by cloning rate of low-density plating cell. Ethidium bromide and 2', 7'-dichlorofluorescein, fluorescent products of the membrane-permeable dyes hydroethine and 2', 7'-dichloroflurescindiacetate were used to monitor the inarticulate reactive oxygen species (ROS) . Damage to membrane permeability was evaluated through testing LDH activity in medium. Results: In the groups exposed to both alpha particles and NNK, the survival rates were significantly lower than that of the groups administrated with the same dose of alpha particles or NNK alone. The levels of intracellular ROS and the activity of LDH in medium were significantly higher than that of the groups administrated with the same dose of alpha particles or NNK alone. Subtracted the NNK effect, the survival rates of the groups received both alpha particle irradiation and NNK treatment were significantly lower than that of alpha particle irradiated only group. However, the intracellular ROS level and the activity of LDH in medium were significantly higher than that of alpha-particle irradiated only group. In addition, the survival rates of the cells in groups exposed to alpha particle irradiation followed by NNK administration were significantly lower than that of cells treated with NNK administration followed by alpha particle irradiation. Conclusions: Alpha particle irradiation and NNK administration had synergisticity in cytotoxicity, and furthermore different schedules of the administration resulted in

  4. Study on cellular genotoxicities induced by alpha particles irradiation in combination with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiying; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cellular genotoxicities of aplha particles irradiation in combination with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into the normal control group (NC), alpha particles irradiation (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particles irradiation group (NNK + α), and alpha particles irradiation followed by NNK administration (100 μg/ml) group (μ + NNK). DNA damage were detected by single cell gel electrophoresis (SCGE); multinuclear cell assay was used to detect the frequency of the HPRT gene mutation; cell micronucleus frequency were detected by cytogenetic methods. Results: In the group exposed to both alpha particles irradiation and NNK, DNA damage, HPRT gene mutation frequency, and cell micronucleus frequency were significantly higher than those in the same dose groups irradiated with alpha particles or NNK administration alone. Subtracted the NNK effect, DNA damage, HPRT gene mutation frequency and cell micronucleus frequency in the group irradiated by alpha particles in combination with NNK administration were significantly higher than those of alpha particles irradiation alone. Conclusion: The genotoxicity of alpha particles irradiation in combination with NNK administration had synergistic effect. (authors)

  5. Influence of Magnolol on the bystander effect induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W.; Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, the influence of Magnolol on the bystander effect in alpha-particle irradiated Chinese hamster ovary (CHO) cells was examined. The bystander effect was studied through medium transfer experiments. Cytokinesis-block micronucleus (CBMN) assay was performed to quantify the chromosome damage induced by alpha-particle irradiation. Our results showed that the alpha-particle induced micronuclei (MN) frequencies were suppressed with the presence of Magnolol.

  6. Bystander effect of alpha-particle irradiation on mutagenicity and its associated mechanism

    International Nuclear Information System (INIS)

    Lu Ying; Yang Zhihua; Cao Zhenshan; Fan Feiyue; Zhu Maoxiang

    2004-01-01

    The work is to investigate α-particle irradiation-induced bystander effects on the mutagenicity in human chromosome 11 in the human-hamster hybrid (A L cells) and its possible mechanism. A L cells were used for assaying mutation rates of human chromosome 11 through screening mutants in the presence of anti-CD59 surface antigen antibody (S1) and complement. A grid was interposed between α-particle source and the cells being irradiated, so as to fix proportion of the irradiated cells (15%) and the bystander effects on the mutagenicity were detected. Free radical scavenger DMSO and intercellular communication inhibitor Lindane were selected to investigate the potential mechanism of α-particle induced bystander effect. There was clear dose-dependent relationship between mutation rate and the dose of alpha particle radiation. However, the mutant fractions of cell population shielded by the grid in α-particle irradiation system were much higher than the expected levels of irradiated cells. Lindane, but not DMSO, could obviously decrease this bystander effect induced by α-particle irradiation. Alpha-particle irradiation can induce bystander effect on the mutagenicity, in which intercellular communication may play important roles

  7. The semiconductor doping with radiation defects via proton and alpha-particle irradiation. Review

    CERN Document Server

    Kozlov, V A

    2001-01-01

    Paper presents an analytical review devoted to semiconductor doping with radiation defects resulted from irradiation by light ions, in particular, by protons and alpha-particles. One studies formation of radiation defects in silicon, gallium arsenide and indium phosphide under light ion irradiation. One analyzes effect of proton and alpha-particle irradiation on electric conductivity of the above-listed semiconducting materials. Semiconductor doping with radiation defects under light ion irradiation enables to control their electrophysical properties and to design high-speed opto-, micro- and nanoelectronic devices on their basis

  8. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1976-01-01

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D 0 ) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  9. Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays.

    Science.gov (United States)

    Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik

    2016-01-01

    The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter

  10. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  11. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  12. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  13. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  14. Survival of Acholeplasma laidlawii, strain S2 after irradiation with alpha particles of /sup 241/Americium

    Energy Technology Data Exchange (ETDEWEB)

    Liska, B.; Drasil, V.; Brza, I. (Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1985-05-23

    A thin layer of dry Acholeplasma laidlawii, strain S2 cells was irradiated with /sup 241/Am alpha particles. D/sub 0/ was 2.54 x 10/sup 7/ - 2.63 x 10/sup 7/ alpha particles/mm/sup 2/ (48 - 50 minutes, 409 - 422 Gy). The extrapolation number was 1.05 - 3.1. The effective cross section at D/sub 0/ was 0.038 - 0.039 ..mu..m/sup 2//alpha particle. A method of preparing thin dry layers of Acholeplasma cells was developed.

  15. Alpha-particle irradiation induced defects in SiO2 films of Si-SiO2 structures

    International Nuclear Information System (INIS)

    Koman, B.P.; Gal'chynskyy, O.V.; Kovalyuk, R.O.; Shkol'nyy, A.K.

    1996-01-01

    The aim of the work was to investigate alpha-particle irradiation induced defects in Si-SiO 2 structures by means of the thermostimulated discharge currents (TSDC) analysis. The object of investigation were (p-Si)-SiO 2 structures formed by a combined oxidation of the industrial p-Si wafers in dry and wet oxygen at temperature of 1150 C. The TSD currents were investigated in the temperature range between 90 and 500 K under linear heating rate. Pu 238 isotopes were the source of alpha-particles with an energy of 4-5 MeV and a density of 5.10 7 s -1 cm -2 . The TSD current curves show two peculiar maxima at about 370 and 480 K. Alpha-particle irradiation doesn't affect the general shape of the TSDC curves but leads to a shift of the maximum at 370 K and reduces the total electret charge which is accumulated in the Si-SiO 2 structures during polarization. The energy distribution function of the defects which are involved in SiO 2 polarization has been calculated. It showes that defects with activation energies of about 0.8 and 1.0 eV take part in forming the electret state, and these activation energies have certain energy distributions. It has been found that the TSDC maximum at 370 K has space charge nature and is caused by migration of hydrogen ions. In irradiated samples hydrogen and natrium ions localize on deeper trapping centres induced by alpha-particle irradiation. (orig.)

  16. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  17. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L.; Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, we studied alpha-particle induced and medium-mediated bystander effects in Chinese hamster ovary (CHO) cells through micronucleus (MN) assay. We showed that signal transduction from irradiated cells to bystander cells occur within a short time after irradiation. We then studied the effects of ROS (reactive oxygen species)-scavenging catechins in the medium before irradiation. We observed decreases in the percentage of bystander cells with MN formation and thus proved the protection effect of catechins on bystander cells from radiation.

  18. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A M [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B F; Karabanov, V N [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  19. Preliminary results of the alpha particle registration intercomparison ALRIT

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1976-01-01

    In view of the widespread interest in alpha particle registration with solid state nuclear track detectors, an international intercomparison of such measurements has been arranged. Sixteen sets of fourteen detectors each were sent to GSF-Neuherberg, there irradiated carefully with different alpha particle fields, and then returned for evaluation. Fourteen irradiation runs were made for each set simulating seven different irradiation situations commonly encountered in practical applications. The preliminary results of this intercomparison reported in this paper are based on the results of eight sets. They show good agreement with respect to the determination of track densities in the case of vertical incident alpha particles. Also the results obtained for determination of particle energies and angle of incidence in most cases were rather accurate. However, apparently it is still rather difficult to determine accurately and precisely the specific activity of alpha emitters on a thick filter positioned at some distance, i.e. for the case of 2π-incidence and a broad energy spectrum. (orig.) [de

  20. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Esposito, G.; Antonelli, F.; Belli, M.; Campa, A.; Simone, G.; Sorrentino, E.; Tabocchini, M.A.

    2008-01-01

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts [it

  1. Wear behaviour of Armco iron after irradiation with neutrons and alpha particles

    International Nuclear Information System (INIS)

    Szatzschneider, K.

    1977-04-01

    The effects of neutron and alpha particle irradiation on the wear behaviour of Armco iron were studied. For the investigation, a pin-desk test facility was designed and built. From the experiments an influence upon wear of the type of irradiation, and the radiation dose was determined, which, however, cannot be explained - on the basis of existing wear theories - by the change in the macroscopic-mechanical properties of the material. It has again been shown that an indication of the hardness is not sufficient to describe wear. The influence of the history of the material (irradiation, annealing, deformation) is very strong and connot be predicted because of the multiplicity of interdependences. Wear in the low wear area was identified as being due to oxidation, in the high wear area as metallic. (orig./GSC) [de

  2. Structural transformations in PbSe films irradiated by α-particles

    International Nuclear Information System (INIS)

    Freik, D.M.; Ostapchuk, A.I.; Ogorodnik, Ya.V.; Shkol'nyj, A.K.; Mezhilovskaya, L.I.

    1990-01-01

    Structural changes in PbSe epitaxial layers irradiated by 5 MeV alpha-particles in integral flux of 2x10 12 cm -2 are investigated. It is ascertained that irradiation by alpha-particles can be successfully used as a technological factor dfor directed change of lead selenide properties. Radiation treatment by alpha-particle of epitaxial layers by the doses of ∼ 10 12 cm -2 results in the dispersion of their structure up to polycrystal phase formation. Irradiation by alpha-particles causes donor effect leading to a decrease in hole concentration and to the growth of electronic constituent of conductivity and to the conductivity inversion from p- for n-type

  3. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  4. Differential Effects of Alpha-Particle Radiation and X-Irradiation on Genes Associated with Apoptosis

    International Nuclear Information System (INIS)

    Chauhan, V.; Howland, M.; Chen, J.; Kutzner, B.; Wilkins, R.C.

    2011-01-01

    This study examined differential effects of alpha-(α) particle radiation and X-rays on apoptosis and associated changes in gene expression. Human monocytic cells were exposed to a-particle radiation and X-rays from 0 to 1.5 Gy. Four days postexposure, cell death was measured by flow cytometry and 84 genes related to apoptosis were analyzed using real-time PCR. On average, 33% of the cells were apoptotic at 1.5 Gy of a-particle radiation. Transcript profiling showed statistical expression of 15 genes at all three doses tested. Cells exposed to X-rays were <5% apoptotic at ∼1.5 Gy and induced less than a 2-fold expression in 6 apoptotic genes at the higher doses of radiation. Among these 6 genes, Fas and TNF-α were common to the α-irradiated cells. This data suggests that α-particle radiation initiates cell death by TNF-a and Fas activation and through intermediate signalling mediators that are distinct from X-irradiated cells

  5. Alpha-particle radiobiological experiments using thin CR-39 detectors

    International Nuclear Information System (INIS)

    Chan, K. F.; Siu, S. Y. M.; McClella, K. E.; Tse, A. K. W.; Lau, B. M. F.; Nikezic, D.; Richardson, B. J.; Lam, P. K. S.; Fong, W. F.; Yu, K. N.

    2006-01-01

    The present paper studied the feasibility of applying comet assay to evaluate the DNA damage in individual HeLa cervix cancer cells after alpha-particle irradiation. We prepared thin CR-39 detectors (<20 μm) as cell-culture substrates, with UV irradiation to shorten the track formation time. After irradiation of the HeLa cells by alpha particles, the tracks on the underside of the CR-39 detector were developed by chemical etching in (while floating on) a 14 N KOH solution at 37 deg. C. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside of the CR-39 detectors could also be observed by just changing the focal plane of the confocal microscope. (authors)

  6. Characterization of Makrofol ® DE 1-1 for alpha particle radiography

    Science.gov (United States)

    El Ghazaly, M.; Aydarous, Abdulkadir; Al-Thomali, Talal A.

    2017-09-01

    Makrofol ® DE 1-1 (bisphenol-A polycarbonate) was investigated for alpha particle radiography. The edge spread function (ESF) was measured by razor-blade's edge. Makrofol ® DE 1-1 detectors were irradiated with perpendicular incident alpha particles of energy 2.5, 4 and 5.4 MeV, thereafter they were etched in 75% 6N KOH+25% C2H5OH at a temperature of 50 °C for different durations. The etched Makrofol®DE 1-1 detectors were imaged with an optical microscope equipped with a CCD camera. The results revealed that the green channel of the original RGB image provides the highest contrast comparing with red and blue channel by a factor of 27.6% of the original RGB image. The image contrast of alpha particle-irradiated Makrofol®DE 1-1 detector was found to be inversely related to the etching time since the alpha particle tracks proceed from a conical phase to spherical phase. The spatial resolution of alpha particle-irradiated Makrofol®DE 1-1 detector, in terms of line spread function, was found to deteriorate as the etching time increases for all examined alpha particle energies. The results revealed the potential capability of Makrofol®DE 1-1 detector as an efficient detector for alpha particle radiography such as autoradiography.

  7. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  8. Distance distribution of bystander effects in alpha-particle irradiated cell populations using a CR-39-based culture dish

    International Nuclear Information System (INIS)

    Gaillard, S.; Pusset, D.; Toledo, S.M. de; Azzam, E.I.; Fromm, M.

    2008-01-01

    Propagation of induced biological effects from irradiated to non-irradiated cells is known to occur in cell cultures exposed to low fluences of charged particles. These bystander effects are currently investigated using microbeam or non-microbeam (broad beams) irradiation techniques. Identification of the targeted and non-targeted bystander cells is critical to our understanding of mechanisms underlying such effects. We developed a novel cell culture dish where the base consists of a thin CR-39 sheet grafted on a thin polyethylene terephthalate (PET) foil. The validity of this device in identifying not only irradiated cells, but also the cellular compartment traversed by the particle track is described. We have optimized track etch parameters that do not interfere with measurement of induced biological endpoints under normal incident irradiation. Thus the culture dishes can be used to determine distance distributions for the propagation of induced biological effects from a hit cell to bystander cells. We describe the computer code developed to determine the distance distributions of propagated biological stress responses in normal human fibroblast cells exposed to very low fluences of alpha particles

  9. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J. [Medical Physics Research Group, Physics Department, Education College, Salahaddin University-Erbil, Iraqi Kurdistan (Iraq)

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  10. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.

    2015-01-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ( 226 Ra, and 137 Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm 2 ) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  11. Irradiation creep under 60 MeV alpha irradiation

    International Nuclear Information System (INIS)

    Reiley, T.C.; Shannon, R.H.; Auble, R.L.

    1980-01-01

    Accelerator-produced charged-particle beams have advantages over neutron irradiation for studying radiation effects in materials, the primary advantage being the ability to control precisely the experimental conditions and improve the accuracy in measuring effects of the irradiation. An apparatus has recently been built at ORNL to exploit this advantage in studying irradiation creep. These experiments employ a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). The experimental approach and capabilities of the apparatus are described. The damage cross section, including events associated with inelastic scattering and nuclear reactions, is estimated. The amount of helium that is introduced during the experiments through inelastic processes and through backscattering is reported. Based on the damage rate, the damage processes and the helium-to-dpa ratio, the degree to which fast reactor and fusion reactor conditions may be simulated is discussed. Recent experimental results on the irradiation creep of type 316 stainless steel are presented, and are compared to light ion results obtained elsewhere. These results include the stress and temperature dependence of the formation rate under irradiation. The results are discussed in relation to various irradiation creep mechanisms and to damage microstructure as it evolves during these experiments. (orig.)

  12. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles

    International Nuclear Information System (INIS)

    Kozlov, V.A.; Kozlovski, V.V.

    2001-01-01

    One of the modern methods for modifying semiconductors using beams of protons and alpha particles is analyzed; this modification is accomplished by the controlled introduction of radiation defects into the semiconductor. It is shown that doping semiconductors with radiation defects produced by irradiation with light ions opens up fresh opportunities for controlling the properties of semiconducting materials and for the development of new devices designed for optoelectronics, microelectronics, and nanoelectronics based on these materials; these devices differ favorably from those obtained by conventional doping methods, i.e., by diffusion, epitaxy, and ion implantation

  13. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  14. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Ng, C.K.M.; Lin, A.C.C.; Cheng, S.H.; Yu, K.N.

    2007-01-01

    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 μm were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human

  15. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Lin, A.C.C.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)], E-mail: peter.yu@cityu.edu.hk

    2007-11-15

    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 {mu}m were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human.

  16. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Harraz, Farid A., E-mail: fharraz68@yahoo.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo 11421 (Egypt); Ali, Atif M. [Department of Physics, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Al-Sayari, S.A. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); College of Science and Arts-Sharoura, Najran University (Saudi Arabia); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia)

    2016-09-11

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin {sup 241}Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R{sup 2}=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10{sup 7} particles/cm{sup 2}. Additionally, a correlation coefficient R{sup 2}=0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  17. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Chong, E.Y.W.; Roy, V.A.L.; Cheung, K.M.C.; Yeung, K.W.K.; Yu, K.N.

    2012-01-01

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: ► We proposed a simple method to fabricate micropillar substrates. ► Polyallyldiglycol carbonate films were irradiated and etched to form casts. ► Polydimethylsiloxane replica then formed the micropillar substrates. ► Attachment and proliferation of HeLa cells were enhanced on these substrates.

  18. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  19. Experimental determination of alpha particle threshold detection in cellulose nitrate

    International Nuclear Information System (INIS)

    Knoefell, T.M.J.

    1978-01-01

    LR 115, type II, Kodak-Pathe cellulose nitrate pellicles were irradiated perpendicularly with monoenergetic alpha bemas in the energy range 2,5-5,5 Mev. The alpha particle beams were produced by an intense Am 241 source using Argon as energy attenuating. After irradiations, samples were etched with NaOH solutions without agitation at 60 0 C, by different time periods varying from 15 minutes to 3,5 hours. Measurements of density and track diameter were done using optical microscopy. The sample compositions were done by CHN method of combustion gas analysis showing good agreement with the composition of cellulose trinitrate. From detection threshold and from obtained results, the development of latent tracks only occur for alpha particles with stopping power superior to 0,87 +- 0,06 MeV.cm -2 .mg -1 , was verified. (M.C.K.) [pt

  20. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  1. Alpha particles induce expression of immunogenic markers on tumour cells

    International Nuclear Information System (INIS)

    Gorin, J.B.; Gouard, S.; Cherel, M.; Davodeau, F.; Gaschet, J.; Morgenstern, A.; Bruchertseifer, F.

    2013-01-01

    The full text of the publication follows. Radioimmunotherapy (RIT) is an approach aiming at targeting the radioelements to tumours, usually through the use of antibodies specific for tumour antigens. The radiations emitted by the radioelements then induce direct killing of the targeted cells as well as indirect killing through bystander effect. Interestingly, it has been shown that ionizing radiations, in some settings of external radiotherapy, can foster an immune response directed against tumour cells. Our research team is dedicated to the development of alpha RIT, i.e RIT using alpha particle emitters, we therefore decided to study the effects of such particles on tumour cells in regards to their immunogenicity. First, we studied the effects of bismuth 213, an alpha emitter, on cellular death and autophagy in six different tumour cell lines. Then, we measured the expression of 'danger' signals and MHC molecules at the cell surface to determine whether irradiation with 213 Bi could cause the tumour cells to be recognized by the immune system. Finally a co-culture of dendritic cells with irradiated tumour cells was performed to test whether it would induce dendritic cells to mature. No apoptosis was detected within 48 hours after irradiation in any cell line, however half of them exhibited signs of autophagy. No increase in membrane expression of 'danger' signals was observed after treatment with 213 Bi, but we showed an increase in expression of MHC class I and II for some cell lines. Moreover, the co-culture experiment indicated that the immunogenicity of a human adenocarcinoma cell line (LS 174T) was enhanced in vitro after irradiation with alpha rays. These preliminary data suggest that alpha particles could be of interest in raising an immune response associated to RIT. (authors)

  2. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chong, E.Y.W. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Roy, V.A.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheung, K.M.C.; Yeung, K.W.K. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: Black-Right-Pointing-Pointer We proposed a simple method to fabricate micropillar substrates. Black-Right-Pointing-Pointer Polyallyldiglycol carbonate films were irradiated and etched to form casts. Black-Right-Pointing-Pointer Polydimethylsiloxane replica then formed the micropillar substrates. Black-Right-Pointing-Pointer Attachment and proliferation of HeLa cells were enhanced on these substrates.

  3. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  4. Manual for target thickness measurement by alpha particle irradiation

    International Nuclear Information System (INIS)

    Dias, J.F.; Martins, M.N.

    1990-04-01

    A system is described for thin-target thickness measurement through the alpha particle energy loss when them traverse the target. It is also described the program used in the analysis of the target thickness. (L.C.) [pt

  5. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  6. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    International Nuclear Information System (INIS)

    Wong, T.P.W.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2009-01-01

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  7. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Atomki, 4026 Debrecen (Hungary); Takács, M.P.; Ditrói, F. [Institute for Nuclear Research, Hungarian Academy of Sciences, Atomki, 4026 Debrecen (Hungary); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-09-15

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the {sup nat}Ti(α,x){sup 51}Cr reaction. The irradiations were done with E{sub α} = 20.7 and E{sub α} = 51.25 MeV, I{sub α} = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the {sup 72,73,75}Se, {sup 71,72,74,76,78}As, and {sup 69}Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  8. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  9. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  10. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  11. Alpha particle radiography and the track plastic detector CR-39

    International Nuclear Information System (INIS)

    Souza, Bismarck Amilar de.

    1991-05-01

    This work develops the radiographic technique using charged particle beams. This technique complements the X-ray conventional radiography, and presents some advantages in certain cases. The material used as nuclear plastic detector was CR-39, manufactured by Pershre Mould. England, of 250 and 1000 μm nominal thicknesses. The irradiations were made with 7 MeV/Nucleon alpha particles beams, accelerated in the CV-28 Cyclotron of Instituto de Engenharia Nuclear/CNEN - Rio de Janeiro. The etch conditions used were a Na OH 6,25 N solution at 70 0 C, varying the etch time, so that the best etch time was found to be six hours. The calibration curve is presented, which permits images interpretation, showed in terms of light transmittance (obtained using a micro densitometer), and in terms of energy losses suffered by alpha particles in several aluminum degradating thicknesses. This curve was checked by the use of other degradating materials: Mylar, Makrofol, and CR-39 itself. The influence of alpha particle beam FWHM widening on images quality, when it crosses several degradating materials, is also presented. Radiographs of some specimen are presented, including some images obtained varying some irradiation and etch parameters. (author). 62 refs., 22 figs., 19 tabs

  12. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Cheng, S.H.; Yu, K.N.

    2017-01-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  13. Transformation of mouse embryo (C3H 10T1/2) cells by alpha particles

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1977-01-01

    Mammalian cells in culture (C3H mouse 10T1/2 cells) have been shown here for the first time to be transformed by alpha irradiation when cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine. Malignant tumors were induced following inoculation of the transformed cells into syngeneic hosts. Unirradiated control cells injected at the same concentration have, so far, failed to produce tumors. The morphology of the transformed foci was remarkably similar to that obtained by x rays and chemicals but different from virally transformed cells. When the cells were seeded at low density in the exponential growth phase, the transformation frequency per surviving cell increased approximately as the cube of the dose and peaked at an alpha particle fluence between 1.5 and 2.5 x 10 7 alpha particles per cm 2 (205 to 342 rads). The frequency of the transformation was found to be greatly dependent on the number of cells per dish irradiated. Irradiation of larger numbers resulted in much lower frequencies of transformation. The maximum transformation frequency observed in nine separate experiments was 4 percent of the surviving cells. At doses greater than 200 rads the transformation frequency per surviving cell remained constant. The present results permit us to conclude that alpha irradiation may, indeed, be able to exert a direct effect on the genome of the cell to produce malignancy without any external immunological or hormonal influences

  14. Fabrication of substrates with curvature for cell cultivation by alpha-particle irradiation and chemical etching of PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Tjhin, V.T.; Lin, A.C.C.; Cheng, J.P.; Cheng, S.H.; Yu, K.N.

    2012-01-01

    In the present paper, we developed a microfabrication technology to generate cell-culture substrates with identical chemistry and well-defined curvature. Micrometer-sized pits with curved surfaces were created on a two-dimensional surface of a polymer known as polyallyldiglycol carbonate (PADC). A PADC film was first irradiated by alpha particles and then chemically etched under specific conditions to generate pits with well-defined curvature at the incident positions of the alpha particles. The surface with these pits was employed as a model system for studying the effects of substrate curvature on cell behavior. As an application, the present work studied mechanosensing of substrate curvature by epithelial cells (HeLa cells) through regulation of microtubule (MT) dynamics. We used end-binding protein 3–green fluorescent protein (EB3–GFP) as a marker of MT growth to show that epithelial cells having migrated into the pits with curved surfaces had significantly smaller MT growth speeds than those having stayed on flat surfaces without the pits.

  15. Feasibility studies of colorless LR 115 SSNTD for alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Chan, K.F.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2006-01-01

    The feasibility of using the active layer of the colorless LR 115 SSNTD for alpha-particle radiobiological experiments was studied. The track revelation time on the bottom side (the side attached to the polyester base) was much longer than that on the top side (the side not attached to the polyester base) of the active layer so track formation on the top side was more desirable. In relation to this, culture of HeLa cells on the bottom side of the active layer was found feasible although the cultured cell number was relatively smaller. The feasibility of using this SSNTD for alpha-particle radiobiological experiments was demonstrated by culturing cells on the bottom side while performing alpha-particle irradiation and chemical etching on the top side, and by taking photographs of the cells and alpha-particle tracks together under the optical microscope

  16. Measurement of {alpha} particle energy loss in biological tissue below 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy); Bortolussi, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)], E-mail: silva.bortolussi@pv.infn.it; Bruschi, P.; Portella, C. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)

    2009-09-01

    The energy loss of {alpha} particles crossing biological tissue at energies between 0.8 and 2.2 MeV has been measured. This energy range is very important for boron neutron capture therapy, based on the {sup 10}B(n,{alpha}){sup 7}Li reaction, which emits {alpha} particles with energies of 1.78 and 1.47 MeV. One of the methods used for the measurement of the boron concentration in tissue is based on the deconvolution of the {alpha} spectra obtained from neutron irradiation of thin (70 {mu}m) tissue samples. For this technique, a knowledge of the behaviour of the energy loss of the particles in the irradiated tissue is of critical importance. In particular, the curve of the residual energy as a function of the distance travelled in the tissue must be known. In this paper, the results of an experiment carried out with an {sup 241}Am source and a series of cryostatic sections of rat-lung tissue are presented. The experimental measurements are compared with the results of Monte Carlo calculations performed with the MCNPX code.

  17. Application of CR-39 microfilm for rapid discrimination between alpha-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, Nidal; Al-karmi, Anan M. [Dept. of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2017-06-15

    This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

  18. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    Pouthier, Th.

    2006-12-01

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  19. Crosschecking of alpha particle monitor reactions up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Ditrói, F.; Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan)

    2017-04-15

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the {sup 27}Al(α,x){sup 22,24}Na, {sup nat}Ti(α,x){sup 51}Cr, {sup nat}Cu(α,x){sup 66,67}Ga and {sup nat}Cu(α,x){sup 65}Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  20. Enhanced diffusion under alpha self-irradiation in spent nuclear fuel: Theoretical approaches

    International Nuclear Information System (INIS)

    Ferry, Cecile; Lovera, Patrick; Poinssot, Christophe; Garcia, Philippe

    2005-01-01

    Various theoretical approaches have been developed in order to estimate the enhanced diffusion coefficient of fission products under alpha self-irradiation in spent nuclear fuel. These simplified models calculate the effects of alpha particles and recoil atoms on mobility of uranium atoms in UO 2 . They lead to a diffusion coefficient which is proportional to the volume alpha activity with a proportionality factor of about 10 -44 (m 5 ). However, the same models applied for fission lead to a radiation-enhanced diffusion coefficient which is approximately two orders of magnitude lower than values reported in literature for U and Pu. Other models are based on an extrapolation of radiation-enhanced diffusion measured either in reactors or under heavy ion bombardment. These models lead to a proportionality factor between the alpha self-irradiation enhanced diffusion coefficient and the volume alpha activity of 2 x 10 -41 (m 5 )

  1. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  2. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  3. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    In recent years, the use of high linear energy transfer (LET) radiation for radiotherapeutic applications has gained increased interest. Astatine-211 (211At) is an alpha-particle emitting radionuclide, promising for targeted radioimmunotherapy of isolated tumor cells and microscopic clusters. To improve development of safe radiotherapy using 211At it is important to increase our knowledge of the radiobiological effects in cells. During radiotherapy, both tumors and adjacent normal tissue will be irradiated and therefore, it is of importance to understand differences in the radio response between proliferating and resting cells. The aim of this thesis was to investigate effects in fibroblasts with different proliferation status after irradiation with alpha-particles from 211At or X-rays, from inflicted DNA damage, to cellular responses and biological consequences. Throughout this work, irradiation was performed with alpha-particles from 211A or X-rays. The induction and repair of double-strand breaks (DSBs) in human normal fibroblasts were investigated using pulsed-field gel electrophoresis and fragment analysis. The relative biological effectiveness (RBE) of 211At for DSB induction varied between 1.4 and 3.1. A small increase of DSBs was observed in cycling cells compared to stationary cells. The repair kinetics was slower after 211At and more residual damage was found after 24 h. Comparison between cells with different proliferation status showed that the repair was inefficient in cycling cells with more residual damage, regardless of radiation quality. Activation of cell cycle arrests was investigated using immunofluorescent labeling of the checkpoint kinase Chk2 and by measuring cell cycle distributions with flow cytometry analysis. After alpha-particle irradiation, the average number of Chk2-foci was larger and the cells had a more affected cell cycle progression for several weeks compared with X-irradiated cells, indicating a more powerful arrest after 211At

  4. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after {alpha}-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Shaopeng [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-02-03

    Low-dose {alpha}-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose {alpha}-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor {beta}1 (TGF-{beta}1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-{beta}1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  5. Simple preparation of thin CR-39 detectors for alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Chan, K.F.; Lau, B.M.F.; Nikezic, D.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2007-01-01

    Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require accurate positions where the alpha particles hit the cells. In the present work, we prepared thin CR-39 detectors from commercially available CR-39 SSNTDs with a thickness of 100 μm by etching them in 1 N NaOH/ethanol at 40 deg. C to below 20 μm. The desired final thickness was achieved within ∼8 h. Such etching conditions can provide relatively small roughness of the detector as revealed by atomic force microscope, and thus provide transparent detectors for radiobiological experiments. UV radiation was employed to shorten track formation time on these thin CR-39 detectors. After exposure to UV light (UVA + B radiation) for 2-3 h with doses from 259 to 389 W/cm 2 , 5 MeV alpha-particle tracks can be seen to develop on these CR-39 detectors clearly under the optical microscope within 2 h in 14 N KOH at 37 deg. C. As an example for practical use, custom-made petri dishes, with a hole drilled at the bottom and covered with a thin CR-39 detector, were used for culturing HeLa cells. The feasibility of using these thin CR-39 detectors is demonstrated by taking photographs of the cells and alpha-particle tracks together under the optical microscope, which can allow the hit positions on the cells by the alpha particles to be determined accurately

  6. Designing experimental setup and procedures for studying alpha-particle-induced adaptive response in zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Choi, V.W.Y.; Lam, R.K.K.; Chong, E.Y.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2010-03-15

    The present work was devoted to designing the experimental setup and the associated procedures for alpha-particle-induced adaptive response in zebrafish embryos in vivo. Thin PADC films with a thickness of 16 mum were fabricated and employed as support substrates for holding dechorionated zebrafish embryos for alpha-particle irradiation from the bottom through the films. Embryos were collected within 15 min when the light photoperiod began, which were then incubated and dechorionated at 4 h post fertilization (hpf). They were then irradiated at 5 hpf by alpha particles using a planar {sup 241}Am source with an activity of 0.1151 muCi for 24 s (priming dose), and subsequently at 10 hpf using the same source for 240 s (challenging dose). The levels of apoptosis in irradiated zebrafish embryos at 24 hpf were quantified through staining with the vital dye acridine orange, followed by counting the stained cells under a florescent microscope. The results revealed the presence of the adaptive response in zebrafish embryos in vivo, and demonstrated the feasibility of the adopted experimental setup and procedures.

  7. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  8. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ( 211 At) and natural bismuth-212 ( 212 Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ( 223 Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  9. Biological effects of alpha particles in lung tissue

    International Nuclear Information System (INIS)

    Hofmann, W.; Daschil, F.

    1985-01-01

    Allowing for concomitant cellular inactivation, the tumour incidence function can be written as the product of two probabilities, for malignant transformation and for not being killed. Cell survival of mammalian cells in culture after heavy ion irradiation has been described successfully by the formalism of track structure theory for cellular inactivation. Thus a transformation function is derived by extracting cellular radiosensitivity parameters from experimental data on mutation to thioguanine resistance. For defined conditions of radon daughter inhalation, from the fraction of inhaled radionuclides deposited and retained on bronchial airway surfaces are calculated. The LET distribution in sensitive bronchial stem cells hit by alpha particles depends on initial alpha particle energy, airway diameter, and stem cell depth. Applying the methodology of track structure theory and using cellular radiosensitivity parameters for cell killing and mutation, the radiation risk at a given stem cell depth is expressed by the probabilities for cellular survival, for mutation or transformation, and the joint probability for cancer induction. (author)

  10. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  11. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    International Nuclear Information System (INIS)

    Law, Y.L.; Yu, K.N.

    2009-01-01

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  12. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes; Mise en evidence de cassures double brin de l'ADN induites par irradiation de keratinocytes humains en microfaisceau alpha

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Th

    2006-12-15

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  13. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    International Nuclear Information System (INIS)

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [I L U L ]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [I H U H ]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [I H U L ]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [I L U H ]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [I L U L ] and [I H U L ] led to antagonistic effects, whereas [I H U H ] led to an additive effect. The effect found for the previously studied case of [I L U H ] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure

  14. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    1999-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  15. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    2001-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  16. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    International Nuclear Information System (INIS)

    Lee, Ki-Man; Kim, Eun-Hee

    2015-01-01

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10 -6 at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV

  17. Contribution to the study of defects created by {alpha} particles in uranium at 4.2 K; Contribution a l'etude des defauts crees par irradiation a l'aide de particules {alpha} dans l'uranium a 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Raharinaivo, A L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    A device is described for the irradiation, in liquid helium, of metallic strips with {alpha} particles produced by radioactive sources. It has thereby been possible to measure changes in resistivity of variously treated uranium samples (cold- worked, annealed, previously exposed to neutrons, etc. ) as a function of the irradiation flux. The annealings carried out after irradiation compare favorably to those effected after a quenching from 100 to 4 K (JOUSSET experiments). The results are discussed; it is concluded that a defect, very probably of the interstitial type, is mobile in uranium at temperatures below 5 K. (author) [French] On decrit un dispositif permettant d'irradier, dans l'helium liquide, des lames metalliques par des particules {alpha} issues de sources radioactives. On a ainsi mesure les variations de resistivite, en fonction du flux d'irradiation, d'uranium diversement traite (ecroui, recuit, prealablement irradie par des neutrons...). Les recuits apres irradiation se comparent bien aux recuits apres trempe de 100 a 4 K (experiences de JOUSSET). L'ensemble des resultats est discute et il conduit a la conclusion qu'un defaut, tres vraisemblablement interstitiel, est mobile dans l'uranium a des temperatures inferieures a 5 K. (auteur)

  18. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-01-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He + ions and 7 MeV Au 5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11 B and 27 Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO 4 to BO 3 units but also a formation of AlO 5 and AlO 6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked to the changes occured in the

  19. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  20. Luminescence yield in irradiating gases by X-rays and alpha particles

    International Nuclear Information System (INIS)

    Combecher, D.

    1973-01-01

    In this paper, the measurable light emission in the irradiation of gases as modle substances has been quantitatively determined. The gases Ar, H 2 , N 2 , air, and C 3 H 8 were irradiated with X-rays and α-particles at a pressure of 730 torr. The emitted light was measured in the spectral range between the short-wave absorption edge of the gases and 6000 A (spectral resolution: 20 A). The spectral light yield was determined from the efficiency of the apparatus and from the total energy absorbed in the gases. (HK) [de

  1. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  2. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  3. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  4. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    Science.gov (United States)

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  5. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Chun, S.L.; Yu, K.N.

    2016-01-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The “landscape” and “portrait” scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source. - Highlights: • Proposed method to fabricate peeled-off EBT3 films for alpha dosimetry. • Proposed integrity check of peeled-off EBT3 films using X-ray irradiation. • Highlighted importance of scanning directions of EBT3 films. • Cautioned the need for uniformity check on alpha-particle source.

