WorldWideScience

Sample records for alpha particle emitting

  1. The biokinetics of alpha-particle emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    The past two decades have seen wide interest in the application of alpha-particle emitting radionuclides for targeted endoradiotherapy and a large number of compounds labeled with 211At (T1/2 7.21 h), 212Bi (T1/2 1 h) or 213Bi (T1/2 0.78 h) have been studied. Knowledge of the biokinetic behaviour of such agents is important both for their optimal clinical exploitation and for general radiological protection purposes. Animal studies of the distribution and retention of 211At compounds, including ionic astatide, substituted aromatic compounds and labelled monoclonal antibodies, have provided new information on the biochemistry of astatine. With respect the thyroid gland the uptake of the astatide ion has been shown to be very much lower than that of the iodide ion. Less information is available for 212Bi-labelled radiopharmaceuticals. The available data for both 211At and 212Bi radiopharmaceuticals are reviewed. Cautious generic biokinetic models for inorganic and simple organic compounds of 211At and 212Bi; for [211At]-, and [212Bi]-biphosphonates and for [211At]-, and [212Bi]-monoclonal antibodies, are proposed for use in general radiological protection when compound-specific data are not available. (orig.)

  2. The biokinetics of alpha-particle emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.M. [School of Chemistry, Cardiff Univ., Cardiff (United Kingdom); Duffield, J.R. [Faculty of Applied Sciences, Univ. of the West of England, Bristol (United Kingdom)

    2005-07-01

    The past two decades have seen wide interest in the application of alpha-particle emitting radionuclides for targeted endoradiotherapy and a large number of compounds labeled with {sup 211}At (T{sup 1}/{sub 2} 7.21 h), {sup 212}Bi (T{sup 1}/{sub 2} 1 h) or {sup 213}Bi (T{sup 1}/{sub 2} 0.78 h) have been studied. Knowledge of the biokinetic behaviour of such agents is important both for their optimal clinical exploitation and for general radiological protection purposes. Animal studies of the distribution and retention of {sup 211}At compounds, including ionic astatide, substituted aromatic compounds and labelled monoclonal antibodies, have provided new information on the biochemistry of astatine. With respect the thyroid gland the uptake of the astatide ion has been shown to be very much lower than that of the iodide ion. Less information is available for {sup 212}Bi-labelled radiopharmaceuticals. The available data for both {sup 211}At and {sup 212}Bi radiopharmaceuticals are reviewed. Cautious generic biokinetic models for inorganic and simple organic compounds of {sup 211}At and {sup 212}Bi; for [{sup 211}At]-, and [{sup 212}Bi]-biphosphonates and for [{sup 211}At]-, and [{sup 212}Bi]-monoclonal antibodies, are proposed for use in general radiological protection when compound-specific data are not available. (orig.)

  3. Selection of filter media used for monitoring airborne alpha-emitting particles in a radiological emergency

    International Nuclear Information System (INIS)

    We have developed on air monitor for alpha-emitting particles released to the atmosphere at an accident of nuclear reprocessing plant. Selection of a suitable filter for the monitor is considerably important in order to achieve the high-sensitive measurement of radioactive concentration. We have examined surface collection efficiencies and pressure drops for the various filters that are commercially available in Japan. It was found that the PTFE membrane filter with backing had superior performance to the others, that is, a high surface collection efficiency and low pressure drop. (author)

  4. Angular and velocity distributions of secondary particles emitted in interaction of 3. 6-GeV/nucleon. cap alpha. particles and lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Antonenko, V.G.; Vinogradov, A.A.; Galitskii, V.M.; Grigor' yan, Y.I.; Ippolitov, M.S.; Karadzhev, K.V.; Kuz' min, E.A.; Man' ko, V.I.; Ogloblin, A.A.; Paramonov, V.V.; Tsvetkov, A.A.

    1980-04-01

    The technique is described and results presented of measurements of the velocity and angular distributions of pions, protons, and deuterons, and tritons emitted in bombardment of lead nuclei by ..cap alpha.. particles with energy 3.6 GeV/nucleon.

  5. Low-level measurement of alpha-particle emitting nuclei in ceramics and lead

    International Nuclear Information System (INIS)

    Nearly all natural materials contain trace quantities of uranium (U) and thorium (Th) and their daughter nuclides, many of which emit α-particles in their decay. Lead, at the end of the U-decay chain, typically contains some radioactive 210Pb which is chemically inseparable from the other Pb isotopes. α-particle emission from these decays can affect sensitive electronic components, such as memory chips or processors. Measurement of α-particle emitters can be accomplished by direct detection of the α-particles (which typically provides no positive identification of the emitting isotope because of energy loss in the sample) or by low-background γ-ray spectroscopy (which does provide positive identification via characteristic γ-rays). The latter is by far the best method for screening kg-sized samples of materials like ceramics, aluminum, iron, or copper. The difference between α counting and γ-ray spectroscopy is less for measuring 210Pb in Pb since the 46.5 keV characteristic γ-rays directly following the 210Pb decay are strongly absorbed and both methods are limited to thin layers. This paper discusses these two cases and concludes that a large n-type germanium γ-ray spectrometer is probably the best overall system for both measurements. (author)

  6. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy

    International Nuclear Information System (INIS)

    Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy

  7. Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation.

    Directory of Open Access Journals (Sweden)

    Christian Wulbrand

    Full Text Available Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting (213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with (213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM. Survival and viability of CAL33 cells decreased both after incubation with increasing (213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml-1.48 MBq/ml and irradiation with increasing doses of photons (0.5-12 Gy. Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by (213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting (213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, (213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors.

  8. Assessment of gamma, beta and alpha-particle-emitting nuclides in marine samples

    International Nuclear Information System (INIS)

    Depending on the physical properties of radionuclides different systems must be used for their measurement. Most convenient is if gamma spectrometry can be used by germanium, Silicon or Scintillation detectors (eg. NaI). If, however, the main emission consists of beta or alpha particles or low-energy photons as is the case for radionuclides decaying by electron capture, radiochemical separation and specific source preparations must be undertaken. In such cases also the radiochemical yield must be determined. The radiochemical part mainly follows the lines presented by prof. T. Jaakkola, Department of Radiochemistry, Helsinki, Finland, at a course in radioecology in Lurid, 1991. For very long-lived radionuclides other methods such as mass spectrometry are superior although often associated with sophisticated expensive instrumentation. (author)

  9. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    International Nuclear Information System (INIS)

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies

  10. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  11. Alpha-emitting radioisotopes production for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwon Soo [Korea Institutet of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-02-15

    This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of {sup 213}Bi, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.

  12. Alpha Particle Emission in Fission

    International Nuclear Information System (INIS)

    Soon after it was discovered that alpha particles are occasionally emitted in fission, it was concluded, on the basis of the energy and angular distributions of these particles, that they are emitted from the space between the fragments at times close to that of the snapping of the neck that connects them. It is shown that, independent of any (still unknown) dynamic features of the alpha-particle ejection process, the energy required to emit alpha particles from between the fragments at the indicated time is barely available. Presumably the rareness of alpha particles in fission, and the apparent absence of still heavier ''third'' particles, is associated with the marginal energy supply at the time of actual fragment division. The fact that the total kinetic energy release in so-called ternary fission is roughly equal to that in normal binary fission instead of being about 20 MeV larger is shown to imply that the mean fragment separation at the division time is larger in ternary fission. This is interpreted to indicate that alpha particles are emitted with greatest probability n those fissions where ample energy happens to be provided through the stretching of an abnormally long neck between the fragments before they actually divide. It is suggested that the release of the alpha particles is a sudden rather than adiabatic process. (author)

  13. Treatment of HER2-Expressing Breast Cancer and Ovarian Cancer Cells With Alpha Particle-Emitting 227Th-Trastuzumab

    International Nuclear Information System (INIS)

    Purpose: To evaluate the cytotoxic effects of low-dose-rate alpha particle-emitting radioimmunoconjugate 227Th-p-isothiocyanato-benzyl-DOTA-trastuzumab (227Th-trastuzumab [where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]) internalized by breast and ovarian cancer cell lines in order to assess the potential of 227Th-trastuzumab as a therapeutic agent against metastatic cancers that overexpress the HER2 oncogene. Methods and Materials: Clonogenic survival and cell growth rates of breast cancer cells treated with 227Th-trastuzumab were compared with rates of cells treated with nonbinding 227Th-rituximab, cold trastuzumab, and X-radiation. Cell growth experiments were also performed with ovarian cancer cells. Cell-associated radioactivity was measured at several time points, and the mean radiation dose to cells was calculated. Results: SKBR-3 cells got 50% of the mean absorbed radiation dose from internalized activity and 50% from cell surface-bound activity, while BT-474 and SKOV-3 cells got 75% radiation dose from internalized activity and 25% from cell surface-bound activity. Incubation of breast cancer cells with 2.5 kBq/ml 227Th-trastuzumab for 1 h at 4oC, followed by washing, resulted in mean absorbed radiation doses of 2 to 2.5 Gy. A dose-dependent inhibition of cell growth and an increase in apoptosis were induced in all cell lines. Conclusions: Clinically relevant activity concentrations of 227Th-trastuzumab induced a specific cytotoxic effect in three HER2-expressing cell lines. The cytotoxic effect of 227Th-trastuzumab was higher than that of single-dose X-radiation (relative biological effectiveness = 1.2). These results warrant further studies of treatment of breast cancer and ovarian cancer with 227Th-trastuzumab.

  14. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  15. Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy

    International Nuclear Information System (INIS)

    Today, cancer treatments mainly rely on surgery or external beam radiation to remove or destroy bulky tumors. Chemotherapy is given when tumours cannot be removed or when dissemination is suspected. However, these approaches cannot permanently treat all cancers and relapse occurs in up to 50% of the patients’ population. Radioimmunotherapy (RIT) and peptide receptor radionuclide therapy (PRRT) are effective against some disseminated and metastatic diseases, although they are rarely curative. Most preclinical and clinical developments in this field have involved electron-emitting radionuclides, particularly iodine-131, yttrium-90 and lutetium-177. The large range of the electrons emitted by these radionuclides reduces their efficacy against very small tumour cell clusters or isolated tumour cells present in residual disease and in many haematological tumours (leukaemia, myeloma). The range of alpha particles in biological tissues is very short, less than 0.1 mm, which makes alpha emitters theoretically ideal for treatment of such isolated tumour cells or micro-clusters of malignant cells. Thus, over the last decade, a growing interest for the use of alpha-emitting radionuclides has emerged. Research on targeted alpha therapy (TAT) began years ago in Nantes through cooperation between Subatech, a nuclear physics laboratory, CRCNA, a cancer research centre with a nuclear oncology team and ITU (Karlsruhe, Germany). CD138 was demonstrated as a potential target antigen for Multiple Myeloma, which is a target of huge clinical interest particularly suited for TAT because of the disseminated nature of the disease consisting primarily of isolated cells and small clusters of tumour cells mainly localized in the bone marrow. Thus anti-CD138 antibodies were labelled with bismuth-213 from actinium-225/bismuth-213 generators provided by ITU and used to target multiple myeloma cells. In vitro studies showed cell cycle arrest, synergism with chemotherapy and very little induction

  16. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    Science.gov (United States)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  17. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  18. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  19. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  20. Relativistic alpha-particles emitted in Fe-emulsion interactions at 1.7 A GeV

    International Nuclear Information System (INIS)

    Relativistic α-particles have been studied in 423 Fe-emulsion interactions at 1.7 A Gev. Comparisons of the observed angular distribution with that from 16O-emulsion reactions at 2.1 A GeV reveal that more α particles are observed at large angles in the Fe-emulsion reactions. The α particles with large angles connot be explained by fragmentation from a clean cut spectator. Comparison of the experimental data with moving relativistic Boltzmann distributions shows that a single Boltzmann distribution cannot fit the fragmentation peak and the tail simultaneously. A thermal source (fireball) explaining the tail part of the distribution need to be formed by a mechanism other than simple clean cut participant-spectator picture. A large transverse momentum transfer to spectator before fragmentation may explain the tail. (author)

  1. Alpha Particle Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  2. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    Energy Technology Data Exchange (ETDEWEB)

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  3. High resolution alpha particle spectrometry through collimation

    International Nuclear Information System (INIS)

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides. - Highlights: • Alpha particle spectrometry with collimation a useful method for identifying nuclear materials among various radionuclides. • A collimator cut off alpha particles with low angle emitted from a source. • We confirm that that a collimator improves the resolution of alpha spectra through both simulation and experiments

  4. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of {alpha}-particle-emitting {sup 211}At-labeled trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Boskovitz, Abraham; McLendon, Roger E.; Okamura, Tatsunori [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Sampson, John H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: zalut001@mc.duke.edu

    2009-08-15

    Introduction: Carcinomatous meningitis (CM) is a devastating disease characterized by the dissemination of malignant tumor cells into the subarachnoid space along the brain and spine. Systemic treatment with monoclonal antibody (mAb) trastuzumab can be effective against HER2-positive systemic breast carcinoma but, like other therapies, is ineffective against CM. The goal of this study was to evaluate the therapeutic effect of {alpha}-particle emitting {sup 211}At-labeled trastuzumab following intrathecal administration in a rat model of breast carcinoma CM. Methods: Athymic rats were injected intrathecally with MCF-7/HER2-18 breast carcinoma cells through a surgically implanted indwelling intrathecal catheter. In Experiment 1, animals received 33 or 66 {mu}Ci {sup 211}At-labeled trastuzumab, cold trastuzumab or saline. In Experiment 2, animals were inoculated with a lower tumor burden and received 46 or 92 {mu}Ci {sup 211}At-labeled trastuzumab or saline. In Experiment 3, animals received 28 {mu}Ci {sup 211}At-labeled trastuzumab, 30 {mu}Ci {sup 211}At-labeled TPS3.2 control mAb or saline. Histopathological analysis of the neuroaxis was performed at the end of the study. Results: In Experiment 1, median survival increased from 21 days for the saline and cold trastuzumab groups to 45 and 48 days for 33 and 66 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 2, median survival increased from 23 days for saline controls to 68 and 92 days for 46 and 92 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 3, median survival increased from 20 days to 29 and 36 days for animals treated with {sup 211}At-labeled TPS3.2 and {sup 211}At-labeled trastuzumab, respectively. Long-term survivors were observed exclusively in the {sup 211}At-trastuzumab-treated groups. Conclusion: Intrathecal {sup 211}At-labeled trastuzumab shows promise as a treatment for patients with HER2-positive breast CM.

  5. Development of the method for treatment for bone metastasis by using disequilibrium-type alpha particle emitting in vivo generator: 227Th-EDTMP

    International Nuclear Information System (INIS)

    To evaluate the efficacy of an alpha emitting radiopharmaceutical, 227Th-EDTMP for treatment of bone metastasis, 1) the process of bone metastasis on rats were monitored by radiography and gamma scintigraphy, and 2) 227Th-EDTMP were administered to bone metastasis model rats and assessed its palliation effect by von Frey filament test and measured tumor size. Two weeks after tumor cell inoculation, rats showed osteolytic change on cell inoculated site and bone lesion was detected by scintigraphy. In the therapy study, the rats showed no toxic effect by 227Th-EDTMP. However, the tumor volume size was increased with time and the bone pain palliation was comparable to control groups. Further experiment was necessary. (author)

  6. Alpha particle physics for ITER

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of a variety of physical processes which, in the ITER EDA configuration, determine the nature of alpha particle heating in the plasma interior and alpha particle losses to the first wall. The paper consists of results from the alpha particle toroidal field (TF) ripple loss calculations and an analysis of alpha particle collective effects including Alfven modes, sawtooth stabilization, etc. It is shown that the ripple loss in the present ITER configuration is only a few per cent, which cannot directly affect the achievement of ignition. In spite of the up-down asymmetry, the loss fraction does not strongly depend on the toroidal drift direction. However, the heat load is highly localized and can be as high as 1 MW/m2 on the top of the protective limiters. Preliminary calculations of toroidicity induced Alfven eigenmode (TAE) stability indicate that high n numbers may be unstable, but the computational tools, needed for reliable quantitative predictions, are still in a state of development. The likelihood of appreciable alpha particle loss will depend on whether TAE modes produce stochastic alpha particle diffusion or not. The effect of fast particles on the m = 1 mode is also discussed. (author). 15 refs, 2 figs, 1 tab

  7. Alpha-particle diagnostics

    International Nuclear Information System (INIS)

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for α- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence α-particle birth profile, (2) measurement of the escaping α-particles and (3) measurement of the confined α-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by α-particles and the methods necessary for measuring these effects. 51 refs., 10 figs

  8. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    CERN Document Server

    Pollmann, Tina; Kuźniak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  9. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate 227Th-rituximab

    International Nuclear Information System (INIS)

    The anti-CD20 antibody rituximab labelled with the α-particle-emitting radionuclide 227Th is of interest as a radiotherapeutic agent for treatment of lymphoma. Complete regression of human lymphoma Raji xenografts in 60% of mice treated with 200 kBq/kg 227Th-rituximab has been observed. To evaluate possible late side effects of 227Th-rituximab, the long-term radiotoxicity of this potential radiopharmaceutical was investigated. BALB/c mice were injected with saline, cold rituximab or 50, 200 or 1,000 kBq/kg 227Th-rituximab and followed for up to 1 year. In addition, nude mice with Raji xenografts treated with various doses of 227Th-rituximab were also included in the study. Toxicity was evaluated by measurements of mouse body weight, white blood cell (WBC) and platelet counts, serum clinical chemistry parameters and histological examination of tissues. Only the 1,000 kBq/kg dosage resulted in decreased body weight of the BALB/c mice. There was a significant but temporary decrease in WBC and platelet count in mice treated with 400 and 1,000 kBq/kg 227Th-rituximab. Therefore, the no-observed-adverse-effect level (NOAEL) was 200 kBq/kg. The maximum tolerated activity was between 600 and 1,000 kBq/kg. No significant signs of toxicity were observed in histological sections in any examined tissue. There were significantly (p 227Th-rituximab or non-labelled antibody when compared with control mice. The maximum tolerated dose to bone marrow was between 2.1 and 3.5 Gy. Therapeutically relevant dose levels of 227Th-rituximab were well tolerated in mice. Bone marrow suppression, as indicated by decrease in WBC count, was the dose-limiting radiotoxicity. These toxicity data together with anti-tumour activity data in a CD20-positive xenograft mouse model indicate that therapeutic effects could be obtained with relatively safe dosage levels of the radioimmunoconjugate. (orig.)

  10. Detection of alpha particles with undoped poly (ethylene naphthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hidehito, E-mail: hidehito@rri.kyoto-u.ac.jp [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirakawa, Yoshiyuki; Kitamura, Hisashi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sato, Nobuhiro; Takahashi, Sentaro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2014-03-01

    There has been recent interest in the use of undoped, aromatic-ring polymers as organic scintillation materials for radiation detectors. Here, we characterise the response of poly (ethylene naphthalate) (PEN) to alpha particles. The energy response to 5486 keV alpha particles emitted from {sup 241}Am was 554±45 keV electron equivalents (keVee), with an energy resolution of 11.2±0.1%. The energy response to 6118 keV alpha particles emitted from {sup 252}Cf was 618±45 keVee, with a resolution of 8.8±0.1%. It is also important to characterise the refractive index because it determines how efficiently light propagates in scintillation materials to the photodetector. By taking into account the PEN emission spectrum, it was revealed that its effective refractive index was 1.70. Overall, the results indicate that PEN has potential as a scintillation material for the detection of alpha particles. - Highlights: • PEN is characterised as a scintillation material for alpha particles. • The effective refractive index for PEN is 1.70 in its emission spectrum. • The response to 5486 (6118) keV alpha particles was 554±45 (618±45) keVee. • The energy resolution for 5486 (6118) keV alpha particles was 11.2±0.1 (8.8±0.1) %. • This work will stimulate future use of PEN for radiation detection.

  11. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  12. Alpha particle radiography of ants using a 244Cm alpha source

    International Nuclear Information System (INIS)

    Alpha particles emitted from a radioisotope 244Cm were used for the radiography of ants. Cellulose nitrate films, LR-115 from Kodak Pathe, were used as solid state nuclear track detectors to make the radiographs. Alpha particles of energies from 3.5 to 5.5 MeV were obtained by varying the air spacing between the 244Cm and the sample with stainless steel spacers of thickness from 2.4 to 0.5 cm to slow the 5.81 MeV alpha particles from the 244Cm by air. The resulting radiographs of the ants put on the LR-115 films and irradiated by alpha particles of different energies show that only the profiles of the ants were obtained when the ants were exposed to alpha particles of energies lower than 3.5 MeV, and almost all parts of the ant except a portion in the head were penetrated by alpha particles of energies higher than 5.0 MeV to register high density alpha tracks on the LR-115. The details of the internal organs of the ant can be shown clearly by radiography with alpha particles of energies between 4.0 and 5.0 MeV. (author)

  13. Direct analysis of air filter samples for alpha emitting isotopes

    International Nuclear Information System (INIS)

    The traditional method for determination of alpha emitting isotopes on air filters has been to process the samples by radiochemical methods. However, this method is too slow for cases of incidents involving radioactive materials where the determination of personnel received dose is urgent. A method is developed to directly analyze the air filters taken from personal and area air monitors. The site knowledge is used in combination with alpha spectral information to identify isotopes. A mathematical function is developed to estimate the activity for each isotope. The strengths and weaknesses of the method are discussed

  14. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  15. Metabolism and biological effects of alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    The emphasis of much of the current and planned research on the toxicity of alpha-emitting radionuclides is directed toward the complexities of actual and potential conditions of occupational environmental exposures of human beings. These, as well as the more limited studies on mechanisms of biological transport and effects, should increase our ability to predict health risks more accurately and to deal more confidently with human exposures, if and when they occur

  16. Nanodosimetry of radon alpha particles

    International Nuclear Information System (INIS)

    It is currently accepted that energy deposition at the nanometer level (rather than conventional microdosimetry) determines the biological effects of ionizing radiation. Many previously established experimental techniques (e.g., the Rossi proportional counter) or theoretical methods (e.g., simplified calculations using the continuous slowing-down approximation (CSDA)) are inapplicable to the study of nanodosimetry. The peculiarities of the geometry of exposure to radon progeny further complicate the problem. This is because the conditions under which several open-quotes classicalclose quotes models of radiation action are obtained (e.g., the alpha-beta formulation of the Theory of Dual Radiation Action, which is built on microdosimetry) are no longer valid. It thus becomes clear that not only new techniques but new concepts are required to describe the effects of radon alpha particles. In this paper we discuss a number of computational aspects specific to radon nanodosimetry. In particular, we describe the novel concept of open-quotes associated surfaceclose quotes (AS) which is necessary for efficiently converting Monte-Carlo-generated particle tracks to nanodosimetric spectra. The AS is the analog of Lea's associated volume, applied to radiation sources subject to the geometrical restrictions of internal exposure. We systematically analyze factors affecting the nanodosimetry of radon progeny, such as the distance between the radioactive source and the sensitive volume, the size of the sensitive volume, and CSDA versus full Monte-Carlo track generation

  17. Nanodosimetry of radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M. [Columbia Univ. New York, NY (United States); Varma, M.N. [U.S. Department of Energy, Washington, DC (United States)

    1992-12-31

    It is currently accepted that energy deposition at the nanometer level (rather than conventional microdosimetry) determines the biological effects of ionizing radiation. Many previously established experimental techniques (e.g., the Rossi proportional counter) or theoretical methods (e.g., simplified calculations using the continuous slowing-down approximation (CSDA)) are inapplicable to the study of nanodosimetry. The peculiarities of the geometry of exposure to radon progeny further complicate the problem. This is because the conditions under which several {open_quotes}classical{close_quotes} models of radiation action are obtained (e.g., the alpha-beta formulation of the Theory of Dual Radiation Action, which is built on microdosimetry) are no longer valid. It thus becomes clear that not only new techniques but new concepts are required to describe the effects of radon alpha particles. In this paper we discuss a number of computational aspects specific to radon nanodosimetry. In particular, we describe the novel concept of {open_quotes}associated surface{close_quotes} (AS) which is necessary for efficiently converting Monte-Carlo-generated particle tracks to nanodosimetric spectra. The AS is the analog of Lea`s associated volume, applied to radiation sources subject to the geometrical restrictions of internal exposure. We systematically analyze factors affecting the nanodosimetry of radon progeny, such as the distance between the radioactive source and the sensitive volume, the size of the sensitive volume, and CSDA versus full Monte-Carlo track generation.

  18. Aero particles characterization emitted by mobile sources

    International Nuclear Information System (INIS)

    In our country, the mobile sources that conform most of the emissions at the atmosphere, are concentrated on the urban areas. For the present work, samples coming from the escapes of terrestrial transport were obtained, such as: passenger buses, load transport and particular vehicles of the Metropolitan area of the Toluca valley. The material was analyzed by means of scanning electron microscopy of low vacuum and X-ray diffraction. The objective was to characterize the emitted particles by mobile sources, morphological and chemically to know the structure, size and elements that compose them. (Author)

  19. Development of low level alpha particle counting system

    International Nuclear Information System (INIS)

    Much attention has been paid to the trace analysis of uranium and thorium contained in the base material of LSI or VLSI, since the so-called ''soft-error'' of the memory device was known to be due to alpha particles emitted from these radioactive elements. We have developed an apparatus to meet the needs of estimating such a very small quantity of U and Th of the level of ppb, by directly counting alpha particles using a gas-flow type proportional counter. This method requires no sophisticated analytical skill, and the accuracy of the result is satisfactory. The instrumentation and some application of this apparatus are described. (author)

  20. Alpha particle problems in shielded support systems

    International Nuclear Information System (INIS)

    Alpha particle confinement is considered in the case of internal conductor systems with magnetically shielded supports. The treatment includes problems of energy transfer to the background plasma, the balance between radiation losses and alpha particle heating, mirror confinement in the main poloidal field, the cut-off and shielding conditions at the supports, ambipolar electric fields, wall interaction, and support location. With a proper and technically realizable choice of parameter values, it should become possible to achieve alpha particle heating as well as to manage the reactor technological problems due to alpha particle interaction with the supports. (Auth.)

  1. Report of a Technical Meeting on ''Alpha emitting radionuclides and radiopharmaceuticals for therapy''

    International Nuclear Information System (INIS)

    Considering the high potential of α-emitters for future development of radionuclide therapy, the International Atomic Energy Agency (IAEA) organized a Technical Meeting on ‘Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy’, from June 24 to 28, 2013, at IAEA Headquarters in Vienna with the purpose of gathering eminent Experts in the field and discuss with them the status and future perspectives of the field. Sixteen Experts and two External Observers from ten different countries, and four IAEA Technical Officers attended this meeting. Outstanding lectures have been presented covering all relevant aspects of α-therapy, which were followed by extensive discussions and analysis. Selected arguments encompassed production methods and availability of alpha-emitting radionuclides, labelling chemistry of alpha-emittting radioelements, design and development of target-specific radiopharmaceuticals, physical principles of alpha-particle dosimetry and advanced dosimetric models, biological effects of alpha radiation at the cellular level, on-going preclinical and clinical studies with new radiopharmaceuticals, results of clinical trials on the use of radium-223 chloride solutions for the treatment of metastatic bone cancer. The broad scientific background of invited components of the Experts’ panel conferred a strong interdisciplinary trait to the overall discussion and stimulated a critical analysis of this emerging unexplored field. Results of this comprehensive overview on alpha therapy, including recommendations to the Agency on suitable initiatives that may help to promote and spread the knowledge to Members States on this emerging therapeutic modality, are summarized in the present Report

  2. Prospects for alpha particle studies on TFTR

    International Nuclear Information System (INIS)

    TFTR is expected to produce approximately 5 MW of alpha heating during the D/T Q ≅ 1 phase of operation in 1990. At that point the collective confinement properties and the heating effects of alpha particles become accessible for study for the first time. This paper outlines the potential performance of TFTR with respect to alpha particle production, the diagnostics which will be available for alpha particle measurements, and the physics issues which can be studied both before and during D/T operation

  3. Alpha particle confinement in tandem mirrors

    International Nuclear Information System (INIS)

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step

  4. The AlGaAs light emitting particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Pozela, J. E-mail: pozela@uj.pfi.lt; Pozela, K.; Silenas, A.; Juciene, V.; Dapkus, L.; Jasutis, V.; Tamulaitis, G.; Zukauskas, A.; Bendorius, R.-A

    1999-09-11

    An AlGaAs light emitting particle detector was fabricated and investigated experimentally. Light emitting semiconductor Al{sub x}Ga{sub 1-x}As layers with graded-gap energy band structure were grown, and luminescence spectra were investigated. A light emitting X-ray detector was also fabricated. (author)

  5. The AlGaAs light emitting particle detector

    CERN Document Server

    Pozela, J; Silenas, A; Juciene, V; Dapkus, L; Jasutis, V; Tamulaitis, G; Zukauskas, A; Bendorius, R A

    1999-01-01

    An AlGaAs light emitting particle detector was fabricated and investigated experimentally. Light emitting semiconductor Al sub x Ga sub 1 sub - sub x As layers with graded-gap energy band structure were grown, and luminescence spectra were investigated. A light emitting X-ray detector was also fabricated. (author)

  6. The Emission of Long-Range Alpha Particles in Fission

    International Nuclear Information System (INIS)

    Fraenkel and Thompson (1964) have shown that the most probable direction of emission of the long-range alpha particles in the spontaneous fission of californium-252 varies with the ratio of the masses of the residual fission fragments. The angle of emission relative to the direction of motion of the lighter fragment increases significantly as the mass of the lighter fragment decreases. Assuming that the alpha particle is emitted at the scission point, these authors conclude that the scission point, in ternary fission, occurs progressively nearer to the lighter fragment as the fragment mass ratio is greater. They point out that this is one of the assumptions underlying the ''geometrical'' model of mass division of Whetstone (1959) and Vladimirski (1957), and is the feature of that model in terms of which the variation of the average number of neutrons with fragment mass in binary fission is successfully explained. They suggest that these various considerations together indicate that the configuration of the scissioning nucleus at (and before) scission in ternary fission closely resembles the corresponding configuration in binary fission. Adopting this last hypothesis in relation to the thermal-neutron-induced fission of uranium-235, the writer (1964) has shown that if the liberation cf the alpha particle occurs at or just after the moment of scission, so that it may be regarded as emitted from a newly formed, but still deformed, fragment then the probability of emission can be deduced from the experiments of Schmitt et al. (1962), if certain further assumptions are made. On the assumption that the alpha particle is derived from the heavy fragment exclusively, it appears that the prob-ability of release from that fragment correlates directly with the average number of secondary neutrons emitted in in binary fission, and also with the energy available for alpha-particle emission from the undeformed (ground state) fragment. There would be no correlation with the energy

  7. Instrument for measuring total alpha particle energies of alpha emitters in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, S.; Brucker, G.J.; Cummings, B.; Bechtel, E.; Gentner, F.; Horne, S

    2000-11-11

    This paper describes the design, fabrication, testing and evaluation of a self-reading, carbon fiber, electrometer-type instrument. It is used for measuring the total energy of alpha particles emitted in air by progenies of {sup 222}Rn ({sup 218}Po, {sup 214}Pb, and {sup 214}Bi), and sometimes by other types of alpha emitters (e.g. {sup 212}Pb, {sup 238}U, and {sup 239}Pu). The purpose of these measurements is to assess the energy delivered by alpha emission from these sources to the lung tissue. A sample (charged progenies attached to aerosols) is collected on filter paper from a known volume of air and placed on the instrument. The discharge rate indicates the alpha energy in MeV l{sup -1} of air per min that is produced by the alpha emitters. The calibration procedure shows that the instrument has an energy sensitivity for alpha particles of 800.5 MeV/scale unit. The range of the readout scale is 30 units. Measurements of alpha contamination in air were made using this instrument in buildings, private homes and in a standard chamber. The value of the radon concentration in this chamber is traceable back to the US Environmental Protection Agency (EPA) and to the National Institute of Standards and Technology (NIST)

  8. Alpha emitters in Chernobyl hot particles

    International Nuclear Information System (INIS)

    The alpha radioactive component of hot particles from the Chernobyl fallout was analysed for cases studied previously by gamma spectroscopy. Correlations established from the absolute alpha activity determination and high resolution analysis provided information on actinides release during accident and on some aspects of the Chernobyl reactor fuel composition. Unexpected features revealed during the analysis of one specific particle are presented. 11 refs., 5 figs., 5 tabs. (author)

  9. Alpha emitters in Chernobyl hot particles

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Kubica, B.; Szeglowski, Z.; Zuber, K. (Institute of Nuclear Physics, Krakow (Poland))

    1989-01-01

    The alpha radioactive component of hot particles from the Chernobyl fallout was analyzed for cases studied previously by gamma spectroscopy. Correlations established from the absolute alpha activity determination and high resolution analysis provided information on the release of actinides during the accident and on some aspects of the Chernobyl reactor fuel composition. Unexpected features revealed during the analysis of one specific particle are presented. (orig.).

  10. Alpha particles detection in nitrocellulose

    International Nuclear Information System (INIS)

    The method for the manufacturing of the detection films follows these steps: preparation of the mass which includes nitrocellulose in the form of cotton as raw material ethyl acetate, cellosolve acetate, isopropyl and butyl alcohols as solvents and dioctyl phtalate as plasticiser; dilution of the paste; pouring of the diluted mass; and drying of the detection films. The results obtained experimentally are: The determination of the development times of the different thicknesses of the manufactured films. Response linearity of the detectors, variation of the number of tracks according to the distance of the source to the detector. Sizes of the diameter of the tracks depending of the distance detector-alpha emmission source. As a conclusion we can say the the nitrocellulose detectors are specific for alpha radiation; the more effective thicknesses in uranium prospecting works were those of 60 microns, since for the laboratory works the thicknesses of 30 to 40 microns were the ideal; the development technique of the detection films is simple and cheap and can be realized even in another place than the laboratory; this way of the manufacturing of nitrocellulose detection film sensitive to alpha nuclear radiation is open to future research. (author)

  11. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  12. Alpha particle spectroscopy by gridded ionization chamber

    International Nuclear Information System (INIS)

    A gridded ionization chamber has been constructed with the aim of determining its ultimate energy resolution in alpha spectroscopy, utilizing a cooled FET pre-amplifier of the type normally employed with semiconductor detectors. With suitable mechanical collimation of the alpha particles, their fine structure has been measured with an energy resolution of -11.5 keV (fwhm), achieved using an Ar + 0.75% C2H2 mixture as the filling gas. (orig.)

  13. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  14. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  15. Alpha particles energy straggling in noble gases

    International Nuclear Information System (INIS)

    The comparison of the calculated spectra by the Monte-Carlo simulation with the experimental alpha-particles spectra after their passage through noble gases target has good agreement for Ar, Kr, and Xe and significant deviation for He and Ne. These agreement or disagreement of the calculated and experimental spectra were ascribed to adequacy or inadequacy of the applied Bohr's charged particles energy loss formula for the specific medium. (author)

  16. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley; Svedlindh, P.; Jonsson, G.T.; Garcia-Palacios, J.L.; Lazaro, F.J.

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies with...

  17. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  18. A practical alpha particle irradiator for studying internal alpha particle exposure.

    Science.gov (United States)

    Lee, Ki-Man; Lee, Ui-Seob; Kim, Eun-Hee

    2016-09-01

    An alpha particle irradiator has been built in the Radiation Bioengineering Laboratory at Seoul National University (SNU) to investigate the cellular responses to alpha emissions from radon and the progeny. This irradiator is designed to have the energy of alpha particles entering target cells similar to that of alpha emissions from the radon progeny Po-218 and Po-214 residing in the human respiratory tract. For the SNU alpha particle irradiator, an irradiation system is equipped with cell dishes of 4µm thick Mylar bottom and a special setup of cells on slide for gamma-H2AX assay. Dose calibration for the alpha particle irradiator was performed by dual approaches, detection and computer simulation, in consideration of the source-to-target distance (STD) and the size of a cell dish. The uniformity of dose among cells in a dish is achieved by keeping the STD and the size of cell dish in certain ranges. The performance of the SNU alpha particle irradiator has been proven to be reliable through the gamma-H2AX assay with the human lung epithelial cells irradiated. PMID:27475622

  19. Properties of the H-alpha-emitting Circumstellar Regions of Be Stars

    CERN Document Server

    Tycner, C; Hajian, A R; Armstrong, J T; Benson, J A; Gilbreath, G C; Hutter, D J; Pauls, T A; White, N M; Tycner, Christopher; Lester, John B.; Hajian, Arsen R.

    2005-01-01

    Long-baseline interferometric observations obtained with the Navy Prototype Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta Tauri and beta Canis Minoris are presented. For compatibility with the previously published interferometric results in the literature of other Be stars, circularly symmetric and elliptical Gaussian models were fitted to the calibrated H-alpha observations. The models are sufficient in characterizing the angular distribution of the H-alpha-emitting circumstellar material associated with these Be stars. To study the correlations between the various model parameters and the stellar properties, the model parameters for eta Tau and beta CMi were combined with data for other Be stars from the literature. After accounting for the different distances to the sources and stellar continuum flux levels, it was possible to study the relationship between the net H-alpha emission and the physical extent of the H-alpha-emitting circumstellar region. A clear dependence of the...

  20. Cross section balance in the 14N+159Tb reaction and the origin of fast alpha particles

    International Nuclear Information System (INIS)

    Exclusive cross sections have been obtained from particle-K X-ray coincidence data measured at 236 MeV for ejectiles ranging from 4He to 15N. Production cross sections for primary fragments and alpha particle multiplicities associated with different channels have been deduced. The major fraction of the alpha particles appears to originate from inelastic (damped) processes in which only light particles with Z<=2 are emitted. (orig.)

  1. Alpha particle diagnostics using impurity pellet injection

    International Nuclear Information System (INIS)

    We have proposed using impurity injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction Fo∞(E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the helium-like ionization state, e.g., Li+ ions, we can determine the incident alpha distribution dnHe2+/dE from the measured energy distribution of neutral helium atoms. Initial experiments were performed on TEXT in which we compared pellet penetration with our impurity pellet ablation model, and measured the spatial distribution of various ionization states in carbon pellet clouds. Experiments have recently begun on TFTR with the goal of measuring the alpha particle energy distribution during D-T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3He tail produced during ICH minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  2. Intercomparison of alpha particle spectrometry software packages

    International Nuclear Information System (INIS)

    Software has reached an important level as the 'logical controller' at different levels, from a single instrument to an entire computer-controlled experiment. This is also the case for software packages in nuclear instruments and experiments. In particular, because of the range of applications of alpha-particle spectrometry, software packages in this field are often used. It is the aim of this intercomparison to test and describe the abilities of four such software packages. The main objectives of the intercomparison were the ability of the programs to determine the peak areas and the peak area uncertainties, and the statistical control and stability of reported results. In this report, the task, methods and results of the intercomparison are presented in order to asist the potential users of such software and to stimulate the development of even better alpha-particle spectrum analysis software

  3. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  4. Synergy between chemotherapy and alpha particles: effects in cells directly hit and in bystander cells

    International Nuclear Information System (INIS)

    Full text: Radioimmunotherapy with alpha-emitting nuclides offers the potential for selective targeting of micrometastatic sites. The short range of alpha particles and limited penetration of the labeled antibody into the tumor make it difficult to deliver a lethal dose to all tumor cells. In an effort to improve the extent and uniformity of tumor cell kill, experiments are underway to evaluate the ability of chemotherapy agents to produce synergistic effects in cells directly hit by alpha particles and in bystander cells. An alpha particle cell irradiation system comprised of planar americium-241 alpha particle sources together with custom-made cell culture dishes with replaceable mylar bottoms has been constructed and characterized. By changing the alpha particle source, the dose rate to cells on the mylar membrane can be varied from 0.0013 Gy/min to 13 Gy/min. The residual range of the alpha particles after exiting the mylar membrane is approximately 30 ∝/m. Preliminary results with alpha particle exposure in the presence or absence of low concentrations of either taxol or oxaliplatin show evidence of synergistic effects. A series of plastic grids have been designed and constructed that can be interposed between the alpha particle source and the cells to partially block the alpha particles. The ratio of open area to shielded area is kept constant at 50% but the diameter and total number of circular openings in the grid is varied, thus changing the proportion of bystander cells present close to the edge between the open and shielded zones. This approach creates a two-dimensional model system for micrometastatic tumors of various sizes where the shielded areas represent the deeper portions of a tumor beyond the range of surface-bound alpha particles. Experiments are underway to determine whether there are synergistic effects between the chemotherapy agents and the bystander cells

  5. Track-nanodosimetry of an alpha particle

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L.; Tornielli, G. [Padova Univ., Padova (Italy); INFN, Padova (Italy); Cesari, V.; Colautti, P.; Conte, V. [INFN Laboratori Nazionali, Legnaro (Italy); Baek, W.Y.; Grosswendt, B. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Alkaa, A.; Segur, P. [Centre de Physique des Plasmas et de leur Applications, Toulouse (France)

    2002-07-01

    Effects of radiation are primarily determined by what happens in individual small volumes representative of DNA segments. Such sites are so small that the interactions due to radiation are very few and it is necessary to consider the stochastic of the number and nature of primary interactions and of secondary processes in order to understand the subsequent biological effects. Track-nanodosimetry has the objective to investigate stochastic aspect of energy deposition in particle tracks, by measuring the ionisation distributions induced by a charged particle in nanometric volumes of tissue-equivalent matter, positioned at different distances from the track. This paper is concerned with measurements and Monte Carlo calculations of ionisation distributions produced in a site of about 20 nm by a {sup 244}Cm alpha particle.

  6. Track-nanodosimetry of an alpha particle

    International Nuclear Information System (INIS)

    Effects of radiation are primarily determined by what happens in individual small volumes representative of DNA segments. Such sites are so small that the interactions due to radiation are very few and it is necessary to consider the stochastic of the number and nature of primary interactions and of secondary processes in order to understand the subsequent biological effects. Track-nanodosimetry has the objective to investigate stochastic aspect of energy deposition in particle tracks, by measuring the ionisation distributions induced by a charged particle in nanometric volumes of tissue-equivalent matter, positioned at different distances from the track. This paper is concerned with measurements and Monte Carlo calculations of ionisation distributions produced in a site of about 20 nm by a 244Cm alpha particle

  7. The Fission of Thorium with Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Amos S.

    1948-04-15

    The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and the threshold for fission was found to be 23 to 24 Mev.

  8. Radiological hazards of waste containing alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  9. Track nanodosimetry of an alpha particle

    International Nuclear Information System (INIS)

    Experimental measurements and calculations are described of ionisation distributions in propane wall-less gas cavities of about 20 nm simulated size, performed at different distances from a 244Cm alpha particle track. Ionisation events are detected one by one by collecting electrons from the sensitive volume and by separating them with a drift column. Experimental results and Monte Carlo calculations indicate that, in the delta ray cloud, conditional probability curves, average cluster size and the ratio of second moment above first moment of the cluster distribution are invariant with track distance. (author)

  10. Track nanodosimetry of an alpha particle.

    Science.gov (United States)

    De Nardo, L; Colautti, P; Baek, W Y; Grosswendt, B; Alkaa, A; Ségur, P; Tornielli, G

    2002-01-01

    Experimental measurements and calculations are described of ionisation distributions in propane wall-less gas cavities of about 20 nm simulated size, performed at different distances from a 244Cm alpha particle track. Ionisation events are detected one by one by collecting electrons from the sensitive volume and by separating them with a drift column. Experimental results and Monte Carlo calculations indicate that, in the delta ray cloud, conditional probability curves, average cluster size and the ratio of second moment above first moment of the cluster distribution are invariant with track distance. PMID:12194323

  11. Track nanodosimetry of an alpha particle

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L.; Colautti, P.; Baek, W.Y.; Grosswendt, B.; Alkaa, A.; Segur, P.; Tornielli, G

    2002-07-01

    Experimental measurements and calculations are described of ionisation distributions in propane wall-less gas cavities of about 20 nm simulated size, performed at different distances from a {sup 244}Cm alpha particle track. Ionisation events are detected one by one by collecting electrons from the sensitive volume and by separating them with a drift column. Experimental results and Monte Carlo calculations indicate that, in the delta ray cloud, conditional probability curves, average cluster size and the ratio of second moment above first moment of the cluster distribution are invariant with track distance. (author)

  12. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley; Svedlindh, P.; Jonsson, G.T.; Garcia-Palacios, J.L.; Lazaro, F.J.

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies with...... temperature in accordance with Ni el's expression, tau = tau(0) exp (KV/kT) with tau(0) = (1.0 +/- 0.5) x 10(-10) s and K = (1.2 +/- 0.2) x 10(5) J m(-3). (C) 1998 Elsevier Science B.V. All rights reserved....

  13. Global alpha-particle optical potentials

    International Nuclear Information System (INIS)

    A search for a global optical potential for alpha-particles is described. It did not prove possible to find such a potential valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section. (author). 7 refs, 15 figs, 1 tab

  14. Experiments with nuclear track detectors for diagnostics of protons and alpha particles from fusion plasmas

    International Nuclear Information System (INIS)

    This report deals with the experimental development of a method of detecting charged particles from nuclear fusion plasmas by means of nuclear track detectors. The latter were bombarded with protons and alpha particles poduced with an accelerator from the fusion reactions D (3He, p) α and D (D, p) T. In the parameter range expected for the particles emitted from thermonuclearly burning plasma the detection probabilities of protons and alpha particles were determined as functions of the energy and angle of incidence, and also the crater radii and depths as functions of the particle species, particle energy and etching time. The following results were obtained: For alpha particles the detection probability in the entire energy range investigated and at angles of incidence between 00 and 700 to the foil normal is about 100%. The alpha particle energy can be approximately determined from the track depths. For protons, on the other hand, the detection probability already decreases monotonically at low energies as the energy increases, becoming zero at about Esub(p) = 7 MeV. Proton detection is only possible at angles of incidence between 00 and 300. The proton energy can be approximately determined from the track radii. The measured energy dependence of the track radii and depths of alpha particles and protons and their angular dependence can be explained with a simple model calculation in which it is assumed that the track etching rate decreases as the particle range in the material of the nuclear track foils increases. (orig.)

  15. Alpha particle emitters in cancer therapy: establishing the rationale and overcoming the difficulties

    International Nuclear Information System (INIS)

    Full text: Once a tumor has metastasized, the possibility of cure is significantly diminished, if not excluded. Since metastatic spread arises due to the release of single tumor cells or tumor cell clusters, treatment regimens following an overt metastasis must include agents that eradicate individual tumor cells and cell clusters or that prevent their dissemination. Alpha particles may be highly effective in eradicating rapidly accessible disease. The effectiveness of alpha particles arises because the amount of energy deposited per unit distance traveled (linear energy transfer or LET) is approximately 400 times greater than that of beta particles (80 keV/μm vs. 0.2 keV/μm). Each traversal of an alpha particle through a cell nucleus results in a very highly ionizing track. Cell survival studies have shown that alpha-particle killing is independent of oxygenation state or cell-cycle during irradiation and that as few as 1 to 6 tracks across the nucleus may result in cell death. Most studies with alpha-particle emitting radionuclides for therapy have examined either bismuth-212 or astatine-211. Both radionuclides are short-lived with 61 minute and 7.2 hour half-lives, respectively, yielding intermediates with 3-minute and 32 year half-lives, respectively. Both emit alpha particles whose range is 40 to 80 μm. Alpha-particle emitting radionuclides have been attached to antibodies against tumor cell associated antigen. Antibodies have been the most widely used vehicle for delivery of alpha particles due to their specificity. Bismuth-212 has demonstrated a significant curative potential with minimal toxicity. In an ascites tumor mouse model, specific targeting and 80% cure following injection of Bi-212-labeled antibody has been observed (Macklis RM et al, Science, 240:1024-1026, 1988). It is important to define the realm of applicability for alpha particle emitting radionuclides. The short half-life of most currently available radionuclides, limits their use to

  16. Continuum of the spectra of emitted charged particles

    International Nuclear Information System (INIS)

    The continuous part of nuclear particle spectra situated between direct reactions and compound nuclear reactions is of importance due to its great yield. Because most reactions studied so far have only nucleons in the entrance or exit channel, respectively, the authors have measured charged particle spectra from complex particle induced reactions: deuterons, helions and alphas with bombarding energies up to 40 MeV/nucleon. From spectra measured at both forward and backward angles angle integrated spectra have been deduced which can be compared with the predictions of reaction models. (orig./AH)

  17. Alpha particle loss in the TFTR DT experiments

    International Nuclear Information System (INIS)

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ''collective'' alpha particle loss processes in these experiments

  18. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  19. The removal of alpha-emitting radionuclides from liquid waste streams

    International Nuclear Information System (INIS)

    World-wide experience on the removal of alpha-emitting radionuclides from liquid waste streams is reviewed with particular emphasis on waste streams from reprocessing irradiated nuclear fuel and on countries other than the United Kingdom. Current practice concentrates on the use of precipitation and evaporation, either singly or in combination, for the treatment of these waste streams. (author)

  20. Low geometry counter for the absolute measurement of the activity of alpha-emitting sources

    International Nuclear Information System (INIS)

    A low-geometry counter is described which allows the absolute determination of the activity for alpha-emitting sources. A Si implanted detector is used to obtain the spectrum of the sample. Two samples are measured with this counter and a 2 π gridded ion chamber. The results an their uncertainties for both instruments are discussed. (Author)

  1. Lorentz alpha orbit calculation in search of position suitable for escaping alpha particle diagnostics in ITER

    International Nuclear Information System (INIS)

    The Lorentz orbit code is developed to understand escaping alpha particle orbits and to contribute to the design of an escaping alpha particle probe in ITER. The code follows the full gyromotion of an alpha particle in ITER equilibrium, considering the toroidal field magnetic field ripple produced by the finite number of toroidal field coils as well as full three-dimensional first wall panels placed at the outboard side of the torus. It is shown that alpha particles that exist in the peripheral region and have banana orbits intersect the first wall placed at the outboard side on the lower plane. (author)

  2. Interferometry for particle-emitting source of high baryon density

    International Nuclear Information System (INIS)

    Using quantum path-integral formulae, we examined the two-kaon and two-pion Hanbury-Brown-Twiss (HBT) interferometry for the particle-emitting source with high baryon density. The evolution of the source is described by relativistic hydrodynamics. We use an equation of state of first-order transition from QGP to hadronic phase and consider a volume correction for the hadronic gas. The two-pion HBT results with effects of excited-particle decay and multiple scattering were investigated and compared with those for conventional thermal freeze-out (TFO) model. We found that the two-kaon HBT radius was smaller than those of the two-pion interferometry. The particle decay increases the HBT radius and lifetime, while the effect of multiple scattering on HBT results can be neglected. (authors)

  3. On the Diffuse Lyman-alpha Halo Around Lyman-alpha Emitting Galaxies

    CERN Document Server

    Lake, Ethan; Cen, Renyue; Sadoun, Raphael; Momose, Rieko; Ouchi, Masami

    2015-01-01

    Ly$\\alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$\\alpha$ emission around galaxies. Such low surface brightness Ly$\\alpha$ halos (LAHs) have been detected by stacking Ly$\\alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic galaxy formation simulation. We develop a method of computing the mean Ly$\\alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$\\alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs can not be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$\\alpha$ em...

  4. Control of the risk of exposure to alpha emitting radionuclides in French nuclear power plants: example of Cattenom.

    Science.gov (United States)

    Le Guen, B; Roupioz, A; Rabu, B; Bouvy, A; Labouglie, J F; Garcier, Y

    2003-01-01

    Control of the risk of internal exposure of EDF PWR plant maintenance workers by alpha-emitting radioactive elements is based on identification and quantification of the contamination of the systems. In 2001, an experiment carried out at Cattenom Power Plant during a unit outage in the presence of a leaking fuel cladding, based on measurement of alpha-emitting radioactive elements, made it possible to determine a realistic particle resuspension coefficient. A resuspension coefficient of 10(-6) m(-1) was adopted for operational radiological protection. An appropriate monitoring system for workers was set in place in collaboration with the occupational medicine and radiological protection department. It was based on prior estimation of the level of alpha contamination, and confirmed by swipe measurements, atmospheric surveillance by monitors, and collective analysis by nose blow samples from workers selected on the basis of their workstations, as well as supplementary individual measurements (monitoring of faeces). This surveillance made it possible to validate an appropriate work area monitoring system. PMID:14526975

  5. Control of the risk of exposure to alpha-emitting radionuclides during an outage in a nuclear power plant

    International Nuclear Information System (INIS)

    Control of the risk of external exposure of EDF PWR plant maintenance workers by alpha-emitting radionuclides is based on identification and quantification of the contamination of the systems. Appropriate arrangements are made to ensure protection on the basis of the prior analysis of the risk. In 2001, an experiment carried out at Cattenom Power Plant during a unit outage in the presence of a leaking fuel, based on measurement of alpha-emitting radionuclides, made it possible to determine a realistic factor for the resuspension of particles. On the basis of the experimental results, a resuspension factor of 10-6 m-1 for operational radiological protection was adopted. In the case of this unit outage, an appropriate surveillance system using this resuspension factor for workers was set in place in collaboration with the occupational medicine and radiological protection department. It was based on prior estimation of the level of alpha contamination, and confirmed by swipe measurements, atmospheric surveillance by monitors, and collective analysis by nose blow samples from workers selected on the basis of their workstations, as well as supplementary individual measurements (monitoring of faeces). This surveillance made it possible to validate an appropriate work area monitoring system, as well as the means of individual and collective protection adopted, and to establish that there was no contamination of staff by actinides during the unit outage. (authors)

  6. Liquid scintillation counting techniques for the determination of some alpha emitting actinides: a review

    International Nuclear Information System (INIS)

    The present report is a review of the work on liquid scintillation counting techniques, for the determination of alpha emitting actinides like uranium, plutonium, americium etc; for the last three decades (1970-1999). It covers the progress that has taken place in conventional liquid scintillation counting employing various solvents, scintillators and extractants. There is gradual development in instrumentation from integral counting of alpha emitters to alpha liquid scintillation spectrometry to resolve and identify different alpha emitters. These advancements have led to Pulse Shape Analysis (PSA) and Photon Electron Rejecting Alpha Liquid Scintillation Spectrometry (PERALS) techniques for the determination of the alpha emitters in the presence of beta and gamma activity. These techniques allow the determination of actinides at very low levels which has increased their applications to almost all the fields of chemistry; be it biomedical, environmental, geological or process chemistry of nuclear fuels. The development of biphasic technique using various extractants to separate different elements and counting in presence of one another has been made possible. Inorganic scintillators have been recently developed which have the advantage of eliminating effects of quenching and presence of beta/gamma emitting actinides. This review will serve as a reference to those who want to carry out work in the field of determination of actinides using liquid scintillation counting techniques. (author)

  7. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    International Nuclear Information System (INIS)

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with 224Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of 224Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  8. Comparison of bone tumors induced by beta-emitting or alpha-emitting radionuclides: Schemes of pathogenesis

    International Nuclear Information System (INIS)

    Life-span studies in Beagle dogs have documented the occurrence of bone tumors following exposure to bone-seeking alpha- or beta-emitting radionuclides administered by different routes of exposure. Bone tumors from dogs in four different life-span studies were analyzed according to tumor phenotype, tumor location, radiographic appearance, incidence of metastasis, and association with radiation osteodystrophy. Marked differences in these parameters were observed that did not correlate with differences in radionuclide type, route of exposure, or duration of radionuclide uptake. Radiation osteodystrophy, which is postulated to be a preneoplastic lesion, was not a significant component in one of the studies. Analysis of the data from these four studies suggests that at least two different mechanisms of bone tumor pathogenesis occur for radiation-induced bone tumors. (author)

  9. Abscopal induction of leukaemia and osteosarcoma following administration of alpha-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lord, B.I. (Paterson Institute for Cancer Research, Christie Hospital Manchester, Manchester (United Kingdom))

    2008-12-15

    Alpha-particle-emitting, bone-seeking radionuclides can induce leukaemia and/ or osteosarcoma in mice. Furthermore, plutonium-239, given to male mice before mating with normal females, while not directly leading to leukaemia in the progeny does lead to enhanced susceptibility to leukaemogenic agents. In the first case, the amounts of radionuclide are very small in experimental terms; and zero in the case of transgenerational activity. In both cases, the development of the disorders is remote in time and location relative to that of the contaminating radionuclide, making interpretation of the mechanisms and estimation of radiation risk problematic. It is necessary, then, to address questions involving the basis of haemopoiesis itself. Cellular kinetics of the development of blood from the pluripotent stem cells to the mature functional cells are outlined, describing compensatory proliferation mechanisms and extensive movement of cells throughout the marrow space. The locations of potential oncogenic target cells are identified and the nature of the stromal microenvironment that regulates haemopoiesis is defined. Plutonium-239, given to male mice, targets spermatogenesis at the stem cell level leaving unidentified damage that is inherited by his offspring. This leaves the offspring susceptible to a leukaemogenic agent encountered later in life. The characteristics of this, corroborated by consideration of the cellular kinetics, are of an inherited genomic instability. Cells of the microenvronment, inheriting the same genetic damage, probably act in the role of an enhancing 'bystander'. In adult mice, the mechanisms are different. Bone turnover results in radioactivity being gradually transported through the marrow by long-lived macrophages. A model based on temporal microdistributions of activity, defining specific target cell regions, is able to illustrate that considering bone marrow as a uniform mass of cells is inadequate to describe the observed

  10. A Luminosity Function of Lyman Alpha Emitting Galaxies at Redshift 4.5

    CERN Document Server

    Dawson, Steve; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T

    2007-01-01

    We present a catalog of 59 z=4.5 Lyman alpha emitting galaxies spectroscopically confirmed in a campaign of Keck/DEIMOS follow-up observations to candidates selected in the Large Area Lyman Alpha (LALA) narrow-band imaging survey. We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of about 76%. Together with our previous sample of Keck/LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z=4.5 Lyman alpha emitting galaxies in the 0.7 square degrees covered by the LALA imaging. As with the Keck/LRIS sample, we find that a non-negligible fraction of the confirmed Lyman alpha lines have rest-frame equivalent widths (w_{rest}) which exceed the maximum predicted for normal stellar populations: 17% -- 31% (93% confidence) of the detected galaxies show w_{rest} > 190 AA, and 12% -- 27% (90% confidence) show w_{rest} > 240 AA. We construct ...