  7. Alpha particle emitters in cancer therapy: establishing the rationale and overcoming the difficulties

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: Once a tumor has metastasized, the possibility of cure is significantly diminished, if not excluded. Since metastatic spread arises due to the release of single tumor cells or tumor cell clusters, treatment regimens following an overt metastasis must include agents that eradicate individual tumor cells and cell clusters or that prevent their dissemination. Alpha particles may be highly effective in eradicating rapidly accessible disease. The effectiveness of alpha particles arises because the amount of energy deposited per unit distance traveled (linear energy transfer or LET) is approximately 400 times greater than that of beta particles (80 keV/μm vs. 0.2 keV/μm). Each traversal of an alpha particle through a cell nucleus results in a very highly ionizing track. Cell survival studies have shown that alpha-particle killing is independent of oxygenation state or cell-cycle during irradiation and that as few as 1 to 6 tracks across the nucleus may result in cell death. Most studies with alpha-particle emitting radionuclides for therapy have examined either bismuth-212 or astatine-211. Both radionuclides are short-lived with 61 minute and 7.2 hour half-lives, respectively, yielding intermediates with 3-minute and 32 year half-lives, respectively. Both emit alpha particles whose range is 40 to 80 μm. Alpha-particle emitting radionuclides have been attached to antibodies against tumor cell associated antigen. Antibodies have been the most widely used vehicle for delivery of alpha particles due to their specificity. Bismuth-212 has demonstrated a significant curative potential with minimal toxicity. In an ascites tumor mouse model, specific targeting and 80% cure following injection of Bi-212-labeled antibody has been observed (Macklis RM et al, Science, 240:1024-1026, 1988). It is important to define the realm of applicability for alpha particle emitting radionuclides. The short half-life of most currently available radionuclides, limits their use to

  8. Coincidence study of alpha particle fragmentation at E/sub alpha/ = 140 MeV

    International Nuclear Information System (INIS)

    Koontz, R.W.

    1980-01-01

    Results of an experimental study of the interaction of 140 MeV alpha particles with 90 Zr nuclei resulting in fragmentation of the alpha particle are reported. The experimental observations of the study are analyzed and are found to show that alpha particle breakup reactions leading to at least 4-body final states, composed of two charged alpha particle fragments, contribute significantly to the singles yield of charged fragments observed at a fixed forward angle. The conclusions are based on coincidence measurements where one charged fragment is detected at a small forward angle which remains fixed, while the second charged fragment is detected at a series of coplanar secondary angles. The largest coincidence charged particle yield for the multiparticle final state events results from 90 Zr(α,pp)X reactions, where both of the measured protons have energy distributions similar to the proton singles energy distributions. The second largest observed coincidence yield involving two charged fragments arises from 90 Zr(α,pd)X reactions, where the p and d fragments, as in the 90 Zr(α,pp)X reactions also have energy distribution similar to the singles energy distributions. Analysis of additional measurements, where alpha particle fragments at the fixed angle are detected in coincidence with evaporation and nonequilibrium particles at many coplanar angles, show that the alpha particle fragmentation reactions are also generally associated with large energy transfer to the target nucleus. A multiple scattering model of the fragmentation reaction is employed, in conjunction with the experimental observations, to estimate the cross sections for alpha particle fragmentation into multi-particle final states resulting in n, 2n, p, pp, d, dn, dp, t and 3 He fragments. The estimated total cross section for all fragmentation reactions is 755 mb or approximately 38% of the total reaction cross section for 140 MeV alpha particle interactions with 90 Zr

  9. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena

    2014-01-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same...... mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation...... and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity...

  10. On possibility of degradation of lava-like fuel-containing materials of the 4-th block of Chernobyl NPP under internal self-irradiation by alpha-particle sources

    International Nuclear Information System (INIS)

    Pazukhin, Eh. M.; Borovoj, A.A.; Rudya, K.G.

    2002-01-01

    It is shown that internal self-irradiation by alpha-particle beam cannot be a cause of change of strength characteristics of silicate matrix and so a cause of degradation of Chernobyl lava-like materials. A new method is proposed for management with lava-like fuel-containing materials of the 4-th block: vitrification in smelter unit situated in bubbler-basin and storage of prepared immobilized compacts in corresponding depositories [ru

  11. Localization of alpha emitters by damage production in a thin film. Application to the study of alpha emitter diffusion in irradiated samples; Localisation des emetteurs alpha par creation de dommages dans un film mince. Application a l'etude de la diffusion des emetteurs alpha dans des echantillons irradies

    Energy Technology Data Exchange (ETDEWEB)

    Houdaille, B; Perrot, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The process of recording {alpha} particles on cellulose nitrate films, called alpha-graphy, is applied to the study of the diffusion of {alpha}-emitting elements in irradiated alloys. The existence of diffusion is shown by attacking the film with concentrated caustic soda after exposition. The insensitivity of the recorder to {beta} {gamma} radiation emitted by the sample after passing in the reactor makes it possible to operate with long exposure times and to detect small diffusions. The concentration-penetration curves are drawn up after carrying out a densitometric analysis of the alpha-graphies. - As the cellulose nitrate is affected only by {alpha} particles of energies of between 0.5 and 4 MeV, it was first necessary to determine the yield of the recorder for {alpha} particles emitted by a thick source, i.e. whose energy varies between 0 and E{sub 0}, E{sub 0} being the energy of the alpha emitter. - The concentration C of the {alpha}-emitter, as a function of the optical density D of the alpha-graphy, and of the exposure time t is given by a simple relationship: C = D/at where a is an experimental constant determined by calibration. It depends on the nature of the cellulose nitrate, of the {alpha}-emitting element and of the alloy studied. (authors) [French] Le procede d'enregistrement des particules alpha sur film de nitrate de cellulose, ou alphagraphie, est applique a l'etude de la diffusion d'elements emetteurs alpha dans des alliages irradies. La diffusion est mise en evidence par une attaque du film de nitrate, apres exposition, dans de la soude concentree. L'insensibilite de l'enregistreur au rayonnement {beta} {gamma}, emis par l'echantillon apres son sejour en pile, permet d'operer sur de longs temps de pose et de detecter des diffusions faibles. Les courbes concentration - penetration sont etablies par exploitation densitometrique des alphagraphies. - Comme le nitrate de cellulose n'est impressionne que par des particules alpha dont l'energie est

  12. Enhancement of alpha particles-induced cell transformation by oxygen free radicals and tumor necrosis factor released from phagocytes

    International Nuclear Information System (INIS)

    Gong Yifen; Guo Renfeng; Zhu Maoxiang; Shou Jiang; Ge Guixiu; Yang Zhihua; Hieber, L.; Peters, K.; Schippel, C.

    1997-01-01

    To illustrate the role of several endogenous factors released from phagocytes under chronic inflammation in radiation-induced cancer. C 3 T 10 T 1/2 and SHE cells were used as targets, and 238 Pu alpha source was used in alpha irradiation. The enhancement of TF in alpha particles-induced cell transformation by PMA-stimulated human blood and zymosan-stimulated U-937 cells was studied using formation of transformed foci. Transformation frequency (TF) of C 3 H 10 T 1/2 cells exposed to alpha particles of 0.5 Gy increased 2.1 and 2.8 fold by PMA-and PMA-stimulated neutrophils, respectively. TF of irradiated SHE cells at a dose of 0.5 Gy increased 12 fold by the addition of the supernatant of macrophage-like U-937 cell line. It was shown that TF of irradiated SHE cells at above dose increased 8 fold by the supernatant treated with anti-TNF-α could be subcultured continuously in vitro. The cells at 40 th passage and two lines of monoclone cells have the ability to develop malignant tumors in nude mice. The overdose of free radicals and TNF-α released from neutrophils and macrophages have played an important role in low dose radiation-induced cancer

  13. Contribution to the study of defects created by {alpha} particles in uranium at 4.2 K; Contribution a l'etude des defauts crees par irradiation a l'aide de particules {alpha} dans l'uranium a 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Raharinaivo, A.L. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    A device is described for the irradiation, in liquid helium, of metallic strips with {alpha} particles produced by radioactive sources. It has thereby been possible to measure changes in resistivity of variously treated uranium samples (cold- worked, annealed, previously exposed to neutrons, etc. ) as a function of the irradiation flux. The annealings carried out after irradiation compare favorably to those effected after a quenching from 100 to 4 K (JOUSSET experiments). The results are discussed; it is concluded that a defect, very probably of the interstitial type, is mobile in uranium at temperatures below 5 K. (author) [French] On decrit un dispositif permettant d'irradier, dans l'helium liquide, des lames metalliques par des particules {alpha} issues de sources radioactives. On a ainsi mesure les variations de resistivite, en fonction du flux d'irradiation, d'uranium diversement traite (ecroui, recuit, prealablement irradie par des neutrons...). Les recuits apres irradiation se comparent bien aux recuits apres trempe de 100 a 4 K (experiences de JOUSSET). L'ensemble des resultats est discute et il conduit a la conclusion qu'un defaut, tres vraisemblablement interstitiel, est mobile dans l'uranium a des temperatures inferieures a 5 K. (auteur)

  14. Alpha particle loss in the TFTR DT experiments

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.

    1995-01-01

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ''collective'' alpha particle loss processes in these experiments

  15. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    International Nuclear Information System (INIS)

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-01-01

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). γH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  16. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    1991-01-01

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  17. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    International Nuclear Information System (INIS)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang; Wu Lijun

    2007-01-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of γ-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process ( G -methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy α-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose α-particle irradiation and nitric oxide generated by irradiation was also very important in this process

  18. Effect of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken

    International Nuclear Information System (INIS)

    Galvin, K.; Morrissey, P.A.; Buckley, D.J.

    1998-01-01

    The effects of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken during refrigerated storage were studied. Minced breast and thigh meat from broilers fed diets supplemented with 100, 200 or 400 mg alpha-tocopheryl acetate/kg feed was irradiated at 2.5 or 4.0 kGy. Cooked irradiated and unirradiated meat was stored at 4 degrees C for 5 days. alpha-Tocopherol concentrations increased with increasing dietary supplementation. Concentrations decreased during storage, but retention was not affected by irradiation. Lipid stability was determined by measuring the formation of thiobarbituric acid-reacting substances (TBARS) and cholesterol oxidation products (COPs) during storage. TBARS and COPs increased during storage and were reduced by increasing levels of dietary alpha-tocopheryl acetate supplementation. Irradiation accelerated TBARS formation during storage, but this was prevented by supplementation with 200 mg alpha-tocopheryl acetate/kg feed. Irradiation tended to increase COPs during storage, although no consistent effects were observed. In general supplementation with over 400 mg alpha-tocopheryl acetate/kg feed may be required to control cholesterol oxidation in minced chicken. The results suggest that, overall, irradiation had little effect on lipid stability in alpha-tocopherol-supplemented meat following cooking and storage

  19. Charged defects during alpha-irradiation of actinide oxides as revealed by Raman and luminescence spectroscopy

    International Nuclear Information System (INIS)

    Mohun, R.; Desgranges, L.; Léchelle, J.; Simon, P.; Guimbretière, G.; Canizarès, A.; Duval, F.; Jegou, C.; Magnin, M.; Clavier, N.; Dacheux, N.; Valot, C.; Vauchy, R.

    2016-01-01

    We have recently evidenced an original Raman signature of alpha irradiation-induced defects in UO 2 . In this study, we aim to determine whether the same signature also exists in different actinide oxides, namely ThO 2 and PuO 2 . Sintered UO 2 and ThO 2 were initially irradiated with 21 MeV He 2+ ions using a cyclotron device and were subjected to an in situ luminescence experiment followed by Raman analysis. In addition, a PuO 2 sample which had accumulated self-irradiation damage due to alpha particles was investigated only by Raman measurement. Results obtained for the initially white ThO 2 showed that a blue color appeared in the irradiated areas as well as luminescence signals during irradiation. However, Raman spectroscopic analysis showed the absence of Raman signature in ThO 2 . In contrast, the irradiated UO 2 and PuO 2 confirmed the presence of the Raman signature but no luminescence peaks were observed. The proposed mechanism involves electronic defects in ThO 2 , while a coupling between electronic defects and phonons is required to explain the Raman spectra for UO 2 and PuO 2 .

  20. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  1. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  2. Effect of alpha irradiation on UO2 surface reactivity in aqueous media

    International Nuclear Information System (INIS)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D.; Jorion, F.; Corbel, C.

    2005-01-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO 2 matrix in aqueous media subjected to α-β-γ radiation. The β-γ emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO 2 pellets doped with alpha emitters ( 238 Pu and 239 Pu) to quantify the impact of alpha irradiation on UO 2 matrix alteration. Three batches of doped UO 2 pellets with different alpha flux levels (3.30 x 10 4 , 3.30 x 10 5 , and 3.2 x 10 6 α cm -2 s -1 ) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO 2 matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO 2 pellets doped with alpha emitters results in variations of the UO 2 surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO 2 pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO 2 to UO 2+x . However, leaching experiments performed in deaerated media after annealing the samples and preleaching the surface suggest that alpha radiolysis does indeed affect the dissolution, which varies with the

  3. Detection of {alpha} particles with the aid of a fluorescence counter; Detection des particules {alpha} a l'aide d'un compteur a fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, Y

    1951-07-01

    The operation principle of the fluorescence counter, used as {alpha} particles detector, is analyzed in the first part. Detection can be done in two ways: by counting the pulses due to each {alpha} particle, or by integrating all pulses and measuring the average current obtained. In the second part, three series of measurements are presented: 1 - two fluorescent substances (zinc sulfate and anthracene) are placed in front of the photocathode of three types of photomultipliers (RCA 931A, EMI 4588, and EMI 5311). These substances are bombarded with the {alpha} radiations of a Po source and then irradiated by the {beta} and {gamma} radiations of a Ra source in order to study the light emission of these thin film substances when submitted to the three types of radiations. The results show that thanks to the amplitude of the emitted light pulses, the fluorescence counter, when submitted to the three types of radiations, allows to distinguish between the {alpha} radiations of the polonium and the {beta} and {gamma} radiations of the radium source. The output current of a 931A, when measured with a galvanometer, allows to detect Po sources with an intensity of about 10{sup -6} curie. This is observed when its photocathode receives the light from a ZnS-Ag coating bombarded by the {alpha} particles of Po. The quantum efficiency of the counter is close to 100% for the {alpha} particles of Po. This efficiency is evaluated by comparison with the efficiency of a thin wall Geiger-Mueller counter. Moreover, when a thin crystal of anthracene is used as detector, the energy of the incident particles can be measured with a 2% preciseness. (J.S.)

  4. Electron Microscopy Study of Stainless Steel Radiation Damage Due to Long-Term Irradation by Alpha Particles Emitted From Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Unlu, Kenan [Univ. of Texas, Austin, TX (United States); Rios-Martinez, Carlos [Univ. of Texas, Austin, TX (United States); Saglam, Mehmet [Univ. of Texas, Austin, TX (United States); Hart, Ron R. [Texas A & M Univ., College Station, TX (United States); Shipp, John D. [Texas A & M Univ., College Station, TX (United States); Rennie, John [Texas A & M Univ., College Station, TX (United States)

    1998-04-16

    Radiation damage and associated surface and microstructural changes produced in stainless steel encapsulation by high-fluence alpha particle irradiations from weapons-grade plutonium of 316-stainless steel are being investigated.

  5. Effect of alpha irradiation on UO{sub 2} surface reactivity in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DIEC/SESC/LMPA, Bagnols-sur-Ceze (France); Jorion, F. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DRCP/SE2A/LEMA, Bagnols-sur-Ceze (France); Corbel, C. [Commissariat a l' Energie Atomique (CEA), Saclay Research Center, DSM/DRECAM/SCM, Gif sur Yvette (France)

    2005-07-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiation. The {beta}-{gamma} emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO{sub 2} pellets doped with alpha emitters ({sup 238}Pu and {sup 239}Pu) to quantify the impact of alpha irradiation on UO{sub 2} matrix alteration. Three batches of doped UO{sub 2} pellets with different alpha flux levels (3.30 x 10{sup 4}, 3.30 x 10{sup 5}, and 3.2 x 10{sup 6} {alpha} cm{sup -2} s{sup -1}) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO{sub 2} matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO{sub 2} pellets doped with alpha emitters results in variations of the UO{sub 2} surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO{sub 2} pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO{sub 2} to UO{sub 2+x}. However, leaching experiments performed in deaerated media after annealing the samples and

  6. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Science.gov (United States)

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  7. Lipoperoxides, alpha-tocopherol and ceruloplasmin in gamma-irradiated blood plasma

    International Nuclear Information System (INIS)

    Aladzhov, E.; Popzakharieva, V.

    1995-01-01

    Ceruloplasmin, alpha-tocopherol and lipid peroxide concentrations are evaluated in blood plasma for transfusion following exposure to irradiation with 60 Co gamma rays at doses 23, 50, 100 and 200 Gy. In plasma exposed to irradiation an increase in lipid peroxides and decrease in alpha-tocopherol and ceruloplasmin are observed. The addition of 2.3 U/ml ceruloplasmin to plasma prior to irradiation reduces the quantity of lipid peroxides and protects alpha-tocopherol. The possible explanation is that the metal helates prevent the formation of free hydroxyl radicals and thus inhibit the oxidation of lipid membranes. 15 refs., 1 tab. (author)

  8. Alpha particles emitted from the surface of granite, clay, and its fired products, 1

    International Nuclear Information System (INIS)

    Aratani, Michi; Otsuka, Hideko

    1975-01-01

    As a part of an investigation on ''the effect of long-time irradiation from a trace amount of radioisotopes'', the emitting rate of alpha particles per unit surface area (apparent) coming from natural alpha-particle emitters has been measured. The samples measured were granite and its weathered product; clay, especially potter's clay, and its fired product; pottery ware. The values obtained were 39.1 +-0.9--0.73+-0.08 cpm/100 cm 2 in granite, 16.8+-0.4--6.4+-0.2 cpm/100cm 2 in potter's clay, and 1.36+-0.04--0.82+-0.04 cpm/100cm 2 in pottery ware on substrate, and 1.33+-0.05--0.32+-0.02 cpm/100cm 2 on glazer. (auth.)

  9. Stochastic interaction between TAE and alpha particles

    International Nuclear Information System (INIS)

    Krlin, L.; Pavlo, P.; Malijevsky, I.

    1996-01-01

    The interaction of toroidicity-induced Alfven eigenmodes with thermonuclear alpha particles in the intrinsic stochasticity regime was investigated based on the numerical integration of the equation of motion of alpha particles in the tokamak. The first results obtained for the ITER parameters and moderate wave amplitudes indicate that the stochasticity is highest in the trapped/passing boundary region, where the alpha particles jump stochastically between the two regimes with an appreciable radial excursion (about 0.5 m amplitudes). A similar chaotic behavior was also found for substantially lower energies (about 350 keV). 7 figs., 15 refs

  10. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  11. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  12. Cranial nerve damage in patients after alpha (heavy)-particle radiation to the pituitary

    International Nuclear Information System (INIS)

    Price, J.; Wei, W.C.; Chong, C.Y.

    1979-01-01

    The records of 161 patients were reviewed to determine if radiation damage had occurred following cranial irradiation. All of these patients had received alpha-particle radiation to their pituitary glands during the period when this form of therapy was given for diabetic retinopathy. Extraocular muscle palsy developed in 11 of these patients, iridoplegia in six, and fifth nerve damage in six. All of the palsies developed within a short period following their irradiation, and a definite dose relationship was present. The dose rate was approximately 100 rads/min for all cases. Fractionation varied but it is known for all cases

  13. Theoretical and experimental radiation effectiveness of the free radical dosimeter alanine to irradiation with heavy charged particles

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Olsen, K. J.

    1985-01-01

    Dose-response characteristics have been measured for the crystalline amino acid L-.alpha.-alanine irradiated with ion beams of 6 and 16 MeV protons, 20 MeV .alpha. particles, 21 MeV7Li ions, 64 MeV16O ions, and 80 MeV32S ions. The experimental radiation effectiveness (RE) with reference to low-LE...

  14. Use of track-end alpha particles from 241Am to study radiosensitive sites in CHO cells

    International Nuclear Information System (INIS)

    Datta, R.; Cole, A.; Robinson, S.

    1976-01-01

    Monolayers of CHO cells placed on membrane filters were irradiated with alpha particles from a 241 Am source. Particle penetration into the cells was controlled by placing the cell sample at various distances from the source. Dosimetric and spectrometric measurements were performed at comparable positions using a parallel plate ionization chamber and a scintillation crystal spectrometer. Cell survival, as measured by conventional cloning techniques, was single hit in form. A pronounced minimum in mean lethal dose of 29 rad was observed for alpha particle beams that penetrated only about 3 μm into the cell. A pronounced maximum in inactivation cross section of 90 μm 2 , equal to about half the projected area of the nucleus, occurred for beams that penetrated only 5 to 7 μm into the cell. Thus, a single alpha particle penetration several micrometers within the cell nucleus was effective in killing the cell, while fully penetrating beams were actually less efficient; the latter beams required multiple particle traversals and about three times the cell dose to achieve the same effect. These results support the proposal that radiosensitive sites are located in a thin peripheral region of the nucleus

  15. Alpha-particles microbeam irradiation: impact of reactive oxygen species in bystander effect

    International Nuclear Information System (INIS)

    Hanot, M.

    2008-11-01

    Ionizing radiation-induced bystander effects arise in bystander cells that receive signals from directly irradiated cells. To date, free radicals are believed to play an active role in the bystander response, but this is incompletely characterized. To mark temporal and spatial impacts of bystander effect, we employed a precise α-particle microbeam to target a small fraction of sub-confluent osteoblastic cell cultures (MC3T3-E1). We identified the cellular membrane and mitochondria like two distinct places generating reactive oxygen species. The global oxidative stress observed after irradiation was significantly attenuated after filipin treatment, evidencing the pivotal role of membrane in MC3T3-E1 cells bystander response. To determine impact of bystander effect at a cell level, cellular consequences of this membrane-dependant bystander effect were then investigated. A variable fraction of the cell population (10 to 100%) was individually targeted. In this case, mitotic death and micronuclei yield both increased in bystander cells as well as in targeted cells demonstrating a role of bystander signals between irradiated cells in an autocrine or paracrine manner. Our results indicate a complex interaction of direct irradiation and bystander signals that lead to a membrane-dependant amplification of cell responses. (author)

  16. Protective effect of poly ({alpha}-L-glutamate) against UV and {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-10-01

    We occasionally found that poly ({alpha}-L-glutamate) showed a superior protective effect on enzymes against UV and {sup 60}Co-{gamma} irradiation. We selected papain and {alpha}-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and {sup 60}Co-{gamma} rays in the presence of poly ({alpha}-L-glutamate) ({alpha}-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, {alpha}-PGA showed the highest protecting effect on the both papain and {alpha}-amylase even after 10-kGy irradiation at which 50% of the activity was retained. {alpha}-PGA also showed significant protective activity on {alpha}-amylase against UV both in solution and under dried state.

  17. Alpha particle losses during sawtooth activity in Tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.

    1988-01-01

    The time evolution of the direct losses of fusion produced alpha particles in Tokamak plasmas characterized by sawtooth activity is investigated. The alpha particle loss rate during a sawtooth period is predicted to change invertedly with the change in bulk plasma parameters but also to contain a characteristic burst at the sawtooth crash. The spectrum of the lost alpha particles is also discussed. The predictions for the time evolution and the spectrum of the losses are in qualitative agreement with recently obtained losses of 15 MeV fusion produced protons in JET. (authors)

  18. Cranial nerve damage in patients after alpha (heavy)-particle radiation to the pituitary

    International Nuclear Information System (INIS)

    Price, J.; Wei, W.C.; Chong, C.Y.

    1979-01-01

    The records of 161 patients were reviewed to determine if radiation damage had occurred following cranial irradiation. All of these patients had received alpha-particle radiation to their pituitary glands for diabetic retinopathy. Extraocular muscle palsy developed in 11 of these patients, iridoplegia in six, and fifth nerve damage in six. All of the palsies developed within a short period following their irradiation, and a definite dose relationship was present. The estimated doses to the third, fourth, fifth, and sixth cranial nerves was calculated at a saggital plane 13 to 15 mm from the pituitary by using computer-drawn dosimetry charts for the respective aperture size

  19. Alternating current long range alpha particle detector

    International Nuclear Information System (INIS)

    MacArthur, D.W.; McAtee, J.L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions

  20. Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.

    Science.gov (United States)

    Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L

    2014-05-01

    High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.

  1. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  2. Irradiation behaviors of coated fuel particles, (4)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Ogawa, Toru; Ikawa, Katsuichi; Iwamoto, Kazumi; Ishimoto, Kiyoshi

    1981-09-01

    Loose coated fuel particles prepared in confirmity to a preliminary design for the multi-purpose VHTR in fiscal 1972 - 1974 were irradiated by 73F - 12A capsule in JMTR. Main purpose for this irradiation experiment was to examine irradiation stability of the candidate TRISO coated fuel particles for the VHTR. Also the coated particles possessing low-density kernel (90%TD), highly anisotropic OLTI-PyC and ZrC coating layer were loaded with the candidate particles in this capsule. The coated particles were irradiated up to 1.5 x 10 21 n/cm 2 of fast neutron fluence (E > 0.18 MeV) and 3.2% FIMA of burnup. In the post irradiation examination it was observed that among three kinds of TRISO particles exposed to irradiation corresponding to the normal operating condition of the VHTR ones possessing poor characteristics of the coating layers did not show a good stability. The particles irradiated under abnormally high temperature condition (> 1800 0 C) revealed 6.7% of max. EOL failure fraction (95% confidence limit). Most of these particles were failed by the ameoba effect. Furthermore, among four kinds of the TRISO particles exposed to irradiation corresponding to the transient condition of the VHTR (--1500 0 C) the two showed a good stability, while the particles possessing highly anisotropic OLTI-PyC or poorly characteristic coating layers were not so good. (author)

  3. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Mougey, E.H. [Walter Reed Army Institute of Research, Washington, DC (United States)

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  4. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R.; Ramirez G, J.

    2009-10-01

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  5. Irradiation of blood by 238Pu alpha particles

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Culver, G.G.; Gillis, M.F.; Ragan, H.A.

    1976-01-01

    A developmental 238 Pu blood irradiator produced no evidence of lymphopenia in a dog. Irradiation continued for a year at an estimated rate of about 100 rads/day, but this dosimetry is highly uncertain

  6. The study of creep in stainless steel irradiated with fast neutron and alpha particles

    International Nuclear Information System (INIS)

    Correa, D.A.C.

    1985-01-01

    The objective of the present work is to study the creep behavior of the 316 type stainless steel 50% cold worked in different conditions of temperature and applied stress, after neutron radiation and Alfa particles implantation. For this experiment, non-irradiated samples, samples irradiated in the research reactor IEA-R1 with fast neutron (E≥ MeV) up to a fluence of 8.6.10 17 n/cm 2 , and samples implanted with Alfa particles in the cyclotron CV-28 with Helium concentrations of 5 and 26 appm, were creep tested with applied stresses of the 200-300 MPa at temperatures between 650 0 C and 700 0 C. The deformation versus time curves were plotted and it was observed tha the second stage is not well defined, with the creep rate increasing continuously until the occurrence of failure of the material. The study of the effect of increase from 200 MPa to 300 MPa at the same temperature was performed. It can be concluded that this increase produces an approximately 70% reductions in the fracture time of the material, with practically no influence in the total deformation. Samples were tested at different temperatures (650, 675 and 700 0 C) at a same applied stress (200 MPa). It has been observed that a temperature of 50 0 C produces 98,9% of reduction in the fracture time and almost doubles the total deformation. On neutron irradiated samples, creep tests were performed at the same temperature and stress of the non irradiated samples. Comparing the results obtained a tendency of embrittlement due to the neutron irradiation can be observed; no remarkable structure changes were detected due to small fast neutron. Microstructural and metalographic observations were performed before and after each creep test. (author) [pt

  7. The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abdalla, A.M.; Rammah, Y.S.; Eisa, M.; Ashraf, O.

    2014-01-01

    Fast detection of alpha particles in CR-39 detectors was investigated using a new chemical etchant. 252 Cf and 241 Am sources were used for irradiating samples of CR-39 SSNTDs with fission fragments and alpha particles in air at normal temperature and pressure. A series of experimental chemical etching are carried out using new etching solution (8 ml of 10N NaOH+1 ml CH 3 OH) at 60 °C to detect alpha particle in short time in CR-39 detectors. Suitable analyzing software has been used to analyze experimental data. From fission and alpha track diameters, the value of bulk etching rate is equal to 2.73 μm/h. Both the sensitivity and etching efficiency were found to vary with the amount of methanol in the etching solution. Pure NaOH was used as a control to compare with the result from etching in NaOH with different concentrations of CH 3 OH. The etching efficiency is determined and compared with conventional aqueous solution of 6.25N NaOH at 70 °C for etching time equals 5 h. In this study, the obtained etching efficiency shows a considerable agreement with the previous work. - Highlights: • The value of bulk etching rate is equal to 2.73 μm/h. • Fast detection of alpha particles in CR-39 detectors. • Samples of CR-39 have been irradiated with fission fragments. • Etching efficiency was determined

  8. Effect of alpha particles on Toroidal Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-11-01

    An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods

  9. A study of some lattice defects with help of channeled {alpha} particles; Etude de quelques defauts cristallins a l'aide de particules {alpha} canalisees

    Energy Technology Data Exchange (ETDEWEB)

    Quere, Y [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    A method is described in which a metallic foil is irradiated by isotropic {alpha} particles. The thickness of the foil is such that only channeled particles can traverse it. The emerging flux, a function of the local concentration of defects, falls on a collector where an image of the foil is formed. The influence of grain or twin boundaries, of stacking faults, of dislocations, is observed. A quantitative study of dislocation is presented. The effect of a dislocation is represented by the presence of a coaxial dechanneling-cylinder of diameter: {lambda}-bar = [(b d a E)/({alpha}Z{sub 1}Z{sub 2}e{sup 2})]{sup 1/2}, b is the Burgers vector; d the interatomic distance along the channel; a the screening radius of the interaction between the particles (Z{sub 2}) and the metal (Z{sub 1} ); E the energy of the particles; {alpha} a numerical parameter. There is a reasonable agreement with experimental results. Channeling patterns, observed in all metals, are described. They are more numerous if the metal has been treated some time in gaseous atmospheres. They correspond to zones, on the metal, situated on the side of entrance of particles. It is proposed that in these zones, gaseous atoms strengthen the channels and enhance channeling. (author) [French] On decrit une methode qui consiste a irradier une feuille metallique par des particules {alpha} isotropes. La feuille est assez epaisse pour que seules les particules canalisees emergent. Le flux sortant depend alors fortement de la concentration en defauts. Il est recueilli sur un collecteur ou se forme ainsi une image de l'echantillon. On montre l'influence des joints de grains ou de macle, des fautes d'empilement et des dislocations. Dans ce dernier cas, la methode se prete bien a des etudes quantitatives. On represente l'effet d'une dislocation par la presence d'un cylindre de decanalisation coaxial de diametre: {lambda}-bar = [(b d a E)/({alpha}Z{sub 1}Z{sub 2}e{sup 2})]{sup 1/2} ou b est le vecteur de Burgers, d la

  10. Contribution to the study of the effects of {alpha}-irradiation in nuclear glasses; Contribution a l'etude des effets de l'irradiation {alpha} sur les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A

    2001-07-01

    The main topic of this work is to characterise the effects of {alpha}-disintegration in nuclear waste glasses. Experimental and numerical approaches have been considered. The structure of the French nuclear waste glass (R7T7) has been simulated using four- and six-oxides simplified glasses which contain the main elements of the R7T7 glass: SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, ZrO{sub 2}, Al{sub 2}O{sub 3} and CaO. Four- and six-oxides glasses have been irradiated with 1 MeV-He{sup +} (ionisation) and 2.1 MeV-Kr{sup 3+} (ionisation and atomic collisions) ions in order to reproduce the effects of the {alpha}-particle and of the recoil nucleus emitted during {alpha}-disintegration of actinides, and also to differentiate electronic and ballistic effects. Irradiated glasses have been characterised using several techniques, which have been adapted to the peculiarities of our samples (isolated material, small irradiated depth). The results point out the salient role of sodium in the observed modifications: depth concentration profiles obtained with RBS show an accumulation of sodium at the irradiated surface. We found a apparent acceleration of sodium release in leaching experiments which confirm that point. Modifications observed in Raman spectra of irradiated glasses show an increase of the polymerisation (increase of Q{sub 3}/Q{sub 2} ratio) due to sodium migration. In simplified glasses we have found that the modifications of mechanical properties by external irradiations reproduce the modifications observed in actinide doped nuclear glass (decrease of hardness and increase of fracture toughness). At the same time, we performed Molecular Dynamics simulations of a six-oxides glass. We have shown that the surface modifies the glass structure down to a depth of 10 Angstrom: modification of depth concentration profiles, decrease of the atomic coordination number (A1, B and Si). During cascades, we found that atomic displacements are easier near the surface. This

  11. Comparative study of G2 delay and survival after /sup 241/Americium-. cap alpha. and /sup 60/Cobalt-. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luecke-Huhle, C.; Comper, W.; Hieber, L.; Pech, M.

    1982-06-01

    Survival and G2 delay following exposure to either /sup 60/Cobalt-..gamma..-rays or /sup 241/Americium-..cap alpha..-particles were studied in eight mammalian cell lines of human and animal origin including human fibroblasts from normal individuals and from patients with Ataxia telangiectasia or Fanconi's anemia. For both endpoints the effectiveness of alpha particle was greater as compared to ..gamma..-rays. RBE values for G2 delay (4.6-9.2) were in general comparable to RBE values derived from initial slopes of survival curves but higher compared to the ratio of mean inactivation doses. Ataxia cells were particularly sensitive to cell killing by ..gamma..-irradiation, however, showed average sensitivity to ..cap alpha..-particles of high LET. With the exception of Ataxia cells, cell killing and G2 delay seem to be related processes if individual cell cycle parameters are taken into account.

  12. Plasma flow driven by fusion-generated alpha particles

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-05-01

    The confinement of fusion-generated alpha particles will affect the transports of the background plasma particles by the momentum transfer from the energetic alphas. The ions tend to migrate towards the center of plasma (i.e. fuel injection) and electrons towards the plasma periphery. This means the existence of a mechanism which enable to pump out the ashes in the fuel plasma because of the momentum conservation of whole plasma particles. (author)

  13. Attempts of local irradiation of cells by microbeam. From ultraviolet to heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yasuhiko [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    This review describes the history of attempts of local irradiation of cells by microbeam and present status of the study. Local irradiation of cells was attempted as early as in 1912 with use of short {alpha}-particle range and of focused UV beams. After the war, laser microbeams were then developed for microsurgery in embryology. In addition, microbeams of electron generated from the gun and of X-ray collimated were developed. In 1950s, the electron microbeam was generated from Van de Graaff accelerator in Chicago University and proton, deuteron and He-ion microbeams from the cyclotron, in BNL. In 1980s, Gesellschaft fuer Schwerionenforshung (Germany) used heavy ion microbeams from C to U generated from the linear accelerator and PNL, proton to {sup 4}He-ion microbeams from the tandem-electrostatic accelerator. At present in 2002, the equipments for microbeam for cell irradiation are the Van de Graaff accelerators in Gray Cancer Institute (England) and in Columbia University, and the cyclotron in TIARA in Japan. The purpose of the study in TIARA is to develop a system to generate heavy particle microbeams for cell irradiation for analysis of the biological effect of ultra-low fluence, high LET heavy particles like the galactic cosmic ray. Recently, the CHO-KI cell nucleus is irradiated by {sup 40}Ar and {sup 20}Ne ions. (K.H.)

  14. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  15. Purification and physicochemical properties of. cap alpha. -amylase from irradiated wheat

    Energy Technology Data Exchange (ETDEWEB)

    Machaiah, J P; Vakil, U K [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1981-06-01

    ..cap alpha..-Amylases from control and gamma-irradiated (at 0.2 and 2.0 kGy dose levels) wheat seedlings were purified to homogeneity and characterized. The molecular weight of the enzyme from a 2 kGy irradiated sample was slightly lower than that of the control; other general and catalytic properties also showed some differences. ..cap alpha..-Amylase from the irradiated (2kGy) sample had a narrow range of pH optimum and was inactivated faster at alkaline pH and by heat treatment than the enzyme from unirradiated wheat. A high apparent Michaelis constant (Ksub(m)) and a low maximal velocity (Vsub(max)) for the hydrolysis of soluble starch catalyzed by the enzyme from irradiated (2kGy) wheat, suggested some modifications in the formation of the substrate ..cap alpha..-amylase complex. Further, of the total number of amino acid residues lost on irradiation, dicarboxylic amino acids constituted the largest percentage; these structural alterations in the enzyme may be responsible for its partial inactivation. The total sugars liberated upon amylolysis of starch with the 2kGy irradiated enzyme were lower than control, and there was accumulation of higher maltodextrins in the place of maltose.

  16. Liquid scintillation alpha particle spectrometry. Progress report

    International Nuclear Information System (INIS)

    Bell, L.L.; Hakooz, S.A.; Johnson, L.O.; Nieschmidt, E.B.; Meikrantz, D.H.

    1979-12-01

    Objective to develop a technique whereby Pu may be put into solution, extracted by solvent extraction into a suitable extractive scintillant and subsequently counted. Presented here are results of attempts to separate beta and alpha activities through pulse shape discrimination. A qualitative discussion is given which yields alpha particle peak widths, resolution and response. The detection efficiency for alpha particles in a liquid scintillant is 100%. Present detection sensitivities of the equipment being used are: 4.5 x 10 -6 μCi (100 s), 1.2 x 10 -6 μCi (1000 s), and 4.0 x 10 -7 μCi (10,000 s) at the 3 sigma level. The detectability of a particular alpha-emitting species is strongly dependent upon the population of other species. The ability to discriminate depends upon the system resolution. 14 figures, 2 tables

  17. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Studies of biocompatibility of chemically etched CR-39 SSNTDs in view of their applications in alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Li, W.Y.; Chan, K.F.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2006-01-01

    Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require thin biocompatible materials which can record alpha-particle traversals as substrates for cell cultures. The biocompatibilities of chemically etched CR-39 solid-state nuclear track detectors (SSNTDs) using aqueous NaOH or NaOH/ehtanol are studied through the abundance and morphology of the cultured HeLa cells. The wetting properties of these etched CR-39 SSNTDs are also studied. The moderately hydrophobic CR-39 SSNTDs as well as the hydrophobic NaOH/ethanol-etched CR-39 SSNTDs are more biocompatible than the hydrophilic aqueous-NaOH-etched SSNTDs. Too small water contact angles, too large surface energy (γ s ) or the polar component γ s p do not favor the cell culture. On the other hand, the dispersive component γ s d of the surface energy and the ratio γ s p /γ s d do not seem to significantly affect the biocompatibility

  19. Irradiation behaviors of coated fuel particles, (3)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Iwamoto, Kazumi; Ikawa, Katsuichi

    1980-07-01

    This report is concerning to the irradiation experiments of the coated fuel particles, which were performed by 72F-6A and 72F-7A capsules in JMTR. The coated particles referred to the preliminary design of VHTR were prepared for the experiments in 1972 and 1973. 72F-6A capsule was irradiated at G-10 hole of JMTR fuel zone for 2 reactor cycles, and 72F-7A capsule had been planned to be irradiated at the same irradiation hole before 72F-6A. However, due to slight leak of the gaseous fission products into the vacuum system controlling irradiation temperature, irradiation of 72F-7A capsule was ceased after 85 hrs since the beginning. In the post irradiation examination, inspection to surface appearance, ceramography, X-ray microradiography and acid leaching for the irradiated particle samples were made, and crushing strength of the two particle samples was measured. (author)

  20. Absorption of lower hybrid waves by alpha particles in ITER

    International Nuclear Information System (INIS)

    Imbeaux, F.; Peysson, Y.; Eriksson, L.G.

    2003-01-01

    Absorption of lower hybrid (LH) waves by alpha particles may reduce significantly the current drive efficiency of the waves in a reactor or burning plasma experiment. This absorption is quantified for ITER using the ray-tracing+2D relativistic Fokker-Planck code Delphine. The absorption is calculated as a function of the superthermal alpha particle density, which is constant in these simulations, for two candidate frequencies for the LH system of ITER. Negligible absorption by alpha particles at 3.7 GHz requires n(alpha,supra) = 7.5 10 16 m -3 , while no significant impact on the driven current is found at 5 GHz, even if n(alpha,supra) = 1.5 10 18 m -3 . (authors)

  1. In vitro secretion of TNF-{alpha} from bone marrow mononuclear cells incubated on amino group modified TiO{sub 2} nano-composite under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuzono, T., E-mail: furuzono@ri.ncvc.go.jp [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Masuda, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Nitta, N.; Kaya, A.; Yamane, T. [Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564 (Japan); Okada, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan)

    2010-10-15

    It is recently known that titanium dioxide (TiO{sub 2}) can be excited by ultrasound and release of OH radicals on the surface. In this study, secretion of an indirect angiogenic factor, tumor necrosis factor-{alpha} (TNF-{alpha}), from bone marrow mononuclear cells (BM-MNC) incubated on amino group modified TiO{sub 2} nano-particles covalently coated on polyester fabric (TiO{sub 2}/PET) under ultrasonic irradiation was examined in vitro. The cell viability and TNF-{alpha} secretion were measured under ultrasound irradiation condition with 255 mW/cm{sup 2} of intensity, which is below the highest output (1 W/cm{sup 2}) specified in the safety standard for a medical ultrasonic diagnostic apparatus. The living cell number on the TiO{sub 2}/PET and original PET with/without continuous ultrasound irradiation was unchanged statistically by ANOVA test. TNF-{alpha} secretion level from BM-MNC remarkably increased on the TiO{sub 2}/PET under ultrasonic irradiation without cell damage. It was, therefore, thought that the high level of TNF-{alpha} secretion on the TiO{sub 2} nano-composite by ultrasound irradiation was due to oxidative stress induced from OH radicals on TiO{sub 2}.

  2. Mechanical properties and the evolution of matrix molecules in PTFE upon irradiation with MeV alpha particles

    International Nuclear Information System (INIS)

    Fisher, Gregory L.; Lakis, Rollin E.; Davis, Charles C.; Szakal, Christopher; Swadener, John G.; Wetteland, Christopher J.; Winograd, Nicholas

    2006-01-01

    The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4 He 2+ ions from a tandem accelerator to doses between 1 x 10 6 and 5 x 10 10 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C 60 + source, was employed to probe chemical changes as a function of α dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of α particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing α particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of α dose. The data show that PTFE nominally retains its innate chemical structure and morphology at α doses 9 Rad. At α doses ≥10 9 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At α doses >10 10 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of α particle irradiation and show morphological roughening of the sample with increased α dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of α particles. RGA confirms the supposition that

  3. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    Science.gov (United States)

    Ng, C. Y. P.; Chun, S. L.; Yu, K. N.

    2016-08-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The ;landscape; and ;portrait; scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.

  4. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  5. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.

    2001-01-01

    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  6. Radiation and biophysical studies on cells and viruses. Progress report, April 1, 1976--June 30, 1977. [Gamma radiation, alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Cole, A.

    1977-01-01

    Progress is reported on the following research projects: genetic structure of DNA, chromosomes, and nucleoproteins; particle beam studies of radiosensitive sites; division delay in CHO cells induced by partly penetrating alpha particles; location of cellular sites for mutation induction; sites for radioinduced cell transformation using partly penetrating particle beams; gamma-ray and particle irradiation of nucleoproteins and other model systems; quantitation of surface antigens on normal and neoplastic cells by x-ray fluorescence; hyperthermic effects on cell survival and DNA repair mechanisms; and studies on radioinduced cell transformation. (HLW)

  7. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  8. ITER alpha particle diagnostics using knock-on ion tails

    International Nuclear Information System (INIS)

    Fisher, R.K.; Parks, P.B.; McChesney, J.M.

    1995-09-01

    Alpha particles will play a critical role in the physics and successful operation of ITER. Achieving fusion ignition requires that the α particles created by deuterium-tritium (D-T) reactions deposit a large fraction of their energy in the reacting plasma before they are lost. Toroidal field ripple can localize any alpha particle losses and cause first wall damage. We have proposed a new method of measuring the fast confined α-particle distribution in a reacting plasma. The same elastic collisions that transfer the alpha energy to the D-T plasma ions and allow fusion ignition will also create a high energy tail on the deuterium and tritium ion energy distributions. Some of these energetic tail ions will undergo fusion reactions with the background plasma producing neutrons whose energy is increased significantly above 14 MeV due to the kinetic energy of the reacting ions. Measurement of this high energy tail on the D-T neutron distribution as a function of plasma minor radius would provide information on the alpha density profile with a time response equal to the ion slowing-down time. Although this technique may provide only limited information on the α-particle energy distribution, experimental studies of fast ions on existing tokamaks have shown that the observed slowing-down is essentially classical. Hence the α-energy distribution is expected to be classical except in situations where the α-confinement is poor. The confinement of α's can be affected by ripple losses and a number of instabilities. Toroidal field ripple can cause both prompt orbit losses and stochastic ripple diffusion losses. Magnetohydrodynamic activity, including fishbone instabilities, toroidal Alfven eigenmodes, and sawtooth oscillations, may also affect alpha confinement. The diagnostic proposed here, by monitoring the confined alpha population, can provide valuable information on the confinement of fast alphas in a reacting plasma

  9. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  10. Quasi-linear absorption of lower hybrid waves by fusion generated alpha particles

    International Nuclear Information System (INIS)

    Barbato, E.; Santini, F.

    1991-01-01

    Lower hybrid waves are expected to be used in a steady state reactor to produce current and to control the current profile and the stability of internal modes. In the ignition phase, however, the presence of energetic alpha particles may prevent wave-electron interaction, thus reducing the current drive efficiency. This is due to the very high birth energy of the alpha particles that may absorb much of the lower hybrid wave power. This unfavourable effect is absent at high frequencies (∼ 8 GHz for typical reactor parameters). Nevertheless, because of the technical difficulties involved in using such high frequencies, it is very important to investigate whether power absorption by alpha particles would be negligible also at relatively low frequencies. Such a study has been carried out on the basis of the quasi-linear theory of wave-alpha particle interaction, since the distortion of the alpha distribution function may enhance the radiofrequency absorption above the linear level. New effects have been found, such as local alpha concentration and acceleration. The model for alpha particles is coupled with a 1-D deposition code for lower hybrid waves to calculate the competition in the power absorption between alphas and electrons as the waves propagate into the plasma core for typical reactor (ITER) parameters. It is shown that at a frequency as low as 5 GHz, power absorption by alpha particles is negligible for conventional plasma conditions and realistic alpha particle concentrations. In more ''pessimistic'' and severe conditions, negligible absorption occurs at 6 GHz. (author). 19 refs, 11 figs, 2 tabs

  11. Advantages of using gyrotron scattering for alpha particle diagnostics

    International Nuclear Information System (INIS)

    Woskoboinikow, P.P.; Cohn, D.R.; Machuzak, J.S.; Myer, R.C.; Rhee, R.Y.

    1987-07-01

    Millimeter-wave gyrotron collective Thomson scattering can be an effective diagnostic technique for the study of alpha particle behavior in ignited plasmas. The measurement of alpha particle density, velocity distribution, and alpha particle induced plasma instabilities can be accomplished with both spatial and temporal resolution. Advantages include long pulse operation which can make possible very high signal to noise ratios and use of millimeter waves which maximizes the Doppler shifted scattered signal in WHz -1 and makes possible scattering angles up to 180 0 . Extraordinary mode scattering at approximately 60 and 200 GHz would be used in TFTR and CIT respectively, and 140 GHz ordinary mode scattering in JET. 8 refs., 1 fig

  12. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Continuous air monitor for alpha-emitting aerosol particles

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Rodgers, J.C.; Nelson, D.C.

    1991-01-01

    A new alpha continuous air monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of the interest. At the present time the authors have a prototype of the aerosol sampling system and they have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Wind tunnel tests show that ≥ 50% of 10 μm aerodynamic equivalent diameter (AED) particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L/min (2 cfm) and the wind speed is 1 m/s. The coefficient of variation of deposits of 10 μm AED aerosol particles on the collection filter is 7%. An inlet fractionator for removing high mobility background aerosol particles has been designed and successfully tested. The results show that it is possible to strip 95% of freshly formed radon daughters and 33% of partially aged radon daughters from the aerosol sample. This approach offers the opportunity to improve the signal-to-noise ratio in the alpha energy spectrum region of interest thereby enhancing the performance of background compensation algorithms

  14. Thiamin, riboflavin and alpha-tocopherol retention in processed and stored irradiated pork

    International Nuclear Information System (INIS)

    Fox, J.B. Jr.; Lakritz, L.; Thayer, D.W.

    1997-01-01

    Combination treatments for preservation of irradiated pork were investigated with respect to vitamin loss. Ground pork was prepared under nitrogen and packaged in anaerobic foil. The samples were enzyme denatured by heating before and after irradiation, then cooked and stored. Irradiation resulted in thiamin loss, but neither riboflavin nor alpha-tocopherol was affected. Neither thiamin nor riboflavin was affected by heat denaturation, cooking or storage, but heating and cooking increased the measured alpha-tocopherol. The lack of loss of the vitamins was attributed to the exclusion of oxygen

  15. The interaction of fast alpha particles with pellet ablation clouds

    International Nuclear Information System (INIS)

    McChesney, J.M.; Parks, P.B.; Fisher, R.K.; Olson, R.E.

    1997-01-01

    The energy spectra of energetic confined alpha particles are being measured using the pellet charge exchange method [R. K. Fisher, J. S. Leffler, A. M. Howald, and P. B. Parks, Fusion Technol. 13, 536 (1988)]. The technique uses the dense ablation cloud surrounding an injected impurity pellet to neutralize a fraction of the incident alpha particles, allowing them to escape from the plasma where their energy spectrum can be measured using a neutral particle analyzer. The signal calculations given in the above-mentioned reference disregarded the effects of the alpha particles' helical Larmor orbits, which causes the alphas to make multiple passes through the cloud. Other effects such as electron ionization by plasma and ablation cloud electrons and the effect of the charge state composition of the cloud, were also neglected. This report considers these issues, reformulates the signal level calculation, and uses a Monte-Carlo approach to calculate the neutralization fractions. The possible effects of energy loss and pitch angle scattering of the alphas are also considered. copyright 1997 American Institute of Physics

  16. Computer simulation of backscattered alpha particles

    International Nuclear Information System (INIS)

    Sanchez, A. Martin; Bland, C.J.; Timon, A. Fernandez

    2000-01-01

    Alpha-particle spectrometry forms an important aspect of radionuclide metrology. Accurate measurements require corrections to be made for factors such as self-absorption within the source and backscattering from the backing material. The theory of the latter phenomenon has only received limited attention. Furthermore the experimental verification of these theoretical results requires adequate counting statistics for a variety of sources with different activities. These problems could be resolved by computer simulations of the various interactions which occur as alpha-particles move through different materials. The pioneering work of Ziegler and his coworkers over several years, has provided the sophisticated software (SRIM) which has enabled us to obtain the results presented here. These results are compared with theoretical and experimental values obtained previously

  17. Ions irradiation on bi-layer coatings

    Science.gov (United States)

    Tessarolo, Enrico; Corso, Alain Jody; Böttger, Roman; Martucci, Alessandro; Pelizzo, Maria G.

    2017-09-01

    Future space missions will operate in very harsh and extreme environments. Optical and electronics components need to be optimized and qualified in view of such operational challenges. This work focuses on the effect of low alpha particles irradiation on coatings. Low energy He+ (4 keV and 16 keV) ions have been considered in order to simulate in laboratory the irradiation of solar wind (slow and fast components) alpha particles. Mono- and proper bi-layers coatings have been investigated. The experimental tests have been carried out changing doses as well as fluxes during the irradiation sessions. Optical characterization in the UV-VIS spectral range and superficial morphological analysis have performed prior and after irradiation.

  18. Irradiation effect on {alpha}- and {beta}-caseins of milk and Queso Blanco cheese determined by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.S.; Jeong, S.G.; Lee, S.G.; Han, G.S.; Chae, H.S.; Yoo, Y.M.; Kim, D.H. [Animal Food Processing Division, National Institute of Animal Science, Suwon 441-706 (Korea, Republic of); Lee, W.K. [College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-02-15

    Milk and Queso Blanco cheese were exposed to irradiation with doses of 1, 2, 3, 5, and 10 kGy to investigate the irradiation effect on {alpha}- and {beta}-casein using a capillary electrophoresis. {alpha}{sub S1}-Casein to total protein ratio in raw milk was decreased from 19.63% to 8.64% by 10 kGy of gamma irradiation. The ratio of {alpha}{sub S1}- to {alpha}{sub S0}-casein was also decreased from 1.38 to 0.53, which showed {alpha}{sub S1}-casein is more susceptible to gamma irradiation than {alpha}{sub S0}-casein. Similarly, {alpha}{sub S1}-casein to total protein ratio in Queso Blanco cheese was decreased from 17.48% to 7.82% and the ratio of {alpha}{sub S1}- to {alpha}{sub S0}-casein was decreased from 1.16 to 0.43 by 10 kGy of gamma irradiation. Dose-dependent reduction of {beta}{sub A1}-casein was also found. {beta}{sub A1}-Casein to total protein ratios in raw milk and Queso Blanco cheese were decreased from 22.00% to 14.16% and from 21.96% to 13.89% after 10 kGy, respectively. The ratios of {beta}{sub A1}- to {beta}{sub A2}-casein were from 1.10 to 0.64 and 0.93 to 0.57 in milk and Queso Blanco cheese, respectively. However, {alpha}{sub S0}-, {beta}{sub B}-, and {beta}{sub A3}-casein increased by irradiation at 10 kGy. The results suggest that {alpha}{sub S1}-casein and {beta}{sub A1}-casein were more susceptible to gamma irradiation, and may be related to the reduction of milk allergenicity caused by gamma irradiation.

  19. A history of nuclear transmutations by natural alpha particles

    International Nuclear Information System (INIS)

    Leone, Matteo

    2005-01-01

    A systematic account of the use of alpha particles up to the 1930s for promoting the disintegration of atoms is here provided. As will be shown, a number of different radium family alpha sources were used in the experiments that led to the discoveries of the proton (Rutherford E 1919 Phil. Mag. 37 581-7) and neutron (Chadwick J 1932 Nature 129 312). The reasons leading to the employment of a particular alpha particle source, as well as the relationship between these sources and the available methods of recording, will be closely addressed

  20. Resonant acceleration of alpha particles by ion cyclotron waves in the solar wind

    Science.gov (United States)

    Gomberoff, L.; Elgueta, R.

    1991-06-01

    Preferential acceleration of alpha particles interacting with left-hand polarized ion cyclotron waves is studied. It is shown that a small positive drift velocity between alpha particles and protons can lead to alpha particle velocities well in excess of the proton bulk velocity. During the acceleration process, which is assumed to take place at heliocentric distances less than 0.3 AU, the alpha particle drift velocity should exceed the proton bulk velocity, and then the gap which exists around the alpha particle gyrofrequency should disappear. It is also shown that for proton thermal anisotropies of the order of those observed in fast solar wind, the waves either grow or are not damped excessively, so that the waves can exist and might thus lead to the observed differential speeds. However, the way in which the alpha particles exceed the proton velocity remains unexplained.

  1. Fano factor evaluation of diamond detectors for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Sato, Yuki [Naraha Remote Technology Development Center, Japan Atomic Energy Agency, Naraha-machi, Futaba-gun, Fukushima, 979-0513 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Mokuno, Yoshiaki [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Watanabe, Hideyuki [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565 (Japan)

    2016-10-15

    This report is the first describing experimental evaluation of Fano factor for diamond detectors. High-quality self-standing chemical vapor deposited diamond samples were produced using lift-off method. Alpha-particle induced charge measurements were taken for three samples. A 13.1 ±0.07 eV of the average electron-hole pair creation energy and excellent energy resolution of approximately 0.3% were found for 5.486 MeV alpha particles from an {sup 241}Am radioactive source. The best Fano factor for 5.486 MeV alpha particles, calculated from experimentally obtained epsilon values and the detector intrinsic energy resolution, was 0.382 ± 0.007. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. G2M arrest and apoptosis in murine T lymphoma cells following exposure to 212Bi alpha particle irradiation

    International Nuclear Information System (INIS)

    Palayoor, S.T.; Humm, J.L.; Macklis, R.M.

    1993-01-01

    Asynchronous exponentially growing EL4 murine T lymphoma cells were exposed either to high LET α-radiation from 212 Bi-DTPA or to γ-radiation from a 137 Cs source. Radiation-induced cell cycle perturbation was studied by flow cytometry. Alpha irradiation, like γ, transiently arrested cells in the G2M phase in a dose-dependent manner. The maximum percentages of cells accumulated in G2M 18 h after α- and γ-irradiation were comparable, though the dose-response relationships differed. The ''RBE'' value for G2M block for α- versus γ-radiation was approx. 4. (author)

  3. Influence of alpha-particles on parameters of plasma confined in open traps

    International Nuclear Information System (INIS)

    Chebotaev, P.Z.

    1987-01-01

    The numerical calculations of the longitudinal motion in multi-mirror reactor have shown that the energy contribution of α-particles has substantial influence on the gain factor (the given off thermonuclear energy/ the initial imparted energy) in the temperature region 5-7 keV. The numerical technique has been developed that takes into account the radial distribution of alpha particles caused by their drag on electrons. This effect is substantial for ρ α /R ≥ 1/2 (where ρ α is alpha particles gyro radius, R is plasma radius), e.g. for Gas-Dinamic trap. In a Tandem-Mirror reactor some part of fusion alpha particles have the probability to slow down to the plasma energy, that can lead to the 'poisoning' of the reactor by the thermonuclear reaction products. The fusion alpha particles can have a strong effect on accumulation of impurities with z ≤ 15 and thermal alpha particles in TMR. (orig.)

  4. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  5. Current generation by alpha particles interacting with lower hybrid waves in TOKAMAKS

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Lisak, M.; Anderson, D.

    1990-01-01

    The problem of the influence of fusion generated alpha particles on lower-hybrid-wave current drive is examined. Analysis is based on a new equation for the LH-wave-fast ion interaction which is derived by taking into consideration the non-zero value of the longitudinal wave number. The steady-state velocity distribution function for high energy alpha particles is found. The alpha current driven by LH-waves as well as the RF-power absorbed by alpha particle are calculated. (authors)

  6. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  7. Alpha particle analysis using PEARLS spectrometry

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig

  8. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W. [Princeton Univ., NJ (United States)

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90° lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  9. Measurements of geomagnetically trapped alpha particles, 1968-1970. I - Quiet time distributions

    Science.gov (United States)

    Krimigis, S. M.; Verzariu, P.

    1973-01-01

    Results of observations of geomagnetically trapped alpha particles over the energy range from 1.18 to 8 MeV performed with the aid of the Injun 5 polar-orbiting satellite during the period from September 1968 to May 1970. Following a presentation of a time history covering this entire period, a detailed analysis is made of the magnetically quiet period from Feb. 11 to 28, 1970. During this period the alpha particle fluxes and the intensity ratio of alpha particles to protons attained their lowest values in approximately 20 months; the alpha particle intensity versus L profile was most similar to the proton profile at the same energy per nucleon interval; the intensity ratio was nearly constant as a function of L in the same energy per nucleon representation, but rose sharply with L when computed in the same total energy interval; the variation of alpha particle intensity with B suggested a steep angular distribution at small equatorial pitch angles, while the intensity ratio showed little dependence on B; and the alpha particle spectral parameter showed a markedly different dependence on L from the equivalent one for protons.

  10. Applications of alpha particles detectors made of nitrocellulose film

    International Nuclear Information System (INIS)

    Segovia, N.; Salinas, B.; Pineda, H.

    1978-01-01

    We describe the experiments realized in order to probe the response of the alpha particles detectors manufactured in our laboratory and their suitability to some important applications. The detection system is a nitrocellulose film which register the transit of the charged particles. The traces left by the particles during their transit are manifested through a controlled chemical attack and counted after that with a microscope. This monitor system was utilized in the following applications: 1) uranium prospection 2) alpha autoradiography 4) determination of air pollution by alpha emitters. The results which were obtained are satisfactory and in spite that in these first applications only qualitative measurements were made the method could be used for quantitative determinations when we will have a better knowledge of the effect of factors which are not under our control. (author)

  11. A CMOS integrated pulse mode alpha-particle counter for application in radon monitoring

    International Nuclear Information System (INIS)

    Ahmed, A.; Walkey, D.J.; Tarr, N.G.

    1997-01-01

    A custom integrated circuit for detecting alpha particles for application in the monitoring of radon has been designed and tested. The design uses the reverse-biased well to a substrate capacitance of a p-n junction in a conventional CMOS process as a sense capacitor for incident alpha particles. A simple CMOS inverter is used as an analog amplifier to detect the small potential change induced by an alpha-particle strike on the sense capacitor. The design was implemented in a 1.2-microm conventional CMOS process with a sense capacitor area of 110 microm 2 . Tests carried out under vacuum conditions using a calibrated 241 Am alpha-particle source showed an output voltage swing of ≥2.0 V for an alpha event. The detector is also shown to have good immunity to noise and high-quantum efficiency for alpha particles

  12. Geometric effects in alpha particle detection from distributed air sources

    International Nuclear Information System (INIS)

    Gil, L.R.; Leitao, R.M.S.; Marques, A.; Rivera, A.

    1994-08-01

    Geometric effects associated to detection of alpha particles from distributed air sources, as it happens in Radon and Thoron measurements, are revisited. The volume outside which no alpha particle may reach the entrance window of the detector is defined and determined analytically for rectangular and cylindrical symmetry geometries. (author). 3 figs

  13. Irradiation Testing of TRISO-Coated Particle Fuel in Korea

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sunghwan; Jeong, Kyung-Chai; Eom, Sung-Ho; Kim, Yeon-Ku; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung; Kim, Yong Wan

    2014-01-01

    In Korea, coated particle fuel is being developed to support development of a VHTR. At the end of March 2014, the first irradiation test in HANARO at KAERI to demonstrate and qualify TRISO-coated particle fuel for use in a VHTR was terminated. This experiment was conducted in an inert gas atmosphere without on-line temperature monitoring and control, or on-line fission product monitoring of the sweep gas. The irradiation device contained two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The duration of irradiation testing at HANARO was about 135 full power days from last August 2013. The maximum average power per particle was about 165 mW/particle. The calculated peak burnup of the TRISO-coated fuel was a little less than 4 atom percent. Post-irradiation examination is being carried out at KAERI’s Irradiated Material Examination Facility beginning in September of 2014. This paper describes characteristics of coated particle fuel, the design of the test rod and irradiation device for this coated particle fuel, and discusses the technical results of irradiation testing at HANARO. (author)

  14. Molecular pathways in the bystander response of cells exposed to very low fluences of alpha particles

    International Nuclear Information System (INIS)

    Little, J.B.

    2000-01-01

    Full text: We have examined biological effects in cell populations exposed to very low mean doses of alpha radiation by which only a small fraction of the cells are actually traversed by an alpha particle. We showed earlier that an enhanced frequency of sister chromatid exchanges and HPRT mutations occur in the non-irradiated, 'bystander' cells. The frequency of mutations induced by a single alpha particle traversing the nucleus of a cell was increased nearly fivefold at the lowest fluence studied, a result of mutations occurring in bystander cells. This was associated with a similar increase in the induction of micronuclei, indicating the induction of DNA damage in bystander cells. In order to gain information concerning molecular pathways, we studied changes in gene expression in bystander cells in confluent cultures of human diploid fibroblasts or mouse embryo-derived fibroblasts (MEFs) by western analysis and in-situ immunofluorescence. The expression levels of p53, p21 Waf1 and p34 cdc2 were significantly modulated in bystander cells. The upregulation of p53 and p21 Waf1 did not occur in cultures irradiated at low density, and was markedly reduced in the presence of the gap junction inhibitor lindane. The importance of gap-junction mediated intercellular communication was confirmed in connexin-43 knockout MEFs. Western blot analyses and electrophoretic mobility shift assays indicate that the bystander response is suppressed by incubation with superoxide dismutase as well as an inhibitor of NADPH oxidase, and is associated with the induction of NFKB, suggesting the effect is mediated by oxidative stress. The stress-activated protein kinase p38 and its downstream effector ATF2 are also induced in bystander cells independent of oxidative stress. These results will be discussed in terms of whether activation of the p53 damage response pathway is the direct result of signaling from irradiated cells, or rather is a consequence of DNA induced damage in the bystander

  15. Measurements of DT alpha particle loss near the outer midplane of TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.; Redi, M.H.; Schivell, J.; White, R.B.

    1995-07-01

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ''collective'' alpha instability-induced alpha loss have yet been observed

  16. Irradiation testing of coated particle fuel at Hanaro

    International Nuclear Information System (INIS)

    Goo Kim, Bong; Sung Cho, Moo; Kim, Yong Wan

    2014-01-01

    TRISO-coated particle fuel is developing to support development of VHTR in Korea. From August 2013, the first irradiation testing of coated particle fuel was begun to demonstrate and qualify TRISO fuel for use in VHTR in the HANARO at KAERI. This experiment is currently undergoing under the atmosphere of a mixed inert gas without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one contains nine fuel compacts and the other five compacts and eight graphite specimens. Each compact has 263 coated particles. After a peak burn-up of about 4 at% and a peak fast neutron fluence of about 1.7 x 10 21 n/cm 2 , PIE will be carried out at KAERI's Irradiated Material Examination Facility. This paper is described characteristics of coated particle fuel, the design of test rod and irradiation device for coated particle fuel, discusses the technical results for irradiation testing at HANARO. (authors)

  17. Laboratory system for alpha particle spectroscopy

    International Nuclear Information System (INIS)

    Dean, J.R.; Chiu, N.W.

    1987-03-01

    An automated alpha particle spectroscopy system has beeen designed and fabricated. It consists of two major components, the automatic sample changer and the controller/data acquisition unit. It is capable of unattended analysis of ten samples for up to 65,000 seconds per sample

  18. New measurements of W-values for protons and alpha particles

    International Nuclear Information System (INIS)

    Giesen, U.; Beck, J.

    2014-01-01

    The increasing importance of ion beams in cancer therapy and the lack of experimental data for W-values for protons and heavy ions in air require new measurements. A new experimental set-up was developed at PTB and consistent measurements of W-values in argon, nitrogen and air for protons and alpha particles with energies from 0.7 to 3.5 MeV u -1 at PTB, and for carbon ions between 3.6 and 7.0 MeV u -1 at GSI were carried out. This publication concentrates on the measurements with protons and alpha particles at PTB. The experimental methods and the determination of corrections for recombination effects, beam-induced background radiation and additional effects are presented. W-values in argon, nitrogen and air were measured for protons with energies of 1-3 MeV and for alpha particles with energies of 2.7-14 MeV. The energies of the primary particle beam were corrected for energy losses in the gold and Mylar foils, as well as for the kinematic energy loss due to scattering by 45 deg.. Beam-induced radiation backgrounds as well as recombination effects were determined and corrected for. The present results are summarised in Figure 2 for all three gases. The solid lines through the data points for each gas indicate an average W-value for that gas. The higher values for 2.7-MeV alpha particles agree with the trend in previous data towards lower energies. They are excluded from the averages. The relative standard uncertainties of the individual data points range from 1.3 to 3 %. The weighted averages over all energies are W(Ar) = 25.7 eV, W(N 2 ) = 35.6 eV and W(Air) = 34.2 eV. The averages serve as a first comparison and the lines on the plot are to guide the eye and are not meant to imply constant W-values for all energies and particles. The W-values for protons and alpha particles in argon and nitrogen have smaller uncertainties and are lower than the suggested values, but they are still in agreement within the uncertainties. For alpha particles with energies of 12

  19. Four-body problem for four bound alpha particles in 16O

    International Nuclear Information System (INIS)

    Osman, A.

    1980-02-01

    The alpha cluster model is used in considering the 16 O nucleus as a bound state of four alpha particles. This problem is represented by integral equations which are exact effective two-particle equations. These equations have the form of two-particle Lippmann-Schwinger equations. The separable expressions are used in approximating the scattering amplitudes in the separable potential model to include also few and small non-separable rest parts of the interactions. The integral equations obtained are manageable and suitable for computations. Numerical calculations are carried out for the 16 O nucleus, with the structure of four bound alpha particles. The obtained binding energy of 16 O with that structure is 16.86 MeV which is in good agreement with the experimental value. (author)

  20. Techniques for measuring the alpha-particle distribution in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Post, D.E.; Mikkelsen, D.R.; Hulse, R.A.; Stewart, L.D.; Weisheit, J.C.

    1979-10-01

    Methods are proposed for measuring the alpha-particle distribution in magnetically confined fusion plasmas using neutral-atom doping beams, ultraviolet spectroscopy, and neutral particle detectors. In the first method single charge exchange reactions, A 0 + He ++ - > A + (He + )*, are used to populate the n=2 and n=3 levels of He + . The ultraviolet photons from the decaying excited states are Doppler shifted by 5 to 10 Angstroms from those produced by the thermalized alpha-particle ash. In the second method double charge exchange reactions, A 0 + He ++ - > A ++ + He 0 , enable fast neutralized alpha-particles to escape from the plasma and be detected by neutral particle analysers. Detector configurations are analyzed, count rates are estimated and their detectability is discussed. A preliminary analysis of the feasibility of the required neutral beams is presented, and exploratory experiments on existing devices are suggested

  1. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  2. Biophysical analysis of the dose-dependent overdispersion and the restricted linear energy transfer dependence expressed in dicentric chromosome data from alpha-irradiated human lymphocytes.

    Science.gov (United States)

    Greinert, R; Harder, D

    1997-06-01

    Experimental data for the induction of dicentric chromosomes in phytohemagglutinin (PHA)-stimulated human T lymphocytes by 241Am alpha-particles obtained by Schmid et al. have been analyzed in the light of biophysical theory. As usual in experiments with alpha-particles, the relative variance of the intercellular distribution of the number of aberrations per cell exceeds unity, and the multiplicity of the aberrations per particle traversal through the cell is understood as the basic effect causing this overdispersion. However, the clearly expressed dose dependence of the relative variance differs from the dose-independent relative variance predicted by the multiplicity effect alone. Since such dose dependence is often observed in experiments with alpha-particles, protons, and high-energy neutrons, the interpretation of the overdispersion needs to be supplemented. In a new, more general statistical model, the distribution function of the number of aberrations is interpreted as resulting from the convolution of a Poisson distribution for the spontaneous aberrations with the overdispersed distributions for the aberrations caused by intratrack or intertrack lesion interaction, and the fluctuation of the cross-sectional area of the cellular chromatin must also be considered. Using a suitable mathematical formulation of the resulting dose-dependent over-dispersion, the mean number lambda 1 of the aberrations produced by a single particle traversal through the cell nucleus and the mean number lambda 2 of the aberrations per pairwise approach between two alpha-particle tracks could be estimated. Coefficient alpha of the dose-proportional yield component, when compared between 241Am alpha-particle irradiation and 137Cs gamma-ray exposure, is found to increase approximately in proportion to dose-mean restricted linear energy transfer, which indicates an underlying pairwise molecular lesion interaction on the nanometer scale.

  3. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  4. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  5. Averaged currents induced by alpha particles in an InSb compound semiconductor detector

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Hishiki, Shigeomi; Kogetsu, Yoshitaka; Nakamura, Tatsuya; Katagiri, Masaki

    2008-01-01

    Very fast pulses due to alpha particle incidence were observed by an undoped-type InSb Schottky detector. This InSb detector was operated without applying bias voltage and its depletion layer thickness was less than the range of alpha particles. The averaged current induced by alpha particles was analyzed as a function of operating temperature and was shown to be proportional to the Hall mobility of InSb. (author)

  6. Development of low level alpha particle counting system

    International Nuclear Information System (INIS)

    Minobe, Masao; Kondo, Hiraku; Chinuki, Takashi; Hirano, Hiromichi

    1987-01-01

    Much attention has been paid to the trace analysis of uranium and thorium contained in the base material of LSI or VLSI, since the so-called ''soft-error'' of the memory device was known to be due to alpha particles emitted from these radioactive elements. We have developed an apparatus to meet the needs of estimating such a very small quantity of U and Th of the level of ppb, by directly counting alpha particles using a gas-flow type proportional counter. This method requires no sophisticated analytical skill, and the accuracy of the result is satisfactory. The instrumentation and some application of this apparatus are described. (author)

  7. Alpha-emitting 'hot particles' in the vicinity of BNFL Sellafield, Cumbria

    International Nuclear Information System (INIS)

    Whittall, A.J.; Tossell, P.J.

    2000-01-01

    In a survey of environmental samples in the vicinity of BNFL Sellafield, two alpha-emitting radioactive particles were found in samples of grass. One particle appears to be of mineral origin, the other was not definitively identified, but may be a fragment of fuel cladding. Conservative estimates of the activities of these particles are very low. The abundance of radioactive particles in the terrestrial food chain appears to be low, with no evidence for any alpha-emitting hot particles in foodstuffs for consumption by humans. Results suggest that there is no significant dose to man through inhalation or ingestion pathways. (author)

  8. Modeling of MeV alpha particle energy transfer to lower hybrid waves

    International Nuclear Information System (INIS)

    Schivell, J.; Monticello, D.A.; Fisch, N.; Rax, J.M.

    1993-10-01

    The interaction between a lower hybrid wave and a fusion alpha particle displaces the alpha particle simultaneously in space and energy. This results in coupled diffusion. Diffusion of alphas down the density gradient could lead to their transferring energy to the wave. This could, in turn, put energy into current drive. An initial analytic study was done by Fisch and Rax. Here the authors calculate numerical solutions for the alpha energy transfer and study a range of conditions that are favorable for wave amplification from alpha energy. They find that it is possible for fusion alpha particles to transfer a large fraction of their energy to the lower hybrid wave. The numerical calculation shows that the net energy transfer is not sensitive to the value of the diffusion coefficient over a wide range of practical values. An extension of this idea, the use of a lossy boundary to enhance the energy transfer, is investigated. This technique is shown to offer a large potential benefit

  9. Recovery of damage in rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays

    Science.gov (United States)

    Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.

    1983-01-01

    This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.

  10. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M.C.; Bertsche, W.; Bowe, P.D.; Bray, C.C.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Fajans, J.; Funakoshi, R.; Gill, D.R.; Hangst, J.S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Lai, W.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wasilenko, L.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  11. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  12. Intercomparison of alpha particle spectrometry software packages

    International Nuclear Information System (INIS)

    1999-08-01

    Software has reached an important level as the 'logical controller' at different levels, from a single instrument to an entire computer-controlled experiment. This is also the case for software packages in nuclear instruments and experiments. In particular, because of the range of applications of alpha-particle spectrometry, software packages in this field are often used. It is the aim of this intercomparison to test and describe the abilities of four such software packages. The main objectives of the intercomparison were the ability of the programs to determine the peak areas and the peak area uncertainties, and the statistical control and stability of reported results. In this report, the task, methods and results of the intercomparison are presented in order to asist the potential users of such software and to stimulate the development of even better alpha-particle spectrum analysis software

  13. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described

  14. Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G0/G1 Phase Cells.