  11. Preliminary Study of Natural Alpha Particle Track Areal Distribution Behind Eyeglasses Obstacles

    International Nuclear Information System (INIS)

    Plastic nuclear track detectors are widely used to register tracks of alpha particles emitted from radon gas nuclei and radioactive daughter nuclei. Eye glasses, finger rings, necklaces and many other accessories intimately accompany most people. The eyeglasses may modify the surface distribution of alpha particle pass spots just behind them. There may be some effects due to the earth's magnetic field on the motion of the charged alpha particle emitters (radon ions). In metallic frames of the eyeglasses, the earth's magnetic field and charged radio-ions enforce free electrons to move setting electric current, which reduces the magnetic field at the frame. Being weak at the frame and stronger on both sides away, the magnetic field lines may form a magnetic trap of some charged radio-ions in the air. The polymer Solid State Nuclear Track Detector (SSNTD) CR-39 which is a polyalyl diglycol carbonate is used to register alpha particles behind the eyeglasses obstacles. Remarkable decrease in alpha track density was noticed in CR-39 registration due both to glass and magnetic screening. The obtained results call for more studies on all metallic tools used or possessed in mines and non-ventilated underground cavities.

  12. The 1997 IAEA test spectra for alpha-particle spectrometry

    CERN Document Server

    Garcia-Torano, E; Woods, S; Blaauw, M; Fazinic, S

    1999-01-01

    In the framework of an IAEA intercomparison of software for alpha-particle spectrometry, a set of test spectra with reference files was produced for validation and comparison of alpha spectrum analysis programs. The considerations, the spectra and the methods employed to obtain them are presented.

  13. Diffusion of dust particles emitted from a fixed source

    Directory of Open Access Journals (Sweden)

    Khaled Al-mashrafi

    2015-09-01

    Full Text Available In this paper, we investigate the mathematical model for the diffusion of dust particles emitted from a fixed source. Mathematically, the time-dependent diffusion equation in the presence of a point source whose strength is dependent on time is solved. The solution in closed form for a source of general time dependence is obtained. A number of special cases, in which the source function of time is explicitly given and special values of the diffusion parameters are taken are examined in detail. The numerical calculations show the strong dependence of the concentration of dust on the speed of the wind, the source, and its position in the vertical direction. It is also found that the diffusion parameters play an important role in the spread of the dust particles in the atmosphere. When diffusion is present only in the vertical direction, it is found that for small times the dust spreads with a front that travels with the speed of the wind.

  14. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride

    International Nuclear Information System (INIS)

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for 223Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on 99mTc-MDP whole-body images, and the ROIs superimposed on the 223Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T1/2eff) of 223Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), DRBE = 899 mGy/MBq (range 340-2,450 mGy/MBq). The percent uptake of 99mTc and 223Ra

  15. Size Distribution of Particles Emitted from Liquefied Natural Gas Fueled Engine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions were measured at different speeds, different loads and ESC cycles. The nanoparticles with diameter smaller than 39nm, measured by the electrical low-pressure impactor (ELPI), are dominant in number concentration that is nearly 92.7% of the total number of the emitted particles at the peak point. As for the mass of emission particle, it is shown that the mass of the particles greater than 1.2μm is more than 65% that of the emitted particles.

  16. Comparative analysis of inelastic interactions of protons, deuterons, and. cap alpha. particles with nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Barashenkov, V.S.; Zheregi, F.G.; Musul' manbekov, Z.Z.; Plyushchev, V.A.; Solov' eva, Z.I.

    1981-04-01

    Inelastic interactions of protons, deuterons, and ..cap alpha.. particles with emulsion nuclei at 3.6 Gev/nucleon are analyzed within the framework of the cascade-evaporation model. The model accounts well, within the limits of experimental error, for all the principal characteristics measured in experiment; in particular, it explains why the energy of the g protons emitted into the rear hemisphere is independent of the emission angle of these protons, of the mass of the primary particle, and of the degree of spallation of the target nucleus. Some discrepancy with experiment manifests itself only in the details.

  17. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M C; Bertsche, W; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lai, W; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wasilenko, L; Wurtele, J S; Yamazaki, Y

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  18. The alpha-particle structure of 44 Ti

    International Nuclear Information System (INIS)

    Some of the bound and unbound states of 44 Ti have a pronounced alpha-particle structure, and their energies and widths may be obtained from an alpha 40 Ca potential. The differential cross-sections for the elastic scattering of alpha particles by 40 a may also be described by such a potential, and some features indicate the presence of unbound states of 44 Ti. The attempts to unify these bound and scattering phenomena by the same potential are described, together with some new calculations using a cosh potential. (author)

  19. An evaluation of alpha particle clustering in heavy nuclei

    International Nuclear Information System (INIS)

    In recent years, the pre-equilibrium models of nuclear reactions have been used to analyze many experiments involving the emission of alpha particles. The results of these analyses have been used as the basis for a calculation of the extent of alpha particle clustering in heavy nuclei. Calculations are presented of the rate of nucleon-nucleon and nucleon-alpha interactions in nuclear matter. Normalizing these to the preformation factors found in reaction studies, the number of alpha clusters in several complex nuclei has been obtained. It is suggested that the number of such performed alpha clusters in nuclei having A = 50, 90, 141, 202, and 232 are, respectively, 2.1, 3.6, 5.2, 6.9, and 7.8. (orig.) 891 FKS/orig. 892 MB

  20. Coordination chemistry of the sup 212 Pb/ sup 212 Bi nuclear transformation: Alpha-emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  1. Coordination chemistry of the 212Pb/212Bi nuclear transformation: Alpha-emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced 205/206Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, 203Pb (T1/2 = 51 hr)

  2. Monte Carlo nanodosimetry of alpha particle passages through the capillary endothelial nucleus application to systemic Targeted Alpha Therapy

    International Nuclear Information System (INIS)

    Full text: The biological effects of Targeted Alpha Therapy are strongly affected by the heterogeneous specific energy delivered to tumor cells. For systemic Targeted Alpha Therapy, all blood vessels inevitably received a background radiation from non-targeted decays with the blood circulation. The Geant4 Monte Carlo code was adapted to simulate the spatial non-uniform distribution of the alpha emitting radioisotope sources 213Bi, 212Bi and 211At. A cylindrical annulus was taken as a geometrical model to approximate the capillary. The endothelial cell nucleus was set to be an ellipsoid filled with liquid water to simulate nanometric target volumes at unit density. The Geant4 Low Energy physics model, based on the Livermore approach, was selected to model the particle interactions with the material in the experimental setup. The threshold of production of secondary particles was 7 eV. We validated the program with published results using spheroid cell geometry. The specific energy deposited in a capillary endothelial cell nucleus per radioactive decay and the capillary endothelial cell survival rates were calculated for the source constrained in the capillary lumen or the source binding to the surface antigen on the perivascular cancer cells. The measurement of nanodosimetric event size spectra based on simulated nanodosimetric data is presented. The value and limitations of this approach are discussed. (author)

  3. Interaction of alpha particles at the cellular level - Implications for the radiation weighting factor

    International Nuclear Information System (INIS)

    Since low dose effects of alpha particles are produced by cellular hits in a relatively small fraction of exposed cells, the present study focuses on alpha particle interactions in bronchial epithelial cells following exposure to inhaled radon progeny. A computer code was developed for the calculation of microdosimetric spectra, dose and hit probabilities for alpha particles emitted from uniform and non-uniform source distributions in cylindrical and Y-shaped bronchial airway geometries. Activity accumulations at the dividing spur of bronchial airway bifurcations produce hot spots of cellular hits, indicating that a small fraction of cells located at such sites may receive substantially higher doses. While presently available data on in vitro transformation frequencies suggest that the relative biological effectiveness for alpha particles ranges from about 3 to 10, the effect of inhomogeneous activity distributions of radon progeny may slightly increase the radiation weighting factor relative to a uniform distribution. Thus a radiation weighting factor of about 10 may be more realistic than the current value of 20, at least for lung cancer risk following inhalation of short-lived radon progeny. (authors)

  4. Alpha-particle diagnostics with high energy neutral beams

    International Nuclear Information System (INIS)

    We have examined the feasibility of alpha-particle diagnostics using a high energy neutral beam on the R-tokamak, a planned device at IPP-Nagoya, Japan, for reacting plasma experiments. In this method, injected neutral particles neutralize alpha particles so as to escape from the magnetically confined plasma through double charge exchange processes, He++ + A0 -- → He0 + A++. Requirements for a probing beam are dis cussed from viewpoints of penetration of an injected beam in the plasma and a neutralization efficiency of alpha particles in a wide velocity range. Either a Li0 beam or a He0 beam in the ground state, produced from a negative ion beam is suitable. A method to neutralize a He- beam into the ground state through an auto-detachment process is proposed. (author)

  5. A Search for z>6.5 Lyman-alpha Emitting Galaxies with WISP

    Science.gov (United States)

    Bagley, Micaela B.; Scarlata, Claudia; Dai, Yu Sophia; Rafelski, Marc; Baronchelli, Ivano; Colbert, James W.; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Malkan, Matthew Arnold; Martin, Crystal L.; Mehta, Vihang; Pahl, Anthony; Ross, Nathaniel; Rutkowski, Michael J.; Teplitz, Harry I.; WISP Team

    2016-01-01

    The observed number density of Lyman-alpha emitting galaxies at z>6 provides an important probe of the reionization history of the universe. Because Lyman-alpha photons are very sensitive to the presence of neutral hydrogen, the evolution of the galaxy number density above redshift 6 can be used as a measurement on the progress of reionization. However, the Lyman-alpha luminosity function is currently poorly constrained at high-z. We present the results of a systematic search for Lyman-alpha emitters (LAEs) at redshifts of ~6.5 to 7.5 using the HST WFC3 Infrared Spectroscopic Parallels (WISP) survey. WISP's uncorrelated fields are well-suited to the study of bright LAEs, minimizing the effects of clustering introduced by a patchy reionization. From the 30 deepest WISP fields, we compile a sample of single-line emitters, confirm redshifts with broadband colors, and identify LAE candidates that have "dropped out" (are undetected at the 1 sigma level) of the WFC3 UVIS filters. By combining our results with other z~7 studies, we determine whether the number density of LAEs evolves past z~6.5.

  6. Analysis of radiation risk from alpha particle component of soalr particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The Solar Particle Events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and Linear Energy Transfer (LET) spectra in shielding are discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  7. Analysis of radiation risk from alpha particle component of solar particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  8. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  9. Ionization cluster size distribution for alpha particles: Experiment, modelling

    International Nuclear Information System (INIS)

    The paper presents data for measured ionization cluster size distributions by alpha particles in tissue equivalent media and comparison with the simulated data for liquid water. The experiments were carried out with a beam of 4.6 MeV alpha particles performed in a setup called the JET Counter. The theoretically derived cluster size distributions for alphas particles were obtained using the K-means algorithm. The simulation was carried out by Monte Carlo track structure calculations using cross sections for liquid water. The first moments of cluster size distributions, derived from K-means algorithm as a function of diameter of cluster centroid, were compared with the corresponding moments derived from the experiments for nitrogen and propane targets. It was found that the ratio of the first moments for water to gas targets correlates well with the corresponding ratio of the mean free paths for primary ionization by alpha particles in the two media. It is shown that the cluster size distributions for alpha particles in water, obtained from K-means algorithm, are in agreement with the corresponding distributions measured experimentally in nitrogen or propane gas targets of nano-meter sizes. (authors)

  10. Safety significant class determination of continuous air monitors at facilities handling alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    The role and use of continuous air monitors typically fall under the responsibility of institutional radiation protection programs established to maintain stochastic effects to workers at acceptable levels. This practice has led to a general perception that acute serious worker injury is not credible even with high intakes of alpha-emitting radionuclides. Using data derived from animal studies, release masses potentially causing serious worker injury are estimated. Serious pulmonary injuries to unprotected individuals are credible from airborne alpha-emitting transuranic release levels ranging between 0.1 and 10 GBq (2.7 to 270 mCi). Safety-significant designation of continuous air monitor systems should be considered at facilities where releases of these magnitudes are possible. Such designations should enhance the formality of continuous air monitor usage and ultimately improve the reliability of these systems. Serious pulmonary injuries are not considered possible from airborne releases of 235U, 238U, and 232Th due to airborne mass-loading limitations

  11. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  12. Nuclear track detector characterization for alpha-particle spectroscopy

    International Nuclear Information System (INIS)

    Solid State Nuclear Track Detectors (SSNTDs), CR-39™ type, are usually adopted in many applications in which it could be necessary to select tracks according to the incident alpha-particle energy; so several authors have argued that track parameters such as the major/minor axis being the most often reported, can be used to determine the alpha-particle’s energy. However, the use of these parameters only do an univocal result, for example the same axis length can be obtained for different combinations of incident angles and energies. We report on a track analysis performed by a semiautomatic system that classifies tracks according to two parameters, diameter length and mean grey level. This kind of analysis can give information about the track depth, that increases monotonically with the incident energy and angle of the alpha particle. Combining the information on the two parameters it is possible to determine univocally the incident alpha-particle energy values. In order to characterize CR-39 detectors according to the physical track parameters, detectors were irradiated, inside a vacuum chamber, by alpha particles at thirteen energy values, obtained by different mylar layers in front of a 241Am source. After the exposure the detectors were chemically etched to enlarge the tracks and then analyzed by means of a semiautomatic system, consisting on an optical microscope equipped with a CCD camera connected to a personal computer for image storage. A suitable routine analyzed the track parameters: diameter and mean grey level, allowing us to differentiate tracks according to the incident alpha-particle energy and then to individuate the discrimination factors for radon alpha tracks, when nuclear track detectors are applied in radon surveys. - Highlights: ► CR-39. ► Geometric and optical parameter. ► α spectrometry. ► Calibration

  13. Radon monitor and control system based upon alpha particle detection

    International Nuclear Information System (INIS)

    A system is designed for monitoring or controlling the level of radon in indoor air, based upon measuring alpha particles due to the decay of radon or its daughter atoms. In one embodiment, the alpha particle decay of radon itself is detected and analyzed to control a vent in the heating and air conditioning system to automatically keep the radon level below a preselected level. In another embodiment, the daughter atoms 218Po and 214Po are collected from the indoor air and their alpha particle decays are analyzed to provide a sensitive monitor of radon levels or to control vents in the HVAC system to reduce radon concentrations to permissible levels. In addition, the system provides information on the quality of the air filter and indicates when it needs servicing

  14. Alpha-particle radiobiological experiments using thin CR-39 detectors

    International Nuclear Information System (INIS)

    The present paper studied the feasibility of applying comet assay to evaluate the DNA damage in individual HeLa cervix cancer cells after alpha-particle irradiation. We prepared thin CR-39 detectors (<20 μm) as cell-culture substrates, with UV irradiation to shorten the track formation time. After irradiation of the HeLa cells by alpha particles, the tracks on the underside of the CR-39 detector were developed by chemical etching in (while floating on) a 14 N KOH solution at 37 deg. C. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside of the CR-39 detectors could also be observed by just changing the focal plane of the confocal microscope. (authors)

  15. Turbulent transport of alpha particles in tokamak plasmas

    CERN Document Server

    Croitoru, A; Vlad, M; Spineanu, F

    2016-01-01

    We investigate the ExB diffusion of fusion born \\alpha particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron modes (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the \\alpha particle. According to our results, signficant turbulent transport of the \\alpha particles can appear only at energies of the order of 100KeV. We determine the corresponding conditions.

  16. Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    CERN Document Server

    Burgos, S; Ghag, C; Gold, M; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; McMillan, J E; Muna, D; Murphy, A StJ; Nicklin, G G; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Smith, N J T; Snowden-Ifft, D P; Spooner, N J C; Sumner, T J; Turk, J; Tziaferi, T

    2007-01-01

    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.

  17. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  18. Nuclear reaction diagnostics of fast confined and escaping alpha particles

    International Nuclear Information System (INIS)

    The resonant radiative capture nuclear reactions D(α,γ)6Li, 6Li(α,γ) 19B and 7Li(α,γ)11B are examined as diagnostics of the energy distribution of confined fast alpha particles in tokamak plasmas. Count rates for realistic Q=1 DT plasma conditions are presented and compared to expected backgrounds. The design of and preliminary results from the prototype fusion gamma ray detector on TFTR are presented. The activation reactions are similarly examined as diagnostics of escaping fast alpha particles. Where possible, count rate estimates for Q=1 DT plasmas and proposed ignition devices are presented

  19. Alpha-particle condensation in nuclei

    International Nuclear Information System (INIS)

    A round up of the present status of the conjecture that nα nuclei form an α-particle condensate in excited states close to the nα threshold is given. Experiments which could demonstrate the condensate character are proposed. Possible lines of further theoretical developments are discussed. (authors)

  20. Alpha-particle condensation in nuclei

    International Nuclear Information System (INIS)

    A round-up of the present status of the conjecture that nα nuclei form an α-particle condensate in excited states close to the nα threshold is given. Experiments which could demonstrate the condensate character are proposed. Possible lines of further theoretical developments are discussed. (author)

  1. Alpha Particle Therapy in Metastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Metastatic castrate resistant prostate cancer (CRPC) is a leading cause of cancer mortality among men in western countries. Although nearly 85% of patients present with localised disease, up to 40% will eventually develop metastatic disease during the course of illness. Of men dying from prostate cancer, more than 90% have bone metastases many with no other significant metastatic sites. Symptoms related to bone metastases and skeletal related events (SREs) account for the major cause of morbidity in these patients. Bone-seeking radionuclides have been used in the treatment of prostate cancer bone metastases for many years. The first bone seeking radionuclide drug approved by the FDA was Strontium-89. Other agents have also been used including Samarium-153 EDTMP, Rhenium-186 (-188)-HEDP. These radionuclides are all emit shortrange therapeutic beta radiation with bone marrow as the dose limiting toxicity. There is strong clinical trial evidence of benefit for these radionuclides in reducing pain in advanced prostate cancer; however, none of the drugs has been shown to improve survival, albeit none of the clinical trials were powered to detect differences in survival

  2. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Science.gov (United States)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  3. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    A radiochemical method for 226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to 226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks). (author)

  4. Discrimination of nuclear recoils from alpha particles with superheated liquids

    CERN Document Server

    Aubin, F; Behnke, E; Beltran, B; Clark, K; Dai, X; Davour, A; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Krauss, C B; Leroy, C; Lessard, L; Levine, I; Levy, C; Martin, J -P; Noble, A J; Morlat, T; Nadeau, P; Piro, M -C; Pospísil, S; Shepherd, T; Sodomka, J; Starinski, N; Stekl, I; Storey, C; Wichoski, U; Zacek, V

    2008-01-01

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new effect offers the possibility of improved background suppression and could be especially useful for rare event searches such as dark matter experiments.

  5. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  6. Pressure control and particle`s motion in ALPHA

    CERN Document Server

    Rudakov, Kirill

    2013-01-01

    The first project was a system to control the pressure of water and gas. The second project was the calculation of tracks of particles. The third project was to make an estimation of mutual inductance.

  7. Health effect of exposure to internally deposited alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    The health effect of exposure on human population to internally deposited alpha-emitting radionuclides and their decay products has been considered as most hazardous radiation effect. However, the harmful late effects by the intake of radioactive nuclides are not definite in the epidemiological and clinical viewpoint. Only two cases, radium and thorium, have since long been noted for their deletrious effects to man. As the former, it has been first reported that dial workers in USA using 226Ra can suffer from 'radiumjaw' which is a cancer of the bone of jaws. Another radium isotope, 224Ra, was used for a medical reason as therapy against turberculosis of bone to German children during the years 1946∼1950, and has given rise to bone cancer. As the latter, Thorotrast (the commercial name of a colloidal thorium dioxide preparation), introduced for angiography in 1929 and utilized until about 1950, was found to cause malignant hepatic tumors, liver cirrhosis and blood diseases such as some kinds of leukemia and anemia. In Japan, the former cases have seldom found though, the latter cases are assumed over 1000. Especially, Thorotrast administered war-wounded ex-servicemen in World War II have been beyond 300 persons. The epidemiological and clinico-pathological studies have been demonstrated by the research Group on Biological Effect of Thorium in Special Project Research on Energy, Japan, as a fundamental study of the safe treatment of nuclear fuel materials. The resultant data of the study and risk evaluation of liver cancer for Japanese Thorotrast administered patients are reviewed related to that of another alpha-emitting radionuclides. (author)

  8. Microdosimetry of alpha-emitting decay products in tissue using conventional film autoradiography

    International Nuclear Information System (INIS)

    Presented work describes a practical method using conventional photographic films; specifically, Ilford Pan F Plus 135-36, Black and White, ISO 50 film for obtaining images of alpha tracks. A variety of alpha radiation sources including electrodeposited planchets, Bomarc soil, and samples of bone containing 226Ra were placed directly on the film for up to 3 days. Post-exposure the film was developed using standard darkroom techniques with Kodak D-76 developer for 7 min, stop bath, and fixer. Tracks consisting of five or more grains were counted using an Olympus BX51 microscope at 910 magnification in a 9 cm2 circular field-of-view. Initial analysis shows an efficiency of approximately 34.9 % with an uncertainty in track counts of ±2.4 % for the monoenergetic particles. (author)

  9. Alpha-particle losses in compact torsatron reactors

    International Nuclear Information System (INIS)

    Loss of alpha particles in compact torsatron reactors is studied. For 6, 9, and 12 field period reactors, the direct loss is a relatively weak function of radius and energy and varies from ≅33% for M = 6 to ≅18% for M = 12. Loss of alpha particles through scattering into the loss region is calculated using the Fokker-Plank equation for fast ions and found to contribute an additional alpha-particle energy loss of ≅15%. The consequences of these relatively large losses for torsatron reactor design are discussed. The relationship between the direct particle losses and the magnetic field structure is also studied. Orbit losses from a variety of stellarator configurations are calculated and a figure-of-merit that characterizes the orbit confinement of a magnetic configuration is deduced from these calculations. This figure-of-merit is used to show how the direct losses might be reduced at low aspect-ratio. Effects of finite beta on the direct particle losses are also addressed, and are shown to significantly increase the direct losses in some configurations. 15 refs., 8 figs

  10. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    International Nuclear Information System (INIS)

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10-6 at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV

  11. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Man; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10{sup -6} at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV.

  12. RPL in alpha particle irradiated Ag+-doped phosphate glass

    International Nuclear Information System (INIS)

    The objective of this study is to investigate the emission mechanism of radiophotoluminescence (RPL) in the Ag+-doped phosphate glass (glass dosimeter), which is now used as individual radiation dosimeter, because the emission mechanism of RPL in glass dosimeter has been not fully understood. We have investigated the assignments and characteristics of the X-ray induced color centers in the Ag+-doped phosphate glass up to now (Miyamoto et al., 2010). Optical properties such as optical absorption spectra related with alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. In this study optical properties such as optical absorption spectrum as a function of alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. Comparison of the RPL in Ag+-doped phosphate glass irradiated with alpha-particles and X-rays is discussed. - Highlights: • A Yellow and blue emission are included in the RPL of Ag+-doped phosphate glass. • The ratio of yellow and blue emission was different between alpha and X-ray irradiation. • RPL emission intensity increased in an atmosphere below room temperature

  13. Partition of cross sections in asymmetric nucleus-nucleus reactions and the origin of fast alpha particles

    International Nuclear Information System (INIS)

    To investigate the mechanism of asymmetric nucleus-nucleus reactions from the Coulomb barrier to intermediate energies the 14N + 159Tb reaction was studied at five bombarding energies between 8 and 23 MeV/u via particle-particle correlations (at selected energies) and particle KX-ray coincidences to identify the specific reaction channels. With the KX-ray method partial cross sections for projectile-like fragments (PLF) as a function of the atomic number (Z/sub res/) of the residual nucleus can be determined. The charge balance yields the ''missing charge'' dZ = Z/sub proj/ + Z/sub targ/ - Z/sub PLF/ - Z/sub TLF/ that indicates whether, in addition to the PLF, other charged particles are emitted. A large fraction of the inclusive cross sections is found to originate from such channels with two or more fragments in the exit channel, and this fraction increases as the PLF is further removed in mass from the incident projectile, and with increasing bombarding energy. From the particle-particle correlation studies it is found that sequential decays of PLF's are dominant. ''Non-sequential'' processes, if present, are associated with inelastic reactions involving excitations of both projectile and target. The bulk of the large alpha-particle cross section at small angles is found to be associated with channels in which, in addition to the alpha particle, only nucleons and other alpha particles are emitted. From γ-ray multiplicity measurements and from the broad distribution of the strength with Z/sub res/ it is concluded that these alpha particles originate from inelastic (damped) processes. 27 refs., 10 figs

  14. Phoswich Detector for Simultaneous Measuring Alpha/beta Particles

    International Nuclear Information System (INIS)

    The new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for alpha/beta-ray simultaneous counting was developed for monitoring radiological contamination inside pipes. The detection performance was estimated using the PSD (pulse shape discrimination) method as a function of distance between the scintillator and radioactive source. The attenuation of particles traveling through a thin film for preventing the detector from being contaminated was experimentally estimated. It is concluded from our investigation that the phoswich detector developed can provide a sufficient alpha/beta-ray discrimination. The application of a thin film for preventing the detector from being contaminated was proven to be feasible.

  15. Low energy alpha particle spectroscopy using CR-39 detector

    CERN Document Server

    Izerrouken, M; Ilic, R

    1999-01-01

    The possibility of using CR-39 to measure the depth profile of sup 1 sup 0 B in Si is analysed. The measuring technique exploits the sup 1 sup 0 B(n, alpha) sup 7 Li nuclear reaction. For this reason the track parameters (size, optical properties) of low energy alpha-particles (<1.47 MeV) were studied. The results showed that an energy resolution of about 100 keV could be obtained by an appropriate selection of etching conditions. The profile of sup 1 sup 0 B in Si at a depth as small as 1 mu m can be measured.

  16. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  17. Alpha particle effects on global MHD modes, and alpha particle transport in ignited tokamaks

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable primarily by the circulating α-particles through wave-particle resonances. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions, as well as Alfven continuum damping. Stability criteria are presented for TFTR, CIT, and ITER tokamaks in terms of the α-particle beta βα, the α-particle pressure gradient parameter (ω*/ωA), where ω* is the α-particle diamagnetic drift frequency, and the α-particle velocity (vα/vA) parameter. Typically the volume averaged α-particle beta threshold is on the order of 10-4. Rough estimates of the TAE mode saturation level give δBr/B ∼ 10-3 for typical D-T tokamak operations. Significant α-particle losses are found when the amplitude of the global MHD modes is large, on the order of (δBr/B) ≥ 10-4. For (δBr/B) = 5 x 10-4, the α-particle loss time is appreciably shorter than the α-particle slowing-down time. 13 refs., 1 fig

  18. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  19. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    Science.gov (United States)

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  20. The Luminosity Function of Lyman Alpha Emitting Galaxies and Cosmic Reionisation of Hydrogen

    CERN Document Server

    Dijkstra, M; Haiman, Z; Dijkstra, Mark; Wyithe, Stuart; Haiman, Zoltan

    2006-01-01

    Recent observations imply that the observed number counts of Lyman Alpha (Lya) emitters evolved significantly between z=5.7 and z=6.5. It has been suggested that this evolution was due to a rapid evolution in the ionisation state, and hence transmission of the IGM which caused Lya flux from z=6.5 galaxies to be more strongly suppressed. In this paper we show that the observed evolution can be attributed entirely to the evolution in the mass function of dark matter halos housing the Lya emitters. We place constraints on the evolution of transmission in the IGM between z=6.5 and z=5.7, finding a ratio of ~1.2, which may be accounted for by the evolution of the mean IGM density through cosmic expansion. Using a model for IGM transmission, we demonstrate that Lya emitting galaxies at z=6.5 must be embedded in HII bubbles greater than 35x_HI comoving Mpc in size, where x_HI is the neutral fraction of hydrogen outside the ionised bubbles. The model of Furlanetto et al (2006) may be used to translate this into a low...

  1. Galactic winds and stellar populations in Lyman $\\alpha$ emitting galaxies at z ~ 3.1

    CERN Document Server

    McLinden, Emily M; Malhotra, Sangeeta; Finkelstein, Steven L; Richardson, Mark L A; Smith, Brent; Tilvi, Vithal S

    2014-01-01

    We present a sample of 33 spectroscopically confirmed z ~ 3.1 Ly$\\alpha$-emitting galaxies (LAEs) in the Cosmological Evolution Survey (COSMOS) field. This paper details the narrow-band survey we conducted to detect the LAE sample, the optical spectroscopy we performed to confirm the nature of these LAEs, and a new near-infrared spectroscopic detection of the [O III] 5007 \\AA\\ line in one of these LAEs. This detection is in addition to two [O III] detections in two z ~ 3.1 LAEs we have reported on previously (McLinden et al 2011). The bulk of the paper then presents detailed constraints on the physical characteristics of the entire LAE sample from spectral energy distribution (SED) fitting. These characteristics include mass, age, star-formation history, dust content, and metallicity. We also detail an approach to account for nebular emission lines in the SED fitting process - wherein our models predict the strength of the [O III] line in an LAE spectrum. We are able to study the success of this prediction be...

  2. Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    CERN Document Server

    Paltani, S; Paltani, Stephane; Turler, Marc

    2003-01-01

    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central b...

  3. Considerations on the determining factors of the angular distribution of emitted particles in laser ablation

    International Nuclear Information System (INIS)

    Simulations of particles which are emitted in laser ablation have been performed by the method of Direct Simulation Monte Carlo to investigate the deposition profiles of the emitted particles. The influences of the temperature, pressure and stream velocity of the initial evaporated layer formed during laser ablation process on the profile of the deposited film have been examined. It is found that the temperature gives a minor influence on the deposition profile, whereas the stream velocity and the pressure of the initial evaporated layer have a greater impact on the deposition profile. The energy in the direction of surface normal (Eperpendicular) and that in the parallel direction of the surface (E||) are shown to increase and decrease, respectively after the laser irradiation due to collisions between the emitted particles, and this trend is magnified as the pressure increases. As a consequence, the stream velocity in the direction of surface normal increases with the increase in the pressure. A mechanism of the phenomenon that a metal with a lower sublimation energy shows a broader angular distribution of emitted particles is presented. It is suggested that low density of evaporated layer of a metal with a low sublimation energy at its melting point decreases the number of collisions in the layer, leading to the low stream velocity in the direction of surface normal, which results in the broader deposition profile of the emitted particles.

  4. Gross {alpha}-particle activities in the ground waters in Western Anatolia

    Energy Technology Data Exchange (ETDEWEB)

    Akyil, S.; Erees, F.S.; Olmez, S. [Ege Universitesi, Izmir (Turkey)

    1996-07-01

    The purpose of this study is to present data on gross {alpha}-particle activity, pH and conductivity in the ground waters in Western Anatolia. The gross {alpha}-particle activities in 27 ground water samples were determined by radiochemical carrier-precipitation methods. The gross {alpha}-particle activities of water samples were measured by using a ZnS (Ag) detector system. Measureable {alpha}-particle activity is present in all ground water samples, with one ground water sample having a gross {alpha}-particle activity > 0.55 Bq/L. (Author).

  5. Alpha-particle Measurements Needed for Burning Plasma Experiments

    International Nuclear Information System (INIS)

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor

  6. Alpha-particle Measurements Needed for Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  7. Charge-exchange limits on low-energy alpha-particle fluxes in solar flares

    CERN Document Server

    Hudson, Hugh; MacKinnon, Alec; Woods, Tom

    2014-01-01

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Lyman-alpha line of He ii at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary alpha particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He ii bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV/nucleon. We study ten events in total, including the gamma-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic...

  8. Alpha-particle emission from contaminants in counter materials

    International Nuclear Information System (INIS)

    Energy spectra of surface activities from thorium and uranium contaminants have been investigated for typical counter materials. Soft-tempered stainless steel with a rate of 1.2±0.1 α-particles emitted per 100 cm2 in one hour was found better than other stainless steel and far better than brass and aluminum. Energy spectra provide information about the contaminating activity and about its depth profile. Thorium, uranium and 210Pb contamination was also observed for thin sources of other materials including isotopically enriched materials. (orig.)

  9. Effect of Alpha-Particle Energies on CR-39 Line-Shape Parameters using Positron Annihilation Technique

    Directory of Open Access Journals (Sweden)

    Lotfy Y. A.

    2006-07-01

    Full Text Available Polyally diglycol carbonate "CR-39" is widely used as etched track type particle detector. Doppler broadening positron annihilation (DBPAT provides direct information about core and valance electrons in (CR-39 due to radiation effects. It provides a non-destructive and non-interfering probe having a detecting efficiency. This paper reports the effect of irradiation alpha-particle intensity emitted from 241-Am (5.486 MeV source on the line shape S- and W-parameters for CR-39 samples. Modification of the CR-39 samples due to irradiation were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM techniques.

  10. Investigation of fusion alpha particle ripple losses by means of a kinetic code - alpha particle ripple losses in ITER

    International Nuclear Information System (INIS)

    The discrete nature of a tokamak magnetic system as a consequence of N separate field coils leads to a deviation from axial symmetry and causes additional transport referred to as ripple transport. This loss mechanism whose effectiveness increases with the particle energy must be investigated carefully for fusion alpha particles. The first part of the paper treats the ripple problem by means of a kinetic equation based on a modified Fokker-Planck equation generalized for ripple transport in 1.5-dimensional geometry. For a NET-type tokamak, ripple fluxes have been calculated with the edge ripple δ as a parameter and have been compared to neoclassical and anomalous fluxes. It has been found that particle and power loss fractions are small if the ripple is less than 1%. This results has been confirmed in the second part of the paper that studies the alpha particle ripple losses in ITER by Monte Carlo numerical modelling. Calculations were performed for physics phase and technology phase operation, and it has been shown that the first wall heat deposition profile is very sensitive to the details of plasma equilibrium shape, first wall position and ripple profile. The peak heat load, being small for the reference configuration, may easily be increased up to small changes in the ripple profile and the plasma configuration. (author). 7 refs, 6 figs, 1 tab

  11. Measurements of DT alpha particle loss near the outer midplane of TFTR

    International Nuclear Information System (INIS)

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ''collective'' alpha instability-induced alpha loss have yet been observed

  12. Alternating sample changer and an automatic sample changer for liquid scintillation counting of alpha-emitting materials

    International Nuclear Information System (INIS)

    Two sample changers are described that were designed for liquid scintillation counting of alpha-emitting samples prepared using solvent-extraction chemistry. One operates manually but changes samples without exposing the photomultiplier tube to light, allowing the high voltage to remain on for improved stability. The other is capable of automatically counting up to 39 samples. An electronic control for the automatic sample changer is also described

  13. XRF-analysis of fine and ultrafine particles emitted from laser printing devices.

    Science.gov (United States)

    Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan

    2011-09-15

    In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants. PMID:21809840

  14. GaN-based PIN alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guo [Peking University, Shenzhen Graduate School, Guangdong Shenzhen 518055 (China); Peking University, Beijing, 100871 (China); Fu Kai; Yao Changsheng [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Science, Jiangsu Suzhou 215123 (China); Su Dan; Zhang Guoguang [China Institute of Atomic Energy, Beijing 102413 (China); Wang Jinyan [Peking University, Beijing, 100871 (China); Lu Min, E-mail: mlu2006@sinano.ac.cn [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Science, Jiangsu Suzhou 215123 (China)

    2012-01-21

    GaN-based PIN alpha particle detectors are studied in this article. The electrical properties of detectors have been investigated, such as current-voltage (I-V) and capacitance-voltage (C-V). The reverse current of all detectors is in nA range applied at 30 V, which is suitable for detector operation. The charge collection efficiency (CCE) is measured to be approximately 80% but the energy resolution is calculated to be about 40% mostly because the intrinsic layer is not sufficiently thick enough.

  15. Cluster states and alpha particle condensation in 13C

    International Nuclear Information System (INIS)

    The structure of 13C is studied with the semi-microscopic cluster model, 3α+n orthogonality condition model (OCM). The energy spectra of four 1/2- states and three 1/2+ states up to Ex ~ 13 MeV are successfully reproduced, in particular, three monopole transition strengths are in fair agreement with the observed ones. We discuss the cluster states and alpha particle condensation in the 1/2± states appearing around the 12C+n, 9Be+α and 3α+n thresholds. (author)

  16. GaN-based PIN alpha particle detectors

    International Nuclear Information System (INIS)

    GaN-based PIN alpha particle detectors are studied in this article. The electrical properties of detectors have been investigated, such as current-voltage (I-V) and capacitance-voltage (C-V). The reverse current of all detectors is in nA range applied at 30 V, which is suitable for detector operation. The charge collection efficiency (CCE) is measured to be approximately 80% but the energy resolution is calculated to be about 40% mostly because the intrinsic layer is not sufficiently thick enough.

  17. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    Science.gov (United States)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  18. Long-Range Alpha Particle Emission in the Fission of U235 by 3-MeV Neutrons

    International Nuclear Information System (INIS)

    The energy and angular distribution of long-range alpha particles emitted in the fission of U235 induced by 3-MeV neutrons have been measured. The alpha panicles were detected by solid-state detector and the fission fragments were detected by a gas scintillation counter. The neutrons were produced by the T (p, n) He3 reaction using a 5.5- MeV Van de Graaff accelerator. About 3000 fission events accompanied by the emission of a high-energy alpha panicle were recorded. The most probable energy of the alpha particles is between 15-16 MeV. and the energy distribution has a full width at half maximum of about D MeV, which is the same as observed in tliermal- neutron fission. The angular distribution of the long-range alpha panicles with respect to the incident neutron direction was found to be forward-peaked, in agreement with previous work on alpha emission in 14-MeV neutron-induced fission of LP. At angles of 0° and 90° with respect to the incident neutron direction the alpha panicles were detected with an angular spread of about ± 25°. The anisotropy [Nα(0°)/ Nα(90°)] was found to be 1.320 ± 0.12. This value is in agreement with the anisotropy calculated on the basis of statistical evaporation of panicles. The results of the present investigation are consistent with the hypothesis that the emission of long-range alpha panicles in fission is an evaporation process. The implications of the results of this work and of other recent investigations on long-range alpha emission are discussed. (author)

  19. Alpha particle response characterization of CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Amman, Mark; Lee, Julie S.; Luke, Paul N.

    2001-06-28

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance.

  20. Alpha particle response characterization of CdZnTe

    International Nuclear Information System (INIS)

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance

  1. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    International Nuclear Information System (INIS)

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as μ-randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 references, 3 figures, 2 tables

  2. White top-emitting organic light-emitting diodes with solution-processed nano-particle scattering layers

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Tim [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln (Germany); Schwab, Tobias; Lenk, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, Scotland (United Kingdom)

    2015-12-07

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDs by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.

  3. Alpha particle track coloration in CR-39: Improved observability

    International Nuclear Information System (INIS)

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger field of observation for the counting operations

  4. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  5. Detection of alpha particles using DNA/Al Schottky junctions

    International Nuclear Information System (INIS)

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors

  6. Detection of alpha particles using DNA/Al Schottky junctions

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-09-01

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current-voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  7. Tables of average distributions of particles emitted by ionized elements (Z = 6--100)

    International Nuclear Information System (INIS)

    Tables giving the average division of energy between electrons and x-rays emitted by singly ionized elements undergoing bound-bound transitions are provided. The expected number of particles is also given. This data is tabulated by atomic number and subshell of initial vacancy. A description of the method of calculation is also presented. 2 refs., 1 fig., 1 tab

  8. A Feasibility Study of a Portable Alpha Particle Spectrometer

    International Nuclear Information System (INIS)

    Alpha spectroscopy is widely used for detecting undeclared nuclear facilities, activities, and materials. Due to the heavy equipment required to carry out this technique, its applications is limited. With the goal of quickly and efficiently responding to undeclared nuclear facilities, activities, and materials, the present authors have designed and built a portable α-particle spectrometer. This study was conducted in order to develop a new portable α-particle spectrometer with the purpose of detecting undeclared nuclear facilities, activities, and materials on site quickly and efficiently. All heavy and large components, which are typically required for a laboratory such as a αparticle spectrometry system, were minimized and placed in a small container with a weight of 14 kg and a size of 30 cm x 30 cm x 30 cm. In the feasibility study, the calculated enrichment values of 235U obtained from the portable α-particle spectrometer were 1.868 % and 3.083 %, similar to the results from a commercial spectrometry system used in laboratories, 2.049 % and 3.253 %. These differences were possibly caused by different channel setups for each system

  9. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  10. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  11. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting {sup 223}Ra-dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Medical Physics; Ventroni, Guido; Mango, Lucio [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Nuclear Medicin; De Vincentis, Giuseppe; Di Castro, Elisabetta; Frantellizzi, Viviana; Follacchio, Giulia Anna; Garkavaya, Tatiana [Rome Univ. (Italy). Dept. of Radiological, Oncological and Anatomo Pathological Sciences; Cassano, Bartolomeo; Lorenzon, Leda [Rome Univ. (Italy). Postgraduate School of Medical Physics; Pellegrini, Rosanna; Pani, Roberto [Rome Univ. (Italy). Dept. of Molecular Medicine; Ialongo, Pasquale [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Radiology

    2016-01-15

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for {sup 223}Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on {sup 99m}Tc-MDP whole-body images, and the ROIs superimposed on the {sup 223}Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T{sub 1/2eff}) of {sup 223}Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), D{sub RBE} = 899 mGy/MBq (range 340-2,450 mGy/MBq). The

  12. Study on cytotoxicities induced by alpha particle irradiation combined with NNK treatment

    International Nuclear Information System (INIS)

    Objective: To investigate cytotoxicities of alpha-particle irradiation combined with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into normal control group (NC), alpha particle irradiation group (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particle irradiation group (NNK + α), and alphaparticle irradiation followed by NNK administration (100 μg/ml) group (α + NNK). Cell survival fractions were measured by cloning rate of low-density plating cell. Ethidium bromide and 2', 7'-dichlorofluorescein, fluorescent products of the membrane-permeable dyes hydroethine and 2', 7'-dichloroflurescindiacetate were used to monitor the inarticulate reactive oxygen species (ROS) . Damage to membrane permeability was evaluated through testing LDH activity in medium. Results: In the groups exposed to both alpha particles and NNK, the survival rates were significantly lower than that of the groups administrated with the same dose of alpha particles or NNK alone. The levels of intracellular ROS and the activity of LDH in medium were significantly higher than that of the groups administrated with the same dose of alpha particles or NNK alone. Subtracted the NNK effect, the survival rates of the groups received both alpha particle irradiation and NNK treatment were significantly lower than that of alpha particle irradiated only group. However, the intracellular ROS level and the activity of LDH in medium were significantly higher than that of alpha-particle irradiated only group. In addition, the survival rates of the cells in groups exposed to alpha particle irradiation followed by NNK administration were significantly lower than that of cells treated with NNK administration followed by alpha particle irradiation. Conclusions: Alpha particle irradiation and NNK administration had synergisticity in cytotoxicity, and furthermore different schedules of the administration resulted in

  13. Influence of Magnolol on the bystander effect induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W.; Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, the influence of Magnolol on the bystander effect in alpha-particle irradiated Chinese hamster ovary (CHO) cells was examined. The bystander effect was studied through medium transfer experiments. Cytokinesis-block micronucleus (CBMN) assay was performed to quantify the chromosome damage induced by alpha-particle irradiation. Our results showed that the alpha-particle induced micronuclei (MN) frequencies were suppressed with the presence of Magnolol.

  14. A novel experiment to investigate the attenuation of alpha particles in air

    International Nuclear Information System (INIS)

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium 226. The experimental results are in close agreement with the theoretical predictions

  15. New alpha particle counter based on micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Full text : The main goal of this work is study of possibility to detect alpha particles with micro-pixel avalanche photodiode which has very thin active volume. The obtained results show that alpha detectors based on the micro-pixel avalanche photodiodes can be used as alpha particle counter in many experiments : public security, radioactive contamination monitoring in various environments and detection of charged particles from nuclear reactions

  16. Alpha particles (citations from the International Aerospace Abstracts data base). Report for 1974-July 1979

    International Nuclear Information System (INIS)

    This bibliography of citations to the international literature covers various aspects of alpha particles as applied to controlled fusion devices, solar activity, and geomagnetically trapped particles. Included are articles concerning Tokamak devices, plasma heating and control, plasma-particle interactions, solar particles, solar wind, solar flares, energy spectra, and magnetohydrodynamic stability. Articles concerning effects of alpha particles on different kinds of devices are also included

  17. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  18. Emitted High Energy Light Particle Data Base Development Using a Thermodynamic Coalescence Model

    Science.gov (United States)

    Arsalan, M. P.; Townsend, L. W.

    2013-03-01

    In many applications, double-differential (energy and angle) secondary light particle production cross sections must be known for ion energies from tens of MeV/nucleon to tens of GeV/nucleon. Incorporating high energy light particle spectral and angular distribution cross section databases in the transport codes enable them to transport nearly any radiation field, in three dimensions, that humans and instruments might be exposed to in space, near accelerators or during charged particle radiotherapy. In this work a thermodynamics coalescence model is used to estimate the coalescence and emitting source radii for both symmetric and asymmetric heavy ion collision systems.

  19. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υalpha ∼ (PRF/nαε0) ρp, where PRF is the ICRF-wave power density, nα is the alpha density, ε0 is the alpha birth energy, and ρp is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  20. New concept for a wall detector for alpha particles

    International Nuclear Information System (INIS)

    A new concept for a wall-mounted detector is described here that would measure D-T alpha flux and corresponding pitch angle distribution in tokamaks (or related toroidal devices). The sensing element is a conical Micro Channel Ring (MCR) coated with 1 to 2μ of ZnS scintillator (or possibly ZnO). The collimation of the α particles is provided by two circumferential slots at the wall surface. The alpha scintillation events on the MCR are transferred through the ring channels and coupled fiber optics bundle to an external processor. From the magnetic field vector at a given point on the device wall, a certain relation can be set up between the α-induced scintillation position on the MCR and its original pitch angle (i.e., the angle between the α emission from the fusion reaction and the magnetic field vector) which is equal to the local pitch angle since the wall α flux is dominated by prompt losses

  1. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  2. Detection of lost alpha particle by concealed lost ion probe

    International Nuclear Information System (INIS)

    Full orbit-following calculation is performed for the final orbit of the lost alpha particles, showing some orbits escaping from the last closed flux surface could be detected by a concealed lost ion probe (CLIP) installed under the shadow of the original first wall surface. While both passing and trapped orbits hit the same wall panel, detecting a trapped orbit by the CLIP is easier than detecting passing orbits. Whether the final orbit is detected or not is determined by the position of the reflection point. The CLIP successfully detects the trapped orbits, which are reflected before they hit to a first wall. Then the pitch angles of the orbits at the CLIP are close to and smaller than 90 deg. Optimization of the position of the CLIP in terms of broader detection window is investigated.

  3. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.W.

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  4. Structural and optical investigation on alpha particle irradiated CR-39 surface coated by MEH-PPV conducting polymer

    International Nuclear Information System (INIS)

    Highlights: • The CR-39 polymeric surface was exposed to alpha particles. • Dip coating of CR-39 surface was done using MEH-PPV conducting polymer. • FTIR is insensitive approach to detect the induced modifications in the irradiated surfaces. • Photoluminescence and UV–Vis responses exhibited remarkable spectral differences. • Both techniques could be used to provide sensitive methods for alpha particle detection. - Abstract: Photoluminescence and UV–Vis spectral evaluation of a poly allyl diglycol carbonate (CR-39) detector coated by poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) conducting polymer are demonstrated. The CR-39 surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. Surface modification of the detector by MEH-PPV was acquired by a simple dip coating process. Our findings revealed that the spectroscopic analysis using FTIR is insensitive approach to detect the induced modifications in the irradiated samples. Additionally, the track density of the irradiated samples affects significantly the photoluminescence and UV–Vis responses of the CR-39 samples. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations (correlation coefficient R2 = 0.9904 to 0.9968) with the fluence of alpha particles. The linear fitting functions together with the corresponding fitting parameters were evaluated. Both techniques exhibited remarkable spectral differences for the irradiated samples, and hence they could be employed to provide sensitive methods for alpha particle detection. Results of sample fabrication and modification, along with structural and optical evaluation are addressed and thoroughly discussed

  5. Phototransferred thermoluminescence from alpha-Al sub 2 O sub 3 :C using blue light emitting diodes

    CERN Document Server

    Bulur, E

    1999-01-01

    Phototransferred thermoluminescence (PTTL) from alpha-Al sub 2 O sub 3 :C single crystals was studied using a blue light emitting diode (LED) for phototransfer of charges from deep traps to the main dosimetry trap. The dose response was found to be linear in the region from approx 5 mGy to approx 5 Gy. It was observed that the corresponding deep traps were located near 500 deg. C and heating to temperatures >600 deg. C removes the PTTL effect induced by the light from the blue LED. The thermal activation energy of the source traps involved in the PTTL production was calculated as 3.23 eV.

  6. Coordination chemistry of the {sup 212}Pb/{sup 212}Bi nuclear transformation: Alpha-emitting radiopharmaceuticals. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  7. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  8. Trident: A three-pronged galaxy survey. I. Lyman alpha emitting galaxies at z~2 in GOODS North

    CERN Document Server

    Sandberg, A; Östlin, G; Hayes, M; Kiaeerad, F

    2015-01-01

    Context. Lyman alpha emitting galaxies (LAEs) are used to probe the distant universe and are therefore important for galaxy evolution studies and for providing clues to the nature of the epoch of reionization, but the exact circumstances under which Lyman alpha escapes a galaxy are still not fully understood. Aims. The Trident project is designed to simultaneously examine Lyman alpha, H-alpha and Lyman Continuum emission from galaxies at redshift z~2, thus linking together these three aspects of ionising radiation in galaxies. In this paper, we outline the strategy of this project and examine the properties of LAEs in the GOODS North field. Methods. We performed a narrowband LAE survey in GOODS North using existing and two custom made filters at the Nordic Optical Telescope with MOSCA. We use complementary broad band archival data in the field to make a careful candidate selection and perform optical to near-IR SED fitting. We also estimate far-infrared luminosities by matching our candidates to detections in...

  9. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles

  10. Alpha spectrometry for particle size determination of mineral sands dust samples

    International Nuclear Information System (INIS)

    A method is proposed for assessing the size distribution of the radioactive particles directly from the alpha spectrum of a dust sample. The residual range distribution of alpha particles emerging from a sphere containing a monoenergetic alpha emitter is simply a quadratic function of the diameter of the sphere. The residual range distribution from a typical dust particle closely approximates that of a sphere of the same mass. For mixtures of various size particles of similar density the (multiparticle) residual range distribution can thus readily be calculated for each of the alpha emitters contained in the particles. Measurement of the composite residual range distribution can be made in a vacuum alpha spectrometer provided the dust sample has no more than a monolayer of particles. The measured energy distribution is particularly sensitive to upper particle size distributions in the diameter region of 4μm to 20μm of 5 mg/cm3 density particles, i.e. 2 to 10 mg/ch2. For dust particles containing212Po or known ratios of alpha emitters a measured alpha spectrum can be unraveled to the underlying particle size distribution. Uncertainty in the size distribution has been listed as deserving research priority in the overall radiation protection program of the mineral sands industry. The proposed method had the potential of reducing this uncertainty, thus permitting more effective radiation protection control. 2 refs., 1 tabs., 1 figs

  11. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  12. Computation and measurement of differential ranges of low-energy alpha particles in matter

    International Nuclear Information System (INIS)

    The stopping power formula of Bethe is discussed and is used to compute differential ranges of low-energy alpha particles in air, argon, aluminium and copper. A single radioactive source containing three active elements is used in experiments to measure the differential ranges in these materials. Finally a range-energy relationship for the alpha particles in air is deduced. (author)

  13. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  14. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    International Nuclear Information System (INIS)

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  15. Optical characterization of nano-sized organic carbon particles emitted from a small gasoline engine

    Institute of Scientific and Technical Information of China (English)

    Bireswar Paul; Amitava Datta; Aparna Datta; Abhijit Saha

    2013-01-01

    The nano-sized organic carbon (NOC) particles emitted from a small gasoline engine were characterized using various ex situ optical techniques to assess their hazardous impact.The exhaust gas was sampled iso-kinetically by a quartz probe and passed through de-ionized water to gather the hydrophilic carbonaceous particulates as hydrosol.The hydrodynamic diameter of the particles ranged between 1.7 and 3.6 nm at no load,with a mean diameter of 2.4 nm.The particle size in the engine exhaust was found to increase at higher loads,which is attributed to coagulation of the particles.The chemical structure of the particles was analyzed using UV-vis and infra-red spectroscopy.Both the band gap energy and oscillator strength data evaluated from the UV-vis absorbance showed that the NOC particles contained polyaromatic hydrocarbon structures with three to five aromatic rings.Infra-red spectroscopy analysis further confirmed the presence of aliphatic and carbonyl functionalities in the aromatic structures of the particles.The fine size of the particles,their high number concentration for the type of the engine under study and their structural features,make the particles extremely hazardous for environment and health.