    Science.gov (United States)

    Nagasawa, Hatsumi; Lin, Yu-Fen; Kato, Takamitsu A; Brogan, John R; Shih, Hung-Ying; Kurimasa, Akihiro; Bedford, Joel S; Chen, Benjamin P C; Little, John B

    2017-02-01

    The catalytic subunit of DNA dependent protein kinase (DNA-PKcs) and its kinase activity are critical for mediation of non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB) in mammalian cells after gamma-ray irradiation. Additionally, DNA-PKcs phosphorylations at the T2609 cluster and the S2056 cluster also affect DSB repair and cellular sensitivity to gamma radiation. Previously we reported that phosphorylations within these two regions affect not only NHEJ but also homologous recombination repair (HRR) dependent DSB repair. In this study, we further examine phenotypic effects on cells bearing various combinations of mutations within either or both regions. Effects studied included cell killing as well as chromosomal aberration induction after 0.5-8 Gy gamma-ray irradiation delivered to synchronized cells during the G 0 /G 1 phase of the cell cycle. Blocking phosphorylation within the T2609 cluster was most critical regarding sensitization and depended on the number of available phosphorylation sites. It was also especially interesting that only one substitution of alanine in each of the two clusters separately abolished the restoration of wild-type sensitivity by DNA-PKcs. Similar patterns were seen for induction of chromosomal aberrations, reflecting their connection to cell killing. To study possible change in coordination between HRR and NHEJ directed repair in these DNA-PKcs mutant cell lines, we compared the induction of sister chromatid exchanges (SCEs) by very low fluencies of alpha particles with mutant cells defective in the HRR pathway that is required for induction of SCEs. Levels of true SCEs induced by very low fluence of alpha-particle irradiation normally seen in wild-type cells were only slightly decreased in the S2056 cluster mutants, but were completely abolished in the T2609 cluster mutants and were indistinguishable from levels seen in HRR deficient cells. Again, a single substitution in the S2056 together with a single

  15. Laser scattering off of alpha particle cyclotron harmonic resonances: Annual performance report

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1988-01-01

    The active probing of burning plasmas to quantitatively determine high energy alpha particle characteristics is the main purpose of the laser and gyroton scattering program. Progress to date includes a systematic evaluation of homogeneous results, analytical study of alpha particle harmonic resonances, and investigations of finite size detection systems

  16. Creep tests of AISI 316 stainless steel irradiated by alpha particles of 28 MeV

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.

    1986-01-01

    He-embrittlement effect in AISI 316 SS type throught creep tests performed with annealed and cold worked thin specimens is analized. Measurements were carried out at 700 and 750 0 C, stress of 100 MPa in vacuum better than 10 -5 torr. The He-implantations were made with the cyclotron CV-28 IPEN-CNEN/SP. Using an alpha-particle beam of 28 MeV, with concentration of 26 appm. From the valves of rupture deformation, epsilon sub(R), and rupture time, t sub(R), it was verified that he had a great effect on the operational life and ductility of this material. (Author) [pt

  17. A study on alpha particles range in Cr-39

    International Nuclear Information System (INIS)

    Ibrahim, Z.A.; Talaat, T.M.; Abdel-Aziz, Kh.M.A.; El-Asser, M.R.

    2000-01-01

    Cr-39 plastic nuclear track detector has been used in range determination of alpha particles. A set of experiments was carried out for studying alpha energy and track diameter relationships. This work was done under the optimum conditions of Cr-39 etching in 6.25 N NaOH at 70 degree C for various etching times. Determination of alpha range in Cr-39 recorders was studied at different energy values using the over etched track profile technique. Data are discussed within the framework of track formation theory in plastic foils, comparison between experimental and theoretical values of alpha range is included

  18. Design of a preamplifier for an alpha particles spectrometer

    International Nuclear Information System (INIS)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R.

    2010-09-01

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  19. Study of substrate topographical effects on epithelial cell behavior using etched alpha-particle tracks on PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Poon, W.L.; Li, W.Y.; Cheung, T.; Cheng, S.H.; Yu, K.N.

    2008-01-01

    Micrometer-size pits on the surface of a polymer (polyallyldiglycol carbonate or PADC) substrate created by alpha-particle irradiation and subsequent chemical etching were used to study the topographical effects alone on cell behavior. Vinculin, the cell adhesion and membrane protrusion protein, was used as an indicator of cytoskeletonal reorganization on the substrate and localization of vinculin was used to demonstrate the presence of focal adhesions. In our experiments, vinculin expressed in epithelial HeLa cells cultured on PADC films with track-etch pits, but not in cells cultured on the raw or chemically etched blank films. In other words, vinculin expression was induced by the topography of track-etch pits, while etching of the substrate alone (without alpha-particle irradiation) did not cause up-regulation of vinculin protein expression. HeLa cells cultured on PADC films with track-etch pits also showed changes in cell proliferation, cell area and cell circularity, and were largely contained by the pits. In other words, the cell membrane edges tended to be in contact with the pits. By comparing the correlation between the positions of HeLa cells and the pits, and that between the positions of cells and computer-simulated pits, the tendency for membrane edges of HeLa cells to be in contact with the pits was recognized. This could be explained by inhibition of membrane protrusion at the pits. In conclusion, substrate track-etch pits were an important determinant of epithelial cell behaviors

  20. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  1. Refractometry characteristics of {alpha}-quartz after neutron irradiation; Refraktometrichaskie kharakteristiki {alpha}-kvartsa posle oblucheniya nejtronami

    Energy Technology Data Exchange (ETDEWEB)

    Abdkadyrova, I Kh [AN RU, Tashkent (Uzbekistan). Inst. Yadernoj Fiziki

    1997-02-01

    Lattice structure distortions in irradiated crystalline quartz were studied by refractometry methods. The refractometry constants of {alpha}-quartz for the flux of fast neutrons 10{sup 18} - 10{sup 21} neutron/cm{sup 2} were calculated. The critical kinetics of this constants at the phase transformation is observed.(author). 5 refs., 1 fig.

  2. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Huston, T.E.

    1992-01-01

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f 1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f 1 (z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The f l (z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  3. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    Mirea, M.

    1998-01-01

    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  4. Revisiting alpha decay-based near-light-speed particle propulsion

    International Nuclear Information System (INIS)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-01-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150 km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. - Highlights: • SRIM was used to study the alpha particle penetration depth and efficiency. • Correlation between thickness of decayable foil and propulsion force was established. • With the hypothesis of SAND, the travel time to Mars may be shortened to <20 days.

  5. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  6. Alpha self irradiation effects in nuclear borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, S.; Roudil, D.; Deschanels, X.; Jegou, C.; Broudic, V.; Bart, J.M.

    2004-01-01

    The properties of actinide glasses are studied in the context of high-level waste management programs. Reprocessing high burnup fuels in particular will increase the minor actinide content in the glass package, resulting in higher cumulative alpha decay doses in the glass, and raising the question of the glass matrix behavior and especially its containment properties. The effect of alpha self-irradiation on the glass behavior is evaluated by doping the glass with a short-lived actinide ( 244 Cm) to reach in several years the alpha dose received by the future glass packages over several thousand years. 'R7T7' borosilicate glasses were doped with 3 different curium contents (0.04, 0.4 and 1.2 wt% 244 CmO 2 ). The density and mechanical properties of the curium-doped glasses were characterized up to 2. 10 18 α/g, revealing only a slight evolution of the macroscopic behavior of R7T7 glass in this range. The leaching behavior of curium-doped glass was also studied by Soxhlet tests. The results do not show any significant evolution of the initial alteration rate with the alpha dose. (authors)

  7. Discrimination of alpha particles in CdZnTe detectors with coplanar grid for the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rebber, Henning [Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Collaboration: COBRA-Collaboration

    2016-07-01

    The aim of the COBRA experiment is the search for neutrinoless double beta decay using CdZnTe semiconductor detectors. A background rate in the order of 10{sup -3} counts per keV, kg and year is intended in order to be sensitive to a half-life larger than 10{sup 26} years. Measurements from a demonstrator setup and Monte Carlo simulations indicate that a large background component is due to alpha particles. These generate charge clouds of only few μm in diameter in the detector, leading to characteristic pulse features. Parameter-based cut criteria were developed to discriminate alpha events by means of their pulse shapes. The cuts were tested on data from alpha and beta irradiation of a (1 x 1 x 1) cm{sup 3} CdZnTe detector with coplanar grid. The pulse shapes of all event signals were read out by FADCs with a sampling rate of 100 MHz. The signals were reproduced by a detector simulation which hence was used to study the cuts for energies up to 3 MeV and different detector regions.

  8. Delayed changes in gene expression in human fibroblasts after alpha irradiation

    International Nuclear Information System (INIS)

    Salo, A.; Peraelae, M.; Mustonen, R.; Kadhim, M.; Marsden, S.; Sabatier, L.; Martins, L.

    2003-01-01

    endpoints with radiation-induced cancer. Gene expression changes in human fibroblast cells at delayed time points after alpha particle irradiation were studied. The aim was to identify genes playing pivotal role in inducing genomic instability. (orig.)

  9. Determination of 239Pu/240Pu isotopic ratio by high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Amoudry, F.; Burger, P.

    1983-05-01

    The development of passivated ion-implanted silicon detectors and of very thin alpha-particle sources improves the resolution of alpha-particle spectra and allows to separate energy pics up to now unseparate. The 239 Pu/ 240 Pu isotopic ratio of a mixture has been measured using the alpha spectrometry deconvolution code DEMO [fr

  10. Intrinsic efficiency of LR-115 in alpha particles detection: simulations and experiments

    International Nuclear Information System (INIS)

    Aharmim, B.; Sabir, A.; Marah, H.

    2002-01-01

    A numerical simulation is developed to characterize the response of the cellulose nitrate detector ''LR-115 type II'' to alpha particles of different incidence angles and energies. It permits to know whether an alpha particle at a given energy and direction is able to produce a visible etched track or not. For this purpose, a V t -variable track etch rate model is used. We have considered that the track etch rate is a function of the ionization rate and the defect created by delta rays along the alpha particle trajectory. Validation of the model is presented in the form of comparisons between theoretically computed values of the sensitive energy range and the track diameters and experimentally determined ones

  11. Alpha Particles Induce Autophagy in Multiple Myeloma Cells.

    Science.gov (United States)

    Gorin, Jean-Baptiste; Gouard, Sébastien; Ménager, Jérémie; Morgenstern, Alfred; Bruchertseifer, Frank; Faivre-Chauvet, Alain; Guilloux, Yannick; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2015-01-01

    Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.

  12. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  13. Inhibition of cyclobutane pyrimidine dimer formation in epidermal p53 gene of UV-irradiated mice by alpha-tocopherol

    International Nuclear Information System (INIS)

    Chen, W.; Barthelman, M.; Martinez, J.; Alberts, D.; Gensler, H.L.

    1997-01-01

    Mutations or alterations in the p53 gene have been observed in 50-100% of ultraviolet light (UV)-induced squamous cell carcinoma in humans and animals. Most of the mutations occurred at dipyrimidine sequences, suggesting that pyrimidine dimers in the p53 gene play a role in the pathogenesis of cutaneous squamous cell carcinoma. We previously showed that topical alpha-tocopherol prevents UV-induced skin carcinogenesis in the mouse. In the present study we asked whether topical alpha-tocopherol reduces the level of UV-induced cyclobutane pyrimidine dimers in the murine epidermal p53 gene. Mice received six dorsal applications of 25 mg each of alpha-tocopherol, on alternate days, before exposure to 500 J/m2 of UV-B irradiation. Mice were killed at selected times after irradiation. The level of dimers in the epidermal p53 gene was measured using the T4 endonuclease V assay with quantitative Southern hybridization. Topical alpha-tocopherol caused a 55% reduction in the formation of cyclobutane pyrimidine dimers in the epidermal p53 gene. The rate of reduction of pyrimidine dimers between 1 and 10 hours after irradiation was similar in UV-irradiated mice, regardless of alpha-tocopherol treatment. Therefore, the lower level of cyclobutane pyrimidine dimers in UV-irradiated mice treated with alpha-tocopherol than in control UV-irradiated mice resulted from the prevention of formation of the dimers, and not from enhanced repair of these lesions. Our results indicate that alpha-tocopherol acts as an effective sunscreen in vivo, preventing the formation of premutagenic DNA lesions in a gene known to be important in skin carcinogenesis

  14. Relative biological effectiveness (RBE) of alpha radiation in cultured porcine aortic endothelial cells.

    Science.gov (United States)

    Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda

    2007-03-01

    Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.

  15. Characterization of the microporous HDPE film with alpha alumina

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2010-01-01

    The effects of the addition of the alpha alumina on the properties of the microporous high density polyethylene (HDPE) films were investigated. The particle size and the specific surface area of alpha alumina were 400 nm and 7.3 m 2 g -1 . The HDPE and the alpha alumina were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in oven 120 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume of the microporous HDPE films was increased with an increasing content of the alpha alumina. The mechanical characteristics of the microporous HDPE films were increased with a content of alpha alumina up to 15%, but decreased at 20%. The electrochemical stability of the microporous HDPE film containing alpha alumia was increased with an increased irradiation dose up ti 50 kGy

  16. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  17. In vitro study of the influence of alpha particles irradiation on the pre-neoplastic transformation of rat trachea epithelial cells

    International Nuclear Information System (INIS)

    Kugel, C.

    2001-12-01

    Intern contamination by actinide oxide inhalation is potentially one health hazard during the nuclear fuel fabrication process. The aerosol particles can induce pulmonary lesions, such as epithelial cancers in particular. Their toxicity is mainly due to radiotoxicity of α irradiation. The aim of this work was to contribute, by an in vitro model, to the study of the apparition of pre-neoplastic states on epithelial cells after high LET irradiation. Primary cultures of rat tracheal epithelial cells were used. Two rat strain cells, SD TR for Sprague Dawley rats and WF TR for Wistar Furth I Fischer F344 rats, were compared after exposure to a dose range from 0 to 5 Gy. Reproductive cell death, i.e. senescent death, seems to be the main lethal way induced by α and γ irradiations. The nuclear volume of WF TR cells is higher than that of SD TR ones, explaining the higher α radiation-induced lethality of these cells. These WF TR cells are also much sensitive to dose rate and α particles energy. In the same manner, pre-neoplastic transformation rate of the cells seems to depend on the physical parameters of irradiation. But, it mainly varies as a function of cell radiosensitivity, that means cell death. In fact, the transformation rate of sensitive WF TR cells is lower than that of SD TR ones. In term of transformation for SD TR cells, dose-effect relationship fits to a linear and infra linear function after α irradiation, whereas the curve fits to linear and quadratic function after γ irradiation. The Relative Biological Efficiency (RBE) of α particles for lethality and pre-neoplastic transformation were determined for several levels of dose. A constant value of about 3 was found for RBE of lethality whatever the α dose. By contrast, the RBE of transformation has a value of about 10 up to 0.5 Gy and gradually decreases at higher doses to reach a value of 1 at 5 Gy. Similar shapes of dose-effect relationship can be observed for malignant lung tumour induction after

  18. Reduction of irradiation off-odor and lipid oxidation in ground beef by {alpha}-tocopherol addition and the use of a charcoal pack

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S.H. [Busan Regional Food and Drug Administration, Busan 608-829 (Korea, Republic of); Jang, A. [National Institute of Animal Science, RDA, Suwon 441-706 (Korea, Republic of); Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.K. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Song, H.P. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.H. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Lee, M. [Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-02-15

    A combination of a charcoal pack during irradiation and {alpha}-tocopherol addition into ground beef was applied to eliminate an irradiation characteristic off-odor and to retard the lipid oxidation caused by the irradiation process. Ground beef was mixed with 200 ppm {alpha}-tocopherol and gamma irradiated with 0, 5, and 10 kGy with or without a charcoal pack present during the irradiation treatment. The pH of the control group was lower than that of {alpha}-tocopherol and charcoal pack treatment initially but increased rapidly and showed higher pH at day 7. Addition of {alpha}-tocopherol with or without charcoal pack addition showed lower 2-thiobarbituric acid reactive substances values in irradiated ground beef at days 3 and 7 compared to those without addition. The color of ground beef was not significantly affected by the treatment. However, odor preference result showed that 10 kGy-irradiated ground beef with a combination of charcoal pack and {alpha}-tocopherol addition had higher scores than the control group regardless of irradiation. Solid-phase microextraction (SPME) gas chromatograph/mass spectrometry (GC/MS) analysis identified various volatile compounds that were created by irradiation of ground beef. These compounds were reduced or eliminated when a charcoal pack was used during the irradiation process. The results of the present study imply that combination of packaging with a charcoal pack during the irradiation process and addition of {alpha}-tocopherol into ground beef is a good method to effectively eliminate an irradiation off-odor and retard the lipid oxidation development in ground beef caused by irradiation.

  19. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  20. New technique for alpha particles detection

    International Nuclear Information System (INIS)

    Morsy, A.A.; Khattab, F.M.

    1998-01-01

    Man possesses no biological sensors of ionizing radiation as a consequence he must depend entirely on instrumentation for the detection and measurement of radiation. The recent discovery of the solid state nuclear track detection ( SSNTD ) techniques and its advantages over other dosimeters made them a useful tool for radiation dosimetry. This work is devoted to review and illustrate the application of SSNTD technique in some branches of science and technology specially the newly produced TASTRAK obtained from Track Analysis System Limited, Bristol, UK. The detector is successfully irradiated, chemically etched and calibrated for the aim of the Alpha radiation dosimetry

  1. Cryogenic Microcalorimeter System for Ultra-High Resolution Alpha-Particle Spectrometry

    Science.gov (United States)

    Croce, M. P.; Bacrania, M. K.; Hoover, A. S.; Rabin, M. W.; Hoteling, N. J.; LaMont, S. P.; Plionis, A. A.; Dry, D. E.; Ullom, J. N.; Bennett, D. A.; Horansky, R. D.; Kotsubo, V.; Cantor, R.

    2009-12-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ˜15-μK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis. This paper will discuss design and operation of our microcalorimeter alpha-particle spectrometer, and will show recent results.

  2. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  3. Effect of gamma irradiation dose on the fabrication of {alpha}-elastin nanoparticles by gamma-ray crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Mari; Takeda, Mayuko [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Okamoto, Kouji [Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Furuta, Masakazu, E-mail: mfuruta@b.s.osakafu-u.ac.j [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)

    2011-02-15

    Nanoparticles were prepared utilizing the thermosensitive aggregation of {alpha}-elastin and gamma-ray crosslinking. We investigated the effect of the {alpha}-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of {alpha}-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 {sup o}C/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  4. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet

    2015-10-01

    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  5. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    International Nuclear Information System (INIS)

    Bilski, P.; Marczewska, B.

    2017-01-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F_2 and F_3"+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  6. Alpha particles (citations from the International Aerospace Abstracts data base). Report for 1974-July 1979

    International Nuclear Information System (INIS)

    Mauk, S.C.

    1979-09-01

    This bibliography of citations to the international literature covers various aspects of alpha particles as applied to controlled fusion devices, solar activity, and geomagnetically trapped particles. Included are articles concerning Tokamak devices, plasma heating and control, plasma-particle interactions, solar particles, solar wind, solar flares, energy spectra, and magnetohydrodynamic stability. Articles concerning effects of alpha particles on different kinds of devices are also included

  7. Ballooning mode instability due to slowed-down ALPHA -particles and associated transport

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Tuda, Takashi; Tokuda, Shinji.

    1982-01-01

    The microscopic stability of tokamak plasma, which contains slowed-down alpha-particles and the anomalous fluxes enhanced by the fluctuation, was studied. The local maxwellian distribution with the density inhomogeneity as the equilibrium distribution of electrons, ions and alpha-particles was closen. In the zero-beta limit, two branches of eigenmodes, which are electrostatic, were obtained. The electrostatic ballooning mode became unstable by the grad B drift of particles in the toroidal plasma. It should be noted that there was no critical alpha-particle density and no critical beta-value for the onset of the instability in toroidal plasma even in the presence of the magnetic shear. When the beta-value exceeded the critical beta-value of the MHD ballooning mode, the growth rate approached to that of the MHD mode, and the mode sturcture became very close to that of the MHD mode. The unstable mode in toroidal plasma was the ballooning mode, and was unstable for all plasma parameters. The associated cross-field transport by the ballooning mode is considered. It was found that if the distribution function was assumed to be the birth distribution, the loss rate was very slow and slower than the slowing down time. The effect of alpha-particles on the large scale MHD activity of plasma is discussed. (Kato, T.)

  8. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    Aguilar H, F.

    1981-01-01

    The uranium exploration method is based on the register of 222 Rn alpha particles; 222 Rn gas is generated in the chain 238 U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222 Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  9. Single particle inclusive spectra resulting from the collision of relativistic protons, deuterons, alpha particles, and carbon ions with nuclei

    International Nuclear Information System (INIS)

    Papp, J.

    1975-05-01

    The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)

  10. The effect of gamma irradiation on the formation of alpha-amylase isoenzymes in germinating wheat

    International Nuclear Information System (INIS)

    Machaiah, J.P.; Vakil, U.K.

    1979-01-01

    The biosynthesis of alpha-amylase during seedling growth commenced after a prolonged lag-period in wheat (cv. Vijay), irradiated at a high dose (200 krad). Also, a different requirement for exogenous gibberellins (GA) to stimulate the enzyme synthesis was noted in control and irradiated seeds. Further, the developmental patterns of three major isoenzymes of alpha-amylase (designated as α 1 , α 2 - and α 3 ) during germination were different. It was observed that α 1 -isoenzyme which appeared on the fourth day of germination of control seeds, was delayed in its development and was undetectable up to 4 days in samples irradiated with 200 krad. However, α 1 -isoenzyme appeared after 6 days or after 4 days in GA-treated samples in germinating seeds exposed to a high dose. These results suggested that two systems differing in their radiosensitivity and response to GA application were operating in germinating wheat for the synthesis of functional alpha-amylase molecules. (author)

  11. Spark counting technique of alpha tracks on an aluminium oxide film

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1984-01-01

    We have tried to use aluminium oxide film as a neutron detector film with a spark counter for neutron monitoring in the mixed field of neutron and gamma-rays near a reactor. The merits of this method are that (1) aluminium oxide is good electric insulator, (2) any desired thickness of the film can be prepared, (3) chemical etching of the thin film can be dispensed with. The relation between spark counts and numbers of alpha-particles which entered the aluminium oxide film 1 μm thick was linear in the range of 10 5 -10 7 alpha-particles. The sensitivity(ratio of the spark counts to irradiated numbers of alpha-particles) was approximately 10 -3 . (author)

  12. Unstable structure of ribosomal particles synthesized in. gamma. -irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H; Morita, K [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-06-01

    Stability of Escherichia coli ribosomes newly synthesized after ..gamma..-irradiation was compared with that of normal ribosomes. The ribosomal particles around 70-S synthesized in irradiated cells were more sensitive to digestion by pancreatic ribonuclease A. A larger number of the salt-unstable '50-S' precursor particles existed in the extract from irradiated cells than in the extract from unirradiated cells. These facts suggest that ribosomal particles, synthesized during an earlier stage in irradiated cells, maintain an incomplete structure even though they are not distinguishable from normal ribosomes by means of sucrose density-gradient centrifugation.

  13. Alpha particles, are they really a problem

    International Nuclear Information System (INIS)

    Waddell, J.M.

    1980-01-01

    Soft errors are nonrepetitive errors generated in systems employing dynamic Random Access Memories, and specially by alpha particles emitted by uranium on thorium occurring as impurities in the casings. Special attention was given to this problem by ITT Semiconductors, a 16 K dynamic range being considered. The results of these studies are given in this article [fr

  14. Self-absorption and self-scattering in emitter source of alpha particles

    International Nuclear Information System (INIS)

    Terini, R.A.

    1990-01-01

    This paper describes preliminary results on spectrometric analysis and activity measurements of alpha-emitting sources prepared by evaporation on mylar. The measurements were made with a Si surface barrier detector. By the analysis of the angular distribuition of the alpha particles emitted, it was possible to observe that the width of the spectrum low energy tail increases with the emission angle θ, due to the energy degradation in the source material, which affects the measured particles energy. The source activity was also measured from detection solid angles of approx. 10 -1 and aprox. 10 -3 Sr, as a function of θ. The absolute activity of the alpha source was determined and a discussion is present on the ideal conditions necessary for such measurements. (author) [pt

  15. On the acceleration of alpha particles in the fast solar wind

    International Nuclear Information System (INIS)

    Gomberoff, L.; Hernandez, R.

    1992-01-01

    Recently, Gomberoff and Elgueta (1991) showed that in a plasma composed of anisotropic protons and alpha particles drifting along an external magnetic field with a small velocity relative to the protons, strong left-hand polarized electromagnetic ion cyclotron waves can be generated. These waves can accelerate the alpha particles to velocities well in excess of the proton bulk velocity. Here the authors assume a more realistic model of the solar wind by considering a double-humped proton distribution. It is shown that the secondary proton beam has no important effects on the ion cyclotron waves for beam densities of the order of those observed in fast solar wind conditions. The fact that the alpha proton drift velocity is modulated by the Alfven velocity remains unexplained

  16. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  17. Energy response of detectors to alpha/beta particles and compatibility of the equivalent factors

    International Nuclear Information System (INIS)

    Lin Bingxing; Li Guangxian; Lin Lixiong

    2011-01-01

    By measuring detect efficiency and equivalent factors of alpha/beta radiation with different energies on three types of detectors, this paper compares compatibility of their equivalent factors and discusses applicability of detectors to measuring total alpha/beta radiation. The result shows the relationship between efficiency of alpha/beta radiation and their energies on 3 types of detectors, such as scintillation and proportional and semiconductor counters, are overall identical. Alpha count efficiency display exponential relation with alpha-particle energy. While beta count efficiency display logarithm relation with beta-particle energy, but the curves appears deflection at low energy. Comparison test of energy response also shows that alpha and beta equivalent factors of scintillation and proportional counters have a good compatibility, and alpha equivalent factors of the semiconductor counters are in good agreement with those of the above two types of counters, but beta equivalent factors have obvious difference, or equivalent factors of low energy beta-particle are lower than those of other detectors. So, the semiconductor counter can not be used for measuring total radioactivity or for the measurements for the purpose of food safety. (authors)

  18. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Ahmadov, G.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Jafarova, E.; Ahmadov, G.; Sadygov, Z.; Olshevski, A.; Zerrouk, F.; Mukhtarov, R.

    2015-01-01

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  19. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  20. Modeling of coated fuel particles irradiation behavior

    International Nuclear Information System (INIS)

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  1. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  2. Alpha-particle breakup at incident energies of 20 and 40 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, J.R.; Chang, C.C.; Holmgren, H.D.; Koontz, R.W.

    1979-01-01

    The breakup of alpha particles at incident energies of 20 and 40 MeV/nucleon on 27 Al, 58 Ni, 90 Zr, and 209 Bi has been studied. It was found that the breakup cross section decreases rapidly with increasing angles and increases with increasing target mass and incident energy. The total breakup yield, summed over all charged fragments, is approx.15--35% of the alpha-particle total reaction cross section, and has an approximate A/sup 1/3/ dependence. The ratios of breakup yields among different fragments are approximately p:d:t: 3 He approx. = 13:3:1:2, and are roughly independent of the incident energy and the target nucleus. These features suggest that the alpha-particle fragmentation is a peripheral process and is dominated by the properties of the incident projectile. A simple plane-wave alpha-particle breakup model gives a rather good description to the experimental data. In addition to the breakup deuteron peak at half of the beam energy, a second peak at quarter of the beam energy (or the same energy as the breakup proton peak) is observed. This peak might be due to a two-step breakup-pickup process

  3. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Candy Yuen Ping Ng

    2017-02-01

    Full Text Available Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf revealed through acridine orange (AO staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy and alpha-particle (4.4 mGy exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  4. Alpha-particle diagnostics for the D-T phase

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, S.W.; Bergsaker, H.; Coad, J.P.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); McCracken, G.M.; Pitts, R.A. (AEA Fusion, Culham (United Kingdom)); Zhu, J. (Sussex Univ., Brighton (United Kingdom))

    1991-01-01

    Diagnostics to examine the lost [alpha] particle flux at JET during the D-T phase are under development. A passive [sup 3]He collector probe has been tested during [sup 3]He NBI and RF heated discharges. [sup 3]He ions with energies of at least 100 keV have been detected; their source is probably due to the metastable component of the [sup 3]He NBI. A code has been developed to model the charged particle fluxes at the wall. (author) 5 refs., 4 figs.

  5. Immunological Enhancement of Interferon Alpha Treatment to Allogeneic Bone Marrow Transplantation in Irradiated Rats

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd El-Naby, Y.H.

    2011-01-01

    The Influence of the biological response modifiers: interferon alpha (IFN-α) and bone marrow transplantation (BMT) on stimulation of blood cell recovery and boosting the immunological response were investigated in this work. Male rats received BMT 3 h post total body ?-irradiation of 5 Gy and were injected with 10 units of IFN-α weekly for 5 weeks. Irradiation induced a significant decrease in blood parameters, reduced glutathione (GSH) as well as bone marrow lymphocyte count and viability. Immunological data revealed that tumour necrosis factor alpha (TNF-α) and interleukin-2 (IL-2) recorded a significant depression while lipid peroxidation (MDA) was conversely elevated. White blood cells (WBC), erythrocytes (RBC), haemoglobin (Hb), haematocrit (Hct), lymphocytes and GSH in irradiated animals receiving BMT and IFN-α, were significantly elevated, while MDA was significantly depressed as compared to the irradiated group. Bone marrow lymphocytic count and viability percentage were significantly increased while IL-2 and TNF-α were normalized. The curative action of IFN-α enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation. Such therapies boosting both components of immunity would be considered a potential strategy for irradiation treatment

  6. Expression of HIF-1{alpha} in irradiated tissue is altered by topical negative-pressure therapy

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Stange, S.; Labanaris, A.; Horch, R.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Plastic and Hand Surgery; Dimmler, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Pathology; Sauer, R.; Grabenbauer, G. [Erlangen-Nuernberg Univ. (Germany). Dept. of Radiation Oncology

    2007-03-15

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1{alpha} (hypoxia-inducible factor-1{alpha}), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1{alpha}-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1{alpha} expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1{alpha} concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue

  7. Alpha-particle and electron capture decay of 209Po

    International Nuclear Information System (INIS)

    Schima, F.J.; Colle, R.

    1996-01-01

    Gamma-ray and Kα X-ray emissions have been measured from a very pure 209 Po source containing less than 0.13% 208 Po activity and no detectable 210 Po (≤2 x 10 -4 %). The alpha-particle emission rate for this source has previously been determined. Data are presented that confirm alpha decay to the 205 Pb excited level at 262.8 keV, with an alpha-particle emission probability (±standard uncertainty) of 0.00559±0.00008. The ratio of K-shell electron capture to total electron capture for the second forbidden unique electron capture decay to the 896.6 keV level in 209 Bi was determined to be 0.594±0.018. The electron capture decay fraction was found to be 0.00454±0.00007, while the probabilities per decay for the 896.6, 262.8, and 260.5 keV gamma rays and the Bi Kα and Pb Kα X-rays were measured as 0.00445±0.00007, 0.00085±0.00002, 0.00254±0.00003, 0.00202±0.00005, and 0.00136±0.00005, respectively. (orig.)

  8. Factors affecting the energy resolution in alpha particle spectrometry with silicon diodes

    International Nuclear Information System (INIS)

    Camargo, Fabio de.

    2005-01-01

    In this work are presented the studies about the response of a multi-structure guard rings silicon diode for detection and spectrometry of alpha particles. This ion-implanted diode (Al/p + /n/n + /Al) was processed out of 300 μm thick, n type substrate with a resistivity of 3 kΩ·cm and an active area of 4 mm 2 . In order to use this diode as a detector, the bias voltage was applied on the n + side, the first guard ring was grounded and the electrical signals were readout from the p + side. These signals were directly sent to a tailor made preamplifier, based on the hybrid circuit A250 (Amptek), followed by a conventional nuclear electronic. The results obtained with this system for the direct detection of alpha particles from 241 Am showed an excellent response stability with a high detection efficiency (≅ 100 %). The performance of this diode for alpha particle spectrometry was studied and it was prioritized the influence of the polarization voltage, the electronic noise, the temperature and the source-diode distance on the energy resolution. The results showed that the major contribution for the deterioration of this parameter is due to the diode dead layer thickness (1 μm). However, even at room temperature, the energy resolution (FWHM = 18.8 keV) measured for the 5485.6 MeV alpha particles ( 241 Am) is comparable to those obtained with ordinary silicon barrier detectors frequently used for these particles spectrometry. (author)

  9. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  10. Establishment of the observing system for boron in steels by alpha-particle track etching method using JAERI reactor

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Shibata, Koji; Sawahata, Hiroyuki; Kawate, Minoru; Harasawa, Susumu

    2003-01-01

    Alpha-particle track etching (ATE) method is most effective in observing boron distribution in steels. Previously, in Japan, neutron irradiation for this method was carried out in the reactor at the Institute of Atomic Energy, Rikkyo University. This reactor, however, was shut down in 1999. Therefore, the establishment of a new system for ATE method has been required and experimental research was performed using the reactor at the Japan Atomic Energy Research Institute (JAERI). It was clarified that the irradiation equipment for medical treatment of the reactor JRR-4 was most suitable for ATE method. The specimen trestle for low radioactive exposure was newly-developed. ATE image obtained by 12h irradiation using this trestle showed a good quality similar to that obtained using Rikkyo's reactor and that obtained using the trestle of the old model. Using this new trestle, the amount of neutron which the worker suffers during the operation at the irradiation equipment decreases from 4μSv/h to 0-1 μSv/h compared with the trestle of the old model. The total amount of thermal neutron after 12 h irradiation was almost same as that under the recommended condition of the reactor at Rikkyo University, 6.5 x 10 14 n cm -2 . (author)

  11. Nanoparticle production by UV irradiation of combustion generated soot particles

    International Nuclear Information System (INIS)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-01-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm 2 with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process

  12. Alpha particle diagnostics using impurity pellet injection (invited)

    International Nuclear Information System (INIS)

    Fisher, R.K.; McChesney, J.M.; Howald, A.W.; Parks, P.B.; Snipes, J.A.; Terry, J.L.; Marmar, E.S.; Zweben, S.J.; Medley, S.S.

    1992-01-01

    We have proposed using impurity pellet injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma [R. K. Fisher et al., Fusion Technol. 13, 536 (1988)]. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction F ∞ 0 (E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the heliumlike ionization state, e.g., Li + ions, we can determine the incident alpha distribution dn He 2+ /dE from the measured energy distribution of neutral helium atoms dn He 0 /dE using dn He 0 /dE = dn He 2+ /dE·F ∞ 0 (E,Li + ). Initial experiments were performed on the Texas Experimental Tokamak (TEXT) in which we compared pellet penetration with our impurity pellet ablation model [P. B. Parks et al., Nucl. Fusion 28, 477 (1988)], and measured the spatial distribution of various ionization states in carbon pellet clouds [R. K. Fisher et al., Rev. Sci. Instrum. 61, 3196 (1990)]. Experiments have recently begun on the Tokamak Fusion Test Reactor (TFTR) with the goal of measuring the alpha particle energy distribution during D--T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3 He tail produced during ion cyclotron (ICH) minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  13. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population

    International Nuclear Information System (INIS)

    Roeske, John C; Stinchcomb, Thomas G

    2006-01-01

    Alpha-particle emitters are currently being considered for the treatment of micrometastatic disease. Based on in vitro studies, it has been speculated that only a few alpha-particle hits to the cell nucleus are considered lethal. However, such estimates do not consider the stochastic variations in the number of alpha-particle hits, energy deposited, or in the cell survival process itself. Using a tumour control probability (TCP) model for alpha-particle emitters, we derive an estimate of the average number of hits to the cell nucleus required to provide a high probability of eradicating a tumour cell population. In simulation studies, our results demonstrate that the average number of hits required to achieve a 90% TCP for 10 4 clonogenic cells ranges from 18 to 108. Those cells that have large cell nuclei, high radiosensitivities and alpha-particle emissions occurring primarily in the nuclei tended to require more hits. As the clinical implementation of alpha-particle emitters is considered, this type of analysis may be useful in interpreting clinical results and in designing treatment strategies to achieve a favourable therapeutic outcome. (note)

  14. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    Fu, G.Y.; Van Dam, J.W.

    1989-05-01

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω *α > ω A , where ω A is the shear-Alfven modal frequency and ω *α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  15. First evidence of collective alpha particle effect on TAE modes in the TFTR D-T experiment

    International Nuclear Information System (INIS)

    Wong, K.L.; Schmidt, G.; Batha, S.H.

    1995-08-01

    The alpha particle effect on the excitation of toroidal Alfven eigenmodes (TAE) was investigated in deuterium-tritium (d-t) plasmas in the Tokamak Fusion Test Reactor (TFTR). RF power was used to position the plasma near the instability threshold, and the alpha particle effect was inferred from the reduction of RF power threshold for TAE instability in d-t plasmas. Initial calculations indicate that the alpha particles contribute 10--30% of the total drive in a d-t plasma with 3 MW of peak fusion power

  16. Characterization of a alpha particle detector CR-39 exposed to a source of radium

    International Nuclear Information System (INIS)

    Maino, Leandro Marcondes

    2009-01-01

    In this project, the main goal is the characterization of a alpha particle detector CR-39 exposed to a source of radio. Three detectors were exposed to a source of radium and then chemically treated for different periods. This way, we could analyze these samples and collect the information needed to verify that at least one of the chemical attack, there has been a separation of the energies alpha particles incident with distinct peaks, thus characterizing the CR-39 as alpha spectrometer in the range 2.5 to 6.3 MeV . (author)

  17. Scattering of alpha particles from /sup 12/C and the /sup 12/C(. cap alpha. ,. gamma. )/sup 16/O stellar reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.; Becker, H.W.; Redder, A.; Rolfs, C.; Trautvetter, H.P.; Langanke, K.