  16. Somatostatin-receptor-targeted {alpha}-emitting {sup 213}Bi is therapeutically more effective than {beta}{sup -}-emitting {sup 177}Lu in human pancreatic adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Tapan K. [Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001 (United States); Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Norenberg, Jeffrey P. [Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001 (United States)]. E-mail: jpnoren@unm.edu; Anderson, Tamara L. [Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001 (United States); Prossnitz, Eric R. [Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Stabin, Michael G. [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Atcher, Robert W. [Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001 (United States); Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-02-15

    Introduction: Advance clinical cancer therapy studies of patients treated with somatostatin receptor (sstr)-targeted [DOTA{sup 0}-Tyr{sup 3}]octreotide (DOTATOC) labeled with low-linear-energy-transfer (LET) {beta}{sup -}-emitters have shown overall response rates in the range of 15-33%. In order to improve outcomes, we sought to compare the therapeutic effectiveness of sstr-targeted high-LET {alpha}-emitting {sup 213}Bi to that of low-LET {beta}{sup -}-emitting {sup 177}Lu by determining relative biological effectiveness (RBE) using the external {gamma}-beam of {sup 137}Cs as reference radiation. Methods: Sstr-expressing human pancreatic adenocarcinoma Capan-2 cells and A549 control cells were used for this study. The effects of different radiation doses of {sup 213}Bi and {sup 177}Lu labeled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and sstr-targeted DOTATOC were investigated with a clonogenic cell survival assay. Apoptosis was measured using the Cell Death Detection ELISA{sup PLUS} 10x kit. Results: Using equimolar DOTATOC treatment with concurrent irradiation with a {sup 137}Cs source as reference radiation, the calculated RBE of [{sup 213}Bi]DOTATOC was 3.4, as compared to 1.0 for [{sup 177}Lu]DOTATOC. As measured in terms of absorbance units, [{sup 213}Bi]DOTATOC caused a 2.3-fold-greater release of apoptosis-specific mononucleosomes and oligonucleosomes than [{sup 177}Lu]DOTATOC at the final treatment time of 96 h (P<.001) in sstr-expressing Capan-2 cells. Conclusions: In conclusion, at the same absorbed dose, [{sup 213}Bi]DOTATOC is therapeutically more effective in decreasing survival than is [{sup 177}Lu]DOTATOC in human pancreatic adenocarcinoma cells due to its comparatively higher RBE.

  17. Determination of the range of alpha particles in SSNTD by optical density method

    CERN Document Server

    El-Hofy, M; Arafa, W

    1999-01-01

    A technique based on the optical density (D) measurement of the etched track is useful for charged particles spectroscopy using SSNTD. It was shown that the stopping power of alpha particles in CR-39 is proportional to D. We measured the optical density and derived an expression to estimate the range of alpha particles in CR-39 detector as a function of the bulk etching rate and etching time. The relation between the etching time, track parameters (depth, radius) and D for different alpha particles energy and etching conditions were studied. A relation describing D as a function of track size is proposed.

  18. Preliminary proposals for extending the ENDF format to allow incident charged particles and energy-angle correlation for emitted particles

    International Nuclear Information System (INIS)

    This rewrite of Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF pertains to the latest version, ENDF/B-VI. Earlier versions provided representations for neutron cross sections and distributions, photon production from neutron reactions, a limited amount of charged-particle production from neutron reactions, photo-atomic interaction data, thermal neutron scattering data, and radionuclide production and decay data (including fission products). This version allows higher incident energies, adds more complete descriptions of the distributions of emitted particles, and provides for incident charged particles and photo-nuclear data by partitioning the ENDF library into sublibraries. Decay data, fission product yield data, thermal scattering data, and photo-atomic data have also been formally placed in sublibraries. In addition, this rewrite represents an extensive update to the Version V manual

  19. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  20. Alpha-emitting isotopes and chromium in a coastal California aquifer

    Science.gov (United States)

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  1. The Effects of Alpha Particle Confinement on Burning Plasma Tokamak Performance

    Science.gov (United States)

    Gormley, Robert P.

    In this thesis, three effects of alpha particle plasma interactions on the global performance of a fusion reactor are studied, namely, (i) the energy coupling efficiency of the fast alpha particles with the bulk plasma, (ii) the relationship between imperfect alpha energy coupling to the bulk plasma and the resultant alpha particle/helium ash fuel dilution; and (iii) the neoclassical bootstrap current induced by fusion born alpha particles calculated self-consistently with the plasma equilibrium. First, the ion drift kinetic equation for the high energy alpha particles is reduced from the exact five dimensional form to a two dimensional form in radius r and energy E (plus time t). The resulting slowing-down diffusion equation is solved by a multiple energy group method. A theoretically based anomalous diffusion coefficient D_sp{alpha}{an} is then introduced from a self-consistent alpha particle Alfven wave turbulence solution (by F. Gang), in which D_sp{alpha}{an } itself depends on the gradient in alpha density. The temporal and spatial behavior of eta_ alpha is analyzed for an ITER-CDA physics phase fusion reactor. We find that eta_ alpha can be as low as 0.95 depending on the plasma operating temperature. Next, the relationship between the alpha-particle power coupling efficiency and the actual alpha-particle power that is coupled with the bulk plasma is investigated, this time taking into account the concomitant helium ash accumulation. It is found that the coupled power varies less than linearly with eta_alpha and is, in fact, significantly depressed for eta_alpha near unity. Combining these effects with a thermal power balance shows that the high temperature "thermally stable" side of the ignition boundary is pushed toward lower temperatures if either D_alpha increases (which results in a lower eta_alpha) or the helium-ash confinement time lengthens. This is a consequence of strengthened fuel dilution and imperfect alpha power coupling. Implications on the

  2. Gaseous swelling model in the alpha-particles straggling field

    International Nuclear Information System (INIS)

    In the work for the physical model the following key presuppositions were accepted: alpha particles Gauss distribution in the straggling field is expected; the helium embryo is the helium atom plus the two vacancies; gaseous pores coalescence is resulted their migration in the tension field and Brownian movement; the preservation of helium atoms in the coalescence process is expected; it consequence is swelling. At the initial stage the behavior of pores ensemble with taking into account of a point defects formation during irradiation process have been analyzed. It is expected, that development of this ensemble will be take place during the following annealing of the matrix. The main presuppositions on the this stage of calculation are as follows: there are the principal elements of the microstructure - are taking into account in the kinetic equations - implanted helium interstitials, vacancies, dislocation network, Frank loops, pores; it is excepted, that two interstitial helium atoms form the pore embryo; two interstitials Frank loops at distances between components equal to lattice constant; mechanisms of pores formation in the matrix and dislocation are expected different; the additional channel of pores growth is Frank loops dropping. The typical kinetic equation for interstitial from complete equation system is presented. The pores ensemble evolution for iron irradiated by helium ions with energy E=400 keV up to integral dose 101|7 ion/cm2 at 100 deg C temperature and following annealing at temperature 800 deg C is calculated. It is shown that pores distribution by sizes is shifting forward big sizes with increase of annealing time

  3. The simulation of the response of superheated emulsion to alpha particles

    International Nuclear Information System (INIS)

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.:  −1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures

  4. The simulation of the response of superheated emulsion to alpha particles

    Science.gov (United States)

    Seth, Susnata; Das, Mala

    2016-04-01

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.: ‑1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures.

  5. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Bak, M. S., E-mail: tkim@skku.edu, E-mail: moonsoo@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ha, S. [SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Joshirao, P.; Manchanda, V. [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, T., E-mail: tkim@skku.edu, E-mail: moonsoo@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  6. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    International Nuclear Information System (INIS)

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories

  7. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    International Nuclear Information System (INIS)

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described

  8. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described.

  9. Transport theory for energetic alpha particles in finite aspect ratio tokamaks with broken symmetry

    Science.gov (United States)

    Shaing, K. C.; Schlutt, M.; Lai, A. L.

    2016-02-01

    Transport theory for the energetic alpha particles in finite aspect ratio tokamaks with broken symmetry is developed for the case where the slowing down collision operator dominates. The transport fluxes in the 1 /ν and superbanana plateau regimes are derived. Here, ν is the typical collision frequency. They can be used in modeling the energy loss of the alpha particles in thermonuclear fusion reactors. Numerical realizations of the superbanana orbits of alpha particles in tokamaks with broken symmetry are also presented. The existence of the superbananas corroborates the predictions of the theories presented here and elsewhere.

  10. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f1(z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The fl(z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  11. Alpha-emitting isotopes and chromium in a coastal California aquifer

    International Nuclear Information System (INIS)

    Highlights: • Alluvium in Piedra de Lumbre basin higher radionuclides likely from natural Th. • Natural uranium decay-chain isotopes, including Ra, present in marine deposits. • Marine deposits also contain low concentrations of chromium. • Radionuclides and chromium concentrations lower in alluvium in the Las Flores basin. - Abstract: The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development

  12. Cluster-shell competition in systems with a few alpha particles and valence neutrons

    International Nuclear Information System (INIS)

    We construct nuclear wave functions from alpha clusters and some additional valence nucleons, and allow the inter-cluster distance to change and one alpha to dissolve from the (0s)4 structure as a result of the nuclear interaction. The change of the inter-cluster distance and the dissolution of the alpha particle can be interpreted as resulting from the competition of the 'shell model' and 'cluster model'. We demonstrate this competition through a few parameters.

  13. Combination of digital autoradiography and alpha track analysis to reveal the distribution of definite alpha- and beta-emitting nuclides in contaminated samples

    International Nuclear Information System (INIS)

    Digital autoradiography using Imaging Plate is commonly employed for searching 'hot' particles in the contaminated soil, sediment and aerosol probes. However digital radiography images combined with Alpha Track radiography data could provide much more information about micro-distribution of different alpha- and beta- nuclides. The discrimination method to estimate the distribution of radionuclides that are the main contributors to the total radioactivity (90Sr/90Y, 137Cs, 241Am) has been developed on the case of artificial reservoir V-17 (PA 'Mayak'). The bottom sediments and hydrobionts probes collected from V-17 along with the standards of 137Cs, 90Sr/90Y and 241Am have been exposed for a short time (15 min) using a stack of 3 Imaging Plates (Cyclone Plus Storage Phosphor System, Perkin Elmer). The attenuation of photostimulated luminescence (PSL) intensity from layer to layer of the Imaging Plates depends on the type and energy of radiation. Integrated approach using PSL attenuation in the samples and standards (digital radiography) along with Alpha Track radiography and gamma-spectroscopy of the preparation was used to estimate the contribution of the main nuclides in specific parts of contaminated samples. The observation of the 90Sr/90Y and 137Cs activity maxima could help to find the phases which are responsible for preferential sorption of the nuclides. Document available in abstract form only. (authors)

  14. Limits on Lyman Continuum escape from z=2.2 H-alpha emitting galaxies

    CERN Document Server

    Sandberg, A; Melinder, J; Bik, A; Guaita, L

    2015-01-01

    The leakage of Lyman continuum photons from star forming galaxies is an elusive parameter. When observed, it provides a wealth of information on star formation in galaxies and the geometry of the interstellar medium, and puts constraints on the role of star forming galaxies in the reionization of the universe. H-alpha-selected galaxies at z~2 trace the highest star formation population at the peak of cosmic star formation history, providing a base for directly measuring Lyman continuum escape. Here we present this method, and highlight its benefits as well as caveats. We also use the method on 10 H-alpha emitters in the Chandra Deep Field South at z=2.2, also imaged with the Hubble Space Telescope in the ultraviolet. We find no individual Lyman continuum detections, and our stack puts a 5 sigma upper limit on the average absolute escape fraction of <24%, consistent with similar studies. With future planned observations, the sample sizes would rapidly increase and the method presented here would provide ver...

  15. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Jenny; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology

    2005-02-01

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K{sub 2}SO{sub 4}, and K{sub 2}CO{sub 3}). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be {approx}2.5.

  16. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    International Nuclear Information System (INIS)

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K2SO4, and K2CO3). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be ∼2.5

  17. High concentrations of coarse particles emitted from a cattle feeding operation

    Directory of Open Access Journals (Sweden)

    N. Hiranuma

    2011-08-01

    Full Text Available Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS and a GRIMM Portable Aerosol Spectrometer (PAS, were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less were as high as 1200 μg m−3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  18. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Park's low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation), and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, so that it approximates its observed flow along the magnetic field, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in poor agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. The failure of the model appears to be the breakdown of the assumption that charge-state equilibrium exists in the cloud. This problem is particularly severe for the TEXT parameters so modifications in the model to include non-equilibrium effects are being implemented

  19. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Parks' low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation) and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in pretty good agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. Also a small improvement has been made in the low-Z pellet plasma-penetration program, which brings the predictions of the model in closer agreement with the carbon pellet injection experiments on TFTR. 22 refs., 3 figs

  20. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood

  1. Cross sections of nuclear reactions induced by protons, deuterons, and alpha particles. Pt.6. Phosphorus

    International Nuclear Information System (INIS)

    Cross sections are reviewed for nuclear reactions induced by protons, deuterons, and alpha particles on phosphorus targets. When necessary, published experimental data are corrected, and, when possible, excitation functions are proposed

  2. Interaction of neutrons with alpha particles: A tribute to Heinz Barschall

    OpenAIRE

    Hoop, B. de

    2015-01-01

    As a tribute to our teacher and mentor on the occasion of his centennial celebration, we provide a brief historical overview and a summary of sustained interest in the topic of interaction of neutrons with alpha particles.

  3. Entrance channel effects on preequilibrium emission and incomplete fusion in Promptly Emitted Particle model

    International Nuclear Information System (INIS)

    In intermediate energy heavy ion collision prompt particles emitted in the early stages of the reaction affect the properties of the incompletely fused composite. We have studied the entrance channel effects on preequilibrium proton emission and various observables, like temperature, residual velocity, and linear momentum transfer of the incompletely fused residue, in the framework of Promptly Emitted Particle (PEP) model. The calculated preequilibrium proton energy spectra for Oxygen and Sulphur induced reactions on various targets have been confronted with the respective experimental data and the agreement between the two has been found to be quite satisfactory. Proton multiplicity has been found to decrease/increase with the increase in target/projectile mass. Residual velocity and linear momentum transfer have been found to have weak dependance on target mass. With the increase in incident energy, the calculation predicts a tendency towards limiting the temperature of the residue for all the target masses. The limiting temperature has been found to decrease with increase in the mass of the residue which is in accordance with the experimental observations. (orig.)

  4. Measurement of $\\alpha$-particle quenching in LAB based scintillator in independent small-scale experiments

    CERN Document Server

    von Krosigk, B; Hans, S; Junghans, A R; Kögler, T; Kraus, C; Kuckert, L; Liu, X; Nolte, R; O'Keeffe, H M; Tseung, H S Wan Chan; Wilson, J R; Wright, A; Yeh, M; Zuber, K

    2015-01-01

    The $\\alpha$-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, $\\alpha$-particles were produced in the scintillator via $^{12}$C($n$,$\\alpha$)$^9$Be reactions. In the second approach, the scintillator was loaded with 2% of $^{\\mathrm{nat}}$Sm providing an $\\alpha$-emitter, $^{147}$Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants $^{222}$Rn, $^{218}$Po and $^{214}$Po provided the $\\alpha$-particle signal. The behavior of the observed $\\alpha$-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter $kB$ ranges from $(0.0071\\pm0.0003)$ cm/MeV to $(0.0076\\pm0.0003)$ cm/MeV. In the first approach, the $\\alpha$-particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proto...

  5. Rapid screening and analysis of alpha- and gamma-emitting radionuclides in liquids using a single sample preparation procedure.

    Science.gov (United States)

    Parsa, Bahman; Henitz, James B; Carter, Jennifer A

    2011-02-01

    A multifaceted radiochemical testing procedure has been developed to analyze a large number of liquid samples and measure a wide range of radionuclides in a short period of time. This method involves a single, unique and fast sample preparation procedure and allows sequential/concurrent determination of analytes with accuracy and precision. The same prepared sample can be selectively analyzed by gross alpha counting, gamma-ray spectroscopy, and alpha spectroscopy. This method is especially attractive in radiological emergency events where analytical data will be needed urgently as a basis for protective action. Given the simplicity and rapidity of the method, it may be suitable for field portable laboratories, which could save time and the cost associated with the transit of samples to a fixed laboratory. A 100 mL aliquot of sample was spiked with ¹³³Ba and ⁵⁹Fe tracers and subjected to a chemical separation procedure using a combined BaSO4 and Fe(OH)3 co-precipitation scheme. Then, the gross alpha-particle activity of the prepared sample was measured with a low-background gas-proportional counter, followed by the analysis of its photon-emitters using a gamma-ray spectroscopy system with high-purity intrinsic Ge detectors. Gamma-ray determination of ¹³³Ba and ⁵⁹Fe tracers was used to assess the chemical recoveries of BaSO4 and Fe(OH)3 fractions, respectively. Selectivity of the radionuclides for co-precipitation with either BaSO4 or Fe(OH)3 components was also investigated. Alpha mass-efficiency curves were derived using ²³⁰Th and ²⁴¹Am standards as alpha-calibration sources. Various mixtures of radionuclides, including ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ⁸⁵Sr, ⁸⁸Y, ¹⁰⁹Cd, ¹¹³Sn, ¹³⁷Cs, ¹³⁹Ce, ²⁰³Hg, ²⁰⁹Po, ²²⁶Ra, ²²⁸Ra, ²³⁰Th, ²⁴¹Am, and natural uranium were used in this study. Most were quantitatively assayed with high chemical recoveries. Alpha-isotope identification and assessment of the prepared

  6. Screening procedures for alpha, beta and gamma emitting radionuclides in urine

    International Nuclear Information System (INIS)

    The gross actinide and beta screening methods currently used by the Bioassay Laboratory at Chalk River Nuclear Laboratories have been documented and tested. The gross gamma method has also been documented. The gross actinide method was tested with Th-nat, Pu-239, Np-237, Am-241 and Cm-244 and the average percent recoveries were 90, 99, 45, 72 and 78, respectively. The gross beta method was tested with Sr-90/Y-90, Ce-144/Pr-144, Pm-147 and Ba-133 and the average percent recoveries were 78, 100, 46 and 46, respectively. Detection limits for the gross actinide (alpha) method are found to be about 0.4 mBq and about 39 mBq for the gross beta method

  7. Feasibility of ion temperature measurement with a gyrotron scattering alpha particle diagnostic

    International Nuclear Information System (INIS)

    Collective Thomson scattering can be used to diagnose localized ion temperature as well as alpha particle velocity distribution and density in a D-T burning tokamak. With one diagnostic beam a simultaneous, but independent, measure of the bulk ion temperature and alpha particle parameters can be made. Use of a long pulse, millimeter-wave gyrotron offers a significant margin in signal to noise ratio capability (√Δftau > 1000) not previously possible with lasers. 9 refs., 2 figs

  8. Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma

    OpenAIRE

    Peigney, Benjamin-Edouard; Larroche, Olivier; Tikhonchuk, Vladimir

    2014-01-01

    We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the impl...

  9. Modification of thermal, optical and structural properties of bayfol nuclear track detector by alpha particles irradiation

    International Nuclear Information System (INIS)

    The effect of alpha particle dose on the thermal, optical and structural properties of Bayfol solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG) to obtain the activation energy of decomposition for Bayfol detector. Thermal gravimetric analysis (TGA) indicates that the Bayfol samples decompose in one main break down stage. Samples from 250 cm thickness sheets were exposed to alpha particles in the dose range 3.5-67.03 Gy. The variation of transition temperatures with the alpha particle dose has been determined using differential thermal analysis (DTA). The results indicate that the irradiation with alpha particles in the dose range 26.81-67.03 Gy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures. Also, the alpha particle dose gives advantage for increasing the correlation between melting temperatures and the amount of crystalline regions that is related to both cross-linking and degradation phenomena. In addition, optical and structural property studies using refractive index, IR spectroscopy, and x-ray diffraction measurements were performed on non irradiated and irradiated Bayfol samples. The results indicate that the anisotropic character, absorbance and the degree of ordering of the Bayfol polymer are dependent on the alpha particle dose

  10. Surface Properties of Particles Emitted from Selected Coal-Fired Heating Plants and Electric Power Stations in Poland: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Pastuszka Józef S.

    2014-12-01

    Full Text Available The surface properties of particles emitted from six selected coal-fired power and heating plants in Poland have been studied in this work for the first time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS.

  11. Coincidence techniques (time correlation) alpha-gamma particles associated experiments on PGFNAA

    International Nuclear Information System (INIS)

    PGFNAA (Prompt Gamma Fast Neutron Alpha Associated) techniques offers capabilities far beyond those of the conventional inspection system to detect hazardous materials such as explosives or drugs. This technique uses the time coincidence between alpha and gamma particles to reduce the background produced by fast neutron interactions not only with the objects but also with the surrounding material. This paper reports the experimental setup that have been conducted to capture coincident events between alpha and gamma particles. Although not perfect, but the reduction of the background almost 100 % had been obtained on the outside area of the spectrum energy interest for water and graphite samples. (author)

  12. Characterization of a alpha particle detector CR-39 exposed to a source of radium

    International Nuclear Information System (INIS)

    In this project, the main goal is the characterization of a alpha particle detector CR-39 exposed to a source of radio. Three detectors were exposed to a source of radium and then chemically treated for different periods. This way, we could analyze these samples and collect the information needed to verify that at least one of the chemical attack, there has been a separation of the energies alpha particles incident with distinct peaks, thus characterizing the CR-39 as alpha spectrometer in the range 2.5 to 6.3 MeV . (author)

  13. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  14. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  15. Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V

    2016-01-01

    Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...

  16. Physical properties and evolutionary state of the Lyman alpha emitting starburst galaxy IRAS 08339+6517

    CERN Document Server

    Oti-Floranes, H; Jimenez-Bailon, E; Schaerer, D; Hayes, M; Ostlin, G; Atek, H; Kunth, D

    2014-01-01

    Though Lyman alpha emission (Lya) is one of the most used tracers of massive star formation at high redshift, a correct understanding of radiation transfer effects by neutral gas is required to properly quantify the star formation rate along the history of the Universe. We are embarked in a program to study the properties of the Lya emission (spectral profile, spatial distribution, relation to Balmer lines intensity,...) in several local starburst galaxies. We present here the results obtained for IRAS 08339+6517. Using evolutionary population synthesis models, we have characterized the properties of the starburst (UV continuum, Halpha, total infrared and X-ray emissions, etc.), which transformed 1.4e+8 Mo of gas into stars around 5-6 Myr ago. In addition to the central compact emission blob, we have identified a diffuse Lya emission component smoothly distributed over the whole central area of IRAS 08339+6517. This diffuse emission is spatially decoupled from the UV continuum, the Halpha emission or the Halp...

  17. Detection of HI in Emission in the Lyman Alpha Emitting Galaxy Haro 11

    CERN Document Server

    Pardy, Stephen A; Östlin, Göran; Hayes, Matthew; Bergvall, Nils

    2016-01-01

    We present the first robust detection of HI 21 cm emission in the blue compact galaxy Haro 11 using the 100m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Lyman Alpha and the Lyman continuum. We detect (5.1 $\\pm$ 0.7 $\\times$10$^8$) M$_{\\odot}$ of HI gas at an assumed distance of 88 Mpc, making this galaxy HI deficient compared to other local galaxies with similar optical properties. Given this small HI mass, Haro 11 has an elevated M$_{H2}$/M$_{HI}$ ratio and a very low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The HI emission has a linewidth of 71 kms$^{-1}$ and is offset 60 kms$^{-1}$ redward of the optical line center. It is undergoing a starburst after a recent merger which has elevated the star formation rate, and will deplete the gas supply in $<$ 0.2 Gyr. Although this starburst has elevated the SFR compared to galaxies with similar HI masses and linewidths, H...

  18. Simultaneous determination of alpha-emitting radionuclides of thorium and plutonium in human tissues including bone

    International Nuclear Information System (INIS)

    A method has been developed for the simultaneous determination of environmental, i.e., non-occupational, levels of α-emitting isotopes of thorium and plutonium in human lung, lymph nodes, liver, kidney, thyroid, spleen, gonads, and bone. Known amounts of soft tissues (5-850 g) spiked with 1-2 dpm tracers of 229Th and 242Pu are wet ashed with nitric acid, and H2SO4 with occasional addition of HNO3 and H2O2. Th and Pu are coprecipitated with 10 mg of Fe carrier by gradual addition of ammonium hydroxide. The precipitate is dissolved in HNO3 and adjusted to 4 M. Th and Pu are co-extracted into 25% (v/v) trilaurylamine in xylene. Th is backwashed with 10 M HCl and the Pu is back-extracted with 2 M H2SO4. Th and Pu are electrodeposited separately on platinum planchets and determined by α spectrometry. Bone samples are wet ashed with nitric acid and H2O2, after spiking with 229Th and 242Pu tracers. Th and Pu are coprecipitated with calcium oxalate by adding oxalic acid. The precipitate is heated at 5500C, dissolved in nitric acid, and adjusted to 4 M. Then extractions, back-extractions, electrodeposition and measurements are performed as described for soft tissues. The recovery for Th ranged from 30 to 93% with a mean of 55% and for Pu from 32 to 94% with a mean of 71%. 4 figures, 2 tables

  19. ICRF enhancement of fusion reactivity in the presence of alpha particles

    International Nuclear Information System (INIS)

    Absorption of ICRF (ion cyclotron range of frequency) waves by alpha particles and fusion reactivity enhancement due to the ICRF induced ion tail are investigated. The rate of linear absorption by alpha particles increases with the cyclotron harmonic number, and decreases with the ratio of the electron plasma frequency to the electron cyclotron frequency. The deformation of the distribution due to ICRF waves is also examined by using a solution to a Fokker-Planck equation combined with a quasi-linear RF (radiofrequency) diffusion term. It is found that second harmonic ICRF heating is comparatively applicable to the enhancement of the fusion power density even in the presence of alpha particles, while the efficiency of the enhancement is deteriorated markedly by wave deposition to alphas for higher harmonic ICRF heating in the high magnetic field. (author)

  20. Feasibility of alpha particle measurement by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    The feasibility of CO2 laser Thomson scattering from a multi-component burning plasma has been evaluated for the measurement of the velocity distribution of D-T produced alpha particles. The density and velocity distribution of the alpha particles from their initial energy of 3.5 MeV down to near-thermal energies may be measured by small angle (0) Thomson scattering. A computer simulation of the experiment indicates that a 100 MW pulsed laser combined with a bank of heterodyne receivers will be able to measure a scattered signal from the alpha particles with a post-detection signal-to-noise ratio of 75 for an assumed alpha density of 7.5 x 1011 cm-3

  1. Nuclear structure and reaction mechanisms studied on alpha-particle transitions

    International Nuclear Information System (INIS)

    Since the observation of the natural alpha decay of atomic nuclei the alpha particle was and is considered as an important component of the nuclear matter. The modern studies of alpha-particle transfer reactions are devoted to the question on four-particle correlations (alpha-particle clusters) generally in nuclear matter or also on nuclear surfaces. Thereby one is today yet absolutely far away from a unified picture of the mechanism of the alpha transfer: It is shown that different reaction and nuclear models must be used with different success for the interpretation of the data. Theoretical and experimental determination of spectroscopic strength distribution were thereby developed mutually supportingly each other. On the experimental side the question of the reaction mechanism and the determination of its details is to be clarified. Here approaches were developed which lead to a unified description in the sd shell. Calculations in the formalism of the coupled channels with spectroscopic factors calculated in the framework of the shell model lead to convincing agreements between theoretical and experimental angular distributions regarding both their shape and their amplitude. Hereby it was shown that beside the determination of the potential parameters a two-stage reaction mechanism as in an alpha-particle transition after or before an inelastic excitation of the target or residual nucleus is of decicive importance. (HSI)

  2. Physico-chemical characteristics of particles emitted from vehicles using gasoline with methylcyclopentadienyl manganese tricarbonyl

    International Nuclear Information System (INIS)

    Methylcyclopentadienyl manganese tricarbonyl (MMT), an organic derivative of manganese, has been used exclusively in Canada since 1990 as an antiknock agent in unleaded gasoline. Its combustion leads to the formation and the release to the atmosphere of oxides of Mn, especially manganese tetraoxide or hausmanite. The aim of this research is to estimate the quantity of Mn oxides emitted at the tailpipe and to determine the physico-chemical characteristics of the particles. A total of nine different vehicles were used, with engine sizes varying from 2 to 5 liters and previously driven from 3,500 to 124,000 km. The tests were carried out with urban (UDDS -- Urban Dynamometer Driving Schedule) and highway (HWFET -- Highway Fuel Economy Test) cycles based on the Federal Test Procedure. Particles to be analyzed by scanning electron microscopy for size distribution and chemical composition were collected at the end of the tailpipe using a pump and 0.4 microm Teflon filters. Other solid particles were collected by bubbling the exhaust gases through water and the Mn concentrations were measured by neutron activation analysis. The Mn emissions from the vehicles varied from 4 to 52% which is of the same order of magnitude as previous studies on the subject. A positive correlation between % emission and vehicle mileage was obtained for the urban cycle only with a coefficient of 0.57 (p < 0.05) Scanning electron microscopy enabled the identification of Mn oxide particles bound to different elements such as S, Fe, Cr, Si and Al. The size of the agglomerates varied from 0.2 to 30 microm. Almost 50% of the Mn particles were found to be in the respirable fraction (<0.5 microm)

  3. Effects of alpha particle transport driven by Alfvenic instabilities on proposed burning plasma scenarios on ITER

    International Nuclear Information System (INIS)

    The consistency of proposed burning plasma scenarios with Alfvenic instabilities driven by alpha particles is investigated. If the alpha particle pressure is above the threshold for resonant excitation of Energetic Particle driven Modes (EPMs), significant modification of the alpha particle pressure profile can take place. Model simulations are performed using the Hybrid MHD-Gyrokinetic Code (HMGC) retaining relevant thermal-plasma parameters, safety factor and alpha particle pressure profiles. ITER monotonic-q and reversed-shear scenarios are considered. A 'hybrid' ITER scenario is also studied and quantitatively compared with the previous ones. We find that, unlike the latter, the former equilibria are unstable. Nonlinear effects on the alpha-particle pressure profile result, however, to be negligible for the monotonic-q case. They can instead be relevant for the reversed-shear scenario. The assessment of such a conclusion requires further investigations concerning the possibility that the strong EPM instability is regulated, in realistic conditions, by nonlinear effects of weaker Alfven modes. (author)

  4. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Franklin, F R

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode- Converted Ion Bernstein Waves (MCIBWs) and Alfvé n Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control...