    1987-04-06

    The elastic scattering of alpha particles from /sup 12/C has been investigated for 35 angles in the range theta/sub lab/ = 22/sup 0/ to 163/sup 0/ and for 51 energies at E/sub ..cap alpha../ = 1.0 to 6.6 MeV. The extracted phase shifts for l=0 to 6 partial waves have been parametrized in terms of the multilevel R-matrix formalism. Information on the deduced parameters of states in /sup 16/O is reported. The data reveal reduced ..cap alpha..-particle widths for the 6.92 and 7.12 MeV subthreshold states consistent with recent work. The implications for the stellar reaction rate of /sup 12/C(..cap alpha..,..gamma..)/sup 16/O are discussed.

  18. Alpha particle cluster states in (fp)-shell nuclei

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  19. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  20. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization

    International Nuclear Information System (INIS)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction 10 B(n,α) 7 Li, where the 10 B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author)

  1. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott A., E-mail: scott.ploger@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Hunn, John D.; Kehn, Jay S. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2014-05-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 × 10{sup 5} total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  2. Irradiation test OF-2: high-temperature irradiation behavior of LASL-made fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1977-10-01

    Three LASL-made, substoichiometric ZrC-coated particles with inert kernels, and two high-density molded graphite fuel rods that contained LASL-made, ZrC-coated fissile particles were irradiated in the Oak Ridge Research Reactor test OF-2. The severest test conditions were 8.36 x 10 21 nvt (E greater than 0.18 MeV) at 1350 0 C. The graphite matrix showed no effect of the irradiation. There was no interaction between the matrix and any of the particle coats. The loose ZrC coated particles with inert kernels showed no irradiation effects. The graded ZrC-C coats on the fissile particles were cracked. It is postulated that the cracking is associated with the low LTI deposition rate and is not related to the ZrC

  3. Determination of alpha particle detection efficiency of an imaging plate (IP) detector

    International Nuclear Information System (INIS)

    Rahman, N.M; Iida, Takao; Yamazawa, Hiromi; Moriizumi, Jun

    2006-01-01

    In order to determine the detection efficiency of the imaging plate (IP) detector, the true radioactivity of the alpha particles, which sampled in the collection media, should be known. The true radioactivity could be accurately predicted with the help of the reference alpha spectrometer measurement. The detection efficiency calculated for the IP was estimated with the theoretical curve and the experimental data. It is assumed that the air sample contained the decay products of both 222 Rn and 220 Rn series, the most significant sources of alpha particles. The present study estimated the detection efficiency of the IP as 39.3% with an uncertainty of 2.9 that is well enough to confirm the future use of the IP as a radiation detector. Experimental materials and methods are described. (S.Y.)

  4. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  5. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  6. {alpha}-particle induced reactions on yttrium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Kumar, B.B. [School of Studies in Physics, Vikram University, Ujjain-456010 (India); Rashid, M.H. [Variable Energy Cyclotron Center, 1/AF, Bidhan Nagar, Calcutta (India); Chintalapudi, S.N. [Inter-University Consortium for DAE Facilities, 3/LB, Bidhan Nagar, Calcutta (India)

    1997-05-01

    The stacked foil activation technique has been employed for the investigation of {alpha}-particle induced reactions on the target elements yttrium and terbium up to 50 MeV. Six excitation functions for the ({alpha},xn) type of reactions were studied using high-resolution HPGe {gamma}-ray spectroscopy. A comparison with Blann{close_quote}s geometric dependent hybrid model has been made using the initial exciton number n{sub 0}=4(4p0h) and n{sub 0}=5(5p0h). A broad general agreement is observed between the experimental results and theoretical predictions with an initial exciton number n{sub 0}=4(4p0h). {copyright} {ital 1997} {ital The American Physical Society}

  7. Alpha-Particle Gas-Pressure Sensor

    Science.gov (United States)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  8. Use of alpha-particle excited x-rays to measure the thickness of thin films containing low-Z elements

    International Nuclear Information System (INIS)

    Hanser, F.A.; Sellers, B.; Ziegler, C.A.

    1976-01-01

    The thickness of thin surface films containing low Z elements can be determined by measuring the K X-ray yields from alpha particle excitation. The samples are irradiated in a helium atmosphere by a 5 mCi polonium-210 source, and the low energy X-rays detected by a flow counter with a thin-stretched polypropylene window. The flow counter output is pulse height sorted by a single channel analyzer (SCA) and counted to give the X-ray yield. Best results have been obtained with Z = 6 to 9 (C, N, O, and F), but usable yields are obtained even for Z = 13 or 14 (Al and Si). The low energy of the X-rays (0.28 to 1.74 keV) limits the method to films of several hundred nm thickness or less and to situations where the substrate does not produce interfering X-rays. It is possible to determine the film thickness with 50 percent accuracy by direct calculation using the measured alpha-particle spectrum and known or calculated K X-ray excitation cross sections. By calibration with known standards the accuracy can be increased substantially. The system has thus far been applied to SiO 2 on Si, Al 2 O 3 on Al, and CH 2 on Al

  9. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  10. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang; Mulligan, Padhraic [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wang, Jinghui [Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94305 (United States); Chuirazzi, William [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2017-03-21

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current–voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a {sup 241}Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 µm at −550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field. - Highlights: • An alpha-particle detector based on a Schottky-structured GaN wafer was tested. • The detector's large depletion depth enables fuller energy spectra to be obtained. • The best resolution yet attained in GaN alpha-particle spectrometry was achieved. • The detector's short carrier transit time resulted in improved charge collection. • This detector is usable in extreme conditions, including intense radiation fields.

  11. Use of studies with laboratory animals to assess the potential early health effects of combined internal alpha and beta irradiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Hahn, F.F.; Guilmette, R.A.; Muggenburg, B.A.; Snipes, M.B.; Boecker, B.B.; McClellan, R.O.

    1986-01-01

    The potential health impacts of radionuclides released in nuclear accidents are of major concern to the public and to regulatory and other governmental agencies. One mode of potential exposure is by inhalation of airborne radionuclides, which could lead to combined internal irradiation by high (alpha) and low (beta) linear energy transfer (LET) radiations. Epidemiological data for health effects of human inhalation exposure are too limited to derive reliable estimates of risks of potential health effects. However, results of studies in which beagle dogs were exposed by inhalation to insoluble radioactive aerosols can be used to estimate expected effects in humans. Data for mortality from radiation pneumonitis and pulmonary fibrosis caused by internal irradiation of dog lungs by alpha or beta radiations are used to derive the relative biological effectiveness (RBE) of alpha irradiation compared to beta irradiation; predict the expected combined effects of alpha and beta irradiation of dog lungs; and extrapolate the results to humans. The extrapolation to humans assumed that, for similar ages at exposure, dog and human lungs have similar sensitivities to lung irradiation. Results of theoretical calculations related to mortality from early effects indicated that the synergistic effects of high- and low-LET radiations should depend on the percentages of the total dose contributed by high- and low-LET radiations, and for very low or very high doses, synergistic effects should be negligible. 23 refs., 8 figs

  12. Standard Practice for Measurement of Mechanical Properties During Charged-Particle Irradiation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers the performance of mechanical tests on materials being irradiated with charged particles. These tests are designed to simulate or provide understanding of, or both, the mechanical behavior of materials during exposure to neutron irradiation. Practices are described that govern the test material, the particle beam, the experimental technique, and the damage calculations. Reference should be made to other ASTM standards, especially Practice E 521. Procedures are described that are applicable to creep and creep rupture tests made in tension and torsion test modes. 1.2 The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. The intent is to produce a correspondence between one or more aspects of the neutron and charged particle irradiations such that fundamental relationships are established between irradiation or material parameters and the material respons...

  13. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    2016-11-01

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.

  14. ALFITeX. A new code for the deconvolution of complex alpha-particle spectra

    International Nuclear Information System (INIS)

    Caro Marroyo, B.; Martin Sanchez, A.; Jurado Vargas, M.

    2013-01-01

    A new code for the deconvolution of complex alpha-particle spectra has been developed. The ALFITeX code is written in Visual Basic for Microsoft Office Excel 2010 spreadsheets, incorporating several features aimed at making it a fast, robust and useful tool with a user-friendly interface. The deconvolution procedure is based on the Levenberg-Marquardt algorithm, with the curve fitting the experimental data being the mathematical function formed by the convolution of a Gaussian with two left-handed exponentials in the low-energy-tail region. The code also includes the capability of fitting a possible constant background contribution. The application of the singular value decomposition method for matrix inversion permits the fit of any kind of alpha-particle spectra, even those presenting singularities or an ill-conditioned curvature matrix. ALFITeX has been checked with its application to the deconvolution and the calculation of the alpha-particle emission probabilities of 239 Pu, 241 Am and 235 U. (author)

  15. ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L

    2018-05-01

    In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Slowing down of alpha particles in ICF DT plasmas

    Science.gov (United States)

    He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo

    2018-01-01

    With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.

  17. Efficient alpha particle detection by CR-39 applying 50 Hz-HV electrochemical etching method

    International Nuclear Information System (INIS)

    Sohrabi, M.; Soltani, Z.

    2016-01-01

    Alpha particles can be detected by CR-39 by applying either chemical etching (CE), electrochemical etching (ECE), or combined pre-etching and ECE usually through a multi-step HF-HV ECE process at temperatures much higher than room temperature. By applying pre-etching, characteristics responses of fast-neutron-induced recoil tracks in CR-39 by HF-HV ECE versus KOH normality (N) have shown two high-sensitivity peaks around 5–6 and 15–16 N and a large-diameter peak with a minimum sensitivity around 10–11 N at 25°C. On the other hand, 50 Hz-HV ECE method recently advanced in our laboratory detects alpha particles with high efficiency and broad registration energy range with small ECE tracks in polycarbonate (PC) detectors. By taking advantage of the CR-39 sensitivity to alpha particles, efficacy of 50 Hz-HV ECE method and CR-39 exotic responses under different KOH normalities, detection characteristics of 0.8 MeV alpha particle tracks were studied in 500 μm CR-39 for different fluences, ECE duration and KOH normality. Alpha registration efficiency increased as ECE duration increased to 90 ± 2% after 6–8 h beyond which plateaus are reached. Alpha track density versus fluence is linear up to 10 6  tracks cm −2 . The efficiency and mean track diameter versus alpha fluence up to 10 6  alphas cm −2 decrease as the fluence increases. Background track density and minimum detection limit are linear functions of ECE duration and increase as normality increases. The CR-39 processed for the first time in this study by 50 Hz-HV ECE method proved to provide a simple, efficient and practical alpha detection method at room temperature. - Highlights: • Alpha particles of 0.8 MeV were detected in CR-39 by 50 Hz-HV ECE method. • Efficiency/track diameter was studied vs fluence and time for 3 KOH normality. • Background track density and minimum detection limit vs duration were studied. • A new simple, efficient and low-cost alpha detection method

  18. Alpha-methyl-homocysteine thiolactone protects lung of BALB/c mice irradiated with 6 Gy

    International Nuclear Information System (INIS)

    Lubec, G.; Tichatschek, E.; Foltinova, J.; Leplawy, T.; Mallinger, R.; Getoff, N.

    1996-01-01

    The radiation protective activity of intaperitoneally administered alpha-methyl-homocysteine thiolactone (α-MHCTL); 100 mg/kg body weight) in female BALB/c mice and such treated with cysteine treated (100 mg/kg body weight), using unirradiated and placebo treated irradiated mice were tested as controls. 6Gy whole body irradiated was applied and after a period of three weeks the animals were sacrificed and lungs were taken for morphometry and the determination of o-tyrosine. Septal areas were highest in the irradiated, placebo treated mice (68.67 + 9.82% septal area to total area) and lowest in the α-MHCTL treated irradiated mice (55.67 + 11.29%), significant at the p < 0.05 level. Morphometric data were accompanied by highest levels of o-tyrosine, a reliable parameter for OH-attack, in the irradiated, placebo treated group with 1.87 + 0.40 μM/g lung tissue and 0.32 + 0.13 μM/g lung tissue in the αMHCTL treated group; the statistical difference was significant. Significant radiation protection in the mammalian system at the morphological and biochemical level were found. The potent effect could be explained by the influence of alpha-alkylation in homocysteine thiolactone (HCTL) which renders amino acids unmetabolizeable, nontoxic, increases lipophilicity and therefore improving permeability through membranes. The present report confirms morphological data on the radiation protective activity of this interesting thiol compound. (Author)

  19. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  20. Dose response of alanine and methyl alanine towards gamma and in-situ alpha irradiation

    International Nuclear Information System (INIS)

    Mohapatra, M.; Rajeswari, B.; Bhide, M.K.; Rane, Vinayak; Kadam, R.M.

    2017-01-01

    In situ alpha and external gamma dose response of two ESR (electron spin resonance) dosimetric materials namely alanine and methyl alanine were investigated. It was observed that alanine dosimeter had a better dose response in comparison to methyl alanine for the in-situ alpha irradiation by using 239 Pu powder. On the other hand, in case of gamma radiation, methyl alanine was found to have the sensitivity as twice that of alanine. (author)

  1. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs

  2. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  3. Alpha efficiency under TL and OSL - A subtraction technique using OSL and TL to detect artificial irradiation

    International Nuclear Information System (INIS)

    Zink, A.J.C.; Dabis, S.; Porto, E.; Castaing, J.

    2010-01-01

    With the development of thermoluminescence (TL) and optically stimulated luminescence (OSL) to determine the authenticity of old ceramics, forgers use artificial irradiation by gamma ray to age modern productions. Besides fraudulent action, objects can be exposed to various sources of X-rays (e.g. radiography, security control at airports). For all these reasons, the determination of artificial irradiation is an important topic for dating art objects. The main technique to identify artificial irradiations is the subtraction technique. It is based on the fact that alpha efficiency varies according to the luminescence technique (fine grain, coarse grains, predose, OSL). Having observed a rather significant difference of alpha efficiency for TL and OSL, we propose a new subtraction technique using OSL and TL of fine grains.

  4. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  5. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  6. Ripple enhanced transport of suprathermal alpha particles

    International Nuclear Information System (INIS)

    Tani, K.; Takizuka, T.; Azumi, M.

    1986-01-01

    The ripple enhanced transport of suprathermal alpha particles has been studied by the newly developed Monte-Carlo code in which the motion of banana orbit in a toroidal field ripple is described by a mapping method. The existence of ripple-resonance diffusion has been confirmed numerically. We have developed another new code in which the radial displacement of banana orbit is given by the diffusion coefficients from the mapping code or the orbit following Monte-Carlo code. The ripple loss of α particles during slowing down has been estimated by the mapping model code as well as the diffusion model code. From the comparison of the results with those from the orbit-following Monte-Carlo code, it has been found that all of them agree very well. (author)

  7. Alpha Particles and X Rays Interact in Inducing DNA Damage in U2OS Cells.

    Science.gov (United States)

    Sollazzo, Alice; Brzozowska, Beata; Cheng, Lei; Lundholm, Lovisa; Haghdoost, Siamak; Scherthan, Harry; Wojcik, Andrzej

    2017-10-01

    Survivors of the atomic bombings of Hiroshima and Nagasaki are monitored for health effects within the Life Span Study (LSS). The LSS results represent the most important source of data about cancer effects from ionizing radiation exposure, which forms the foundation for the radiation protection system. One uncertainty connected to deriving universal risk factors from these results is related to the problem of mixed radiation qualities. The A-bomb explosions generated a mixed beam of the sparsely ionizing gamma radiation and densely ionizing neutrons. However, until now the possible interaction of the two radiation types of inducing biological effects has not been taken into consideration. The existence of such interaction would suggest that the application of risk factors derived from the LSS to predict cancer effects after pure gamma-ray irradiation (such as in the Fukushima prefecture) leads to an overestimation of risk. To analyze the possible interaction of radiation types, a mixed-beam exposure facility was constructed where cells can be exposed to sparsely ionizing X rays and densely ionizing alpha particles. U2OS cells were used, which are stably transfected with a plasmid coding for the DNA repair gene 53BP1 coupled to a gene coding for the green fluorescent protein (GFP). The induction and repair of DNA damage, which are known to be related to cancer induction, were analyzed. The results suggest that alpha particles and X rays interact, leading to cellular and possibly cancer effects, which cannot be accurately predicted based on assuming simple additivity of the individual mixed-beam components.

  8. Relative efficiency of the radiothermoluminescence induced by 238Pu alpha-particles in LiF:Mg, Al2O3 and CaSO4:Dy

    International Nuclear Information System (INIS)

    Vicy, Masok.

    1978-01-01

    This work represents a comparative study of the radiothermoluminescence (R.T.L.) induced by 60 Co gamma rays and 238 Pu alpha-particles in three R.T.L. materials: lithium fluoride, alumina and dysprosium activated calcium sulphate. The T.L. glow curves induced by the two radiations are very similar. However, for the same absorbed dose, different sensitivity is seen to each form of irradiation. Measurements of the relative R.T.L. efficiency, epsilon, were made in the linear zone (dose [fr

  9. Spot: a new Monte Carlo solver for fast alpha particles

    International Nuclear Information System (INIS)

    Schneider, M.; Eriksson, L.G.; Basiuk, V.; Imbeaux, F.

    2004-01-01

    The predictive transport code CRONOS has been augmented by an orbit following Monte Carlo code, SPOT (Simulation of Particle Orbits in a Tokamak). The SPOT code simulates the dynamics of nonthermal particles, and takes into account effects of finite orbit width and collisional transport of fast ions. Recent developments indicate that it might be difficult to avoid, at least transiently, current holes in a reactor. They occur already on existing tokamaks during advanced tokamak scenarios. The SPOT code has been used to study the alpha particle behaviour in the presence of current holes for both JET and ITER relevant parameters. (authors)

  10. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  11. Formation and evolution of ultrafine particles produced by radiolysis and photolysis

    International Nuclear Information System (INIS)

    Madelaine, G.J.; Perrin, M.L.; Renoux, A.

    1980-01-01

    Results are presented, concerning the formation, the size distribution, and the behavior of ultrafine particles produced by alpha disintegration of actinium and uv irradiation in filtered and natural atmospheric air. The characterization of these particles is obtained by electrical aerosol analyzer and diffusion battery method. Measurements are made in the range between 0.003 and 0.5 micrometer. Some qualitative indications are obtained on the different mechanisms which govern the evolution of ultrafine particles in the atmosphere (nucleation, coagulation, and condensation). It is now well established that the photo-oxydation of SO 2 in the atmosphere leads to the production of sulphuric acid and of sulphate, which are usually found in the form of submicronic particles. This paper concerns the evolution of ultrafine particles generated in the presence of a preexisting aerosol. They are either instantaneously produced by the alpha disintegrations of actinium 219 or continuously produced by the transformation of SO 2 under uv irradiation

  12. EPR and UV spectrometry investigation of sucrose irradiated with carbon particles

    International Nuclear Information System (INIS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2010-01-01

    Solid state/EPR (SS/EPR) dosimeters of carbon ions irradiated sucrose are studied with EPR, and their water solutions - with UV spectroscopy. Doses between 20 and 200 Gy are used with linear energy transfer (LET) values for carbon ions of 63, 77, 96 and 230 keV μm -1 . After irradiation all samples show typical for irradiated sucrose EPR and UV spectra. The obtained data are compared with those previously reported for nitrogen particles and gamma rays irradiated sucrose. The identical shape of both the EPR and UV spectra of irradiated with various type radiation samples suggests that generated free radicals are not influenced by the nature of radiation. The lack of difference in the line width of the separate lines or the whole EPR spectrum, obtained for gamma and heavy particles irradiation, suggests negligible spin-spin interaction among the radiation-generated free radicals in the samples. The linear dependence of the EPR response on the absorbed dose radiation is found to be higher when generated by gamma rays, than by the same absorbed dose of heavy particles. In addition, the EPR response for carbon ions is higher than that for nitrogen ions. Water solutions of irradiated sucrose exhibit UV spectrum with absorption maximum at 267 nm, attributed to the recombination products of free radicals. The UV band intensity depends on the absorbed dose radiation. The UV spectra obtained for carbon, nitrogen and gamma rays irradiated sucrose are also compared.

  13. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  14. The acute effects of alpha and beta irradiation of mouse skin and the factors affecting the response

    International Nuclear Information System (INIS)

    Needham, S.G.; Coggle, J.E.

    1991-01-01

    Several problems regarding acute effects of alpha and beta irradiation were investigated in order to clarify protection problems of localised doses to the skin. A study into the acute biological effects of different energy beta emitters and the effects of energy and area on the response showed direct relationships between these criteria for a range of different acute responses with different time courses. Three different types of acute response were found and these are described as 'moist desquamation', 'acute ulceration' and 'acute epidermal necrosis'. An unexpected finding was that the lower energy beta emitter 170 Tm was as efficient at inducing scab formation as the higher energy 90 Sr sources for the same area of exposure. Experiments using 2x4 cm 2 exposures to 224 Cm alpha particles showed that the response to this poorly penetrating radiation was minimal after doses as high as 180 Gy measured at 10 μm into the skin. In comparison, large area exposure to 170 Tm produced areas of prolonged scabbing after doses up to 100 Gy. However, the intensity of the reaction varied between strains. (author)

  15. Irradiation test HT-31: high-temperature irradiation behavior of LASL-made extruded fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; Davidson, K.V.; Schell, D.H.

    1977-04-01

    Three LASL-made extruded graphite and coated particle fuel rods have been irradiated in the Oak Ridge National Laboratory High Fluence Isotope Reactor test HT-31. Test conditions were about 9 x 10 21 nvt(E > .18 MeV) at 1250 0 C. The graphite matrix showed little or no effect of the irradiation. LASL-made ZrC containing coated particles with ZrC coats and ZrC-doped pyrolytic carbon coats showed no observable effects of the irradiation

  16. Evaluation through comet assay of DNA damage induced in human lymphocytes by alpha particles. Comparison with protons and Co-60 gamma rays

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Kreiner, A. J.; Schuff, J. A.; Vallerga, M. B.; Taja, M. R.; Lopez, F. O.; Alvarez, D. E.; Saint Martin, G.; Burton, A.; Debray, M. E.; Kesque, J. M.; Somacal, H.; Stoliar, P.; Valda, A.; Davidson, J.; Davidson, M.; Ozafran, M. J.; Vazquez, M. E.

    2004-01-01

    Several techniques with different sensitivity to single-strand breaks and/or double strand breaks were applied to detect DNA breaks generated by high LET particles. Tests that assess DNA damage in single cells might be the appropriate tool to estimate damage induced by particles, facilitating the assessment of heterogeneity of damage in a cell population. The microgel electrophoresis (comet) assay is a sensitive method for measuring DNA damage in single cells. The objective of this work was to evaluate the proficiency of comet assay to assess the effect of high LET radiation on peripheral blood lymphocytes, compared to protons and Co-60 gamma rays. Materials and methods: Irradiations of blood samples were performed at TANDAR laboratory (Argentina). Thin samples of human peripheral blood were irradiated with different doses (0-2.5 Gy) of 20.2 MeV helium-4 particles in the track segment mode, at nearly constant LET. Data obtained were compared with the effect induced by a MeV protons and Co-60 gamma rays. Alkaline comet assay was applied. Comets were quantified by the Olive tail moment. Distribution of the helium-4 particle and protons were evaluated considering Poisson distribution in lymphocyte nuclei. The mean dose per nucleus per particle result 0.053 Gy for protons and 0.178 Gy for helium-4 particles. When cells are exposed to a dose of 0.1 Gy, the hit probability model predicts that 43% of the nuclei should have experienced and alpha traversal while with protons, 85% of the nuclei should be hit. The experimental results show a biphasic response for helium-4 particles (0.1 Gy), indicating the existence of two subpopulations: unhit and hit. Distributions of tail moment as a function of fluence and experimental dose for comets induced by helium-4 particles, protons and Co-60 gamma rays were analyzed. With helium-4 irradiations, lymphocyte nuclei show an Olive tail moment distribution flattened to higher tail moments a dose increase. However, for irradiations with

  17. Measurement of kernel swelling and buffer densification in irradiated UCO-TRISO particles

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Gordon R., E-mail: bowegr@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Ploger, Scott A.; Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37830-6093 (United States)

    2017-04-01

    Radiation-induced volume changes in the fuel kernels and buffer layers of UCO-TRISO particles irradiated to an average burnup of 16.1% FIMA have been determined. Measurements of particle dimensions were made on polished cross-sections of 56 irradiated particles at several different polish planes. The data were then analyzed to compute the equivalent spherical diameters of the kernels and the various coating layers, and these were compared to the average as-fabricated values to determine changes due to irradiation. The kernel volume was found to have increased by an average of 26 ± 6%. Buffer volume decreased by an average of 39 ± 2% due to densification.

  18. Gas lantern mantle: a low activity alpha particle source

    International Nuclear Information System (INIS)

    Mukherjee, B.; Manzoor, S.

    1991-01-01

    Commercially available gas lantern mantles contain a substantial amount of radioactive ThO 2 . Gas lantern mantles purchased from a Sydney camping shop were incinerated, deposited as a thin layer on a aluminium planchette, and the emitted alpha spectrum was measured with a silicon surfacer barrier detector. The specific activity of the samples was estimated by high resolution gamma spectroscopy using a high purity germanium detector as well as CR-39 solid state nuclear track detectors. The micro-morphology of the incinerated powder was analysed by scanning electron microscopy. The depth dose and LET distribution of alpha particles in soft tissue were calculated from the energy spectrum. 12 refs., 2 tabs., 5 figs

  19. Single particle irradiation effect of digital signal processor

    International Nuclear Information System (INIS)

    Fan Si'an; Chen Kenan

    2010-01-01

    The single particle irradiation effect of high energy neutron on digital signal processor TMS320P25 in dynamic working condition has been studied. The influence of the single particle on the device has been explored through the acquired waveform and working current of TMS320P25. Analysis results, test data and test methods have also been presented. (authors)

  20. Destabilizing effect of alpha particles in a Maxwellian plasma

    International Nuclear Information System (INIS)

    Wang, M.Y.

    1976-01-01

    Various plasma waves which are possibly excited by MeV alphas have been investigated. For a delta birth distribution it is found that: a) The right-circularly polarized Alfven wave can be excited. Its growth rate is linearly proportional to the α-particle density. b) The drift Alfven wave is stable against α-particles. c) For a uniform temperature, the plasma wave spectrum changes from three branches with n/sub α/ = 0 to four branches for n/sub α/ not equal to 0 case. d) α-particles can destabilize the ion drift acoustic wave even with uniform temperature. However, the ion acoustic wave appears to be stable against fusion products in a fusion grade plasma. e) If their effect on the background plasma spectrum is neglected, α-particles can excite the electromagnetic cyclotron wave in a range of harmonics (band structure). The growth rate is proportional to the square root of α-particle density. f) If the effect of α-particle on the plasma spectrum is included, we find that electromagnetic cyclotron wave is stable

  1. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  2. Fetal dosimetry from natural alpha emitters

    Energy Technology Data Exchange (ETDEWEB)

    Purnell, S.J

    1999-09-01

    The size of marrow cavities in fetal vertebra, rib and sternum was investigated using an image analysis system. The average chord lengths through marrow spaces in the vertebrae were found to increase approximately linearly with gestational age from 140 {mu}m at 20 weeks to 300 {mu}m at 40 weeks. Average chord lengths through marrow spaces in fetal rib and sternum were 330 {mu}m at 35 weeks in both cases. These results can be compared with an average chord length across marrow spaces in adult vertebra of 1172 {mu}m. At natural background UK exposure, activity concentrations of supported {sup 210}Po in fetal bone of 0.075 Bq kg{sup -1} and 0.15 Bq kg{sup -1} at mid- and late gestation respectively were calculated. Monte Carlo simulations modelling the paths of alpha-particles in fetal vertebra gave a total alpha-radiation dose to marrow over the second and third trimesters of 32.0 {+-} 0.8 {mu}Sv with the {sup 210}Po in bone contributing 8.9 {+-} 0.9 {mu}Sv. The dose to primitive haemopoietic stem cells, the target cells for acute lymphoblastic leukaemia, and the survival of these stem cells following a hit by an alpha-particle was investigated, also using Monte Carlo simulations. Alpha-particles emitted from bone and marrow contributed an average dose of 1.9 Gy to stem cells with a nuclear diameter of 3.8 {mu}m. This study has estimated that 1% of babies born each year are born with a mutated primitive haemopoietic stem cell due to in utero irradiation from high LET radiation. That is 7,320 babies compared to an estimated 300 incidences of cALL each year initiated in utero. The probability that a mutated cell will go on to give rise to leukaemia is unknown but it would seem not unlikely that irradiation in utero plays a substantial part in the induction of childhood leukaemia. (author)

  3. Hazardous gas production by alpha particles in solid organic transuranic waste matrices. 1998 annual progress report

    International Nuclear Information System (INIS)

    LaVerne, J.A.

    1998-01-01

    'This project uses fundamental radiation chemical techniques to elucidate the basic processes occurring in the heavy-ion radiolysis of solid hydrocarbon matrices such as polymers and organic resins that are associated with many of the transuranic waste deposits or the transportation of these radionuclides. The environmental management of mixed waste containing transuranic radionuclides is difficult because these nuclides are alpha particle emitters and the energy deposited by the alpha particles causes chemical transformations in the matrices accompanying the waste. Most radiolysis programs focus on conventional radiation such as gamma rays, but the chemical changes induced by alpha particles and other heavy ions are typically very different and product yields can vary by more than an order of magnitude. The objective of this research is to measure the production of gases, especially molecular hydrogen, produced in the proton, helium ion, and carbon ion radiolysis of selected solid organic matrices in order to obtain fundamental mechanistic information on the radiolytic decomposition of these materials. This knowledge can also be used to directly give reasonable estimates of explosive or flammability hazards in the storage or transport of transuranic wastes in order to enhance the safety of DOE sites. This report summarizes the work after eight months of a three-year project on determining the production of hazardous gases in transuranic waste. The first stage of the project was to design and build an assembly to irradiate solid organic matrices using accelerated ion beams. It is necessary to measure absolute radiolytic yields, and simulate some of the conditions found in the field. A window assembly was constructed allowing the beam to pass consecutively through a collimator, a vacuum exit window and into the solid sample. The beam is stopped in the sample and the entire end of the assembly is a Faraday cup. Integration of the collected current, in conjunction

  4. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Aguado, J.L.; Bolivar, J.P.; Garcia-Tenorio, R.

    1999-01-01

    A radiochemical method for 226 Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to 226 Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks). (author)

  5. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  6. Production method of {alpha} particles; Une methode de production des particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, F [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    It is proposed a method to get an intense beam of {alpha} particles. With a source of ordinary ions, we form a helium beam, once ionized, it is accelerated with an energy of a few hundreds of keV. While crossing a matter any that can be a thin leaf or a gaseous blade, the second electron of helium is pulled with a yield that only depends on the energy of the beam of helium and that is equal to 1/2 for 650 keV. (author) [French] Il est propose une methode pour obtenir un faisceau intense de particules {alpha}. Avec une source d'ions ordinaire, on forme un faisceau d'helium une fois ionise qu'on accelere avec une energie de quelques centaines de keV. En traversant une matiere quelconque qui peut etre sous forme de feuille mince ou de lame gazeuse, le deuxieme electron de l'helium est arrache avec un rendement qui ne depend que de l'energie du faisceau d'helium et qui vaut 1/2 pour 650 keV. (auteur)

  7. Failure of the capsule for coated particles irradiation

    International Nuclear Information System (INIS)

    Yamaki, Jikei; Nomura, Yasushi; Nagamatsuya, Takaaki; Yamahara, Takeshi; Sakai, Haruyuki

    1975-10-01

    During operation cycle No. 27 of the JMTR (Japan Material Testing Reactor) on May 20, 1974, leakage of the fission product gas occurred from the capsule 72F-7A, which contained coated particles for the irradiation; the coated particles are for the development of a multi-purpose high temperature gas cooled reactor. The capsule was designed for heat 1600 0 C. Three nickel plates as the heat reflector were sandwiched in between the plates of titanium and zirconium, which were adsorbents for the impurity gases in the cladding tube (Nb-1%Zr). Temperatures of the plates were about 1000 0 C under the irradiation, so one metal diffused into the other metal through interfaces, resulting in the formation of an alloy. Its melting point was lower than those of metals in the capsule. The cladding material Nb-1%Zr was melted by the alloy and finally a pin hole developed through the cladding. The process of failure, design of the capsule, post-irradiation test of the capsule and the failure-reproducing experiment with a mock-up capsule are described. (auth.)

  8. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Rabin, Michael W.; Hoover, Andrew S.; Bacrania, Minesh K.; Croce, Mark P.; Hoteling, N.J.; Lamont, S.P.; Plionis, A.A.; Dry, D.E.; Ullom, J.N.; Bennett, D.A.; Horansky, R.; Kotsubo, V.; Cantor, R.

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ∼15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  9. Analysis of thick source alpha particle spectrum from radium and its daughters in bone

    International Nuclear Information System (INIS)

    Mausner, L.F.; Schlenker, R.A.

    1978-01-01

    The alpha particle energy spectrum of 226 Ra and its four alpha emitting daughters in an ashed, ground bone sample has been resolved into its components using a computerized spectrum stripping algorithm. These calculated results have been compared to direct measurements of the 226 Ra and 214 Po distributions obtained by alpha--gamma coincidence techniques. The ability of the calculation to deconvolute the total spectrum into its five alpha components implies that straightforward alpha counting may be used instead of the very low efficiency 226 Ra alpha--gamma coincidence method. From knowledge of the actual 226 Ra distribution, along with suitable detector energy and efficiency calibrations, one could determine endosteal cell dose rate empirically

  10. Fabrication, characterization and simulation of 4H-SiC Schottky diode alpha particle detectors for pyroprocessing actinide monitoring

    Science.gov (United States)

    Garcia, Timothy Richard

    Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the

  11. Temperature of loose coated particles in irradiation tests

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1975-04-01

    An analysis is presented of the temperature of a monolayer bed of loose High-Temperature Gas-Cooled Reactor (HTGR) type fissioning fuel particles in an annular cavity. Both conduction and radiant heat transfer are taken into account, and the effect of particle contact with the annular cavity surfaces is evaluated. Charts are included for the determination of the maximum surface temperature of the particle coating for any size particle or power generation rate in a fuel bed of this type. The charts are intended for the design and evaluation of irradiation experiments on loose beds of coated fuel particles of the type used in HTGRs. Included in an Appendix is a method for estimating the temperature of a particle in circular hole. (U.S.)

  12. Helium burning: a further measurement of the beta-delayed alpha-particle emission of 16 Na

    International Nuclear Information System (INIS)

    Gai, Moshe

    1997-01-01

    The 12 C (α,γ) 16 O is a key (but still unknown) reaction in helium burning. Several attempts to constrain the p-wave S-factor at Helium burning temperatures (200 M K) using the beta-delayed alpha-particle emission of 16 N have been made. However, some discrepancy exists between the spectra measured at Settle and that of TRIUMF. We have improved our previous study of the beta-delayed alpha-particle emission of 16 N by improving our statistical sample (by more than a factor of 5), improving the energy resolution of the experiment (by 20%), and in understanding our line shape, deduced from measured quantities. Our newly measured spectrum of the beta-delayed alpha-particle emission of 16 N is consistent with the Seattle ('95) data, as well as an earlier experiment performed at Mains ('71) and is not consistent with the TRIUMF ('94) data. (author)

  13. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  14. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, D.; Imme, G.; Catalano, R. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Catania, via S. Sofia, 64- 95123 Catania (Italy); Aranzulla, M. [Istituto Nazionale Geofisica e Vulcanologia - Sezione di Catania, piazza Roma, 2- 95127 Catania (Italy); Tazzer, A. L. Rosselli; Mangano, G. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy)

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  15. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  16. Performance evaluation of large U-Mo particle dispersed fuel irradiated in HANARO

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Oh, Seok Jin; Jang, Se Jung; Yu, Byung Ok; Lee, Choong Seong; Seo, Chul Gyo; Chae, Hee Taek; Kim, Chang Kyu

    2008-01-01

    U-Mo/Al dispersion fuel is being developed as advanced fuel for research reactors. Irradiation behavior of U-Mo/Al dispersion fuel has been studied to evaluate its fuel performance. One of the performance limiting factors is a chemical interaction between the U-Mo particle and the Al matrix because the thermal conductivity of fuel meat is decreased with the interaction layer growth. In order to overcome the interaction problem, large-sized U-Mo particles were fabricated by controlling the centrifugal atomization conditions. The fuel performance behavior of U-Mo/Al dispersion fuel was estimated by using empirical models formulated based on the microstructural analyses of the post-irradiation examination (PIE) on U-Mo/Al dispersion fuel irradiated in HANARO reactor. Temperature histories of U-Mo/Al dispersion fuel during irradiation tests were estimated by considering the effect of an interaction layer growth on the thermal conductivity of the fuel meat. When the fuel performances of the dispersion fuel rods containing U-Mo particles with various sizes were compared, fuel temperature was decreased as the average U-Mo particle size was increases. It was found that the dispersion of a larger U-Mo particle was effective for mitigating the thermal degradation which is associated with an interaction layer growth. (author)

  17. Influence of penetration controlled irradiation with charged particles on tobacco pollen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Dept. of Radiation Research for Environment and Resources; Tanaka, Atsushi; Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Advanced Science Research Center; Inoue, Masayoshi [Kyoto Prefectural Univ. (Japan). Faculty of Agriculture

    1997-09-01

    To investigate the effect of local irradiation on biological systems, an apparatus for penetration controlled irradiation with charged particles was set up. By comparison of ranges of 1.5 MeV/u He{sup 2+} between the theoretically calculated ranges and the practical ranges using RCD dosimeter, it was demonstrated that the range of particles could be controlled linearly by changing the distance from the beam window in the atmosphere to a target. In addition, the penetration controlled irradiation of tobacco pollen increased the frequency of `leaky pollen`. The increased frequency of the leaky pollen suggests that a damage in the pollen envelope would be induced at the range-end. (orig.)

  18. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Rao, A.V.; Chintalapudi, S.N. (Inter Univ. Consortium for Dept. of atomic Energy Facilities, Calcutta (India))

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of [sup 169]Tm([alpha],xn); x=1-4 and [sup 181]Ta([alpha],xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n[sub 0]=4(4pOh). A general agreement was found for all the reactions with this option. (author).

  19. Charge-exchange diagnostic of fusion alpha particles and ICRF driven minority ions in MeV energy range in JET plasma

    International Nuclear Information System (INIS)

    Izvozchikov, A.B.; Khudoleev, A.V.; Petrov, M.P.; Petrov, S.Ya.; Kozlovskij, S.S.; Corti, S.; Gondahalekar, A.

    1991-12-01

    An important concern in alpha particle heating physics is that fusion alpha particles will be lost before giving all their energy to heat the plasma. In other words, that the radial diffusion time of the alphas may be shorter than their slowing down time in the plasma core. Therefore radially resolved measurements of density and energy spectrum of slowing-down alphas confined in the plasma are high priority diagnostic objectives. In this report application of Charge Exchange Neutral Particle Analysis on Joint European Torus will be discussed. After a description of physical principles of the method a suitable Neutral Particle Analyzer (NPA) will be described in detail and estimates of measurement performance made for different plasma heating and confinement modes in JET. (author)

  20. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  1. Stability of zinc stearate under alpha irradiation in the manufacturing process of SFR nuclear fuels

    Science.gov (United States)

    Gracia, J.; Vermeulen, J.; Baux, D.; Sauvage, T.; Venault, L.; Audubert, F.; Colin, X.

    2018-03-01

    The manufacture of new fuels for sodium-cooled fast reactors (SFRs) will involve powders derived from recycling existing fuels in order to keep on producing electricity while saving natural resources and reducing the amount of waste produced by spent MOX fuels. Using recycled plutonium in this way will significantly increase the amount of 238Pu, a high energy alpha emitter, in the powders. The process of shaping powders by pressing requires the use of a solid lubricant, zinc stearate, to produce pellets with no defects compliant with the standards. The purpose of this study is to determine the impact of alpha radiolysis on this additive and its lubrication properties. Experiments were conducted on samples in contact with PuO2, as well as under external helium ion beam irradiation, in order to define the kinetics of radiolytic gas generation. The yield results relating to the formation of these gases (G0) show that the alpha radiation of plutonium can be simulated using external helium ion beam irradiation. The isotopic composition of plutonium has little impact on the yield. However, an increased yield was globally observed with increasing the mean linear energy transfer (LET). A radiolytic degradation process is proposed.

  2. The effect of ArF laser irradiation (193 nm) on the photodegradation and etching properties of alpha-irradiated CR-39 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Jooybari, B. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Ghergherehchi, M. [College of Information and Technology/ school of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Lamehi-Rachti, M. [Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-01-01

    The effects of ArF laser irradiation (λ=193nm) at various fluences (energy dose or energy density) on the etching properties of pre-exposed (laser + alpha) CR-39 detectors were studied. First, UV–Vis and Fourier transform infrared (FTIR) spectra were acquired for non-laser-irradiated and laser-irradiated samples to detect the influence of the ArF laser on the chemical modification of the CR-39. Changes observed in the spectra indicated that the predominant process that occurred upon ArF laser irradiation was a bond-scission process. Thereafter, the mean track and bulk etching parameters were experimentally measured in ArF-laser-irradiated CR-39 detectors exposed to an alpha source ({sup 241}Am, E = 5.49 MeV). Inhomogeneous regions in the laser-irradiated side of the CR-39 demonstrated a variable etching rate on only the front side of the CR-39 detector. New equations are also presented for the average bulk etching rate for these inhomogeneous regions (front side). The mean bulk and track etching rates and the mean track dimensions increased in a fluence range of 0–37.03 mJ/cm{sup 2} because of photodegradation and the scission of chemical bonds, which are the predominant processes in this range. When the fluence was increased from 37.03 to 123.45 mJ/cm{sup 2}, the bulk and track etching rates and the track dimensions slowly decreased because of the formation of cross-linked structures on the CR-39 surface. The behavior of the bulk and track etching rates and the track dimensions appears to be proportional to the dose absorbed on the detector surface. It was observed that as the etching time was increased, the bulk and track etching rates and the track dimensions of the laser-irradiated samples decreased because of the shallow penetration depth of the 193 nm laser and the reduction in the oxygen penetration depth.

  3. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R H

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  4. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  5. The inelastic scattering of medium energy {alpha} particles; Sur la diffusion inelastique des particules {alpha} a moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Crut, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z {<=} 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV {alpha} particles, and correlation data between inelastic {alpha} particles and deexcitation {gamma} rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [French] Le but de cette etude est de determiner les proprietes des niveaux dits 'anormalement excites' lors de la diffusion inelastique des particules chargees de moyenne energie sur des noyaux de masse moyenne et lourde. L'energie de ces niveaux est de l'ordre de 4 MeV pour les noyaux avec Z {<=} 29 et de 2 a 3 MeV pour les noyaux de Z plus eleve. De l'examen des courbes de distribution angulaire des particules {alpha} de 30 MeV diffusees elastiquement et inelastiquement, et de la correlation angulaire entre {alpha} excitant ces niveaux 'anormaux' et {gamma} de desexcitation, on deduit que, dans le cas des pair-pair, on peut attribuer a ces niveaux spin 3 et parite moins. Ceci renforce l'hypothese emise par Lane qui attribue ces niveaux a des oscillations octupolaires de la surface du noyau. On donne un apercu des theories utilisees dans l'analyse des resultats et une description des dispositifs experimentaux. (auteur)

  6. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  7. Study on Characteristic of CdZnTe Semiconductor Detectors for Alpha Particle Measurement

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Kim, Yong Kyun; Park, Se Hwan; Kim, Han Soo; Chung, Chong Eun

    2005-01-01

    The last 2-3 years have seen continued effort in the development of a wide band gap room-temperature compound semiconductor devices aimed principally at photon imaging covering hard X-rays, synchrotrons, and low to medium energy gamma rays. Especially, among the semiconductor materials of a wide band gap, CdZnTe(CZT) has commonly used X-ray and gammaray detection applications because of the opportunity to achieve and excellent spectral and spatial resolution. It has recently been demonstrated that CZT can be used as an ancillary detector with the ability to detect both alpha particles and X-ray at room temperature. CZT detectors are relatively inexpensive compared with some silicon detectors, and are priced about the same as amorphous silicon and photodiodes which are routinely used for charged particle detection. In this paper, we investigated the use of the CZT semiconductor material as an alpha particles detector

  8. Destabilization of low mode number Alfven modes in a tokamak by energetic or alpha particles

    International Nuclear Information System (INIS)

    Tsang, K.T.; Sigmar, D.J.; Whitson, J.C.

    1980-12-01

    With the inclusion of finite Larmor radius effects in the shear Alfven eigenmode equation, the continuous Alfven spectrum, which has been extensively discussed in ideal magnetohydrodynamics, is removed. Neutrally stable, discrete radial eigenmodes appear in the absence of sources of free energy and dissipation. Alpha (or energetic) particle toroidal drifts destabilize these modes, provided the particles are faster than the Alfven speed. Although the electron Landu resonance contributes to damping, a stability study of the parametric variation of the energy and the density scale length of the energetic particles shows that modes with low radial mode numbers remain unstable in most cases. Since the alpha particles are concentrated in the center of the plasma, this drift-type instability suggests anomalous helium ash diffusion. Indeed, it is shown that stochasticity of alpha orbits due to the overlapping of radially neighboring Alfven resonances is induced at low amplitudes, e/sub i//sup approx./phi/T/sub i/ greater than or equal to 0.05, implying a diffusion coefficient D/sub r//sup α/ greater than or equal to 4.4 x 10 3 cm 2 /s

  9. Development of detection method for individual environmental particles containing alpha radioactive nuclides

    International Nuclear Information System (INIS)

    Esaka, Konomi; Yasuda, Kenichiro; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Nakayama, Shinichi

    2006-01-01

    Artificial radioactive nuclides have been emitted from various sources and have fallen on the surface of the earth as fine particles. Although the characterization of the individual fallout particles is very important, their analysis is difficult. The purpose of this study is to develop a new detection method for individual objective particles containing radioactive nuclides in the environment. The soil or sediment sample was confined in a plastic film and the locations of objective particles were identified with alpha tracks created in a solid-state detectors (BARYOTRAK, Fukuvi Chemical, Ltd) stuck to the both sides of the plastic film. A piece of the film containing the objective particle was cut with a nitrogen laser for following individual particle analysis. This procedure allowed us to detect the objective particle from innumerable number of particles in the environment and characterize the individual particles. (author)

  10. Search for alpha particles emitted at rest in the break-up of the 12C-α-12C molecule-like configuration

    International Nuclear Information System (INIS)

    Scheurer, J.N.; Bertault, D.; Caussanel, M.; Quebert, J.L.; Fouan, J.P.

    1978-01-01

    A yield of alpha particles emitted at rest is clearly observed in 16 O+ 12 C at several incident energies. These alpha particles are detected by two methods: i) the alpha particle is considered as a missing mass in the detection of two 12 C nuclei in coincidence; ii) the alpha particle is detected at zero degree with a velocity due to centre of mass motion. Such a yield is assigned to a linear chain formation of the type 12 C-α- 12 C and an excitation function between 40 and 65 MeV is given. The emission due to Coulomb effects is emphasized in the discussion to give the chief explanation of the coincidence results

  11. Angular correlation between short-range. cap alpha. particles and. gamma. quanta

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chitskii, L A; Latyshev, G D; Bulyginskii, D G

    1949-01-01

    Chang (Phys. Rev. 69, 60(1946); 70, 632(1946)) has found that the intensities of short-range ..cap alpha.. rays of Po and Ra are considerably higher than the values given by the Geiger-Nuttall law. This can be explained by assuming surface vibrations of ..cap alpha..-radioactive nuclei, which produce deformations and corresponding lowerings of the potential barrier in certain directions. In this case an angular correlation should exist between the short-range ..cap alpha.. ray and the accompanying ..gamma.. quantum. The authors checked this conclusion by applying the coincidence method to the ..cap alpha.. and ..gamma.. radiations of a mixture of RdTh (/sup 228/Th) and ThC (/sup 212/Bi). Maxima of coincidence numbers occur at angles 45 and 135 deg., with lesser maxima at 0 and 180 deg. Theoretical considerations show that in cases (like the one investigated) where the nuclear spin before and after the ..cap alpha.. and ..gamma.. emissions is zero, the angular correlations are uniquely determined whatever the deformation caused by the vibration; in other cases, the correlation depends on the kind of deformation. Therefore, it would be interesting to investigate the case of Pa, whose nuclear spin is not zero and the decay exhibits intensive groups of short-range ..cap alpha.. particles.

  12. Effects of heavy particle irradiation on central nervous system

    International Nuclear Information System (INIS)

    Nojima, Kumie; Nakadai, Taeko; Khono, Yukio

    2006-01-01

    Effects of low dose heavy particle radiation to central nervous system were studied using human embryonal carcinoma (Ntera2=NT2) and Human neuroblastoma cell (NB1). They exposed to heavy ions and X ray 80% confluent cells in culture bottles. The cells were different type about growth and differentiation in the neuron. The apoptosis profile was measured by AnnexinV-EGFP, PI stained and fluorescence-activated cell sorter (FACS). Memory and learning function of adult mice were studied using water maze test after carbon- or iron-ion irradiation. Memory functions were rapidly decreased after irradiation both ions. Iron -ion group were recovered 20 weeks after irradiation C-ion group were recovered 25 weeks after irradiation. Tier memory were still keep at over 100 weeks after irradiation. (author)

  13. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  14. Alpha particle collective Thomson scattering in TFTR

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  15. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  16. A variational calculation of 12C in the alpha-particle model

    International Nuclear Information System (INIS)

    Portilho, O.

    1973-01-01

    Some physical properties of three structureless alpha particles interacting through two-body potentials were discussed. Comparison between them and the corresponding experimental observations for the 12 C nucleus is done. The wave function is expanded in terms of translationally invariant harmonic-oscillator states, the coefficients being variational parameters

  17. Fission product Pd-SiC interaction in irradiated coated particle fuels

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1980-04-01

    Silicon carbide is the main barrier to fission product release from coated particle fuels. Consequently, degradation of the SiC must be minimized. Electron microprobe analysis has identified that palladium causes corrosion of the SiC in irradiated coated particles. Further ceramographic and electron microprobe examinations on irradiated particles with kernels ranging in composition from UO 2 to UC 2 , including PuO/sub 2 -x/ and mixed (Th, Pu) oxides, and in enrichment from 0.7 to 93.0% 235 U revealed that temperature is the major factor affecting the penetration rate of SiC by Pd. The effects of kernel composition, Pd concentration, other fission products, and SiC properties are secondary

  18. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Science.gov (United States)

    Xu, Qiang; Mulligan, Padhraic; Wang, Jinghui; Chuirazzi, William; Cao, Lei

    2017-03-01

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current-voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 μm at -550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

  19. Technique for measuring the losses of alpha particles to the wall in TFTR

    International Nuclear Information System (INIS)

    England, A.C.

    1984-03-01

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is 10 B(α,n) 13 N, although 14 N(α,γ) 18 F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described

  20. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  1. Determination of alpha-Tocopherol (vitamin E) in irradiated garlic by high performance liquid chromatography (HPLC); Determinacao de alpha-tocoferol em alho irradiado utilizando cromatografia liquida de alta frequencia (CLAE)

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Magda Dias Goncalves; Penteado, Marilene de Vuono Camargo [Sao Paulo Univ., SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental]. E-mail: riosmagda@hotmail.com

    2003-02-01

    The effects of {sup 60}Co ionizing radiations in doses of 0, 75, 100, 150, 200 and 250Gy on garlic, upon the {alpha}-tocopherol concentration were studied. The {alpha}-tocopherol contents were established by high performance liquid chromatography (HPLC), after direct hexane extraction from the garlic samples. The {alpha}-tocopherol was determined through normal phase column, and mobile phase was composed by hexane: iso-propyl alcohol (99:01 v/v), with 2mL/min flow rate and fluorescence detector. It is statistically shown that an irradiation dose of up to 150 Gy does not affect the garlic {alpha}-tocopherol content. (author)

  2. The study by means of a photomultiplier of the scintillations produced by {alpha} particles striking a zinc sulphide screen; Etude, au photomultiplicateur, des scintillations produites par les particules {alpha} dans un ecran de sulfure de zinc. Application a la numeration precise des particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The object of the study is the accurate counting of {alpha} particles by p-m. detection of their scintillations upon impact with a zinc sulphide screen. The main advantage of the method is the extreme simplicity of the electronics used: the possibility of obtaining a utilizable pulse from the p-m. (EMI5311) without any amplification, and in linear response, is demonstrated. The scintillation produced by an impact on Zn-S has also been studied experimentally. The decrease of light intensity in relation to time may be interpreted by the exponential relation: I = I{sub 0} exp (-t / {tau}) whereby {tau} = (39 {+-} 0,1) 10{sup -6} s. The relation between scintillation intensity and remaining trajectory after travel through a given air-space has also been determined. Possible suitable applications of this method of {alpha} counting are those where good stability and low background are necessary. Results stated bear on air contamination studies, isotopic composition variation measurement of uranium, bismuth content measurement in alloys by irradiation of specimens in a thermal neutron flux and {alpha} count on the Po formed. (author) [French] Ce travail est consacre a l'etude de la numeration precise des particules {alpha} par detection au photomultiplicateur des scintillations produites par ces particules dans un ecran de sulfure de zinc. Le principal avantage de cette methode reside dans l'extreme simplicite de l'appareillage electronique; il est en effet montre qu'il est possible, tout en convoyant une reponse lineaire, d'obtenir du photomultiplicateur (EMI5311) un signal electrique utilisable sans aucune amplification. La scintillation produite par l'impact des particules {alpha} sur un ecran de Zn-S est etudiee experimentalement. La decroissance de l'intensite lumineuse en fonction du temps est interpretable par la relation exponentielle I = I{sub 0} exp (-t / {tau}) avec {tau} = (39 {+-} 0,1) 10{sup -6} s. La relation entre l'intensite de la scintillation et le

  3. Positron annihilation measurements in high-energy alpha-irradiated n-type gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sandip; Mandal, Arunava; SenGupta, Asmita [Visva-Bharati, Department of Physics, Santiniketan, West Bengal (India); Roychowdhury, Anirban [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal (India)

    2015-07-15

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τ{sub avg} = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ{sub 2} (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τ{sub avg} at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25-800 C resemble the behaviour of τ{sub avg} indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C. (orig.)

  4. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  5. K-shell X-ray production cross sections of Ni induced by protons, alpha-particles, and He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Bertol, A.P.L. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Hinrichs, R. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z., E-mail: marcos@if.ufrgs.br [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2015-11-15

    The proton, alpha-particle, and He{sup +} induced X-ray emissions of Ni were measured on mono-elemental thin films in order to obtain the K-shell X-ray production cross section in the energy range of 0.7–2.0 MeV for protons, 4.0–6.5 MeV for alpha-particles, and 3.0–4.0 MeV for He{sup +}. The proton-induced X-ray production cross section for Ni agreed well with the theoretical values, endorsing the quality of the measurements. The X-ray production cross section induced with alpha-particles is in good agreement with ECPSSR theory in the complete range of energies, while for He{sup +} that quantity is systematically below. K{sub β}/K{sub α} ratios were evaluated and compared with experimental and theoretical values.

  6. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  7. Particle velocity measurements in laser irradiated foils using ORVIS

    International Nuclear Information System (INIS)

    Sheffield, S.A.; Fisk, G.A.

    1983-01-01

    Aluminum foils from 2- to 200-μm thick have been subjected to a Nd:YAG laser pulse of low irradiance (10 9 W/cm 2 , approx. 10 ns pulse) to produce laser-driven shocks in the foils. The particle velocity history of the foil side opposite the laser deposition was monitored with nanosecond resolution by a velocity interferometer system called ORVIS. These histories indicate a shock reverberation process accelerates the foil. Peak foil velocities can be adequately calculated using a ricket propulsion model developed from experiments at much higher irradiances. A velocity of 1 km/s was developed in a 2-μm-thick free foil in a time of 50 ns. Water-confined foils attained peak particle velocities about three times higher than those of free foils

  8. Analysis of transuranic isotopes in irradiated U3Si2-Al fuel by alpha spectrometry

    International Nuclear Information System (INIS)

    Dian Anggraini; Aslina B Ginting; Arif Nugroho

    2011-01-01

    Separation and analysis of transuranic isotopes (uranium and plutonium) in irradiated U 3 Si 2 -Al plate has been done. The analysis experiment includes sample preparation (i.e. cutting, dissolving, filtering, dilution), fission products separation from heavy elements, and analysis of transuranic isotopes content with alpha spectrometer. The separation of transuranic isotopes (U, Pu) was done by two methods, i.e. direct method and ion exchanger method with zeolite. Measurement of standard transuranic isotope (AMR 43) and standard U 3 O 8 was done in advance in order to determine percentage of 235 U recovery and detector efficiency. Recovery of 235 U isotope was obtained as much as 92,58%, which fulfills validation requirement, and the detector efficiency was 0.314. Based on the measured recovery and detector efficiency, the separation was done by direct electrodeposition method of 250 µL irradiated U 3 Si 2 -Al solution. The deposited sample was subsequently analyzed with alpha spectrometer. The separation with ion exchanger was done by mixing and shaking of 300 µL irradiated U 3 Si 2 -Al solution and 0.5 gram zeolite to separate the liquid phase from the solid phase. The liquid phase was electrodeposited and analyzed with alpha spectrometer. The analysis of transuranic isotopes (U, Pu) by both methods shows different results. Heavy element ( 238 U, 236 U, 234 U, 239 Pu) content obtained by direct method was 0.0525 g/g and 235 U= 0.0076 g/g, while the separation using zeolite ion exchanger resulted in Heavy element = 0.0253 g/g and 235 U = 0.0092 g/g. (author)

  9. Self-absorption alpha particle factor in water: interest in the monitoring of specific military sites

    International Nuclear Information System (INIS)

    Cazoulat, A.; Lecompte, Y.; Bohand, S.; Gerasimo, P.

    2007-01-01

    Self-absorption alpha particle factor validation in water: Interest in the monitoring of specific military sites. The population internal intake prevention by radionuclides present in water needs to monitor the radioactive Level of this water. The French public health legislation introduces four radiological parameters for monitoring water, such as the gross alpha radioactivity. Regarding the alpha particle characteristics, a self-absorption factor has to be established beforehand, not to underestimate the real alpha radioactivity in water samples. The aim of this paper is to describe the procedure used by the laboratory of the French army radioprotection service to determine this f factor, which depends on the water residue mass m after evaporation. The relation is f = 0.0253 m + 1.2813. This formula can be employed for such waters used in this experiment and for masses between 0 and 100 mg. The uncertainty associated is about 11% (k = 2). Some water monitoring examples are given. It is specially the case of depleted uranium shells experiment centres, localized in Gramat and Bourges. (authors)

  10. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO2, hollandite, glass SON68)

    International Nuclear Information System (INIS)

    Suzuki, T.

    2007-06-01

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO 2 to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO 2 colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO 2 matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H 2 O 2 (product resulting from water radiolysis) increased the dissolution rate of UO 2 to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  11. Alpha radiation and in-pile annealing effects on the fracture properties of a sintered alumino borosilicate glass

    International Nuclear Information System (INIS)

    Bevilacqua, Arturo M.; Prado, Miguel O.; Messi de Bernasconi, Norma B.; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    The alpha radiation and the in-pile during irradiation effects on the hardness, the crack nucleation and the fracture toughness of the German alumino borosilicate glass SG7 were investigated by using the Vickers indentation. Cold pressed and sintered samples were irradiated with thermal neutrons, in the Argentine nuclear reactors RA-3 and RA-6, to produce alpha particles in the whole volume of the glass by means of the (n, alpha)-reaction with B-10. The Vickers hardness, the crack nucleation, as 50 percent fracture probability load, plotted as the Weibull's fracture probability distribution function and the fracture toughness, as critical stress intensity factor K Ic , were correlated to the four cumulative disintegration values. It was ascertained that: a) the Vickers hardness decreases from 5.6 GPa for the non-irradiated sample up to 4.7 GPa for the sample irradiated 70 h at the lower neutron flux (4.0 x 10 - sup 18 - alpha disintegration per cm - sup 3 -), b) the 50 % fracture probability load increases from 1.4 N for the non-irradiated sample up to 4.7 g for the sample irradiated 22 h at the higher flux (6.8 x 10 - sup 18 - alpha disintegration per cm - sup 3 -), and c) the stress intensity factor increases from 0.80 MPa.m - sup 1/2 - for the non irradiated sample up to 0.86 MPa.m - sup 1/2 - for the sample mentioned in b). The in-pile annealing was analyzed by comparing the crack nucleation after irradiation with data obtained by heavy ion irradiation followed by thermal annealing. Results for the SG7 glass were compared to those for soda-lime and borosilicate glasses. (author)

  12. Microdosimetry of monoclonal antibodies labeled with alpha emitters

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1986-01-01

    The recent discovery of new techniques for the production of monoclonal antibodies (MoAB) has opened up a number of potential new applications in cancer diagnosis and therapy. Monoclonal antibodies labeled with alpha-emitting radionuclides promise to be particularly effective therapeutic agents due to the efficient cell killing ability of highly ionizing, short-range alpha particle tracks localized at specific antigen sites within the tumor mass. For a radioimmunotherapy treatment plan to be effective, one must be able to estimate the absorbed radiation dose to both tumor cells and normal tissues in the body. However, conventional methods used in nuclear medicine for estimating absorbed doses and specific absorbed fractions for radiopharmaceuticals do not apply to alpha emitters owing to their short range and the large variations in the local distribution of energy at the cellular level that result. Microdosimetric techniques developed for assessment of the radiological effects of internally deposited transuranic radionuclides take into account the statistical aspects of alpha particle track structure, energy distribution patterns, and radionuclide distribution within tissues, and provide a means for determining the number and frequency of cells irradiated, the probability densities in specific energy, and the average dose delivered to cells of interest. These techniques can be applied to the study of radiation absorbed dose from alpha-labeled monoclonal antibodies. 16 references, 6 figures

  13. Initial damage in human interphase chromosomes from alpha particles with linear energy transfers relevant to radon exposure

    International Nuclear Information System (INIS)

    Loucas, B.D.; Geard, C.R.

    1994-01-01

    To determine the efficiency at which α particles at LETs chosen to simulate exposure to radon progeny break chromosomes, the premature chromosome condensation technique was used to measure breaks soon after irradiation. Noncycling human fibroblasts were irradiated with graded doses of monoenergetic α particles accelerated to produce LETs of 90, 120, 150, 180 and 200 keV/pm at the midpoint of the cell nuclei. Premature chromosome condensation was initiated immediately after irradiation and cells were scored for the total number of prematurely condensed chromosomes and fragments per cell. Similar experiments were conducted with 250 kVp X rays for comparison. Irradiation with α particles produced 8.6 to 13.1 excess fragments per gray, while X rays produced 5.8 excess fragments, resulting in RBEs around 2. Calculations of the number of breaks produced on average by a single particle traversal of a cell nucleus indicated that at the LETs tested more than one break was produced by each traversal, the maximum being that produced by 180 keV/μm α particles. When chromosome aberrations are scored at metaphase after high-LET irradiation, RBEs considerably greater than those recorded here have been reported. These results showing relatively small differences in initial break levels for α particles in the LET range of the radon progeny relative to X rays indicate that the great aberration frequencies are not due principally to an increase in breakage efficiency, but interactions between breaks along the same particle track are important. 16 refs., 4 figs

  14. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  15. Proposed neutral-beam diagnostics for fast confined alpha particles in a burning plasma

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Cooper, W.S.

    1986-10-01

    Diagnostic methods for fast confined alpha particles are essential for a burning plasma experiment. Several methods which use energetic neutral beams have been proposed. We review these methods and discuss system considerations for their implementation

  16. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques

    International Nuclear Information System (INIS)

    Kerns, J.A.

    1986-05-01

    We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1

  17. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  18. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  19. Anti-pp,. cap alpha cap alpha. and p. cap alpha. elastic scattering at high energies and Chou-Yang conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem; Rifique, M.

    1987-03-01

    The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.

  20. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  1. The investigation of the magnetic after-effect in iron-alpha after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Mensch, W.

    1986-01-01

    The present thesis investigates the magnetic after-effect for neutron irradiated, polycrystalline iron-alpha for the temperature range 10 to 400 K by means of susceptibility measurements. 24 maxima of magnetic after-effect are found, which are related to different classes of defects. (BHO)

  2. On transient irradiation behavior of HTGR fuel particles

    International Nuclear Information System (INIS)

    Mortenson, S.C.; Okrent, D.

    1977-01-01

    An examination of HTGR TRISO coated fuel particles was made in which the particles' stress-strain histories were determined during both steady-state and transient operating conditions. The basis for the examination was a modified version of a computer code written by Kaae which assumed spherical symmetry, isotropic thermal expansion, isotropic elastic constants, time-temperature-irradiation invariant materials properties, and steady state operation during particle exposure. Additionally, the Kaae code modelled potential separation of layers at the SiC-inner PyC interface and considered that several entrapped fission products could exist in either the gaseous or solid state, dependent upon particle operating conditions. Using the modified code which modelled transient behavior in a quasi-static fashion, a series of both steady-state and transient operating condition computer simulations was made. For the former set of runs, a candidate set of particle dimensions and a nominal set of materials' properties was assumed. Layer thicknesses were assumed to be normally distributed about the nominal thickenesses and a probability distribution of SiC tensile stresses was generated; sensitivity of the stress distribution to assumed standard deviation of the layer thicknesses was acute. Further, this series of steady-state runs demonstrated that for certain combinations of the assumed PyC-SiC bond interface strength and irradiation-induced creep constant, anomalous predicted stresses may be obtained in the PyC layers. The steady-state runs also suggest that transient behavior would most likely not be significant at fast neutron exposures below about 10 21 NVT due to both low fission gas pressure and likely beneficial interface separation

  3. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    2007-03-01

    Full Text Available Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature.Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy.The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  4. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    Science.gov (United States)

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  5. Induction of the lambda bacteriophage synthesis in Escherichia coli K 12 by polonium alpha rays; Induction de la synthese du bacteriophage lambda chez Escherichia coli K 12 par les rayons alpha du polonium

    Energy Technology Data Exchange (ETDEWEB)

    Devoret, Raymond

    1958-06-15

    This research thesis reports the study of the inducing action of polonium alpha radiations in Escherichia Coli K 12 by using an external irradiation device. This work comprised the development of a method to spread bacteria in layer with a thickness less than 20 microns, and the measurement of the number of α particles falling on the irradiated surface. This measurement has been performed by using a nuclear emulsion and a simple photographic film. It appears that alpha radiations have an inducing action, and that at most 15 per cent of bacteria can be induced. The comparison of the induction curve with the survival curves of lysogen and sensitive stains shows that there is no abortive induction. Thus, it appears that this inducing action is not due to an indirect effect of the irradiated medium [French] Dans ce travail on a etudie l'action inductrice des rayons alphas du polonium chez Escherichia Coli K 12 par un diapoaitif d'irradiation externe. Son utilisation necessitait: - une methode d'etalement des bacteries en couche de moins de 20 microns d'epaisseur; - une mesure du nombre des particules alpha tombant sur la surface etendue irradiee. Les mesures ont ete faites a l'aide d'une emulsion nucleaire et d'un film photographique ordinaire. 1) Les rayons alphas ont une action inductrice. Au plus 15 pc des bacteries peuvent etre induites. 2) La oomparaison de la courbe d'induction et des courbes de survie des souches lysogene et sensible montre qu'il n'y a pas d'inductions abortives. 3) Cette action inductrice n'est pas due a un effet indirect du milieu irradie. (auteur)

  6. GAMCAT - a personal computer database on alpha particles and gamma rays from radioactive decay

    International Nuclear Information System (INIS)

    Tepel, J.W.; Mueller, H.W.

    1990-01-01

    The GAMCAT database is a compilation of data describing the alpha particles and gamma rays that occur in the radioactive decay of all known nuclides, adapted for IBM Personal Computers and compatible systems. These compiled data have been previously published, and are now available as a compact database. Entries can be retrieved by defining the properties of the parent nuclei as well as alpha-particle and gamma-ray energies or any combination of these parameters. The system provides fast access to the data and has been completely written in C to run on an AT-compatible computer, with a hard disk and 640K of memory under DOS 2.11 or higher. GAMCAT is available from the Fachinformationszentrum Karlsruhe. (orig.)

  7. New concept for a wall detector for alpha particles

    International Nuclear Information System (INIS)

    Miley, G.H.; Kislev, H.; Micklich, B.J.

    1985-01-01

    A new concept for a wall-mounted detector is described here that would measure D-T alpha flux and corresponding pitch angle distribution in tokamaks (or related toroidal devices). The sensing element is a conical Micro Channel Ring (MCR) coated with 1 to 2μ of ZnS scintillator (or possibly ZnO). The collimation of the α particles is provided by two circumferential slots at the wall surface. The alpha scintillation events on the MCR are transferred through the ring channels and coupled fiber optics bundle to an external processor. From the magnetic field vector at a given point on the device wall, a certain relation can be set up between the α-induced scintillation position on the MCR and its original pitch angle (i.e., the angle between the α emission from the fusion reaction and the magnetic field vector) which is equal to the local pitch angle since the wall α flux is dominated by prompt losses

  8. Effects of heavy particle irradiation and diet on object recognition memory in rats

    Science.gov (United States)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  9. Investigation on the biological effects of pharynx irradiation by single-particle microbeam and C.elegans immobilization

    International Nuclear Information System (INIS)

    Guo Xiaoying; Yang Gen; Chen Lianyun; Wu Lijun; Li Buqing

    2010-01-01

    Using C.elegans- with clear genetic background, easy genetic maneuverability, small individual, transparence, easily penetrated by a variety of particle as a in vivo model organism, irradiation damage at the individual level of the signal transduction and the mechanism research were investigated. In order to radiate accurately, the worms need Immobilize. The results showed that the ether: ethanol = 1:1 mixture, enabled the worms quickly anesthesia, and kept the worms Immobilization in the whole irradiation process, then quickly recovered after irradiation and recovery rate of 100%. On the basis, the laved and the apoptotic cells in the distal gonad would be test when the worm pharynx were irradiated by single-particle microbeam. The primary results showed that the apoptotic cells in distal gonad significantly increased when the worm pharynx were irradiated 5000 particles. (authors)

  10. Induction of the lambda bacteriophage synthesis in Escherichia coli K 12 by polonium alpha rays

    International Nuclear Information System (INIS)

    Devoret, Raymond

    1958-06-01

    This research thesis reports the study of the inducing action of polonium alpha radiations in Escherichia Coli K 12 by using an external irradiation device. This work comprised the development of a method to spread bacteria in layer with a thickness less than 20 microns, and the measurement of the number of α particles falling on the irradiated surface. This measurement has been performed by using a nuclear emulsion and a simple photographic film. It appears that alpha radiations have an inducing action, and that at most 15 per cent of bacteria can be induced. The comparison of the induction curve with the survival curves of lysogen and sensitive stains shows that there is no abortive induction. Thus, it appears that this inducing action is not due to an indirect effect of the irradiated medium [fr

  11. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    Science.gov (United States)

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  12. Experimental study on the effects of recombinant adenoviral-mediated mI{kappa}B{alpha} gene combined with irradiation on the treatment of hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kejun, Zhang; Dechun, Li; Dongming, Zhu [The First Affiliated Hospital to Suzhou Univ., Suzhou (China); Caixia, Song

    2007-10-15

    Objective: To explore the effect of recombinant adenovirus vector mediated mutant I{kappa}B{alpha} (mI{kappa}B{alpha}) combined with radiation on the hepatocarcinoma. Methods: Limited dilution method was used to test the virus titer in 293 cells. The HCC9204 cells were infected with MOI 10,20,30 and 50 for 48 h, respectively. The expression of p65 and mI{kappa}B{alpha} protein was analyzed by Western blot. Transfected HCC9204 cells and controls were treated with 4 Gy {gamma} rays. The inhibition rate of HCC9204 cells was examined by MTT. Rat models of HCC9204 was constructed. AdmI{kappa}B{alpha} plasmids were injected into tumor tissue and the tumors were administered with 6 Gy {gamma} irradiation 48 hours later. Tumor growth at different time points was recorded during 28 days. Results: The titer of AdmI{kappa}B{alpha} is 1.252 x 10{sup 9} pfu/ml. The expression of mI{kappa}B{alpha} protein was increased with titer of AdmI{kappa}B{alpha}, and p65 protein began to decrease when MOI was 10, and reached the lowest when MOI was 50, they were all dose-dependent. The proliferation of HCC9204 cell lines were suppressed, as was more significant combined with radiation, and the effect was in a viral dose-dependent manner. From days 7 to 28 after AdmI{kappa}B{alpha} gene and radiotherapy, the tumor growth was significantly slower than after irradiation or gene therapy alone. Conclusions: Recombinant adenoviral-mediated mI{kappa}B{alpha} gene, combined with irradiation, can increase the cell-killing effect. It is better than that of either one alone. (authors)

  13. Alpha particle induced soft errors in NMOS RAMs: a review

    International Nuclear Information System (INIS)

    Carter, P.M.; Wilkins, B.R.

    1987-01-01

    The paper aims to explain the alpha particle induced soft error phenomenon using the NMOS dynamic random access memory (RAM) as a model. It discusses some of the many techniques experimented with by manufacturers to overcome the problem, and gives a review of the literature covering most aspects of soft errors in dynamic RAMs. Finally, the soft error performance of current dynamic RAM and static RAM products from several manufacturers are compared. (author)

  14. The alpha channeling effect

    Science.gov (United States)

    Fisch, N. J.