  5. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  6. Radiochemical and radioecological studies of natural and artificial alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    Transuranium elements, including uranium and thorium, were analyzed in both marine and terrestrial samples. Vertical profiles of 239+240Pu, 241Am, 230Th, and 238U, in the Pacific, the Mediterranean, and the Atlantic, measured by different investigators, were compared. Uptake of the fallout isotopes 241Pu, 240+239Pu, 238Pu, and 241Am in the lichen - reindeer food chain was studied. Americium and thorium exhibited similar biophysical behavior in the environment and in the water column, although the settling velocity for thorium was somewhat higher. Plutonium showed similar distribution in the water columns in different waters. The fraction of ingested plutonium which was retained in the body of reindeer was in good agreement with the value of 3 x 10-5 predicted for man. Uranium showed a constant concentration in the water column, with a low affinity to particles in the water. The high concentration of uranium in reindeer tissues depended on high intake from drinking water and foodstuffs other than lichens

  7. The role of alpha particles in the dynamics of ring-stabilized devices

    International Nuclear Information System (INIS)

    The use of relativistic electron rings to stabilize plasmas against the interchange modes has been utilized in such devices as the Elmo Bumpy Torus (EBT) and the plugs of a Tandem Mirror device (STM). In the EBT case enhanced stability is reflected in higher betas (ratio of plasma to magnetic field pressures), while in the Tandem Mirror case symmetry in the plug magnetic geometry results in reduced particle diffusion across the magnetic field in the central cell. Regardless of the application, the question arises as to what effect would alpha particles generated by the Deuterium-Tritium (DT) reactions have on the stability of such ring-stabilized devices. In this paper the macroscopic stability of such systems is reexamined in order to assess the effect of alphas on the background interchange mode, the interacting interchange mode, and the high frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizeable Larmor radii. The destabilization is most pronounced at high alpha energies i.e., at birth, and near complete recovery of stability is achieved as these particles approach thermalization with the background ions. It is also shown that the alphas completely stabilize the high frequency modes. (orig.)

  8. Effect of alpha particles on the stability of Elmo Bumpy Torus (EBT) reactor. Final report

    International Nuclear Information System (INIS)

    The macroscopic stability of an ignited EBT reactor is investigated by studying the effects of the alpha particles generated by the Deuterium-Tritium (D-T) fusion reaction on the background interchange mode, the interacting interchange mode, and the high-frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and the alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizable Larmor radii. The destabilization is most pronounced when the beta of the alpha particles in highest, i.e., at birth, and recovery of stabilization takes place as these particles slow down toward thermalization. It is also shown that the alphas completely stabilize the high frequency modes so that it can safely be concluded that fusion alphas present no detrimental effects on the stability of an EBT reactor that possesses an appropriate hot electron ring for macroscopic stability

  9. Formulation of alpha-particle condensation in the macroscopic limit

    International Nuclear Information System (INIS)

    Following closely BCS theory for pairs, an eventually viable theory for α-particle condensation (quartetting) is sketched. In the final formula the quartet wave function is replaced by a Slater determinant projected on good total momentum. The only variational field is then the single particle 0S wave function. This should reduce the numerical complexity to solve the quartet equations considerably. (author)

  10. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects

  11. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode

    International Nuclear Information System (INIS)

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0 deg. -70 deg. ).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. (authors)

  12. Alpha-particle emission probabilities in the decay of {sup 240}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Sibbens, G., E-mail: goedele.sibbens@ec.europa.e [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Pomme, S.; Altzitzoglou, T. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Garcia-Torano, E. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Janssen, H.; Dersch, R.; Ott, O. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Martin Sanchez, A. [Departamento de Fisica, Universidad de Extremadura, Badajoz, E-06071 (Spain); Rubio Montero, M.P. [Departamento de Fisica Aplicada, Universidad de Extremadura, Merida, Badajoz, E-06800 (Spain); Loidl, M. [Laboratoire National Henri Becquerel, LNE/CEA-LIST, 91191 Gif-sur-Yvette (France); Coron, N.; Marcillac, P. de [Institut d' Astrophysique Spatiale, CNRS, 91405 Orsay Campus (France); Semkow, T.M. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States)

    2010-07-15

    Sources of enriched {sup 240}Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of {sup 240}Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from {gamma}-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while {gamma}-ray spectrometry confirms that its intensity is much lower than expected from literature.

  13. Review of alpha-particle spectrometric measurements of actinides

    International Nuclear Information System (INIS)

    At present the silicon surface-barrier detector is the most used α-particle detector mainly due to its high energy resolution, excellent stability, low background and low cost. In this presentation various parameters of importance for α-particle spectrometry are discussed, i.e. energy resolution and interval selection, energy calibration, background and peak tailing. Examples of α-particle spectra recorded from various actinides (Th, U, Np, Pu, Am, and Cm) separated from environmental samples are shown, and the choice of yield determinants is discussed for each case. (author)

  14. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  15. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  16. Scintillation response of CsI: Tl crystal under neutron, gamma, alpha particles and beta excitations

    International Nuclear Information System (INIS)

    Among the converters of X and gamma radiation in light photons, known as scintillators, the one which is the most efficient emits photons with a wavelength near 400 nm. Particularly, among them, the cesium iodine doped with thallium (CsI:Tl) crystal is that which matches better between the light emission spectrum (peak at 540 nm) and the quantum sensitivity curve of the photodiodes and CCD (Charge Coupled Device). This explains the renewed interest in using this crystal as scintillator. Although the CsI:Tl crystal is commercially available, its local development would give the possibility to obtain it in different geometric configurations and coupling. Moreover, there is a special interest in studying new conditions that will alter the properties of this crystal in order to achieve a optimal level of its functional characteristics. Having an efficient national scintillator with low cost is a strategic opportunity to study the response of a detector applied to different types of radiation. The crystal of cesium iodide activated with thallium (CsI:Tl) has a high gamma detection efficiency per unit volume. In this paper, the CsI:Tl crystal, grown by the vertical Bridgman technique in evacuated silica ampoules and with the purpose of use as radiation detectors, is described. To evaluate the scintillator, measures of the thallium distribution in the crystal volume were taken, with overall efficiency score. The scintillator response was studied through gamma radiation from sources of 137Cs, 60Co, 22Na, 54Mn, 131I and 99mTc; the beta radiation from source of 90Sr/90Y, alpha particles from 241Am source and the scintillator response to neutrons from Am/Be source. The energetic resolution for 137Cs gamma rays (662 keV) was 10%. The results showed the validity of using the CsI:Tl crystal developed in our laboratory, in many applications in the area of radiation detectors. (author)

  17. A system for intercomparing standard solutions of beta-particle emitting radionuclides

    International Nuclear Information System (INIS)

    A system for intercomparing standard solutions of pure beta-particle emitting radionuclides is described. The CIEMAT/NIST technique of beta-particle efficiency tracing is based on establishing a parameter in a simple calculational model, using a 3H standard with comparable quenching. To produce a 3H-in-scintillator standard which is reasonably stable over the period of the measurements, we first standardized 3H-hexadecane solution by comparison with 3H-water standardized by gas counting. In the second phase of the work, the 3H-hexadecane solution was used to standardize 14C-hexadecane and 99Tc-tricaprylamine (TCA). Measurements were made under similar geometrical and quenching conditions for each radionuclide with a commercial scintillator and a conventional liquid-scintillation counter with two phototubes operating in coincidence. The technique was then tested at different sites in the area using a set of flame-sealed vials and state-of-the-art liquid-scintillation counters. Initial results for the 90Tc-TCA and the 1981 99Tc, Standard Material (SRM) 4288 show an agreement to within 0.30%. (orig.)

  18. Alpha-particle clustering in excited expanding self-conjugate nuclei

    CERN Document Server

    Borderie, B; Ademard, G; Rivet, M F; De Filippo, E; Geraci, E; Neindre, N Le; Cardella, G; Lanzalone, G; Lombardo, I; Lopez, O; Maiolino, C; Pagano, A; Pirrone, S; Politi, G; Rizzo, F; Russotto, P

    2016-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction 40Ca + 12C at 25 MeV/nucleon was used to produce alpha-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, strong indications in favour of $\\alpha$-particle clustering in excited 16O, 20Ne and 24}Mg are reported.

  19. Energetic/alpha particle effects on MHD modes and transport

    International Nuclear Information System (INIS)

    A nonvariational kinetic-MHD stability code (NOVA-K) has been employed to study TAE stability in TFRR D-T and DIII-D experiments and to achieve understanding of TAE instability drive and damping mechanism. Reasonably good agreement between theory and experiment has been obtained. In these experiments the dominant damping mechanism is due to both the thermal ion Landau damping and/or the beam ion Landau damping. Based on ITER EDA parameters, the TAE modes are expected to be unstable in normal ITER operations. Energetic particle transport has been studied using a test particle code (ORBIT). Energetic particle loss scales linearly with the TAE mode amplitude and can be large for TFRR and DIII-D for δBr/B > 10-4 due to large banana orbit. From quasi-linear (ORBIT) and nonlinear kinetic-MHD (MH3D-K) simulations the saturation of TAE modes is due to nonlinear wave particle trapping and energetic particle profile modification in both radial and energy space. Finally, a convective bucket transport mechanism by MHD waves with time-dependent frequency is presented. Based on the energy-selective characteristics of the bucket transport mechanism, undesirable particles such as helium ash can be removed from the plasma core efficiently

  20. The 1997 IAEA intercomparison of commercially available PC-based software for alpha-particle spectrometry

    CERN Document Server

    Blaauw, M; Woods, S; Fazinic, S

    1999-01-01

    Four commercially available, PC-based analysis programs for alpha-particle spectrometry were compared using the 1997 IAEA test spectra, i.e. AlphaVision 1.20 (EG and G Ortec, USA), Alps 4.21 (Westmeier GmbH, Germany), Winner Alpha 4.0f5 (Eurisys Mesures, France) and Genie-2000 (Canberra Industries Inc., USA). A systematic statistical study of the analysis results was performed based on z-scores. The results indicate that the four programs leave room for substantial improvement.

  1. Emission of alpha particles and other light nuclei as a fission process

    International Nuclear Information System (INIS)

    The fission theory was successfully applied to the emission of alpha particles and other light nuclei from a heavy nucleus. Good agreement (within +-0.8 orders of magnitude) of the theoretical life times with experimental ones over a range of 24 orders of magnitude, was obtained. Three macroscopic models have been extended for the nuclear systems with different charge densities. A phenomenological shell correction was introduced. WKB approximation was used. By taking into account the nuclear deformation, the life-time of the alpha decay from a shape isomeric state was predicted. A new semiempirical relationship for the alpha decay life-time was derived. (author)

  2. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO2 laser beam from such a plasma, a resonance in the scattered power occurs near 900 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  3. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    The uranium exploration method is based on the register of 222Rn alpha particles; 222Rn gas is generated in the chain 238U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  4. Ripple Loss of Alpha Particles in a Low-Aspect-Ratio Tokamak Reactor

    International Nuclear Information System (INIS)

    Studies on the loss of alpha particles enhanced by toroidal field (TF) ripple in a low-aspect-ratio tokamak reactor (VECTOR) have been made by using an orbit-following Monte-Carlo code. In actual TF coil systems, the ripple loss of alpha particles is strongly reduced as the aspect ratio becomes low (the power loss ∝ A8.8 for A≥2.5) and the reduction of the number of TF coils results in a large amount of ripple loss even in a low-aspect-ratio tokamak. To reduce the number of TF coils from 12 to 6, about 40% of coil size enlargement is necessary in VECTOR. Ferrite plates are very effective to reduce ripple losses of alpha particles. By using ferrite plates, the coil size enlargement for N=6 can be relaxed to 15% and the number of coils can be reduced from 12 to 8 without enlargement of coil size in VECTOR. (author)

  5. High resolution alpha particle detectors based on 4H-SiC epitaxial layer

    International Nuclear Information System (INIS)

    We fabricated and characterized 4H-SiC Schottky diodes as a spectrometric detector of alpha particles. A thin blocking contact of Ni/Au (15 nm) was used to minimize the influence on alpha particles energy. Current-voltage characteristics of the detector were measured and a low current density below 0.3 nAcm−2 was observed at room temperature. 239Pu241Am244Cm was used as a source of alpha particles within the energy range between 5.1 MeV and 5.8 MeV for detector testing. The charge collection efficiency close to 100 % at reverse bias exceeding 50 V was determined. The best spectrometric performance shows a pulse height spectrum at a reverse bias of 200 V giving an energy resolution of 0.25 % in the full width and half maximum for 5.486 MeV of 241Am

  6. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena;

    2014-01-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same...... levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels...... cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles....

  7. Intrinsic efficiency of LR-115 in alpha particles detection: simulations and experiments

    International Nuclear Information System (INIS)

    A numerical simulation is developed to characterize the response of the cellulose nitrate detector ''LR-115 type II'' to alpha particles of different incidence angles and energies. It permits to know whether an alpha particle at a given energy and direction is able to produce a visible etched track or not. For this purpose, a Vt-variable track etch rate model is used. We have considered that the track etch rate is a function of the ionization rate and the defect created by delta rays along the alpha particle trajectory. Validation of the model is presented in the form of comparisons between theoretically computed values of the sensitive energy range and the track diameters and experimentally determined ones

  8. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.

    Science.gov (United States)

    Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-08-01

    The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with

  9. Alpha-particle confinement control of the geodesic winding of LHD-type fusion reactors

    International Nuclear Information System (INIS)

    It is calculated that the geodesic winding D-shaped helical magnetic field configuration can actively control the confinement and exhaust of alpha particles. A trapped particle orbit diagram (TPOD), which shows the presence of re-entering particles and specifies the loss-cone depth, is obtained from the deeply trapped particle orbits in a helical mirror magnetic field. The loss-cone depth becomes shallow when the magnetic axis is shifted to the inner side. On the other hand, the loss-cone depth can reach to the magnetic axis when the magnetic axis is shifted fairly to the outer side. Active control of the confinement and exhaust of 3.52 MeV alpha particles by controlling the magnetic axis position is also confirmed by collisionless orbit calculations. (author)

  10. Stochastic loss of alpha particles in a Helias reactor

    International Nuclear Information System (INIS)

    It is shown that collisionless orbit transformation of the locally trapped particles to the locally passing ones and vice versa in the Wendelstein-line optimized stellarators results in stochastic diffusion of energetic ions. This diffusion can lead to the loss of an essential fraction of energetic ion population from the region where the characteristic diffusion time is small compared to the slowing down time. The loss region and the magnitude of the loss can be minimized by shaping the plasma temperature and density profiles so that they satisfy certain requirements. The predictions of the developed theory are in agreement with the results of numerical modelling of confinement of α-particles in a Helias reactor, which was carried out in this work with the use of the orbit following code. The considered diffusion seems to represent the dominant mechanism of classical losses of α-particles in a Helias reactor. (author)

  11. Alpha particle angular distribution of oriented 189,191,193Bi

    International Nuclear Information System (INIS)

    Angular distribution data for α particles emitted in the enhanced decay of on-line oriented neutron deficient isotopes 189,191,193Bi near mid-shell (N=104) are presented. They give additional support for the recent finding that anisotropic α emission in enhanced decays from near-spherical nuclei is mainly determined by nuclear structure effects. (authors)

  12. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    International Nuclear Information System (INIS)

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  13. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, C.E.; Rodegheri, C.C.; Tauber, U. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Espectroscopia e Laser (LEL); Guterres, R.F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas]. E-mail: rgutterr@cnen.gov.br

    2005-11-15

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  14. The threshold states in the frame of the model of binding alpha particles

    International Nuclear Information System (INIS)

    A model of nuclear matter built from alpha-particles is proposed. In this model, nuclei possess the molecular structure. Analyzing the numbers of bonds, one gets the formula for the binding energy of a nucleus. The structure is determined by the minimum of the total potential energy, where interaction between alpha-particles is pairwise. The calculated binding energies show a good agreement with experiment. According to this model we can estimate the energy of Bose-Condensation for the 4N nuclei

  15. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  16. Size distribution, chemical composition, and hygroscopicity of fine particles emitted from an oil-fired heating plant.

    Science.gov (United States)

    Happonen, Matti; Mylläri, Fanni; Karjalainen, Panu; Frey, Anna; Saarikoski, Sanna; Carbone, Samara; Hillamo, Risto; Pirjola, Liisa; Häyrinen, Anna; Kytömäki, Jorma; Niemi, Jarkko V; Keskinen, Jorma; Rönkkö, Topi

    2013-12-17

    Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality. PMID:24245691

  17. Quantum Estimates of Alpha Emitter Life Time

    Directory of Open Access Journals (Sweden)

    B. Santoso

    2006-01-01

    Full Text Available Quantum estimates of several alpha radioactive life time have been made using the probability of quantum tunneling through the nuclear potential barrier. It is assumed that for a given nucleus with mass number A and isotopic number Z, there exists an alpha particle moving freely back and forth in the nucleus with mass and isotopic numbers A -4 and Z-2. If the probability of penetrating the nuclear potential barrier is Τ, then after N times (N=1/Τ hitting the barrier an alpha particle is emitted. To obtain the elapsed time for emitting an alpha particle requires N times τ0, where τ0 is the time travel for alpha across the nuclear diameter, which is dependent on alpha energy. It is assumed here that this kinetic energy is the same as the emitted energy. The emitting alpha kinetic energies here are calculated by the difference of the masses of the parent and daughter nuclei and the alpha particles. They are in closed agreement with the experimental observations. While the alpha radioactive life time are not the same order of magnitudes but give the same linearity on the logarithmic scale as function of the inverse square root of energy.

  18. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission.

    Science.gov (United States)

    Kim, Na Young; Jung, Woon-Won; Oh, Yu-Kyung; Chun, Taehoon; Park, Hong-Yang; Lee, Hoon-Taek; Han, In-Kwon; Yang, Jai Myung; Kim, Young Bong

    2007-03-01

    Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission. PMID:17381684

  19. Evolution of trace gases and particles emitted by a chaparral fire in California

    Directory of Open Access Journals (Sweden)

    C. E. Wold

    2012-02-01

    Full Text Available Biomass burning (BB is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR, aerosol mass spectrometer (AMS, single particle soot photometer (SP2, nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA; inorganic aerosol (nitrate, ammonium, sulfate, and chloride; aerosol light scattering; refractory black carbon (rBC; and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO increased from −5.13 (±1.13 × 10−3 to 10.2 (±2.16 × 10−2 in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (±0.97 × 106 molec cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36

  20. Correlations of $\\alpha$-particles in splitting of $^{12}$C nuclei by neutrons of energy of 14.1 MeV

    CERN Document Server

    Kattabekov, R R; Artemenkov, D A; Bradnova, V; Zarubin, P I; Zarubina, I G; Majling, L; Rusakova, V V; Sadovsky, A B

    2014-01-01

    Correlations of $\\alpha$-particles are studied on statistics of 400 events of splitting $^{12}$C $\\rightarrow$ 3$\\alpha$ in nuclear track emulsion exposed to $14.1 MeV$ neutrons. The ranges and emission angles of the $\\alpha$-particles are measured. Distributions over energy of $\\alpha$-particle pairs and triples are obtained.

  1. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  2. Alpha-particle momentum distributions from 12C decaying resonances

    International Nuclear Information System (INIS)

    The computed α particle momentum distributions from the decay of low-lying 12C resonances are shown. The wave function of the decaying fragments is computed by means of the complex scaled hyperspherical adiabatic expansion method. The large-distance part of the wave functions is crucial and has to be accurately calculated. We discuss energy distributions, angular distributions and Dalitz plots for the 4+, 1+ and 4- states of 12C. (author)

  3. Alpha Particles Induce Apoptosis through the Sphingomyelin Pathway

    OpenAIRE

    Seideman, Jonathan H.; Stancevic, Branka; Rotolo, Jimmy A.; McDevitt, Michael R.; Howell, Roger W.; Kolesnick, Richard N; Scheinberg, David A.

    2011-01-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET a particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act thro...

  4. Evolution of trace gases and particles emitted by a chaparral fire in California

    Directory of Open Access Journals (Sweden)

    S. K. Akagi

    2011-08-01

    Full Text Available Biomass burning (BB is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 ha prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured post-emission chemical changes in the isolated downwind plume for ~4 h of smoke aging. The measurements were carried out on board a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR, aerosol mass spectrometer (AMS, single particle soot photometer (SP2, nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA; inorganic aerosol (nitrate, ammonium, sulfate, and chloride; aerosol light scattering; refractory black carbon (rBC; and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO increased from −0.005 to 0.102 in 4.5 h. Excess acetic and formic acid (normalized to excess CO increased by factors of 1.7 ± 0.4 and 7.3 ± 3.0 (respectively over the same aging period. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.3 (±1.0 × 106 molecules cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased with plume aging. The observed ammonium increase was a factor of 3.9 ± 2.6 in about 4 h, but accounted for just ~36 % of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation

  5. Alpha Schottky junction energy source

    Science.gov (United States)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  6. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  7. Cell death triggered by alpha-emitting {sup 213}Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Christof; Schroeck, Hedwig; Seidenschwang, Sabine; Beck, Roswitha; Schwaiger, Markus; Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Schmid, Ernst [National Research Center for Environment and Health, Institute of Radiation Biology, GSF, Neuherberg (Germany); Abend, Michael [German Armed Forces, Institute of Radiobiology, Munich (Germany); Becker, Karl-Friedrich [Technische Universitaet Muenchen, Institute of Pathology, Munich (Germany); National Research Center for Environment and Health, Institute of Pathology, GSF, Neuherberg (Germany); National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany); Apostolidis, Christos; Nikula, Tuomo K. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Kremmer, Elisabeth [National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany)

    2005-03-01

    Radioimmunotherapy with {alpha}-particle-emitting nuclides, such as{sup 213}Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by {sup 213}Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of {sup 213}Bi-d9MAb targeting d9-E-cadherin and {sup 213}Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as {sup 213}Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and {sup 213}Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with {sup 213}Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of {alpha}-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific {sup 213}Bi-d9MAb compared with unspecific {sup 213}Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound {sup 213}Bi-immunoconjugates per cell exceeded 2 x 10{sup 4}, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by {sup 213}Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. {sup 213}Bi-immunoconjugates seem

  8. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques

    International Nuclear Information System (INIS)

    We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1

  9. Preequilibrium decay in alpha particle induced reactions in terbium

    International Nuclear Information System (INIS)

    The excitation functions of 159 Tb(α,n), (α,3 n), (α,4 n), (α,α3 n) reactions were measured using stacked foil activation technique and HPGe gamma ray spectroscopy method up to 50 MeV. The experimental results were compared with the theoretical predictions considering equilibrium as well as preequilibrium contributions using code ALICE/90. It was found that the initial exciton configuration n0 = 4(4p0h) that is pure particle state, appears to give good fit to the experimental data. (Authors)

  10. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Budny, R.V.; McCune, D.C.; Miller, C.O.; White, R.B.

    1996-05-01

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold {delta}{sub s}/{delta}{sub GWB} {ge} 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations.

  11. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold δs/δGWB ≥ 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations

  12. Production of $\\alpha$-particle condensate states in heavy-ion collisions

    CERN Document Server

    Raduta, Ad R; Geraci, E; Neindre, N Le; Napolitani, P; Rivet, M F; Alba, R; Amorini, F; Cardella, G; Chatterjee, M; De Filippo, E; Guinet, D; Lautesse, P; La Guidara, E; Lanzalone, G; Lanzano, G; Lombardo, I; Lopez, O; Maiolino, C; Pagano, A; Pirrone, S; Politi, G; Porto, F; Rizzo, F; Russotto, P; Wieleczko, J P

    2010-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $\\alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the $\\alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$\\alpha$ decay of the Hoyle state is isolated.

  13. Collisionless Evolution of Isotropic Alpha-Particle Distribution in a Tokamak

    International Nuclear Information System (INIS)

    Full text: The density of the noninductive current generated due to collisionless motion of alpha-particles in the tokamak magnetic field is calculated. The analysis is based on fully three-dimensional calculations of charged particle trajectories without simplifying assumptions typical for drift and neoclassical approaches. The current is calculated over the entire cross section of the plasma column, including the magnetic axis. It is shown that the current density is not a function of a magnetic surface and is strongly polarized over the poloidal angle. The current density distribution in the tokamak poloidal cross section is obtained, and the current density as a function of the safety factor profile, the tokamak aspect ratio, and the ratio of the particle Larmor radius on the axis to the tokamak minor radius is determined. It is shown that, when the source of alpha-particles is spatially nonuniform, the current density in the center of the tokamak is nonzero due to asymmetry of the phase-space boundary between trapped and passing particles. The current density scaling in the tokamak center differs from the known approximations for the bootstrap current and is sensitive to the spatial distribution of alpha-particles. (author)

  14. A variational calculation of 12C in the alpha-particle model

    International Nuclear Information System (INIS)

    Some physical properties of three structureless alpha particles interacting through two-body potentials were discussed. Comparison between them and the corresponding experimental observations for the 12C nucleus is done. The wave function is expanded in terms of translationally invariant harmonic-oscillator states, the coefficients being variational parameters

  15. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  16. Alpha and beta particle induced scintillations in liquid and solid neon

    CERN Document Server

    Michniak, R A; McKinsey, D N; Doyle, J M

    2002-01-01

    Scintillations induced by alpha and beta particles in liquid and solid neon are studied and their light yield measured. Charged particle scintillation in neon is primarily in the extreme ultraviolet (EUV). We detect this EUV light by converting it to blue using a wavelength shifting fluor and detecting the blue light with a photomultiplier tube. It is observed that liquid neon is a somewhat less-efficient scintillator than liquid helium for both alpha and beta radiation while the light yield in solid neon is greater than in liquid helium. Based on our measurements of the relative light yields of liquid and solid neon to liquid helium whose absolute light yield has previously been determined, we find that an alpha source in liquid neon produces up to 5900 photons per MeV while a beta source produces up to 7400 photons per MeV. In solid neon, we find that an alpha particle produces up to 9300 photons per MeV while a beta particle produces up to 17,000 photons per MeV. We observe a significant dependence of the ...

  17. Alpha particle effects as a test domain for PAP, a Plasma Apprentice Program

    International Nuclear Information System (INIS)

    A new type of computational tool under development, employing techniques of symbolic computation and artificial intelligence to automate as far as possible the research activities of a human plasma theorist, is described. Its present and potential uses are illustrated using the area of the theory of alpha particle effects in fusion plasmas as a sample domain. (orig.)

  18. RADON AND PROGENY ALPHA-PARTICLE ENERGY ANALYSIS USING NUCLEAR TRACK METHODOLOGY

    International Nuclear Information System (INIS)

    A preliminary procedure for alpha energy analysis of radon and progeny using Nuclear Track Methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

  19. Investigations of electrical properties of structures Al-DNA-ITO-Al exposed to alpha particles

    International Nuclear Information System (INIS)

    The detection of alpha particles and other radiation sources has been an important field of research since the inception of radioactive materials in medical technology approximately a century ago. While different types of radiation sensors exist, in recent history, in light of a few catastrophic nuclear meltdowns, the development of sensors with rapid and effective detection properties have become crucial. To probe the feasibility of incorporating such features into the detector architecture, a simple sensor based on mushroom Deoxyribonucleic acid or DNA (Aluminium (Al)/DNA/Indium Tin Oxide (ITO)) was built, and the possibility of employing DNA electronics for the potential detection of alpha particles was investigated. Current–voltage (I–V) profiles were obtained following radiation using alpha particles at different dosages and exposure periods at room temperature. Properties such as series resistance, RS and other properties (barrier height, ideality factor and hypersensitivity) were calculated and analyzed using Conventional, Cheung and Cheung and Norde methods. RS values of the non-radiated samples calculated using the first method was about 8.6 MΩ. Using Conventional and Norde methods, samples irradiated for 4 min demonstrated the highest RS values of 5.79 and 1.81 MΩ, respectively. The results obtained were used to demonstrate the possibility of applying the sensitivity of DNA sensors to the measurement of alpha radiation. - Highlights: • Freshly prepared DNA solution was deposited as thin films by using the self-assembly method. • Series resistances, barrier heights and ideality factors were determined from I–V measurements. • A novel DNA hypersensitivity phenomenon was observed at low alpha radiation. • DNA based diodes can be employed as sensitive alpha particle sensors

  20. Comparison of the effects of inhaled alpha- and beta-emitting radionuclides on pulmonary function in the dog

    International Nuclear Information System (INIS)

    Alterations of pulmonary function in representative groups of dogs developing nonneoplastic lung disease, after single inhalation exposures to cerium-144 or plutonium-238 in relatively insoluble particulate forms, were compared. The inhaled particles had similar aerodynamic diameters and effective half-lives of retention in the lung. The mean initial lung burdens of the 144Ce- and 238Pu-exposed groups were 51 and 0.65 μCi/kg of body weight, respectively. Because of the respective ranges of the beta emissions from 144Ce and the alpha emissions from 238Pu, the lungs of the 144Ce-exposed dogs were relatively uniformly irradiated, whereas only approximately 6% of the lung tissue of rates to the 238Pu-exposed dogs was irradiated. The calculated average dose rates to the irradiated tissue were similar for both radionuclides. Pulmonary function was measured serially without sedation. Both groups developed progressive, restrictive lung disease, which ended in death from pulmonary failure. Dogs that inhaled 144Ce had an early reduction of CO diffusing capacity followed by a progressive mechanical and gas-exchange impairment similar to that reported for dogs and men exposed to external irradiation. Dogs that inhaled 238Pu had increased respiratory frequencies which often persisted for months before mechanical and gas-exchange abnormalities became evident

  1. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  2. Trident: A three-pronged galaxy survey. I. Lyman alpha emitting galaxies at z ~ 2 in GOODS North

    Science.gov (United States)

    Sandberg, A.; Guaita, L.; Östlin, G.; Hayes, M.; Kiaeerad, F.

    2015-08-01

    Context. Lyman alpha (Lyα) emitting galaxies (LAEs) are used to probe the distant universe and are therefore important for galaxy evolution studies and for providing clues to the nature of the epoch of reionization. However, the exact circumstances under which Lyα escapes a galaxy are still not fully understood. Aims: The Trident project is designed to simultaneously examine Lyα, Hα, and Lyman continuum emission from galaxies at redshift z ~ 2, thus linking these three aspects of ionizing radiation in galaxies. In this paper, we outline the strategy of this project and examine the properties of LAEs in the GOODS North field. Methods: We performed a narrowband LAE survey in GOODS North using existing filters and two custom made filters at the Nordic Optical Telescope with MOSCA. We use complementary broadband archival data in the field to make a careful candidate selection and perform optical to near-IR SED fitting. We also estimate far-IR luminosities by matching our candidates to detections in Spitzer/MIPS 24 μm and Herschel/PACS catalogues. Results: We find a total of 25 LAE candidates, probing mainly the bright end of the LAE luminosity function with LLyα ~ 1-15 × 1042 erg s-1. They display a range of masses of ~ 0.5-50 × 109M⊙, and average ages from a few tens of Myr to 1 Gyr when assuming a constant star formation history. The majority of our candidates also show signs of recent elevated star formation. Three candidates have counterparts in the GOODS-Herschel far-IR catalogue, with luminosities consistent with ultra-luminous infrared galaxies (ULIRGs). Conclusions: The wide range of parameters derived from our SED fitting, as well as part of our sample being detected as ULIRGs, seems to indicate that at these Lyα luminosities, LAEs do not necessarily have to be young dwarfs, and that a lack of dust is not required for Lyα to escape. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific

  3. Alfvenic behavior of alpha particle driven ion cyclotron emission in TFTR

    International Nuclear Information System (INIS)

    Ion cyclotron emission (ICE) has been observed during D-T discharges in the Tokamak Fusion Test Reactor (TFTR), using rf probes located near the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency (Ωα) evaluated at the outer midplane plasma edge are observed at the onset of the beam injection phase of TFTR supershots, and persist for approximately 100-250 ms. These results are in contrast with observations of ICE in JET, in which harmonics of Ωα evolve with the alpha population in the plasma edge. Such differences are believed to be due to the fact that newly-born fusion alpha particles are super-Alfvenic near the edge of JET plasmas, while they are sub-Alfvenic near the edge of TFTR supershot plasmas. In TFTR discharges with edge densities such that newly-born alpha particles are super-Alfvenic, alpha cyclotron harmonics are observed to persist. These results are in qualitative agreement with numerical calculations of growth rates due to the magnetoacoustic cyclotron instability

  4. Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma

    CERN Document Server

    Peigney, Benjamin-Edouard; Tikhonchuk, Vladimir

    2014-01-01

    We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  5. A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)

    Science.gov (United States)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-01-01

    We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.

  6. A Further Measurement of the beta-Delayed alpha-Particle Emission of 16N

    CERN Document Server

    III, R H F; McDonald, J E; Wilds, E L

    2007-01-01

    We measured the beta-delayed alpha-particle emission spectrum of 16N with a sensitivity for beta-decay branching ratios of the order of 10-10. The 16N nuclei were produced using the d(15N,16N)p reaction with 70 MeV 15N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The 16N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 mu g/cm2 tilted at 7 Deg with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The beta-delayed alpha-particles were measured using a time of flight method to achieve a sufficiently low background. Standard calibration sources (148Gd, 241Am, 208,209Po, and 227Ac) as well as alpha-particles and 7Li from the 10B(n,alpha)7Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time of flight resolution (3-10 nsec) was measured using the beta-de...

  7. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  8. Registration of alpha particles in Makrofol-E nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  9. A new alpha particle diagnostic using knock-on ion tails

    International Nuclear Information System (INIS)

    We propose a new method of measuring the fast confined ct-particle distribution in a reacting plasma. The presence of ct-particles in a D-T plasma will create a high energy tail on the deuterium and tritium ion energy distributions. A 3.5 MeV alpha can transfer 3.4 MeV to a tritium ion in a single elastic scattering interaction. Calculations of the size of these knock-on tails in tokamaks such as TFTR, JET, and ITER show that it may be possible to measure these tails and provide information on the fast confined alphas. The knock-on tail ions will produce D-T neutrons with energies up to 20.7 MeV, so that D-T neutron spectroscopy can be used to monitor the alpha population. Neutron spectroscopy looks especially attractive for ITER. A collimated array of threshold neutron activation detectors could be used to deduce the confined alpha density profile. Tests of this diagnostic can also be done on TFTR and JET. Existing high energy neutral particle analyzers may allow observation of the ion tails directly via passive and/or active charge exchange

  10. In Vitro Cytotoxicity of Low-Dose-Rate Radioimmunotherapy by the Alpha-Emitting Radioimmunoconjugate Thorium-227-DOTA-Rituximab

    International Nuclear Information System (INIS)

    Purpose: To determine whether the low-dose-rate α-particle-emitting radioimmunoconjugate 227Th-1,4,7,10-p-isothiocyanato-benzyl-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (DOTA)-rituximab can be used to inactivate lymphoma cells growing as single cells and small colonies. Methods and Materials: CD20-positive lymphoma cell lines were treated with 227Th-DOTA-rituximab for 1-5 weeks. To simulate the in vivo situation with continuous but decreasing supply of radioimmunoconjugates from the blood pool, the cells were not washed after incubation with 227Th-DOTA-rituximab, but half of the medium was replaced with fresh medium, and cell concentration and cell-bound activity were determined every other day after start of incubation. A microdosimetric model was established to estimate the average number of hits in the nucleus for different localizations of activity. Results: There was a specific targeted effect on cell growth of the 227Th-DOTA-rituximab treatment. Although the cells were not washed after incubation with 227Th-DOTA-rituximab, the average contribution of activity in the medium to the mean dose was only 6%, whereas the average contribution from activity on the cells' own surface was 78%. The mean dose rates after incubation with 800 Bq/mL 227Th-DOTA-rituximab varied from 0.01 to 0.03 cGy/min. The average delay in growing from 105 to 107 cells/mL was 15 days when the cells were treated with a mean absorbed radiation dose of 2 Gy α-particle radiation from 227Th-DOTA-rituximab, whereas it was 11 days when the cells were irradiated with 6 Gy of X-radiation. The relative biologic effect of the treatment was estimated to be 2.9-3.4. Conclusions: The low-dose-rate radioimmunoconjugate 227Th-DOTA-rituximab is suitable for inactivation of single lymphoma cells and small colonies of lymphoma cells.

  11. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  12. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Heeter, R F

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...

  13. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    Science.gov (United States)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  14. Factors affecting the energy resolution in alpha particle spectrometry with silicon diodes

    International Nuclear Information System (INIS)

    In this work are presented the studies about the response of a multi-structure guard rings silicon diode for detection and spectrometry of alpha particles. This ion-implanted diode (Al/p+/n/n+/Al) was processed out of 300 μm thick, n type substrate with a resistivity of 3 kΩ·cm and an active area of 4 mm2. In order to use this diode as a detector, the bias voltage was applied on the n+ side, the first guard ring was grounded and the electrical signals were readout from the p+ side. These signals were directly sent to a tailor made preamplifier, based on the hybrid circuit A250 (Amptek), followed by a conventional nuclear electronic. The results obtained with this system for the direct detection of alpha particles from 241Am showed an excellent response stability with a high detection efficiency (≅ 100 %). The performance of this diode for alpha particle spectrometry was studied and it was prioritized the influence of the polarization voltage, the electronic noise, the temperature and the source-diode distance on the energy resolution. The results showed that the major contribution for the deterioration of this parameter is due to the diode dead layer thickness (1 μm). However, even at room temperature, the energy resolution (FWHM = 18.8 keV) measured for the 5485.6 MeV alpha particles (241Am) is comparable to those obtained with ordinary silicon barrier detectors frequently used for these particles spectrometry. (author)

  15. Large angle scattering of {alpha}-particles from {sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Coban, A.; Abdelmonem, M.S.; Khiari, F.Z.; Naqvi, A.A.; Aksoy, A

    1999-01-04

    The elastic scattering of {alpha}-particles from {sup 32}S was studied in the incident energy range between 4 and 8.9 MeV. In order to ascertain whether quasi-molecular states exist, as predicted in the {alpha}-{sup 32}S system, excitation functions were measured, and angular distribution measurements were carried out using targets with different thicknesses in the angular range from {theta}{sub lab} = 30 deg. to 175 deg. at each extreme in the excitation functions. The analysis of the angular distribution data at back angles was performed using the Regge-pole method. A resonance with J=3 was observed at 7.7 MeV in the {alpha}-{sup 32}S system. Evidence was also found for both a broad resonance which can be characterized by an angular momentum J=1, and for a narrow J=2 resonance.

  16. Geometrical parameters of tracks registered by collimated alpha particles on CR-39 detector

    International Nuclear Information System (INIS)

    The latent tracks formed on CR-39 solid state track detector on exposure of alpha radiations emanating from a collimated 241Am source were developed by a chemical etching method. Alpha track images were captured by an optical microscope and were processed by using Image Pro-Plus (6.0) software. GEANT4 simulations were carried out to obtain the angular and energy distribution profiles of the alpha particles. Apart from fluence, geometric parameters like aspect ratio (the ratio of the major to minor axis) and the depth profiles of etched tracks were measured experimentally and correlated with simulated angular and energy profile of incident radiations. Reasonable agreement was observed in the fluence and depth profile information obtained from experiments and simulations

  17. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232U, 238U, and 232Th

  18. A Study of Selection Methods for H alpha Emitting Galaxies at z~1.3 for the Subaru/FMOS Galaxy Redshift Survey for Cosmology (FastSound)

    OpenAIRE

    Tonegawa, Motonari; Totani, Tomonori; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Sumiyoshi, Masanao; Tamura, Naoyuki; Yabe, Kiyoto; Coupon, Jean; Goto, Tomotsugu; Spitler, Lee R.

    2013-01-01

    The efficient selection of high-redshift emission galaxies is important for future large galaxy redshift surveys for cosmology. Here we describe the target selection methods for the FastSound project, a redshift survey for H alpha emitting galaxies at z=1.2-1.5 using Subaru/FMOS to measure the linear growth rate f\\sigma 8 via Redshift Space Distortion (RSD) and constrain the theory of gravity. To select ~400 target galaxies in the 0.2 deg^2 FMOS field-of-view from photometric data of CFHTLS-W...

  19. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  20. Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Zarnstorff, M.C,; White, R.B.; Budny, R.V.; Schivell, J.F.; Scott, S.D.; Zweben, S.J.

    1994-09-01

    Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center including both collisional and ripple effects. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. S = 5.4 for neutral beam ions and S = 1.4--2.4 for alpha particles. A 20--30% reduction in alpha particle heating is predicted for R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion, although these losses will be reduced if q{sub a} and R are smaller, as for most planned DT experiments.

  1. Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

    International Nuclear Information System (INIS)

    Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center including both collisional and ripple effects. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. S = 5.4 for neutral beam ions and S = 1.4--2.4 for alpha particles. A 20--30% reduction in alpha particle heating is predicted for R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion, although these losses will be reduced if qa and R are smaller, as for most planned DT experiments

  2. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  3. Biological dosimeter for UV-radiation and alpha particles, based on DNA damages

    International Nuclear Information System (INIS)

    A bioluminescence method for determination of biologically relevant (DNA damaging) doses of UV-radiation and alpha particles is developed. The method is based on bacterial luminescence as a bio-marker regulated by the SOS system. Cultures of E. coli cells transformed with the plasmid pPSL1 which carries the lux gene under control of the col promotor, an SOS-controlling gene, is used. The lux gene encode the enzyme luciferase which takes part in the reaction, resulting in the emission of a visible light at 490 nm. The light output is measured by photomultiplier and one channel analyzer. SOS-response kinetic curves of bacteria, UV-irradiated and treated with alpha particles, are obtained. An assessment of the risk from solar UV-radiation is made. The method has the sensitivity required to be used as biological UV-dosimeter (author)

  4. GAMCAT - a personal computer database on alpha particles and gamma rays from radioactive decay

    International Nuclear Information System (INIS)

    The GAMCAT database is a compilation of data describing the alpha particles and gamma rays that occur in the radioactive decay of all known nuclides, adapted for IBM Personal Computers and compatible systems. These compiled data have been previously published, and are now available as a compact database. Entries can be retrieved by defining the properties of the parent nuclei as well as alpha-particle and gamma-ray energies or any combination of these parameters. The system provides fast access to the data and has been completely written in C to run on an AT-compatible computer, with a hard disk and 640K of memory under DOS 2.11 or higher. GAMCAT is available from the Fachinformationszentrum Karlsruhe. (orig.)

  5. IAEA consultants' meeting on He-beam data base for alpha particle diagnostics of fusion plasmas

    International Nuclear Information System (INIS)

    The present Report contains the Summary of the IAEA Consultants' Meeting on ''He-Beam Data Base for Alpha Particle Diagnostics of Fusion Plasmas'' which was organized by the Atomic and Molecular Data Unit and held on June 3-5, 1991 at the IAEA Headquarters in Vienna, Austria. The Meeting Proceedings are briefly described and the reports of the Working Groups on the electron- and ion-impact processes are reproduced. A survey on the atomic data needs and required cross section accuracies for helium beam stopping calculations and alpha particle diagnostics of JET- and ITER-like plasmas is included. The conclusions and recommendations of the Meeting regarding the status of present data base (availability and quality) and the needs for its improvement are also given in this Summary Report. (author). Refs, figs and tabs

  6. Technique for measuring the losses of alpha particles to the wall in TFTR

    International Nuclear Information System (INIS)

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is 10B(α,n)13N, although 14N(α,γ)18F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described

  7. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    Science.gov (United States)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  8. Conceptual design of confined alpha particle diagnostic system for ITER using an energetic He0 beam

    International Nuclear Information System (INIS)

    A conceptual design of an active-neutral-beam-probe-diagnostic-system for alpha particles produced by D-T nuclear reaction in a plasma confined by a magnetic fusion reactor has been examined. An energetic He0 beam plays an important role in the system. To detect a signal of neutralized alpha particles from the fusion plasma with enough S/N ratios, a high brightness He0 beam produced by spontaneous electron detachment from He- ions is required. A prototype of a He+ ion source has been designed and assembled to test the performance in producing a source beam for high intensity He- beam through a double-charge-exchange process in alkali metal vapor. (author)

  9. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-01-01

    We report on a theory for describing the biological effects of ionizing radiation in particular radon [alpha] particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  10. In-situ cross calibration method for alpha particle loss diagnostics at JET

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Perez Von Thun, Ch.; Reich, M.; Jachmich, S.; Murari, A.; Mlynář, Jan; Hult, M.; Arnold, D.; Dombrowski, T.; Laubenstein, M.; Wieslander, E.; Vidmar, T.; Vermaercke, P.; Cecil, F.E.; Cecconelo, M.; Craciunescu, T.; Darrow, D.; Lerche, E.; Tardocchi, M.; Van Eester, D.; Salmi, A.; Garcia-Munoz, M.; Yavorskij, V.; Popovichev, S.; Koslowski, H.R.; JET EFDA, Contributors.; Pinches, S.D.

    Vol. 33E. Sofia : European Physical Society, 2009 - (Mateev, M.; Benova, E.), P-2.145 ISBN 2-914771-61-4. - (Europhysics conference abstracts). [European Physical Society Conference on Plasma Physics /36th./. Sofia (BG), 29.06.2009-03.07.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * transport * tritium * in-situ * alpha particles Subject RIV: BL - Plasma and Gas Discharge Physics http://epsppd.epfl.ch/Sofia/pdf/P2_145.pdf

  11. Fission studies with 140 MeV $\\bm{\\alpha}$-Particles

    OpenAIRE

    Buttkewitz, A.; Duhm, H. H.; F. Goldenbaum(Forschungszentrum Jülich, Institut für Kernphysik, Jülich Germany); Machner, W.; Strauß, W.

    2009-01-01

    Binary fission induced by 140 MeV $\\alpha$-particles has been measured for $^{\\rm nat}$Ag, $^{139}$La, $^{165}$Ho and $^{197}$Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity $Z^2/A=24$ is observed.

  12. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained. PMID:27341133

  13. Wurtzite Gallium Nitride as a scintillator detector for alpha particles (a Geant4 simulation)

    International Nuclear Information System (INIS)

    Gallium Nitride has become a very popular material in electronics and optoelectronics. Because of its interesting properties, it is suitable for a large range of applications. This material also shows very good scintillation properties that make it a possible candidate for use as a charged particles scintillator detector. In this work, we simulated the scintillation and optical properties of the gallium nitride in the presence of alpha particles using Geant4. The results show that gallium nitride can be an appropriate choice for this purpose

  14. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  15. Radon and progeny alpha-particle energy analysis using nuclear track methodology

    International Nuclear Information System (INIS)

    A preliminary procedure for alpha-energy analysis of radon and its progeny using nuclear track methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alphaparticle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny. (author)

  16. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Energy Technology Data Exchange (ETDEWEB)

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  17. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω*α > ωA, where ωA is the shear-Alfven modal frequency and ω*α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  18. Particle-in-cell simulations of the magnetoacoustic cyclotron instability of fusion-born alpha-particles in tokamak plasmas

    Science.gov (United States)

    Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2013-06-01

    Ion cyclotron emission (ICE) is the only collective radiative instability, driven by confined fusion-born alpha-particles, observed from deuterium-tritium (DT) plasmas in both JET and TFTR. Using first principles particle-in-cell simulations of the magnetoacoustic cyclotron instability (MCI), we elucidate some of the fully kinetic nonlinear processes that may underlie observations of ICE from fusion products in these large tokamaks. We find that the MCI is intrinsically self-limiting on very fast timescales, which may help explain the observed correlation between linear theory and observed ICE intensity. The simulations elaborate the nature of the excited electric and magnetic fluctuations, from first principles, confirming the dominant role of fast Alfvénic and electrostatic components which is assumed ab initio in analytical treatments.

  19. Transient radiation heat transfer within a nongray nonisothermal absorbing-emitting-scattering suspension of reacting particles undergoing shrinkage

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, W.; Z' Graggen, A.; Steinfeld, A. [ETH, Swiss Federal Institute of Technology, Zurich (Switzerland)

    2005-05-01

    A nonisothermal, nongray, absorbing, emitting, and anisotropically scattering suspension of reacting particles exposed to concentrated thermal radiation is considered. The steam gasification of coal is selected as the model thermochemical reaction. The unsteady energy equation that couples the radiative heat flux with the chemical kinetics is solved by means of a numerical model that incorporates Monte Carlo ray tracing, the finite-volume method, and an explicit Euler time integration scheme. Two modeling approaches are applied: (1) a quasi-continuous model that assumes a homogeneous medium and utilizes its macroscopic radiative properties (absorption and scattering efficiencies and scattering phase function), and (2) a particle-discrete model that assumes an ensemble of randomly positioned particles and traces the interaction of radiation with each particle by geometric optics. Temperature profiles and reaction extent are computed using both approaches. The quasi-continuous approach is superior in accuracy at the expense of lower spatial resolution, while the particle-discrete approach gives detailed information for every single particle in the suspension at the expense of larger stochastic errors.

  20. Dynamic radioactive particle source

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  1. Self-consistent analysis of alpha-particle heating of a fast-solenoid plasma

    International Nuclear Information System (INIS)

    A numerical technique has been developed to analyse the dynamics of a linear, magnetically confined plasma column and its associated fusion-produced alpha-particles in a self consistent manner. The thermonuclear background plasma is considered as a radially non-uniform, axially symmetric magnetofluid in pressure equilibrium with the surrounding axial magnetic field. A multi-group technique is utilized to examine the alphas as a collection of particles distributed among a continuous spectrum of confined orbits. The technique is shown to be an effective one for observing the interaction between super-thermal particles with large orbit sizes and a stable plasma of comparable size. The use of a distribution function in an adiabatic-invariant representation results in an enormous increase in the time scale which can be treated. This enables analysis of the entire duty cycle of a laser solenoid plasma in reasonable computation times. An analysis of a fast solenoid plasma is described, where the initial plasma radius and temperature are varied parametrically. A plasma column of radius 7mm, temperature 6keV, and β=0.95 will reach an ion temperature of 10keV, corresponding to a fusion energy gain of 8, after 3ms. A range of maximum gain occurs for initial temperatures of 5 to 7keV, with larger radius plasmas more favoured by the cooler limits. The effect of increasing the alpha-particle-electron energy transfer rate by a moderate amount to account for anomalous effects is to increase the plasma temperature at longer times, as long as this energy transfer is well-coupled to the electron-ion energy transfer. Increasing the rate at which plasma transport processes occur (''anomalous transport'') always results in lower fusion yield, because of rapid plasma diffusion. (author)

  2. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  3. Mechanistic model of radon-induced lung cancer risk at low exposure levels based on cellular alpha particle hits

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Hofmann; Hatim, Fakir [Salzburg Univ., Div. of Physics and Biophysics, Dept. of Material Science (Austria); Lucia-Adina, Truta-Popa [Babes-Bolyai Univ., Faculty of Physics (Romania)

    2006-07-01

    To explore the role of the multiplicity of cellular hits by radon progeny alpha particles for lung cancer incidence, the number of single and multiple alpha particle hits were computed for basal and secretory cells in the bronchial epithelium of human airway bifurcations employing Monte Carlo methods. Hot spots of alpha particle hits were observed at the branching points of bronchial airway bifurcations, suggesting that multiple alpha particle hits may occur primarily at carinal ridges. Random alpha particle intersections of bronchial cells during a given exposure period, selected from a Poisson distribution, were simulated by an initiation-promotion model, based on experimentally observed cellular transformation and survival functions. To consider potential bystander effects, which have been observed in cellular in vitro studies, alpha particle interactions were also simulated for larger sensitive target volumes in bronchial epithelium, consisting of a collection of cells. Lung cancer risk simulations indicated that cancer induction for continuous exposures is related to the cycle time of an irradiated cell, thus exhibiting a distinct dose-rate effect. While the dominant role of single hits leads to a linear dose-response relationship at low radon exposure levels, predicted lung cancer risk for a collection of interacting cells exhibits a linear-quadratic response, suggesting that bystander effects, if operating at all under in vivo irradiations, may be restricted to a small number of adjacent cells. (author)

  4. Mechanistic model of radon-induced lung cancer risk at low exposure levels based on cellular alpha particle hits

    International Nuclear Information System (INIS)

    To explore the role of the multiplicity of cellular hits by radon progeny alpha particles for lung cancer incidence, the number of single and multiple alpha particle hits were computed for basal and secretory cells in the bronchial epithelium of human airway bifurcations employing Monte Carlo methods. Hot spots of alpha particle hits were observed at the branching points of bronchial airway bifurcations, suggesting that multiple alpha particle hits may occur primarily at carinal ridges. Random alpha particle intersections of bronchial cells during a given exposure period, selected from a Poisson distribution, were simulated by an initiation-promotion model, based on experimentally observed cellular transformation and survival functions. To consider potential bystander effects, which have been observed in cellular in vitro studies, alpha particle interactions were also simulated for larger sensitive target volumes in bronchial epithelium, consisting of a collection of cells. Lung cancer risk simulations indicated that cancer induction for continuous exposures is related to the cycle time of an irradiated cell, thus exhibiting a distinct dose-rate effect. While the dominant role of single hits leads to a linear dose-response relationship at low radon exposure levels, predicted lung cancer risk for a collection of interacting cells exhibits a linear-quadratic response, suggesting that bystander effects, if operating at all under in vivo irradiations, may be restricted to a small number of adjacent cells. (author)

  5. Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption

    CERN Document Server

    Sandberg, A; Hayes, M; Fathi, K; Schaerer, D; Mas-Hesse, J M; Rivera-Thorsen, T

    2013-01-01

    Context. The Lyman alpha emission line of galaxies is an important tool for finding galaxies at high redshift, and thus probe the structure of the early universe. However, the resonance nature of the line and its sensitivity to dust and neutral gas is still not fully understood. Aims. We present measurements of the velocity, covering fraction and optical depth of neutral gas in front of two well known local blue compact galaxies that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test observationally the hypothesis that Lyman alpha can escape through neutral gas by being Doppler shifted out of resonance. Methods. We present integral field spectroscopy from the GIRAFFE/Argus spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength resolution allows us to accurately measure the velocity of the ionized and neutral gas through the H-alpha emission and Na D absorption, which traces the ionized medium and cold interstellar gas, respectively. We also present independent measurements w...