    2015-12-01

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  15. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  16. Characteristics and mechanisms of the bystander response in monolayer cell cultures exposed to very low fluences of alpha particles

    International Nuclear Information System (INIS)

    Little, John B.; Azzam, Edouard I.; Toledo, Sonia M. de; Nagasawa, Hatsumi

    2005-01-01

    When confluent cultures of mammalian cells are irradiated with very low fluences of alpha particles whereby only occasional cells receive any radiation exposure, genetic changes are observed in the non-irradiated ('bystander') cells. Upregulation of the p53 damage-response pathway as well as activation of proteins in the MAPK family occurred in bystander cells; p53 was phosphorylated on the serine 15 residue suggesting that the upregulation of p53 was a consequence of DNA damage. Damage signals were transmitted to bystander cells through gap junctions, as confirmed by the use of genetically manipulated cells including connexin43 knockouts. Expression of connexin43 was markedly enhanced by irradiation. A moderate bystander effect was observed for specific gene mutations and chromosomal aberrations. This effect was markedly enhanced in cells defective in the non-homologous end joining DNA repair pathway. Finally, an upregulation of oxidative metabolism occurred in bystander cells; the increased levels of reactive oxygen species appeared to be derived from flavine-containing oxidase enzymes. We hypothesize that genetic effects observed in non-irradiated bystander cells are a consequence of oxidative base damage; >90% of mutations in bystander cells were point mutations. When bystander cells cannot repair DNA double strand breaks, they become much more sensitive to the induction of chromosomal aberrations and mutations, the latter consisting primarily of deletion mutants. While we propose that the genetic effects occurring in bystander cells are a consequence of oxidative stress, the nature of the signal that initiates this process remains to be determined

  17. Effects of x-ray irradiation on the induction of. cap alpha. -amylase synthesis by gibberelic acid in the aleurone system of barley

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, H

    1974-01-01

    The influence of ionizing radiation on a system without DNA replication and cell division was investigated with the aid of GA/sub 3/-induced ..cap alpha..-amylase synthesis in aleurone cells of barley. The reaction of the system was determined by dose effect curves (after irradiation of one half of the endosperms in rest) for the synthesis and secretion of ..cap alpha..-amylase, protein, and reducing sugars. The system proves to be highly radiation-resistant. The course of the synthesis of ..cap alpha..-amylase after X-ray irradiation with varying doses during enzyme synthesis suggests that transcription occurs in the middle of the lag-phase and is the most sensitive stage in enzyme synthesis, while translation alone is less sensitive to radiation.

  18. A novel method for alpha dosimetry using peeled-off Gafchromic EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang-Ho; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    One can estimate dose imposed to film by measuring the optical density of film. EBT3 film has been used in dose measurement for photon, proton, and electron beams but not for alpha particles. Both sides of diacetylene monomer layer are covered with 100 μm-thick polyester coating layers, through which alpha particles even at several MeV cannot penetrate. A recent study demonstrated the use of EBT3 film in alpha dosimetry by peeling off one side of polyester coating layer. Their study did not inform the reliability of measurement using the peeled-off films. In this study, we evaluated the feasibility of EBT3 film as a substitute for conventional alpha dosimeters and checked the uncertainty of dose measurements obtained with peeled-off EBT3 films. We also applied this film dosimeter to measuring of the fluence distribution at cell targets in a culture dish set in the alpha irradiation chamber of the Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU). In this work, we confirmed the feasibility of using Gafchromic EBT3 films for alpha dosimetry. The peeled-off EBT3 films can make a convenient alpha dosimeter by carrying an uncertainty less than 9 %.

  19. Nuclear track radiography of 'hot' aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P

    1999-06-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the {alpha}-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and ({gamma},f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by {sup 235}U, {sup 239}Pu and {sup 241}Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10{sup -6} Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles00.

  20. Evaluation of charge coupled devices as alpha particle detectors

    International Nuclear Information System (INIS)

    Pace, R.; Haskard, M.; Watts, S.; Holmes-Siedle, A.; Solanky, M.

    1996-01-01

    The ability of the Charge Coupled Device (CCD) to provide spectroscopic and flux information for highly ionising radiation has been investigated. CCDs and related imaging chips are becoming increasingly affordable. In addition advances in technology are producing smaller and better devices. Since imaging chips are based on some variation of the pn-diode structure it is expected and known that they are sensitive to ionising radiation as well as light. Indeed specially designed CCDs are able to be used to image X-rays. This paper reports on the response of CCDs to alpha particles. (author)

  1. Dislocations and radiation damage in {alpha}-uranium; Dislocations et effets des radiations dans l'uranium {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Leteurtre, J [Commissariat a l' Energie Atomique, 92 - Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    Dislocations in {alpha}-uranium were studied by electron microscopy. Electropolishing of thin foils was performed at low temperature (-110 deg. C) to prevent oxidation. Burgers vectors of twins dislocations are defined. Interactions between slip and twinning are studied from both experimental and theoretical point of view. Samples irradiated at several burn-up were examined. In order to explain our micrographic results, and also all information gathered in literature about radiation damage in {alpha}-uranium, a coherent model is propound for the fission particles effects. We analyse the influences of parameters: temperature, dislocation density, impurity content. The number of point defects created by one initial fission is determined for pure and annealed metal. The importance of the self-anneal which occurs immediately in each displacement spike, and the anneal due to a new fission on the damage resulting from a previous fission, are estimated. The focussing distance in [100] direction is found to be about 1000 Angstrom, at 4 deg. K. (author) [French] Ce travail est une etude par microscopie electronique des dislocations induites dans l'uranium {alpha}, soit par deformation plastique, soit par irradiation. Une methode de preparation des lames minces a basse temperature (-110 deg. C) a ete mise au point. Les vecteurs de Burgers des diverses dislocations de macles de ce metal ont ete definis. Les interactions glissements- maclages sont etudiees experimentalement et theoriquement. Des echantillons irradies a divers taux de combustion ont ete examines. Pour expliquer nos resultats micrographiques, et aussi l'ensemble des informations recueillies dans la litterature concernant l'endommagement par irradiation de l'uranium-{alpha}, nous proposons un modele coherent de l'effet des fragments de fission dans ce metal. L'influence des parametres: temperature, densite de dislocations, impuretes est analysee. Le nombre de defauts ponctuels crees par une fission dans du metal

  2. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  3. Correlations between the alpha particles and ejectiles in the 208 MeV 14N on 93Nb reaction at three different ejectile angles

    International Nuclear Information System (INIS)

    Fukuda, T.; Ishihara, M.; Tanaka, M.; Ogata, H.; Miura, I.; Inoue, M.; Shimoda, T.; Katori, K.; Nakayama, S.

    1983-01-01

    The in plane correlations between alpha particles and various ejectiles were investigated in the reaction of 208 MeV 14 N on 93 Nb at theta/sub HI/ = +22 0 , +50 0 , and +80 0 . There were three sources of coincident alpha particles: (i) the sequential alpha decay of the excited ejectiles, (ii) the equilibrium alpha emission from the targetlike fragments, and (iii) the nonequilibrium process. Process (i) contributed mainly to the cross sections with the angular range of theta/sub α/ close to theta/sub HI/. Process (ii) contributed to the lowest part of the alpha energy spectra irrespectively of theta/sub HI/ and theta/sub α/. The remaining part was ascribed to process (iii). For this process the differential coincidence cross section of the lower energy part of the alpha particles was approximately factorized as d 4 sigma/dΩ/sub HI/dΩ/sub α/dE/sub HI/dE/sub α/ = K (d 2 sigma/dΩ/sub HI/dE/sub HI/)/sub singles/ (d 2 sigma/dΩ/sub α/dE/sub α/)/sub singles/ with Kapprox.0.4/b, whereas the higher energy part of the alpha particles emitted at the forward angles had a tendency to coincide weakly with the ejectiles emitted at the backward angles (theta/sub HI/ = +50 0 and +80 0 ) as compared to the lower energy part of the alpha particles

  4. Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.

    2014-01-01

    A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)

  5. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  6. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  7. Slowing down tail enhanced, neoclassical and classical alpha particle fluxes in tokamak reactors

    International Nuclear Information System (INIS)

    Catto, P.J.; Tessarotto, M.

    1988-01-01

    The classical and neoclassical particle and energy fluxes associated with a slowing down tail, alpha particle distribution function are evaluated for arbitrary aspect ratio ε -1 , cross section, and poloidal magnetic field. The retention of both electron and ion drag and pitch angle scattering by the background ions results in a large diffusive neoclassical heat flux in the plasma core. This flux remains substantial at larger radii only if the characteristic speed associated with pitch angle scattering, v/sub b/, is close enough to the alpha birth speed v 0 so that ε(v 0 /v/sub b/) 3 remains less than some order unity critical value which is not determined by the methods herein. The enhanced neoclassical losses would only have a serious impact on ignition if the critical value of ε(v 0 /v/sub b/) 3 is found to be somewhat larger than unity

  8. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  9. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    Science.gov (United States)

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  10. Studies of deep levels in He+-irradiated silicon

    International Nuclear Information System (INIS)

    Schmidt, D.C.; Barbot, J.F.; Blanchard, C.

    1997-01-01

    Deep levels created in n-epitaxial silicon by alpha particle irradiation in the dose range from 10 9 to 10 13 particles/cm 2 have been investigated by the deep level transient spectroscopy technique and capacitance-voltage profiling. Under low fluence irradiation at least four main electron traps have been observed. With further increase in irradiation fluence, two new levels located at E c -0.56 eV and E c -0.64 eV appear on the high-temperature side of the DLTS signal. The slope change observed in the amplitude variations of the singly negative charge state of the divacancy versus the dose takes place when these two new levels appear. This suggests that both are multivacancy-related defects. After annealing at 350 C for 15 min, all electron traps have disappeared. Moreover, no shallow levels are created during the annealing. (orig.)

  11. Mechanisms of irradiation growth of alpha-zirconium alloys

    International Nuclear Information System (INIS)

    Holt, R.A.

    1988-01-01

    Experimental observations in the last few years have shown that the range of irradiation growth behaviour of alpha-zirconium alloys is more varied, that a wider variety of sinks must be considered, and that there are more potential sources of anisotropy than was previously recognized. The important new experimental observations which influence our preception of the growth phenomenon in zirconium alloys include the growth of single crystals, accelerating growth in annealed material with the coincident appearance of vacancy loops on the basal planes, the occurrence of 'negative' growth, i.e., contractions along prism directions, the absence of a pronounced effect of grain size on the long term growth rate at low temperatures, and the presence of intergranular constraints prior to irradiation. With the greater complexity of behaviour now being observed, it is necessary to apply new theoretical concepts to assist in understanding growth, e.g., the potential role of anisotropic diffusion in segregation point defects to different sinks and 'growth' caused by the anisotropic relaxation of intergranular constrains. These can be combined with earlier ideas to predict a variety of growth behaviours, including 'negative growth'. Because the most important physical information required for theoretical treatments of growth, i.e, the characteristics of vacancies and self interstitial atoms, are still poorly understood, it is almost impossible to test rigorously any particular theoretical concept and a complete picture of growth has yet to emerge. (orig./MM)

  12. Role of charged particle irradiations in the study of radiation damage correlation

    International Nuclear Information System (INIS)

    Ishino, S.; Sekimura, N.

    1990-01-01

    Charged particle irradiations were originally expected to provide means to simulate the effect of neutron irradiations. However, it has been recognized that quantitative and sometimes even qualitative simulation of neutron radiation damage is difficult and the role of the charged particle irradiations has shifted to establishing fission-fusion correlation based on fundamental understanding of the radiation damage phenomena. The authors have been studying radiation effects in fusion materials using energetic ions from the latter standpoint. In this paper, the authors review recent results using a heavy-ion/electron microscope link facility together with sets of small heavy ion and light ion accelerators on cascade damage produced by energetic primary recoils and on the effect of helium on microstructural and microchemical evolution. Some of the other applications of the ion accelerators will also be mentioned. (orig.)

  13. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  14. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  15. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  16. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-d chord-based transport techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)

  17. Influence of storage period of gamma-irradiated seeds on the catalase activity and the sinthesis of alpha-amilase in maize

    International Nuclear Information System (INIS)

    Velichkov, D.; Antonov, M.; Spasov, S.

    1983-10-01

    It was established that irradiation of the maize hybrid Knezha 2L-611 seeds with the dose 5 Gy showed the most constant and the best expressed stimulation effect. The activity of catalase and synthesis of alpha-amylase showed that the most convenient time for sowing of seeds irradiated with 5 Gy was 2 days after the treatment

  18. Improvement of Electrical Conductivity of Single-Walled Carbon Nano tube Network Using Particle Irradiation

    International Nuclear Information System (INIS)

    Lim, Suntaek; Kim, Gonho

    2010-01-01

    Substitution for Indium Tin Oxide of transparent electrode Applications : Flat panel displays, Touch panel, Solar cell, EM wave shielding... For very low energy of 20 eV and 90 eV, argon ion irradiations, the surface of SWCNT bundles were sputtered and thinned the diameter of the bundle. With increasing the incident ion energy as 7.5 keV, SWCNT bundles were networked by amorphization of cross welded CNTs. → Less damage can be obtained from higher energy of irradiated particle due to less collision cross section. For 10 MeV proton and 800 keV electron irradiations, there are no severe damages. Electron irradiation is more effective on network with less damage than that of ion irradiation. → Network process can be proceeded with the generation of free carbon, the migration of free carbon on CNT and reconstruction of the cross linked CNTs, which processes require the latent energy on CNT body after collision. It can be controlled by the energy and dose of irradiation particle

  19. Calibration of the polycarbonate dosimeter for the microdosimetry of 239Pu alpha particles in bone

    International Nuclear Information System (INIS)

    Stillwagon, G.B.; Morgan, K.Z.

    1977-01-01

    There has been some criticisms of the maximum permissible organ burden (MPOB) in bone for 239 Pu in recent years. These criticisms allude to the relative dearth of experimental data available concerning the actual dose delivered to the endosteal face of osseous tissue by the 239 Pu alpha particle. A dosimeter recently developed has been recommended for application to this microdosimetry problem. The tissue equivalence of polycarbonate dosimeters would allow dose equivalent to be read directly from the foil rather than determining activity from emulsions, in which the alpha particle range is different than in tissue, then relating this activity measurement to absorbed dose by some calculations. Although this dosimeter has been calibrated to read dose equivalent for fast neutron dosimetry, the need exists to determine the factor to multiply by the number of 239 Pu alpha-induced tracks to obtain dose equivalent. This problem is being approached in the following manner. A device called the vacuum-sealed alpha-calibrator has been designed and constructed which will allow the handling of a standard 239 Pu solution obtained for this purpose. The calibrator will first be connected to surface barrier detectors which feed data into a multi-channel analyzer. The counts obtained under the alpha peaks at various heights above the source and the accumulated time are input into a computer program recently written to convert this data into dose rate in rems/unit time. Next the measurements are duplicated, this time using the polycarbonate dosimeter. The results will produce a factor relating the number of alpha-induced tracks to dose

  20. New developments in JET neutron, alpha particle and fuel mixture diagnostics with potential relevance to ITER

    International Nuclear Information System (INIS)

    Murari, A.; Bertalot, L.; Angelone, M.; Pillon, M.; Ericsson, G.; Conroy, S.; Kaellne, J.; Kiptily, V.; Popovichev, S.; Adams, J.M.; Stork, D.; Afanasyiev, V.; Mironov, M.; Bonheure, G.

    2005-01-01

    Some recent JET campaigns, with the introduction of trace amount (n T /n D 4 He, provided unique opportunities to test new diagnostic approaches and technologies for the detection of neutrons, alpha particles and fuel mixture. With regard to neutron detection, the recent activity covered all the most essential aspects: calibration and cross validation of the diagnostics, measurement of the spatial distribution of the neutrons, particle transport and finally neutron spectrometry. The first tests of some new neutron detection technologies were also undertaken successfully during the TTE campaign. To improve JET diagnostic capability in the field of alpha particles, a strong development program was devoted to the measurement of their slowing down and imaging with gamma ray spectroscopy. A new approach for the fusion community to measure the fast ion losses, based on the activation technique, was also successfully attempted for the first time on JET. A careful assessment of the NPA potential to determine the fuel mixture and the particle transport coefficients is under way. (author)

  1. Study on 16O in the alpha particle model using three-body forces

    International Nuclear Information System (INIS)

    Agrello, D.A.

    1979-01-01

    A study of the ground state of 16 O is made using an alpha particle model, all without internal structure, interacting through two-and three-body forces. Some nuclear properties of 16 O, such as binding energy and gaps, are also studied. (L.C.) [pt

  2. The effects of heavy particle irradiation on exploration and response to environmental change

    Science.gov (United States)

    Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.

    Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.

  3. Laser pulse heating of steel mixing with WC particles in a irradiated region

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  4. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  5. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO{sub 2}, hollandite, glass SON68); Effet de l'irradiation (alpha, gamma) sur l'alteration des matrices de dechets nucleaires de hautes activites (UO{sub 2}, hollandite, verre SON68)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T

    2007-06-15

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO{sub 2} to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO{sub 2} colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO{sub 2} matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H{sub 2}O{sub 2} (product resulting from water radiolysis) increased the dissolution rate of UO{sub 2} to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  6. Attempts of local irradiation of cells by microbeam. From ultraviolet to heavy particles

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko

    2002-01-01

    This review describes the history of attempts of local irradiation of cells by microbeam and present status of the study. Local irradiation of cells was attempted as early as in 1912 with use of short α-particle range and of focused UV beams. After the war, laser microbeams were then developed for microsurgery in embryology. In addition, microbeams of electron generated from the gun and of X-ray collimated were developed. In 1950s, the electron microbeam was generated from Van de Graaff accelerator in Chicago University and proton, deuteron and He-ion microbeams from the cyclotron, in BNL. In 1980s, Gesellschaft fuer Schwerionenforshung (Germany) used heavy ion microbeams from C to U generated from the linear accelerator and PNL, proton to 4 He-ion microbeams from the tandem-electrostatic accelerator. At present in 2002, the equipments for microbeam for cell irradiation are the Van de Graaff accelerators in Gray Cancer Institute (England) and in Columbia University, and the cyclotron in TIARA in Japan. The purpose of the study in TIARA is to develop a system to generate heavy particle microbeams for cell irradiation for analysis of the biological effect of ultra-low fluence, high LET heavy particles like the galactic cosmic ray. Recently, the CHO-KI cell nucleus is irradiated by 40 Ar and 20 Ne ions. (K.H.)

  7. Dislocations and radiation damage in {alpha}-uranium; Dislocations et effets des radiations dans l'uranium {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Leteurtre, J. [Commissariat a l' Energie Atomique, 92 - Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    Dislocations in {alpha}-uranium were studied by electron microscopy. Electropolishing of thin foils was performed at low temperature (-110 deg. C) to prevent oxidation. Burgers vectors of twins dislocations are defined. Interactions between slip and twinning are studied from both experimental and theoretical point of view. Samples irradiated at several burn-up were examined. In order to explain our micrographic results, and also all information gathered in literature about radiation damage in {alpha}-uranium, a coherent model is propound for the fission particles effects. We analyse the influences of parameters: temperature, dislocation density, impurity content. The number of point defects created by one initial fission is determined for pure and annealed metal. The importance of the self-anneal which occurs immediately in each displacement spike, and the anneal due to a new fission on the damage resulting from a previous fission, are estimated. The focussing distance in [100] direction is found to be about 1000 Angstrom, at 4 deg. K. (author) [French] Ce travail est une etude par microscopie electronique des dislocations induites dans l'uranium {alpha}, soit par deformation plastique, soit par irradiation. Une methode de preparation des lames minces a basse temperature (-110 deg. C) a ete mise au point. Les vecteurs de Burgers des diverses dislocations de macles de ce metal ont ete definis. Les interactions glissements- maclages sont etudiees experimentalement et theoriquement. Des echantillons irradies a divers taux de combustion ont ete examines. Pour expliquer nos resultats micrographiques, et aussi l'ensemble des informations recueillies dans la litterature concernant l'endommagement par irradiation de l'uranium-{alpha}, nous proposons un modele coherent de l'effet des fragments de fission dans ce metal. L'influence des parametres: temperature, densite de dislocations, impuretes est analysee. Le nombre de defauts ponctuels crees

  8. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  9. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    Dijk, J.H. van.

    1984-01-01

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208 Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  10. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  11. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  12. Evidence for plasma effect on charge collection efficiency in proton irradiated GaAs detectors

    CERN Document Server

    Nava, F; Canali, C; Vittone, E; Polesello, P; Biggeri, U; Leroy, C

    1999-01-01

    The radiation damage in 100 mu m thick Schottky diodes made on semi-insulating undoped GaAs materials, were studied using alpha-, beta-, proton- and gamma-spectroscopy as well as I-V measurements. The results have been analysed within the framework of the Hecht model to investigate the influence of the plasma produced by short-range strongly ionising particles on the detector performance after 24 GeV proton irradiation. It has been found that with the mean free drift lengths for electrons and holes determined from alpha-spectra in overdepleted detectors, the charge collection efficiency for beta-particles, cce subbeta, is well predicted in the unirradiated detectors, while in the most irradiated ones, the cce subbeta is underestimated by more than 40%. The observed disagreement can be explained by assuming that the charge carrier recombination in the plasma region of such detectors, becomes significant.

  13. Cross sections of nuclear reactions induced by protons, deuterons, and alpha particles. Pt.6. Phosphorus

    International Nuclear Information System (INIS)

    Tobailem, Jacques.

    1981-11-01

    Cross sections are reviewed for nuclear reactions induced by protons, deuterons, and alpha particles on phosphorus targets. When necessary, published experimental data are corrected, and, when possible, excitation functions are proposed [fr

  14. Irradiation performance of coated fuel particles with fission product retaining kernel additives

    International Nuclear Information System (INIS)

    Foerthmann, R.

    1979-10-01

    The four irradiation experiments FRJ2-P17, FRJ2-P18, FRJ2-P19, and FRJ2-P20 for testing the efficiency of fission product-retaining kernel additives in coated fuel particles are described. The evaluation of the obtained experimental data led to the following results: - zirconia and alumina kernel additives are not suitable for an effective fission product retention in oxide fuel kernels, - alumina-silica kernel additives reduce the in-pile release of Sr 90 and Ba 140 from BISO-coated particles at temperatures of about 1200 0 C by two orders of magnitude, and the Cs release from kernels by one order of magnitude, - effective transport coefficients including all parameters which contribute to kernel release are given for (Th,U)O 2 mixed oxide kernels and low enriched UO 2 kernels containing 5 wt.% alumina-silica additives: 10g sub(K)/cm 2 s -1 = - 36 028/T + 6,261 (Sr 90), 10g Dsub(K)/cm 2 c -2 = - 29 646/T + 5,826 (Cs 134/137), alumina-silica kernel additives are ineffective for retaining Ag 110 m in coated particles. However, also an intact SiC-interlayer was found not to be effective at temperatures above 1200 0 C, - the penetration of the buffer layer by fission product containing eutectic additive melt during irradiation can be avoided by using additives which consist of alumina and mullite without an excess of silica, - annealing of LASER-failed irradiated particles and the irradiation test FRJ12-P20 indicate that the efficiency of alumina-silica kernel additives is not altered if the coating becomes defect. (orig.) [de

  15. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available as reported. The coated Cr/alpha-Cr2O3 spherical particles on rough copper substrates by a simple self-assembly-like method were characterized by scanning electron microscopy, energy dispersive spectrometry, Raman spectroscopy, and diffuse reflectance UV...

  16. Rapid appearance of transient secondary adrenocortical insufficiency after alpha-particle radiation therapy for Cushing's disease

    International Nuclear Information System (INIS)

    Cook, D.M.; Jordan, R.M.; Kendall, J.W.; Linfoot, J.A.

    1976-01-01

    A 17-year-old woman received 12,000 rads of alpha-particle radiation for the treatment of Cushing's disease. One day after the completion of therapy, the patient developed nausea, vomiting, headache, and postural hypotension. Laboratory evaluation demonstrated a marked fall of the previously elevated urinary 17-hydroxycorticosteroids (17-OHCS) and undetectable plasma cortisols. The urinary 17-OHCS transiently returned to supranormal levels but over a 2 1 / 2 -week period decreased and then remained low. The patient also demonstrated a subnormal urinary aldosterone excretion in relation to plasma renin activity (PRA) during 10 mEq/24 h sodium restriction. The remainder of the endocrine evaluation was normal, suggesting that pituitary function otherwise remained intact. One and one-half years after alpha-particle therapy, the patient's urinary 17-OHCS were normal and responded normally to metyrapone. The relationship between urinary aldosterone excretion and PRA also was normal. It is postulated that there was an infarction of an ACTH secreting pituitary tumor leaving the remainder of the pituitary intact. A chronically elevated circulating level of ACTH with sudden loss of ACTH secretion appeared to have been responsible for the initial low urinary aldosterone as well as the low urinary 17-OHCS. This is the first reported case of a presumed pituitary tumor infarction in association with alpha-particle pituitary radiation

  17. A study of the scintillation induced by alpha particles and gamma rays in liquid xenon in an electric field

    International Nuclear Information System (INIS)

    Dawson, J.V.; Howard, A.S.; Akimov, D.; Araujo, H.; Bewick, A.; Davidge, D.C.R.; Jones, W.G.; Joshi, M.; Lebedenko, V.N.; Liubarsky, I.; Quenby, J.J.; Rochester, G.; Shaul, D.; Sumner, T.J.; Walker, R.J.

    2005-01-01

    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200keV, the number of scintillation photons was found to decrease by 64±2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields

  18. Matrix Characterization of Plutonium Residues by Alpha-Particle Self-Interrogation

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1998-01-01

    Legacy plutonium residues often have inadequate item descriptions. Nondestructive characterization can help segregate these items for reprocessing or provide information needed for disposal or storage. Alpha particle-induced gamma-ray spectra contain a wealth of information that can be used for matrix characterization. We demonstrate how this information can be used for item identification. Gamma-ray spectra were recorded at the Los Alamos Plutonium Facility from a variety of legacy, plutonium-processing residues and product materials. The comparison and analysis of these spectra are presented

  19. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Final performance technical report

    International Nuclear Information System (INIS)

    Zaider, M.

    1997-01-01

    The goal of this project was to develop theoretical/computational tools for evaluating the risks incurred by populations exposed to radon alpha particles. Topics of concern include the following: compound dual radiation action (general aspects); a mathematical formalism describing the yield of radiation induced single-and double-strand DNA breaks, and its dependence on radiation quality; a study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations; nanodosimetry of radon alpha particles; application of the HSEF to assessing radiation risks in the practice of radiation protection; carcinogenic risk coefficients at environmental levels of radon exposures: a microdosimetric approach; and hit-size effectiveness approach in radiation protection

  20. Survey of atomic data base needs and accuracies for helium beam stopping and alpha particle diagnostics for ITER

    International Nuclear Information System (INIS)

    Summers, H.P.; Hellermann, M. von.

    1992-01-01

    This report is concerned with establishing a recommended collection of atomic collision data for the modelling, experimental investigation and exploitation of helium beams. The motivation stems from proposals for diagnostic beams for the ITER tokamak, targeted at alpha particle measurement via double charge transfer, neutralized alpha particle analysis and spectroscopic analysis of recombination radiation. The report discusses the beam energies, species involved in collisions with the helium atom beam (fuel, helium ash and plasma impurities) and plasma conditions prevailing in large tokamak devices. It also lists the required cross-section data

  1. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  2. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    Science.gov (United States)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  3. N-type doping of InGaN by high energy particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720 (United States)

    2009-06-15

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E{sub F} approaches the Fermi stabilization energy E{sub FS}. At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E{sub F} and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In{sub x}Ga{sub 1-x}N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. N-type doping of InGaN by high energy particle irradiation

    International Nuclear Information System (INIS)

    Yu, K.M.

    2009-01-01

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E F approaches the Fermi stabilization energy E FS . At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E F and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In x Ga 1-x N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    International Nuclear Information System (INIS)

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  6. An experimental study of symmetric and asymmetric peak-fitting parameters for alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Martin Sanchez, A.; Vera Tome, F.; Caceres Marzal, D.; Bland, C.J.

    1994-01-01

    A pulse-height spectrum of alpha-particle emissions at discrete energies can be fitted by the peak-shape functions generated by combining asymmetric truncated exponential functions with a symmetric Gaussian distribution. These functions have been applied successfully by several workers. A correlation was previously found between the variance of the symmetric Gaussian portion of the fitting function, and the parameter characterising the principal exponential tailing function. The results of a more detailed experimental study are reported, which involve varying the angle and the distance between the source and the detector. This analysis shows that the parameters of the symmetric and asymmetric parts of the fitted functions seem to depend on either the detector or the source. These parameters are influenced by the energy loss suffered by the alpha-particles as well as by the efficiency of charge collection in the solid-state detector. (orig.)

  7. Ductility loss of ion-irradiated zircaloy-2 in iodine

    International Nuclear Information System (INIS)

    Shimada, M.; Terasawa, M.; Yamamoto, S.; Kamei, H.; Koizumi, K.

    1981-01-01

    An ion bombardment simulation technique for neutron irradiation was applied to 'thick' materials to study the effect of radiation damage on the ductility change in Zircaloy-2 in an iodine environment. Specimens were prepared from actual cladding tubes and, prior to the irradiation, they were heat-treated in vacuo at 450, 580, and 700/degree/C for 2 h. Irradiation was performed by 52-MeV alpha particles up to the 0.32 displacements per atom (dpa) at 340/degree/C. Ductility loss begins to appear after 0.03 dpa irradiation, both in iodine and argon gas environments. The iodine presence resulted in ductility reduction, compared with the argon result in all irradiation dose ranges examined. The stress applied during irradiation caused ductility loss to commence at lower dosage than in the case of stress-free irradiation. These results are discussed in relation to the existing stress corrosion cracking models

  8. Alpha decay of {sup 181}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Henderson, D.J.; Hermann, R. [and others

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  9. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation

    Directory of Open Access Journals (Sweden)

    Valerie Bríd O’Leary

    2015-04-01

    Full Text Available Exposure to low-dose irradiation causes transiently elevated expression of the long ncRNA PARTICLE (gene PARTICLE, promoter of MAT2A-antisense radiation-induced circulating lncRNA. PARTICLE affords both a cytosolic scaffold for the tumor suppressor methionine adenosyltransferase (MAT2A and a nuclear genetic platform for transcriptional repression. In situ hybridization discloses that PARTICLE and MAT2A associate together following irradiation. Bromouridine tracing and presence in exosomes indicate intercellular transport, and this is supported by ex vivo data from radiotherapy-treated patients. Surface plasmon resonance indicates that PARTICLE forms a DNA-lncRNA triplex upstream of a MAT2A promoter CpG island. We show that PARTICLE represses MAT2A via methylation and demonstrate that the radiation-induced PARTICLE interacts with the transcription-repressive complex proteins G9a and SUZ12 (subunit of PRC2. The interplay of PARTICLE with MAT2A implicates this lncRNA in intercellular communication and as a recruitment platform for gene-silencing machineries through triplex formation in response to irradiation.

  10. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  11. Caffeine-mediated release of alpha-radiation-induced G2 arrest increases the yield of chromosome aberrations

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Hieber, L.; Wegner, R.D.

    1983-01-01

    Severe and partly irreversible G2 arrest caused by americium-241 alpha-particles in Chinese hamster V79 cells acted as a competing process to the yield of detectable aberrant mitoses at metaphase. With increasing dose of alpha-radiation an increasing fraction of cells was irreversibly arrested in G2 with the consequence of interphase death before the first post-irradiation mitosis. This irreversible G2 arrest (demonstrated by flow cytofluorometry and mitotic indices) could be overcome by adding caffeine 8 hours after irradiation, the time point of maximum G2 arrest (80-90 per cent of all cells). Within 3.5 hours the number of aberrant mitoses increased by this treatment from 54 to 96 per cent and from 65 to 99.9 per cent for doses of 1.75 and 4.38 Gy of alpha-particles, respectively. The aberration frequency per mitotic cell, scored as chromatid and isochromatid breaks, rings, interchanges and dicentrics increased by a factor of about 3 after releasing G2 arrested cells. The frequency distribution of aberrations per cell revealed that, after 4.38 Gy, 58 per cent of the formerly G2-arrested cells had more than five aberrations per cell compared to only 8 per cent without the interaction of caffeine. (author)

  12. SERS study of transformation of phenylalanine to tyrosine under particle irradiation

    Science.gov (United States)

    Zhang, Jingjing; Huang, Qing; Yao, Guohua; Ke, Zhigang; Zhang, Hong; Lu, Yilin

    2014-08-01

    Surface enhanced Raman scattering or spectroscopy (SERS) is a very powerful analytical tool which has been widely applied in many scientific research and application fields. It is therefore also very intriguing for us to introduce SERS technique in the radiobiological research, where in many cases only a very few of biomolecules are subjected to changes which however can lead to significant biological effects. The radiation induced biochemical reactions are normally very sophisticated with different substances produced in the system, so currently it is still a big challenge for SERS to analyze such a mixture system which contains multiple analytes. In this context, this work aimed to establish and consolidate the feasibility of SERS as an effective tool in radiation chemistry, and this purpose, we employed SERS as a sensitive probe to a known process, namely, the oxidation of phenylalanine (Phe) under particle irradiation, where the energetic particles were obtained from either plasma discharge or electron-beam. During the irradiation, three types of tyrosine (Tyr), namely, p-Tyr, m-Tyr and o-Tyr were produced, and all these tyrosine isomers together with Phe could be identified and measured based on the SERS spectral analysis of the corresponding enhanced characteristic signals, namely, 1002 cm-1 for Phe, 1161 cm-1 for p-Tyr, 990 cm-1 for m-Tyr, and 970 cm-1 for o-Tyr, respectively. The estimation of the quantities of different tyrosine isomers were also given and verified by conventional method such as high performance liquid chromatography (HPLC). As for comparison of different ways of particle irradiation, our results also indicated that electron-beam irradiation was more efficient for converting Phe into Tyr than plasma discharge treatment, confirming the role of hydroxyl radicals in the Phe-Tyr conformation. Therefore, our work has not only demonstrated that SERS can be successfully applied in the radiobiological study, but also given insights into the

  13. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: Characteristics of point mutations by sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)], E-mail: kinashi@rri.kyoto-u.ac.jp; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    To investigate bystander mutagenic effects induced by alpha particles during boron neutron capture therapy (BNCT), we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, with cells that did not contain the boron compound. BSH-containing cells were irradiated with {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were only affected by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was examined in Chinese hamster ovary (CHO) cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the surviving cell population. Using multiplex polymerase chain reactions (PCRs), molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were lower than those resulting from the {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction or the neutron beam from the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The types of point mutations induced by the BNCT bystander effect were analyzed by cloning and sequencing methods. These mutations were comprised of 65.5% base substitutions, 27.5% deletions, and 7.0% insertions. Sequence analysis of base substitutions showed that transversions and transitions occurred in 64.7% and 35.3% of cases, respectively. G:C{yields}T:A transversion induced by 8-oxo-guanine in DNA occurred in 5.9% of base substitution mutants in the BNCT bystander group. The characteristic mutations seen in this group, induced by BNCT {alpha} particles

  14. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles.

    Science.gov (United States)

    Lin, Yu-Fen; Nagasawa, Hatsumi; Little, John B; Kato, Takamitsu A; Shih, Hung-Ying; Xie, Xian-Jin; Wilson, Paul F; Brogan, John R; Kurimasa, Akihiro; Chen, David J; Bedford, Joel S; Chen, Benjamin P C

    2014-01-01

    We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.

  15. Genotoxic damage in non-irradiated cells: contribution from the bystander effect

    International Nuclear Information System (INIS)

    Zhou, H.; Randers-Pherson, G.; Suzuki, M.; Waldren, C.A.; Hei, T.K.

    2002-01-01

    It has always been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcinogenesis are due mainly to direct damage to DNA. Using the Columbia University charged-particle microbeam and the highly sensitive A L cell mutagenic assay, it is shown here that non-irradiated cells acquire the mutagenic phenotype through direct contact with cells whose nuclei are traversed with 2 alpha particles each. Pre-treatment of cells with lindane, a gap junction inhibitor, significantly decreased the mutant yield. Furthermore, when irradiated cells were mixed with control cells in a similar ration as the in situ studies, no enhancement in bystander mutagenesis was detected. Our studies provide clear evidence that genotoxic damage can be induced in non-irradiated cells, and that gap junction mediated cell-cell communication plays a critical role in the bystander phenomenon. (author)

  16. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  17. Alpha-particle emission probabilities in the decay of 239Pu

    International Nuclear Information System (INIS)

    Garcia-Torano, E.; Acena, M.L.; Bortels, G.; Mouchel, D.

    1993-01-01

    The alpha-particle emission probabilities (P α ) of 239 Pu have been measured using material of highest enrichment and radiochemical purity, thin sources produced by vacuum sublimation, and high-resolution α spectroscopy with ion-implanted Si detectors (PIPS). The results for the major emissions are P α0.07 =0.7077±0.0014, P α13 =0.1711±0.0014 and P α51 =0.1194±0.0007, which for the P α0.07 is about 3.6% lower than the recent evaluated value in the literature. (orig.)

  18. Angular distributions of the alpha particle production in the 7Li+144Sm system at near-barrier energies

    International Nuclear Information System (INIS)

    Carnelli, P F F; Arazi, A; Capurro, O A; Niello, J O Fernández; Heimann, D Martinez; Pacheco, A J; Cardona, M A; De Barbará, E; Figueira, J M; Hojman, D L; Martí, G V; Negri, A E

    2015-01-01

    We have studied the production of alpha particles in reactions induced by 7 Li projectiles on a 144 Sm target at bombarding energies of 18, 24 and 30 MeV over the 15°-140° angular range. The purpose of the investigation has been to determine the contribution of different mechanisms in reactions that involve weakly bound projectiles. We have included in our analysis several processes that can either directly or sequentially lead to the emission of alpha particles: complete fusion, direct transfer of 3 H, capture breakup (incomplete fusion, sequential complete fusion) and non-capture breakup. In order to distinguish alpha particles stemming from these processes it is necessary to determine the mass and charge of the reaction products and to obtain precise measurements of their energies and scattering angles over relatively wide ranges of these variables. We have done this using a detection system consisting of an ionization chamber plus three position sensitive detectors. We present results of these measurements and a preliminary interpretation based on kinematical considerations and comparisons with predictions from a statistical model. (paper)

  19. Electron probe micro-analysis of irradiated Triso-coated UO2 particles, (1)

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo; Fukuda, Kosaku; Ikawa, Katsuichi

    1983-11-01

    The Triso-coated low-enriched UO 2 particles were subjected to the post-irradiation electron probe micro-analysis. Observations and analyses on the amoeba effect, inclusions and solutes in the UO 2 matrix were made. In the cooler side of the particle which suffered extensive kernel migration, two significant features were observed: (1) the wake of minute particles, presumably UO 2 , left by the moving kernel in the carbon phase and (2) carbon precipitation in the pores and along the grain boundaries of the UO 2 kernel. Both features could be hardly explained by the gas-phase mechanism of carbon transport and rather suggest the solid state mechanism. Two-types of 4d-transition metal inclusions were observed: the one which was predominantly Mo with a fraction of Tc and another which was enriched with Ru and containing significant amount of Si. The Mo and Si were also found in the UO 2 matrix; the observation led to the discussion of the oxygen potential in the irradiated Triso-coated UO 2 particle. (author)

  20. Coincidence measurement between. cap alpha. -particles and projectile-like fragments in reaction of 82. 7 MeV /sup 16/O on /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, Shen; Wen-long, Zhan; Yong-tai, Zhu; Shu-zhi, Yin; Zhong-yan, Guo; Wei-min, Qiao; Guo-ying, Fan; Gen-ming, Jin; Song-ling, Li; Zhen, Zhang; others, and

    1987-01-01

    In the coincidence measurement between ..cap alpha..-particles and projectile-like fragments in the reaction of 82.7 MeV /sup 16/O on /sup 27/Al, the contour plot of the C-..cap alpha.. coincidence in the velocity plane and the coincident angular correlation are obtained. Different mechanisms of ..cap alpha..-particle emission are analysed. A possible reaction mechanism of incomplete DIC is discussed.

  1. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.; Miller, B. D.; Gan, J.; Madden, J. W.; Keiser, D. D.; Palancher, H.; Hofman, G. L.; Breitkreuz, H.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beam milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.

  2. Long-range alpha detector

    International Nuclear Information System (INIS)

    MacArthur, D.W.; McAtee, J.L.

    1991-01-01

    Historically, alpha-particle and alpha-contamination detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity even if the particles are intercepted. Alpha detectors have had to be operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. Alpha particles interact with the ambient air, producing ionization in the air at the rate of ∼30,000 ion pairs per mega-electron-volt of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The long-range alpha detector (LRAD) offers several advantages over more traditional alpha detectors. First and foremost, it can operate efficiently even if the contamination is not easily accessible. Second, ions generated by contamination in crevices and other unmonitorable locations can be detected if the airflow penetrates those areas. Third, all of the contamination on a large surface will generate ions that can be detected in a single detector; hence, the detector's sensitivity to distributed sources is not limited by the size of the probe. Finally, a simple ion chamber can detect very small electric currents, making this technique potentially quite sensitive

  3. Particle detection and classification using commercial off the shelf CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Martín [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Lipovetzky, Jose, E-mail: lipo@cab.cnea.gov.ar [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Sofo Haro, Miguel; Sidelnik, Iván; Blostein, Juan Jerónimo; Alcalde Bessia, Fabricio; Berisso, Mariano Gómez [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2016-08-11

    In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.

  4. A new method for alpha-particle detection in a classroom experiment

    International Nuclear Information System (INIS)

    Simon, A.; Pintye, Z.; Molnar, J.

    2005-01-01

    Complete text of publication follows. The World Year of Physics (WYP 2005) was a worldwide celebration of Physics and its importance in our everyday lives. In harmony with its aims, that is to raise the worldwide awareness of Physics and Physical Science, we introduced a novel lab work involving a new imaging and data evaluation method for alpha-particle detection, which can be easily implemented in a classroom environment. The target group of the experiments is mainly secondary school students (age between 16-18 years). Our aim is to motivate students to develop a better understanding of Physics, allowing them to experience for themselves something of its fascination. In order to increase their attractiveness, the experiments include using a CMOS video image sensor with a video output. The covering glass window of the sensor must be carefully removed in order to make it sensitive for alpha rays. The sensor is connected to a computer where the images are recorded as a short video clip. The recorded video is played back by frames. The resulted frames are then merged together into one image. On this image the student can count the number of spots, where each spot corresponds to a hit of an alpha particle. The experiment can also be visible on a TV screen even by a whole class, however the authors suggest implementing the following experiments as a practical work individually or in small groups. As students are familiar with modern information technology, we think that they will be highly motivated to make these experiments on their own. Acknowledgements. The development of the above experimental setup was funded by ATOMKI and it was presented to the interactive science centre 'Magic corner', Debrecen, Hungary at Christmas, 2005. (author)

  5. Alpha and beta detection and spectrometry

    International Nuclear Information System (INIS)

    Saro, S.

    1984-01-01

    The theory of alpha and beta radioactive decay, the interaction of alpha and beta particles with matter, and their detection and spectrometry are dealt with in seven chapters: 1. Alpha transformation of atomic nuclei; 2. Basic properties of detectors and statistics of detection; 3. Alpha detectors and spectrometers; 4. Applications of alpha detection and spectrometry; 5. Beta transformation of atomic nuclei; 6. Beta particle detectors and spectrometers; 7. Detection of low energy beta particles. Chapter 8 is devoted to sampling and preparation of samples for radiometry. (E.F.)

  6. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.

    1988-01-01

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI 2 would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI 2 detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI 2 detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig

  7. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-alpha and wortmannin

    Energy Technology Data Exchange (ETDEWEB)

    Shao Chunlin, E-mail: clshao@shmu.edu.c [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Zhang Jianghong [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)

    2010-03-15

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  8. Alpha particle effects as a test domain for PAP, a Plasma Apprentice Program

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1987-01-01

    A new type of computational tool under development, employing techniques of symbolic computation and artificial intelligence to automate as far as possible the research activities of a human plasma theorist, is described. Its present and potential uses are illustrated using the area of the theory of alpha particle effects in fusion plasmas as a sample domain. (orig.)

  9. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    Science.gov (United States)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  10. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    International Nuclear Information System (INIS)

    Manley, N.B.

    1988-01-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. The decrease in the values of the labeling indices 1 week after charged particle irradiation was dose- and ion-dependent. Mitotic indices 1 week after 10 and 25 Gy helium and after 10 Gy neon were the same as those seen in the control mice. Analysis of cell kinetics 1 week after 10 Gy helium and 10 Gy neon irradiation suggests the presence of a progenitor subpopulation that is proliferating with a shorter cell cycle. Comparison of the responses to the different charged particle beams indicates that neon ions are more effective in producing direct cellular damage than the helium ions, but the surviving proliferating cells several divisions later continue to maintain active cell renewal. Based on the 1 week post-irradiation H 3 -TdR labeling indices, a rough estimate of the RBE for neon ions is at least 2.5 when compared to helium ions

  11. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2007-05-01

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131 iodine or the 90 yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  12. The use of silicon devices (diodes, RAMs, etc.) for alpha particle detection

    International Nuclear Information System (INIS)

    Agosteo, S.; Foglio Para, A.

    1993-01-01

    Silicon electronic devices (diodes, random access memories (RAMs), etc.) can be employed in alpha particle detection and spectroscopy with a good energy resolution. The detection mechanisms are first discussed; the performances of these devices operating in the pulse and in the current mode are then described starting from the pioneering works of the last decade. Some peculiar applications of RAMs are finally reported. (author). 7 refs, 5 figs, 1 tab

  13. Effects of fuel particle size and fission-fragment-enhanced irradiation creep on the in-pile behavior in CERCER composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunmei [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Ding, Shurong, E-mail: dsr1971@163.com [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Zhang, Xunchao; Wang, Canglong; Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-15

    The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained. - Highlights: • A grain-scale gas swelling model considering the development of recrystallization and resolution is adopted for particles. • The influence of fission-gas-induced porosity is considered in the constitutive relations for particles. • A simulation method is developed for the multi-scale thermo-mechanical behavior. • The effects of fuel particle size and fission-fragment-enhanced irradiation creep are investigated in pellets.

  14. The origin, composition and distribution of 'hot particles' derived from the nuclear industry and dispersed in the environment

    International Nuclear Information System (INIS)

    Hamilton, E.I.; Clifton, R.J.

    1987-10-01

    Today, recent sediments of the Esk estuary, Cumbria, contain few hot particles derived from BNF compared with those deposited during peak releases of 1972-74. Overall the hot particles account for about 10% of the total alpha particle activity of the sediments. At some horizons, in buried sediments, concentrations of hot particles probably represent rapid transport on the sea surface under conditions of minimum erosion. Similar particles, usually less well defined, occur in accreting sediments but are corroded. Representative types of the most radioactive particles have been isolated and contain Pu, Am and Cm but only trace amounts of naturally occuring alpha emitters. Microprobe analysis of these particles often shows the presence of fairly pure uranium as the major element. On the basis of radioactivity and elemental composition many of these particles appear to be irradiated nuclear fuel debris. (author)

  15. Irradiated-Microsphere Gamma Analyzer (IMGA): an integrated system for HTGR coated particle fuel performance assessment

    International Nuclear Information System (INIS)

    Kania, M.J.; Valentine, K.H.

    1980-02-01

    The Irradiated-Microsphere Gamma Analyzer (IMGA) System, designed and built at ORNL, provides the capability of making statistically accurate failure fraction measurements on irradiated HTGR coated particle fuel. The IMGA records the gamma-ray energy spectra from fuel particles and performs quantitative analyses on these spectra; then, using chemical and physical properties of the gamma emitters it makes a failed-nonfailed decision concerning the ability of the coatings to retain fission products. Actual retention characteristics for the coatings are determined by measuring activity ratios for certain gamma emitters such as 137 Cs/ 95 Zr and 144 Ce/ 95 Zr for metallic fission product retention and 134 Cs/ 137 Cs for an indirect measure of gaseous fission product retention. Data from IMGA (which can be put in the form of n failures observed in N examinations) can be accurately described by the binomial probability distribution model. Using this model, a mathematical relationship between IMGA data (n,N), failure fraction, and confidence level was developed. To determine failure fractions of less than or equal to 1% at confidence levels near 95%, this model dictates that from several hundred to several thousand particles must be examined. The automated particle handler of the IMGA system provides this capability. As a demonstration of failure fraction determination, fuel rod C-3-1 from the OF-2 irradiation capsule was analyzed and failure fraction statistics were applied. Results showed that at the 1% failure fraction level, with a 95% confidence level, the fissile particle batch could not meet requirements; however, the fertile particle exceeded these requirements for the given irradiation temperature and burnup

  16. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  17. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  18. Electrically active defects in p-type silicon after alpha-particle irradiation

    Science.gov (United States)

    Danga, Helga T.; Auret, F. Danie; Tunhuma, Shandirai M.; Omotoso, Ezekiel; Igumbor, Emmanuel; Meyer, Walter E.

    2018-04-01

    In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×106 cm-2 s-1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×1010 cm-2, the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (Ci) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.

  19. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  20. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  1. Effect of alpha self irradiation on helium migration in (U,Pu)O2 samples

    International Nuclear Information System (INIS)

    Pipon, Yves; Roudil, Daniele; Jegou, Christophe; Khodja, Hicham; Raepsaet, Caroline

    2008-01-01

    The helium behavior and its migration mechanisms in nuclear spent fuel (UOX and MOX) significantly impact the possible evolution of the spent fuel matrix in a closed system during interim storage or during a disposal repository. An experimental study has been conducted on (U,Pu)O 2 samples in order to investigate the impact of defects created by alpha decay on helium diffusion. One large part is devoted to thermal atomic diffusion and applied on 3 He implanted samples, annealed at 850 and 1000 deg. C. The He profiles, as implanted and after annealing, were investigated with the 3 He(d,p) 4 He nuclear reaction. Another part deals with the thermal release of 4 He amassed in the samples. The measured thermal diffusion coefficients are compared with previously published values, thereby highlighting the effect of the alpha self-irradiation on helium behavior. (authors)

  2. Microstructural characterization of second phase irradiated Zircaloy-4 particles

    International Nuclear Information System (INIS)

    Flores, Alejandra V.; Vizcaino, Pablo; Banchik, Abraham D.; Bozzano, Patricia B.; Versaci, Raul A.

    2007-01-01

    X-ray diffraction diagrams of neutron irradiated Zircaloy-4 were obtained at the LNLS with the aim to obtain bulk information about the amorphization process in which the Zircaloy-4 second phase particles (SPPs) undergoes due to neutron irradiation. Owing to the low concentration of the SPPs in the alloy (∼0.4 V %), no data regarding to the bulk were obtained until now. The synchrotron experiences allowed to detect five of the more intense lines of the phase C 14 (SPPs structure) in unirradiated Zircaloy-4: (110) θ, (103) θ, (112) θ, (201) θ and (004) θ in the 34 degrees ≤ θ2≤45 degrees Bragg angle range and others of minor intensity. The diagrams of the samples irradiated at moderate doses (1020n/cm 2 ) show these lines even in the as received samples. In contrast, none of these lines are observed for high fluence samples (∼1022neutrons/cm 2 ). In addition, in similar high fluence samples annealed 24 h or 72 h at 600 C degrees the intensity rises just at the 2q range where the C 14 lines were observed, showing a wide peak. That peak is interpreted as a result of the superposition of unresolved diffraction lines corresponding to the Zircaloy SPPs which are in a reconstitution process of crystallization. Analytical Electron Microscopy techniques were used, in order to study the effects on the Zircaloy-4 SPPs and compared with samples of the same material without irradiation. Spots in SAD patterns of non irradiated SPPS, evidences the presence of a C 14 structure, but in irradiated SSP SAD patterns evidences the beginning of an amorphization process. Another important feature to point out is the different Fe / Cr ratio presented in both irradiated and non irradiated SSPs. In non irradiated precipitates the Fe / Cr ratio is approximately 1.5, while in irradiated precipitates the Fe / Cr ratio becomes near 1.0. (author) [es

  3. Irradiation performance of HTGR Biso fertile particles in HFIR experiments HT-17, -18, and -19

    International Nuclear Information System (INIS)

    Long, E.L. Jr.; Beatty, R.L.; Robbins, J.M.; Kania, M.J.; Eatherly, W.P.

    1978-11-01

    A series of Biso-coated fertile particles was irradiated in the target facility of the High-Flux Isotope Reactor. The primary objectives of this experiment were to relate the fast-neutron stability of dense propylene-derived pyrocarbons to preferred orientation and to relate irradiation performance to preirradiation characterization values. Coating characterization included x-ray BAF, optical anisotropy, gaseous permeability, small-angle x-ray scattering, and thickness and density determinations. Other objectives were to test Biso-coated large-diameter ThO 2 kernels and coatings derived from propylene diluted with CO 2 rather than argon. Visual examination of the irradiated particles showed that the majority had failed as a result of fast-neutron damage

  4. Time variations of magnetospheric intensities of outer zone protons, alpha particles and ions (Z greater than or equal to 2). Ph.D. Thesis

    Science.gov (United States)

    Randall, B. A.

    1973-01-01

    A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.

  5. Use of particles other than neutrons in activation analysis; Emploi de particules autres que les neutrons en analyse par actuation

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-15

    Nuclear reactions obtained by irradiation in {gamma} Bremsstrahlung, {alpha} particles and protons are particularly suitable for dosing very small traces of light elements. We consider the possibilities presented by activation in {gamma} radiation of 28 MeV maximum energy, mainly for the measurement of C, F, N, O, P and S. Non-destructive methods of analysis for beryllium are described. Under certain conditions they may also be used for other elements such as B, Ca, Li and Na. We give also the results of our first experiments carried out in an attempt to find a method for dosing carbon and oxygen by irradiation in {alpha} particles and protons. For each type of activation the possible types of interference with other nuclear refections are considered. (author) [French] Des reactions nucleaires obtenues par irradiation dans des rayons {gamma} de freinage, des particules {alpha} et des protons, sont particulierement indiquees pour les dosages de traces ultimes de certains elements legers. Nous etudions les possibilites offertes par les activations en rayons {alpha} d'energie maximum 28 MeV, principalement pour les dosages de C, F, N, O, P et S. Des methodes d'analyse non destructives appliquees au beryllium sont decrites. Sous certaines conditions, elles peuvent egalement etre utilisees pour d'autres materiaux comme B, Ca, Li et Na. Nous donnons d'autre part les resultats de nos premieres experiences effectuees pour la mise au point des methodes de dosage du carbone et de l'oxygene par irradiation dans les particules {alpha} et les protons. Pour chaque type d'activation, les possibilites d'interferences avec d'autres reactions nucleaires sont examinees. (auteur)

  6. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  7. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, Gokul [ORNL; Katoh, Yutai [ORNL; Hunn, John D [ORNL; Snead, Lance Lewis [ORNL

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometric compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size

  8. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52MeV.

    Science.gov (United States)

    Ditrói, F; Takács, S; Haba, H; Komori, Y; Aikawa, M

    2016-12-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope 117m Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets 117m Sn, 113 Sn, 110 Sn, 117m,g In, 116m In, 115m In, 114m In, 113m In, 111 In, 110m,g In, 109m In, 108m,g In, 115g Cd and 111m Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  10. Do gamma rays and alpha particles cause different types of lung cancer? A comparison between atomic bomb survivors and uranium miners

    International Nuclear Information System (INIS)

    Land, C.E.

    1995-01-01

    Excess lung cancer risk has been associated with exposure to alpha particle radiation from inhaled radon daughter products among uranium miners in Czechoslovakia, Canada, the United States, and elsewhere, and with exposure to gamma rays and neutrons from the atomic bombings of Hiroshima and Nagasaki, Japan. Differences in distribution by histological type, as well as certain epidemiological differences, suggest the possibility of differences in the causation of radiation-induced lung cancer. An epidemiological analysis is summarised of results from a blind pathology panel review of tissue slides from lung cancer cases diagnosed in 108 Japanese A bomb survivors and 92 American uranium miners selected on the basis of radiation exposure, smoking history, sex, age, and source and quality of pathology material. Consensus diagnoses were obtained with respect to principal sub-type, including squamous cell cancer, small cell cancer, adenocarcinoma, and less frequent sub-types. The results were analysed in terms of population, radiation dose, and smoking history. As expected, the proportion of squamous cell cancer was positively related to smoking history in both populations. The relative frequencies of small cell cancer and adenocarcinoma were very different in the two populations, but this difference was adequately accounted for by differences in radiation dose (more specifically, dose-based relative risk estimates based on published risk coefficients). Data for the two populations conformed to a common pattern, in which radiation-induced cancers appeared more likely to be of the small-cell sub-type, and less likely to be adenocarcinomas. No additional explanation in terms of radiation quality (alpha particles or gamma rays), uniform or local irradiation, inhaled as against external radiation source, or other population differences, appeared to be required. (author)

  11. Alpha detection on moving surfaces

    International Nuclear Information System (INIS)

    MacArthur, D.; Orr, C.; Luff, C.

    1998-01-01

    Both environmental restoration (ER) and decontamination and decommissioning (D and D) require characterization of large surface areas (walls, floors, in situ soil, soil and rubble on a conveyor belt, etc.) for radioactive contamination. Many facilities which have processed alpha active material such as plutonium or uranium require effective and efficient characterization for alpha contamination. Traditional methods for alpha surface characterization are limited by the short range and poor penetration of alpha particles. These probes are only sensitive to contamination located directly under the probe. Furthermore, the probe must be held close to the surface to be monitored in order to avoid excessive losses in the ambient air. The combination of proximity and thin detector windows can easily cause instrument damage unless extreme care is taken. The long-range alpha detection (LRAD) system addresses these problems by detecting the ions generated by alpha particles interacting with ambient air rather than the alpha particle directly. Thus, detectors based on LRAD overcome the limitations due to alpha particle range (the ions can travel many meters as opposed to the several-centimeter alpha particle range) and penetrating ability (an LRAD-based detector has no window). Unfortunately, all LRAD-based detectors described previously are static devices, i.e., these detectors cannot be used over surfaces which are continuously moving. In this paper, the authors report on the first tests of two techniques (the electrostatic ion seal and the gridded electrostatic LRAD detector) which extend the capabilities of LRAD surface monitors to use over moving surfaces. This dynamic surface monitoring system was developed jointly by Los Alamos National Laboratory and at BNFL Instruments. All testing was performed at the BNFL Instruments facility in the UK

  12. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  13. The effect of sintering time on synthesis of in situ submicron {alpha}-Al{sub 2}O{sub 3} particles by the exothermic reactions of CuO particles in molten pure Al

    Energy Technology Data Exchange (ETDEWEB)

    Dikici, Burak, E-mail: burakdikici@yyu.edu.tr [Yuzuncu Yil University, Department of Mechanical Engineering, 65080 Van (Turkey); Gavgali, Mehmet [Ataturk University, Department of Mechanical Engineering, 25240 Erzurum (Turkey)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Al-Cu/Al{sub 2}O{sub 3} composites were prepared successfully by means of hot pressing method. Black-Right-Pointing-Pointer Sintering time of the Al-CuO system effect the reaction rate and formation of Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Increase in sintering time accelerates formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} phase. Black-Right-Pointing-Pointer Hardness of the sintered composite for 30 min at 1000 Degree-Sign C increased from 60 to 174 HV. - Abstract: In this study, in situ {alpha}-Al{sub 2}O{sub 3} reinforcing particles have been successfully synthesised in an Al-Cu matrix alloy by means of the conventional Hot Pressing (HP) method. The effect of sintering time on the forming of the {alpha}-Al{sub 2}O{sub 3} phase at 1000 Degree-Sign C was investigated using Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM). The sintered composites contained thermodynamically stable {alpha}-Al{sub 2}O{sub 3} particles and {theta}-Al{sub 2}Cu eutectic phases, which were embedded in the Al-Cu matrix. The in situ {alpha}-Al{sub 2}O{sub 3} particles were generally spherical and their mean size was observed to be less than 0.5 {mu}m. The results showed that sintering time influences not only the reaction rate of copper and the formation of Al{sub 2}O{sub 3}. Also, an increase in the sintering time accelerates the formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} particles and decreases the quantity of {theta}-Al{sub 2}Cu intermetallic phase in the liquid aluminium. Additionally, sintering of composite for 30 min at 1000 Degree-Sign C increased the hardness from 60 to 174 HV.

  14. Sporadic error probability due to alpha particles in dynamic memories of various technologies

    International Nuclear Information System (INIS)

    Edwards, D.G.

    1980-01-01

    The sensitivity of MOS memory components to errors induced by alpha particles is expected to increase with integration level. The soft error rate of a 65-kbit VMOS memory has been compared experimentally with that of three field-proven 16-kbit designs. The technological and design advantages of the VMOS RAM ensure an error rate which is lower than those of the 16-kbit memories. Calculation of the error probability for the 65-kbit RAM and comparison with the measurements show that for large duty cycles single particle hits lead to sensing errors and for small duty cycles cell errors caused by multiple hits predominate. (Auth.)

  15. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  16. Characterization of damage created by alpha disintegrations in radionuclear waste glass

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Mueller, P.

    1990-01-01

    Study of thermostimulated luminescence of an alpha irradiated glass used as radionuclear waste glass has revealed the formation of a structural defect induced by alpha irradiation. To detect this structural modification the thermostimulated signal of an alpha irradiated sample is recorded under certain conditions. The nature of generated defects has been established using synthetic glasses of more simple composition such as silica or boro-silicate glasses. Results obtained with these simple glasses are transposed to alpha irradiated radionuclear waste glass. The problem is to see how autoirradiated glass could evolve in time. For this purpose actinide-doped glasses are now being fabricated and specific thermostimulated luminescence equipment has been developed for this purpose

  17. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates

    Science.gov (United States)

    Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong

    2018-06-01

    The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.

  18. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  19. Optimum lifetime structuring in silicon power diodes by means of various irradiation techniques

    International Nuclear Information System (INIS)

    Hazdra, P.; Vobecky, J.; Brand, K.

    2002-01-01

    Application of radiation defects for adjustment of power diode parameters is demonstrated. Local lifetime control (LLC) by proton and alpha-particle irradiation with energies 1.8-12.1 MeV is compared with uniform lifetime killing by 4.5 MeV electrons. The influence of both the techniques on static and dynamic parameters of modified diodes is experimentally established and explained by means of state-of-the-art simulation system. Optimization means and limits of lifetime control by irradiation techniques are discussed, as well

  20. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    International Nuclear Information System (INIS)

    Charpak, G; Benaben, P; Breuil, P; Peskov, V

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10 4 ). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  1. Elemental analysis of fertilizers using X-ray fluorescence and their impact on alpha radioactivity of plants

    International Nuclear Information System (INIS)

    Pooja Chauhan; Chauhan, R.P.

    2013-01-01

    The fertilizers used for plantation contain different elements including some natural radionuclides with their daughter decay products. The radiological impact of the use of fertilizers may be due to internal irradiation of the lung by the alpha particles, short lived radon-thoron progeny and the external irradiation of the body by gamma ray emitted from the radionuclides. The aim of this study was to estimate the enhanced alpha radioactivity in different parts of plants due to fertilizers and to measure the concentration of different elements present in the fertilizers. A control study was carried out on round gourd plants using different fertilizers. Fertilizers were added to the soil just before the plantation of seeds in the pots. For the measurement of alpha track densities in different parts of plants we used α-sensitive LR-115 type II plastic track detectors. The alpha-track density (T cm -2 days -1 ) was measured in leaves of plants at different interval of time. The variation in alpha track densities was also observed in root, stem leaf and grain parts of the plants. In case of the plants grown using some phosphate fertilizers the alpha radioactivity was found to be more compared with others. A positive correlation between alpha track densities and mass exhalation rates of radon from different fertilizers has been observed. The concentration of major elements (Al, Si, P, S, Cl, K) along with other elements present in fertilizer samples was measured by X-ray fluorescence analysis. (author)

  2. /sup 58,60,62/Ni (. cap alpha. ,p) three--nucleon transfer reactions and. cap alpha. optical potential ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and

    1985-11-01

    The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.

  3. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  4. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    Science.gov (United States)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  5. Quantum 1/f noise in non-degerate semiconductors and emission statistics of alpha particles

    International Nuclear Information System (INIS)

    Kousik, G.S.

    1985-01-01

    Charged particle scattering is accompanied by the emission of soft photons. Handel's theory of 1/f noise, based on the infrared divergent coupling of the system to the electromagnetic field or other elementary excitations, states that the current associated with a beam of scattered particles will exhibit 1/f noise. The fraction of the particles scattered with an energy loss epsilon to soft photon emission is proportional to 1/epsilon and herein lies the origin of the quantum theory of 1/f noise. The 1/f noise caused by mobility fluctuations in semiconductors is related to the scattering cross section fluctuation given by Handel's theory, through the relaxation time. Chapters Two through Five of this dissertation presents the results of the detailed calculation of mobility fluctuation 1/f noise and Hooge parameter in nondegenerate semiconductors. Numerical results are given for silicon and gallium arsenide. Data obtained from extensive measurements on counting techniques for alpha-particles radioactive decay from a source containing 94 Pu 239 , 95 Am 241 and 96 Cm 244 are presented in Chapters Six and Seven of this dissertation. These data show that the statistics are non-Poissonian for large counting times (of the order of 1000 minutes) contrary to the popular belief that alpha-decay is an example of Poissonian statistics. Measurements of the Allan variance indicated the presence of a slow Lorentzian flicker noise and 1/f noise and the magnitude of the noise for large counting times is considerably larger than that predicted by Poissonian statistics

  6. Performance assessment of the (Th,U)O2 HTI-Biso coated particle under PNP/HHT irradiation conditions

    International Nuclear Information System (INIS)

    Kania, M.J.; Nickel, H.

    1980-11-01

    The HTI Biso Particle, Variant-I: consisting of a dense 400 μm-diameter (Th,U)O 2 -kernel with a Biso coating using a methane derived pyrocarbon layer (HTI), is a candidate fuel for the advanced PNP/HHT High Temperature Reactor systems. This report presents the results of a comprehensive performance assessment of Variant-I represented by six relevant particle batches irradiated in 12 accelerated irradiation experiments. Fuel performance was judged based upon PNP/HHT qualification requirements with regard to in-reactor operating conditions and end-of-life (EOL) coated particle failure fraction. Fuel operating conditions in each irradiation experiment were obtained from two sources: 1) a thorough review of all available irradiation data on each experiment; and 2) a two-dimensional (R,theta) thermal modeling computer code, R2KTMP, was developed to calculate fuel operating temperature distributions within spherical elements. End-of-life particle failure fractions were determined from: gaseous fission product release, based on in-reactor R/B measurements and postirradiation annealing and room temperature investigations; solid fission product release, from single particle 137 Cs release into fuel element matrix and hot-gaseous chlorine leaching; and visual and ceramographic examinations. Failure fractions determined by solid fission product release yielded values 2-35 times higher than those determined by gaseous fission product release. (orig.) [de

  7. Alpha particles detection in nitrocellulose

    International Nuclear Information System (INIS)

    Romero C, M.

    1976-01-01

    The method for the manufacturing of the detection films follows these steps: preparation of the mass which includes nitrocellulose in the form of cotton as raw material ethyl acetate, cellosolve acetate, isopropyl and butyl alcohols as solvents and dioctyl phtalate as plasticiser; dilution of the paste; pouring of the diluted mass; and drying of the detection films. The results obtained experimentally are: The determination of the development times of the different thicknesses of the manufactured films. Response linearity of the detectors, variation of the number of tracks according to the distance of the source to the detector. Sizes of the diameter of the tracks depending of the distance detector-alpha emmission source. As a conclusion we can say the the nitrocellulose detectors are specific for alpha radiation; the more effective thicknesses in uranium prospecting works were those of 60 microns, since for the laboratory works the thicknesses of 30 to 40 microns were the ideal; the development technique of the detection films is simple and cheap and can be realized even in another place than the laboratory; this way of the manufacturing of nitrocellulose detection film sensitive to alpha nuclear radiation is open to future research. (author)

  8. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree

    International Nuclear Information System (INIS)

    Jovanovic, B.; Nikezic, D.

    2010-01-01

    Radiation-induced biological bystander effects have become a phenomenon associated with the interaction of radiation with cells. There is a need to include the influence of biological effects in the dosimetry of the human lung. With this aim, the purpose of this work is to calculate the probability of bystander effect induced by alpha-particle radiation on sensitive cells of the human lung. Probability was calculated by applying the analytical model cylinder bifurcation, which was created to simulate the geometry of the human lung with the geometric distribution of cell nuclei in the airway wall of the tracheobronchial tree. This analytical model of the human tracheobronchial tree represents the extension of the ICRP 66 model, and follows it as much as possible. Reported probabilities are calculated for various targets and alpha-particle energies. Probability of bystander effect has been calculated for alpha particles with 6 and 7.69 MeV energies, which are emitted in the 222 Rn chain. The application of these results may enhance current dose risk estimation approaches in the sense of the inclusion of the influence of the biological effects. (authors)

  9. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    Science.gov (United States)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  10. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    Science.gov (United States)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  11. Chemical changes after irradiation and post-irradiation storage in tilapia and Spanish mackerel

    International Nuclear Information System (INIS)

    Al-Kahtani, H.A.; Abu-Tarboush, H.M.; Bajaber, A.S.; Atia, M.; Abou-Arab, A.A.; El-Mojaddidi, M.A.

    1996-01-01

    Influence of gamma irradiation (1.5-10 kGy) and post-irradiation storage up to 20 days at 2 +/- 2 degrees C on some chemical criteria of tilapia and spanish mackerel were studied. Total volatile basic nitrogen formation was lower in irradiated fish than in the unirradiated. Irradiation also caused a larger increase in thiobarbituric acid values which continued gradually during storage. Some fatty acids decreased by irradiation treatments at all doses. Thiamin loss was more severe at higher doses (greater than or equal to 4.5 kGy), whereas riboflavin was not affected. Alpha and gamma tocopherols of tilapia and alpha, beta, gamma, and delta tocopherols, in Spanish mackerel, decreased with increased dose and continued to decrease during 20-day post-irradiation storage

  12. Alpha-particle-induced soft errors in high speed bipolar RAM

    International Nuclear Information System (INIS)

    Mitsusada, Kazumichi; Kato, Yukio; Yamaguchi, Kunihiko; Inadachi, Masaaki

    1980-01-01

    As bipolar RAM (Random Access Memory) has been improved to a fast acting and highly integrated device, the problems negligible in the past have become the ones that can not be ignored. The problem of a-particles emitted from the radioactive substances in semiconductor package materials should be specifically noticed, which cause soft errors. The authors have produced experimentally the special 1 kbit bipolar RAM to investigate its soft errors. The package used was the standard 16 pin dual in-line type, with which the practical system mounting test and a-particle irradiation test have been performed. The results showed the occurrence of soft errors at the average rate of about 1 bit/700 device hour. It is concluded that the cause was due to the a-particles emitted from the package materials, and at the same time, it was found that the rate of soft error occurrence was able to be greatly reduced by shielding a-particles. The error rate significantly increased with the decrease of the stand-by current of memory cells and with the accumulated charge determined by time constant. The mechanism of soft error was also investigated, for which an approximate model to estimate the error rate by means of the effective noise charge due to a-particles and of the amount of reversible charges of memory cells is shown to compare it with the experimental results. (Wakatsuki, Y.)

  13. Micronuclei in human peripheral blood lymphocytes exposed to mixed beams of X-rays and alpha particles

    Czech Academy of Sciences Publication Activity Database

    Staaf, E.; Brehwens, K.; Haghdoost, S.; Nievaart, S.; Pachnerová Brabcová, Kateřina; Czub, J.; Braziewicz, J.; Wojcik, A.

    2012-01-01

    Roč. 51, č. 3 (2012), s. 283-293 ISSN 0301-634X Institutional research plan: CEZ:AV0Z10480505 Keywords : Micronuclei * LET * Combined exposure * Mixed beams * Alpha particles * X-rays Subject RIV: BO - Biophysics Impact factor: 1.754, year: 2012

  14. A model of knock-out of oxygen by charged particle irradiation of Bi-2212

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.K.; Sen, Pintu; Barat, P.; Mukherjee, P.; Das, S.K.; Ghosh, B.

    1996-01-01

    A model of knock-out of oxygen by charged particle (α and proton) irradiation of Bi 2 Sr 2 CaCu 2 O 8+x (Bi-2212) is proposed on the basis of Monte Carlo TRIM calculations. In Bi-2212, the loosely bound excess oxygen is vulnerable to be displaced by particle irradiation. Binding energy and hence, displacement energy of this loosely bound excess oxygen is less compared to that of stoichiometric lattice bound oxygen and other atoms. The displaced or knocked out oxygen goes to pores or intergranular region and generates large pressure inside the sample. Because of porosity of the material, this displaced oxygen diffuses out and there is a net reduction of oxygen content of the sample. The irradiation induced oxygen knock-out is dominant in the bulk where nonionizing energy loss is maximum. (author). 29 refs., 1 fig., 3 tabs

  15. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    In the present work, attempts have been made to investigate the modification in particle track etching response of polyallyl diglycol carbonate (PADC) due to impact of 2 MeV electrons. PADC samples pre-irradiated to 1, 10, 20, 40, 60, 80 and 100 Mrad doses of 2 MeV electrons were further exposed to 140 MeV 28Si beam ...

  16. Studying the Range of Incident Alpha Particles on Cu , Ge , Ag , Cd , Te and Au, With Energy (4-15 MeV)

    International Nuclear Information System (INIS)

    Kadhim, R.O.; Jasim, W.N.

    2015-01-01

    In this paper theoretical calculation of the range for alpha particles with the energy range (4 – 15)MeV when passing in some metallic media (Cu , Ge , Ag , Cd , Te and Au).Semi empirical formula was used in addition to (SRIM-2012) program. The Semi empirical equation was programmed to calculate the range using Matlab Language.The results of the range in these media were compared with the results obtained from SRIM-2012 and )(2011)Andnet) results.There was good agreement among the semi empirical equation result , SRIM- 2012 results and with )(2011)Andnet) results in the low energy.The results showed exponential relation between the range of alpha particles in these media and the velocity of the particles.By recourse with SRIM- 2012 results and application them in Matlab program and by using Curve Fitting Tool we extraction equation with its constants to calculate the range of alpha particles in any element of these six elements with the energy range (4 – 15)MeV.The maximum deviation between the results from the semi empirical calculation and SRIM-2012 results was calculated the statistical test ( kstest2) in Matlab program

  17. Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Chang, Z.; Nazikian, R.; Fu, G.Y.

    1997-02-01

    Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increase in alpha loss and appearance of multiple high-n (n ≥ 6, n is the toroidal mode number) modes

  18. Operation of a high-purity silicon diode alpha particle detector at 1.4 K

    International Nuclear Information System (INIS)

    Martoff, C.J.; Kaczanowicz, E.; Neuhauser, B.J.; Lopez, E.; Zhang, Y.; Ziemba, F.P.

    1991-01-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm 2 by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.)

  19. Operation of a high-purity silicon diode alpha particle detector at 1. 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J.; Kaczanowicz, E. (Temple Univ., Philadelphia, PA (USA)); Neuhauser, B.J.; Lopez, E.; Zhang, Y. (San Francisco State Univ., CA (USA)); Ziemba, F.P. (Quantrad Corp. (USA))

    1991-03-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm{sup 2} by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.).

  20. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...