  6. A Redshift z=5.4 Lyman alpha Emitting Galaxy with Linear Morphology in the GRAPES/UDF Field

    CERN Document Server

    Rhoads, J E; Windhorst, R A; Malhotra, S; Pirzkal, N; Xu, C; Strolger, L G; Bergeron, L E; Daddi, E; Ferguson, H C; Gardner, J P; Gronwall, C; Haiman, Z; Koekemoer, A M; Moustakas, L A; Pasquali, A; Riess, A; Alighieri, S S; Stiavelli, M; Tsvetanov, Z I; Vernet, J; Walsh, J; Yan, H J; Rhoads, James E.; Panagia, Nino; Windhorst, Rogier A.; Malhotra, Sangeeta; Pirzkal, Norbert; Xu, Chun; Strolger, Louis Gregory; Bergeron, Louis E.; Daddi, Emanuele; Ferguson, Henry C.; Gardner, Jonathan P.; Gronwall, Caryl; Haiman, Zoltan; Koekemoer, Anton; Moustakas, Leonidas A.; Pasquali, Anna; Riess, Adam; Alighieri, Sperello di Serego; Stiavelli, Massimo; Tsvetanov, Zlatan; Vernet, Joel; Walsh, Jeremy; Yan, Hao-Jing

    2004-01-01

    We have discovered an extended Lyman alpha plume associated with a compact source at redshift 5.4 in slitless spectroscopic data from the Grism ACS Program for Extragalactic Science (GRAPES) project. The spatial extent of the emission is about 6 x 1.5 kpc (1 x 0.25 arcsec). Combining our grism data and the broadband images from the Hubble UltraDeep Field (UDF) images, we find a Lyman alpha line flux of 2e-17 erg/cm2/s and surface brightness 7e-17 erg/cm2/s/arcsec2. The UDF images show diffuse continuum emission associated with the Lyman alpha plume (hereafter UDF 5225), with at least two embedded knots. The morphology of UDF 5225 is highly suggestive of a galaxy in assembly. It is moreover possible that the prominent Lyman alpha emission from this object is due to an active nucleus, and that we are seeing the simultaneous growth through accretion of a galaxy and its central black hole. Followup observations at higher spectral resolution could test this hypothesis.

  7. Studies on multiply emitted secondary electrons (MUSE) in charged-particle solid interactions

    International Nuclear Information System (INIS)

    When energetic ions bombard solids, a large number of electrons are simultaneously emitted. We have studied MUltiply emitted Secondary Electrons (MUSE) from a carbon foil bombarded by 0.4-1.2 MeV/u H+ and H2+, and 0.8 MeV He+. The target foil (≅ 13 μg/cm2) was tilted 450 with respect to the incident beam. It has been observed that (i) the average number of electrons anti n emitted per proton is proportional to the stopping power as is expected, and (ii) the ratio of anti n for H2+ to that for the same velocity H+, anti n(H2+)/anti n(2H+), increases from 0.93 to 1.04 as the projectile energy increases from 0.4 to 1.2 MeV/u. The latter observation is discussed comparing it with an oscillatory feature of the stopping power for H2+ theoretically predicted as a 'vicinage' effect. anti n of 0.8 MeV He+ bombarding a carbon foil has been measured for exit charge states of qe = 1 and 2 separately. A very weak dependence of anti n on qe has been observed in contrast to the z2 dependence on the atomic number of the projectiles (anti n for qe = 1 and 2 are 10.4 and 11.6, respectively). The charge changing mean free path of ions in solids is evaluated from this observation. (orig.)

  8. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12C nucleus is described as a three-alpha particle bound state. The binding energy of 12C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  9. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  10. Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?

    Institute of Scientific and Technical Information of China (English)

    HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze

    2001-01-01

    The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.

  11. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131iodine or the90yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  12. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  13. Cranial nerve damage in patients after alpha (heavy)-particle radiation to the pituitary

    International Nuclear Information System (INIS)

    The records of 161 patients were reviewed to determine if radiation damage had occurred following cranial irradiation. All of these patients had received alpha-particle radiation to their pituitary glands during the period when this form of therapy was given for diabetic retinopathy. Extraocular muscle palsy developed in 11 of these patients, iridoplegia in six, and fifth nerve damage in six. All of the palsies developed within a short period following their irradiation, and a definite dose relationship was present. The dose rate was approximately 100 rads/min for all cases. Fractionation varied but it is known for all cases

  14. Cranial nerve damage in patients after alpha (heavy)-particle radiation to the pituitary

    International Nuclear Information System (INIS)

    The records of 161 patients were reviewed to determine if radiation damage had occurred following cranial irradiation. All of these patients had received alpha-particle radiation to their pituitary glands for diabetic retinopathy. Extraocular muscle palsy developed in 11 of these patients, iridoplegia in six, and fifth nerve damage in six. All of the palsies developed within a short period following their irradiation, and a definite dose relationship was present. The estimated doses to the third, fourth, fifth, and sixth cranial nerves was calculated at a saggital plane 13 to 15 mm from the pituitary by using computer-drawn dosimetry charts for the respective aperture size

  15. Theoretical and empirical status of the two-deuteron-alpha-particle vertex

    International Nuclear Information System (INIS)

    The two-deuteron-alpha-particle overlap, including its D-wave component, is evaluated in the case of realistic two- and four-body wavefunctions. The deduced theoretical value is compared with improved empirical estimates based upon DWBA analyses of (d,α) reactions in the sd shell and which incorporate the best available shell-model information for the nuclear states involved. The theoretical and empirical values of this analysis are in agreement. The result differs substantially from other recent empirical estimates obtained from (d,α) reactions upon heavier target nuclei and from simple theoretical estimates which make use of a point-deuteron approximation. (author)

  16. Model of alpha particle diffusion in the outer limiter shadow of TFTR

    International Nuclear Information System (INIS)

    A new code, Monte Carlo Collisional Stochastic Orbit Retracing (MCCSOR), has been developed to model the alpha particle loss signal as measured by the outer midplane scintillator detector in TFTR. The shadowing effects due to the outer limiters and the detector itself have been included, along with a pitch angle scattering and stochastic ripple diffusion. Shadowing by the outer limiters has a strong effect on both the magnitude and pitch angle distribution of the calculated loss. There is at least qualitative agreement between the calculated results and the experimental data

  17. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  18. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L.; Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, we studied alpha-particle induced and medium-mediated bystander effects in Chinese hamster ovary (CHO) cells through micronucleus (MN) assay. We showed that signal transduction from irradiated cells to bystander cells occur within a short time after irradiation. We then studied the effects of ROS (reactive oxygen species)-scavenging catechins in the medium before irradiation. We observed decreases in the percentage of bystander cells with MN formation and thus proved the protection effect of catechins on bystander cells from radiation.

  19. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  20. Study of compound nucleus formation via bremsstrahlung emission in proton $\\alpha$-particle scattering

    CERN Document Server

    Maydanyuk, Sergei P

    2016-01-01

    In this paper a role of many-nucleon dynamics in formation of the compound $^{5}{\\rm Li}$ nucleus in the scattering of protons off $\\alpha$-particles at the proton incident energies up to 20 MeV is investigated. We propose a bremsstrahlung model allowing to extract information about probabilities of formation of such nucleus on the basis of analysis of experimental cross-sections of the bremsstrahlung photons. In order to realize this approach, the model includes elements of microscopic theory and also probabilities of formation of the short-lived compound nucleus. Results of calculations of the bremsstrahlung spectra are in good agreement with the experimental cross-sections.

  1. Deuteron-and alpha particle-induced K-shell ionisation of W and Au atoms

    International Nuclear Information System (INIS)

    Deuteron - and alpha particle - induced K-shell ionisation cross sections for W and Au were obtained from thick-target measurements for low impact velocities. They were compared to proton-induced cross sections in the same range of velocities. Equal-velocity cross sections ratios are a very stringent test to the corrections incorporated to the PWBA calculations. The σd/σp data presented in this paper sheds some light on the Coulomb-deflection corrections discussed in the literature. The consequences of the inelastic character of the ionisation process are thoroughly examined. (Author)

  2. Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios

    CERN Document Server

    Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E

    2016-01-01

    An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.

  3. The fine structure constant alpha: relevant for a model of a self-propelling photon and for particle masses

    Science.gov (United States)

    Greulich, Karl O.

    2015-09-01

    A model for a self propelling (i.e. massless) photon1 is based on oscillations of a pair of charges amounting to elementary charge divided by SQRT alpha, where alpha is the fine structure (Sommerfeld) constant. When one assumes a similar model for particles that do have rest mas (i.e. which are non- self propelling), alpha plays also a role in the rest masses of elementary particles. Indeed all fundamental elementary particle masses can be described by the alpha / beta rule2 --> m(particle) = alpha-n * betam* 27.2 eV /c2 where beta is the proton to electron mass ratio 183612 and n= 0….14, m= -1,0 or Thus, photons and particle masses are intimately related to the fine structure constant. If the latter would not have been strictly constant throughout all times, this would have had consequences for the nature of light and for all masses including those of elementary particles.

  4. Characterization and Control of Airborne Particles Emitted During Production of Epoxy / Carbon Nanotube Nanocomposites

    Science.gov (United States)

    Cena, Lorenzo G.; Peters, Thomas M.

    2016-01-01

    This work characterized airborne particles that were generated from the weighing of bulk, multi-wall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratiô1). The particles generated during sanding were predominately micron-sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator’s breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m3) compared to those with no LEV (GM = 2.68 μg/m3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m3; p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  5. Simultaneous estimation of relative biological effectiveness of alpha particles and protons in thermal neutron exposure of barley (Hordeum vulgare L.) seeds

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) of alpha particles and protons emitted during exposure of barley (Hordeum vulgare L.) seeds to thermal neutrons were estimated. sup(10)B-enriched re-dried seeds were irradiated with thermal neutrons or gamma-rays. Two assumptions so far believed that boron distribution was uniform throughout either natural dormant seeds or sup(10)B -enriched seeds, and that boron atoms enter the seeds as freely as water molecules do, were found to be invalid. A boron addition effect (BAE) as high as 58.2 was obtained after thermal neutron exposure of seeds presoaked in 4800 microg/g of sup(10)B-enriched boric acid solution. Estimates of RBE of alpha particles were nearly constant and independent of the contents of absorbed sup(10)B. RBE averaged 55.0 and 55.1 for the seed and spike presoaking methods of boron absorption, respectively. We could also obtain RBE of protons as high as 48.7 and 43.9 for the seed and spike methods, respectively. Boron addition converted the principal capture element during thermal neutron exposure from protons in dormant seeds to boron in sup(10)B enriched-seeds

  6. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    International Nuclear Information System (INIS)

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: mparticle = α-n x β m x 27.2 eV/c2 allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c2 (experimental 511 keV/c2) With n=2, m=1 the proton mass is 937.9 MeV/c2 (literature 938.3 MeV/c2). For n=3 and m=1 a particle with 128.6 GeV/c2 close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  7. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  8. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  9. Etching characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector

    International Nuclear Information System (INIS)

    This study reports the characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector. Several important parameters that control the track formation such as, the bulk etch rate (VB), track etching rate (VT), dependence of VB and VT on etching concentration and temperature have been extensively studied. The activation energy (Eb) of the bulk etching rate for the DAM–ADC sheets has been calculated, the dependence of etching efficiency and sensitivity upon etchant concentrations and temperature has been investigated, registration efficiency of DAM–ADC detector etched at the optimum etching condition has been examined. The detailed studied results presented in this study provide various useful information about the mechanism of track formation in polymers. - Highlights: • Detection of alpha particles in DAM–ADC nuclear track detector. • The activation energy of the bulk etching rate for the DAM–ADC sheets. • The dependence of etching efficiency upon etchant concentrations • Registration efficiency of DAM–ADC detector

  10. An improved electrostatic integrating radon monitor with the CR-39 as alpha-particle detector

    International Nuclear Information System (INIS)

    In this study, based on the electrostatic integrating radon monitor (EIRM) developed by Iida et al., a new type of EIRM with the allyl glycol carbonate (CR-39) as alpha-particle detector was developed for outdoor radon measurements. Besides using the CR-39 to replace the cellulose nitrate film as alpha-particle detector, the electrode and the setting place of the CR-39 were also optimally designed based on the simulation results of the electric field and the detection efficiency. The calibration factor of the new EIRM was estimated to be 0.136±0.002 tracks cm-2 (Bq m-3 h)-1, with the lower detection limit of 0.6 Bq m-3 for a 2-month exposure. Furthermore, both the battery and the dry agent were also replaced to protect the environment. The results of intercomparison and field experiments showed that the performances of the new EIRM were much better than the original one. It suggests that the new type of ERIM is more suitable for large-scale and long-term outdoor radon surveys. (authors)

  11. Revisiting alpha decay-based near-light-speed particle propulsion.

    Science.gov (United States)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. PMID:27161512

  12. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM241 source were compared to systems made with imported stages. (Author)

  13. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    International Nuclear Information System (INIS)

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates. -- Highlights: • A scintillator plate was fabricated using Gd2Si2O7 grains of several 10 to 550 μm. • Scintillator grains were fixed on a glass substrate and were mechanically polished. • Energy resolution of 9.3% was achieved using average grains size of 91 μm. • This technique has no limitation in area size. • Radiation background was eliminated by thin thickness of scintillator, i.e. 100 μm

  14. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Science.gov (United States)

    Takács, S.; Takács, M. P.; Ditrói, F.; Aikawa, M.; Haba, H.; Komori, Y.

    2016-09-01

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the natTi(α,x)51Cr reaction. The irradiations were done with Eα = 20.7 and Eα = 51.25 MeV, Iα = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the 72,73,75Se, 71,72,74,76,78As, and 69Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  15. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    Science.gov (United States)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  16. Hot spots effect on infrared spectral luminance emitted by carbon under plasma particles impact

    Energy Technology Data Exchange (ETDEWEB)

    Delchambre, E.; Reichle, R.; Mitteau, R.; Missirlian, M. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Roubin, P. [Universite de Provence, PIIM, Centre Saint-Jerome, 13 - Marseille (France); Gobin, R. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France)

    2004-07-01

    During the last Tore Supra campaigns, an anomalous deformation in the near infrared spectrum of radiation has been observed on neutralizer underneath the Toroidal Pumped Limiter (TPL) on which we observed the growth of carbon layer. The consequence is the difficulty to asses the surface temperature of the components and the power loaded. Laboratory experiment has been performed, using an Electron Cyclotron Resonance (ECR) ions source, to reproduce, characterize and explain this phenomenon. The luminance emitted by Carbon Fibre Composite (CFC) and pyrolytic graphite, have been observed under 95 keV of H+ bombardments. The amplitude of the deformation was found to depend on the type of material used and the power density of the incident power loaded. This paper presents the possible hot spots explanation. The experimental luminance deformation is reproduced and these results are validated using a thermal model of dust in radiate equilibrium. (authors)

  17. A new method for alpha-particle detection in a classroom experiment

    International Nuclear Information System (INIS)

    Complete text of publication follows. The World Year of Physics (WYP 2005) was a worldwide celebration of Physics and its importance in our everyday lives. In harmony with its aims, that is to raise the worldwide awareness of Physics and Physical Science, we introduced a novel lab work involving a new imaging and data evaluation method for alpha-particle detection, which can be easily implemented in a classroom environment. The target group of the experiments is mainly secondary school students (age between 16-18 years). Our aim is to motivate students to develop a better understanding of Physics, allowing them to experience for themselves something of its fascination. In order to increase their attractiveness, the experiments include using a CMOS video image sensor with a video output. The covering glass window of the sensor must be carefully removed in order to make it sensitive for alpha rays. The sensor is connected to a computer where the images are recorded as a short video clip. The recorded video is played back by frames. The resulted frames are then merged together into one image. On this image the student can count the number of spots, where each spot corresponds to a hit of an alpha particle. The experiment can also be visible on a TV screen even by a whole class, however the authors suggest implementing the following experiments as a practical work individually or in small groups. As students are familiar with modern information technology, we think that they will be highly motivated to make these experiments on their own. Acknowledgements. The development of the above experimental setup was funded by ATOMKI and it was presented to the interactive science centre 'Magic corner', Debrecen, Hungary at Christmas, 2005. (author)

  18. Multiwavelength analysis of the Lyman alpha emitting galaxy Haro 2: relation between the diffuse Lyman alpha and soft X-ray emissions

    CERN Document Server

    Oti-Floranes, H; Jimenez-Bailon, E; Schaerer, D; Hayes, M; Ostlin, G; Atek, H; Kunth, D

    2012-01-01

    In order to use Lyman alpha (Lya) emission as star formation tracer in cosmological studies, we must understand how the resonant scattering affects the escape fraction of the Lya photons. Thus, high spatial resolution multiwavelength studies of nearby Lya emitters, like Haro 2, are highly needed. For that purpose, we have used Chandra X-ray and HST (UV, optical and NIR) images of Haro 2, and STIS and ground-based spectral images along its major and minor axes, to characterize the Lya emission and the properties of the stellar population. The UV, Ha (Halpha) and FIR luminosities of the Haro 2 nuclear starburst are reproduced using evolutionary synthesis models assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential interstellar extinctions. The observed X-ray emission is attributed to gas heated by the mechanical energy released by the starburst (soft component) and a Ultra-Luminous X-ray source candidate (hard). Both compact and diffuse Lya components are observed. Whereas Lya is ...

  19. Additive impacts on particle emissions from heating low emitting cooking oils

    Science.gov (United States)

    Amouei Torkmahalleh, M.; Zhao, Y.; Hopke, P. K.; Rossner, A.; Ferro, A. R.

    2013-08-01

    The effect of five additives, including table salt, sea salt, black pepper, garlic powder, and turmeric, on the emission of PM2.5 and ultrafine particles (UFP) from heated cooking oil (200 °C) were studied. One hundred milligrams of the additives were added individually to either canola or soybean oil without stirring. Black pepper, table salt, and sea salt reduced the PM2.5 emission of canola oil by 86% (p Turmeric and garlic powder showed no changes in the PM2.5 and total number emissions of canola oil. Table salt and sea salt, decreased the level of PM2.5 emissions from soybean oil by 47% (p Turmeric and garlic powder had no effect on soybean oil with respect to total particle number emissions. Our results indicate that table salt, sea salt, and black pepper can be used to reduce the particle total number and PM2.5 emissions when cooking with oil.

  20. Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the {alpha}-emitting radionuclides {sup 212}Bi or {sup 211}At

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, Jon N.; McGee, Edwin C.; Garmestani, Kayhan; Brechbiel, Martin W.; Yordanov, Alexander T.; Wu Chuanchu; Gansow, Otto A.; Eckelman, William C.; Bacher, John D.; Flynn, Michael; Goldman, Carolyn K.; MacLin, Melvin; Schwartz, Uwe P.; Jackson-White, Terri; Phillip, Celeste M.; Decker, Jean; Waldmann, Thomas A. E-mail: tawald@helix.nih.gov

    2004-04-01

    To exploit the fact that IL-2 receptors are expressed by T-cells responding to foreign antigens but not by resting T-cells, humanized anti-Tac (HAT) armed with alpha-emitting radionuclides {sup 212}Bi and {sup 211}At was evaluated in a cynomolgus cardiac allograft model. Control graft survival was 8.2{+-} 0.5 days compared with 14.0{+-}1.3 days (p<0.01) survival for monkeys treated with {sup 212}Bi labeled HAT and 26.7{+-}2.4 days survival (p<0.001 versus controls) with {sup 211}At labeled HAT. Thus, {sup 211}At labeled HAT may have application in organ transplantation and in treatment of IL-2 receptor expressing T-cell leukemia.

  1. Pseudorapidity spectra of relativistic particles emitted in the Au and Pb induced reactions at high energies

    CERN Document Server

    Belashev, B Z; Vokál, S; Vrláková, J; Ajaz, M; Khan, K H; Zaman, Ali; Wazir, Z

    2011-01-01

    The structure of the pseudorapidity spectra of charged relativistic particles with beta > 0.7 measured in Au+Em and Pb+Em collisions at AGS and SPS energies are analyzed using Fourier transformation method and maximum entropy one. The dependences of these spectra on the number of fast target protons (g-particles) are studied. They show visually some plateau and "shoulder" which are at least three selected points on the distributions. The plateau seems wider in Pb+Em reactions. The existing of plateau is expected for the parton models. The maximum entropy method confirms the existence of the plateau and the shoulder of the distributions.

  2. Hazardous gas production by alpha particles in solid organic transuranic waste matrices. 1998 annual progress report

    International Nuclear Information System (INIS)

    'This project uses fundamental radiation chemical techniques to elucidate the basic processes occurring in the heavy-ion radiolysis of solid hydrocarbon matrices such as polymers and organic resins that are associated with many of the transuranic waste deposits or the transportation of these radionuclides. The environmental management of mixed waste containing transuranic radionuclides is difficult because these nuclides are alpha particle emitters and the energy deposited by the alpha particles causes chemical transformations in the matrices accompanying the waste. Most radiolysis programs focus on conventional radiation such as gamma rays, but the chemical changes induced by alpha particles and other heavy ions are typically very different and product yields can vary by more than an order of magnitude. The objective of this research is to measure the production of gases, especially molecular hydrogen, produced in the proton, helium ion, and carbon ion radiolysis of selected solid organic matrices in order to obtain fundamental mechanistic information on the radiolytic decomposition of these materials. This knowledge can also be used to directly give reasonable estimates of explosive or flammability hazards in the storage or transport of transuranic wastes in order to enhance the safety of DOE sites. This report summarizes the work after eight months of a three-year project on determining the production of hazardous gases in transuranic waste. The first stage of the project was to design and build an assembly to irradiate solid organic matrices using accelerated ion beams. It is necessary to measure absolute radiolytic yields, and simulate some of the conditions found in the field. A window assembly was constructed allowing the beam to pass consecutively through a collimator, a vacuum exit window and into the solid sample. The beam is stopped in the sample and the entire end of the assembly is a Faraday cup. Integration of the collected current, in conjunction

  3. Rapid analytical technique to identify alpha emitting isotopes in water, air-filters, urine, and solid matrices using a Frisch Grid detector.

    Science.gov (United States)

    Scarpitta, Salvatore C; Miltenberger, Robert P; Gaschott, Robert; Carte, Nina

    2003-04-01

    A 5-inch-diameter Frisch Grid gas-proportional ionization chamber was utilized at Brookhaven National Laboratory (BNL) to rapidly characterize and quantify alpha-emitting actinides in unprocessed water, soil, air-filter, urine, and solid matrices. Instrument calibrations for the various matrices were performed by spiking representative samples with National Institute of Standards and Technology traceable isotopes of 230Th, 232U, 236Pu, and 243Am. Detection efficiencies were typically 15-20% for solid matrices (soil, concrete, filters, dry urine) and 45% for mass-less water samples. Instrument background over a 512-channel alpha-energy range of 3-8 MeV is very low at 0.01 cps. At optimum efficiency, minimum detectable levels of 0.56 mBq Kg(-1), 74 mBq L(-1) and 14.8 mBq filter(-1) were achievable for 40 x 10(-6) Kg soil, 1 x 10(-3) L tap water (or urine), and 4.5 cm diameter air-filter samples, respectively, each counted for 60 min. Data and spectra are presented showing the quality of results obtained using untreated samples obtained from the BNL Graphite Research Reactor Decommissioning Project. These samples contained Bq to MBq per gram amounts of (239,240)Pu, 241Am, and/or (234,235/238)U (as well as other beta/gamma emitters). Data and spectra are also presented for a very finely pulverized and homogeneous U.S. DOE/RESL soil reference standard (spiked with 239Pu, 241Am, and 233U) that was used to assess precision, accuracy, and reproducibility. Although this technique has its limitations, the advantages are (1) minimal sample preparation, (2) no separation chemistry required, (3) no chemical or hazardous waste generated, and (4) ability to immediately characterize and quantify alpha-emitting nuclides in most matrices. The benefits of this technique to the BNL/DOE Project Managers were rapid (1-2 d) turn-around times coupled with significant cost savings, as compared to commercial off-site analyses. PMID:12705448

  4. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  5. Feasibility study on the use of polyallyldiglycol-carbonate cell dishes in TUNEL assay for alpha particle radiobiological experiments

    Science.gov (United States)

    Chan, K. F.; Yum, E. H. W.; Wan, C. K.; Fong, W. F.; Yu, K. N.

    2007-08-01

    In the present work, we have studied the feasibility of a method based on polyallyldiglycol-carbonate (PADC) films to investigate the effects of alpha particles on HeLa cervix cancer cells. Thin PADC films with thickness of about 20 μm were prepared from commercially available CR-39 films by chemical etching to fabricate custom-made petri dishes for cell culture, which could accurately record alpha particle hit positions. A special method involving "base tracks" for aligning the images of cell nuclei and alpha particle hits has been proposed, so that alpha particle transversals of cell nuclei can be visually counted. Radiobiological experiments were carried out to induce DNA damages, with the TdT-mediated d UTP Nick- End Labeling (TUNEL) fluorescence method employed to detect DNA strand breaks. The staining results were investigated by flow cytometer. The preliminary results showed that more strand breaks occurred in cells hit by alpha particles with lower energies. Moreover, large TUNEL positive signals were obtained even with small percentages of cells irradiated and TUNEL signals were also obtained from non-targeted cells. These provided evidence for the bystander effect.

  6. Feasibility study on the use of polyallyldiglycol-carbonate cell dishes in TUNEL assay for alpha particle radiobiological experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.F. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Yum, E.H.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Wan, C.K. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: peter.yu@cityu.edu.hk

    2007-08-15

    In the present work, we have studied the feasibility of a method based on polyallyldiglycol-carbonate (PADC) films to investigate the effects of alpha particles on HeLa cervix cancer cells. Thin PADC films with thickness of about 20 {mu}m were prepared from commercially available CR-39 films by chemical etching to fabricate custom-made petri dishes for cell culture, which could accurately record alpha particle hit positions. A special method involving 'base tracks' for aligning the images of cell nuclei and alpha particle hits has been proposed, so that alpha particle transversals of cell nuclei can be visually counted. Radiobiological experiments were carried out to induce DNA damages, with the TdT-mediated dUTP Nick-End Labeling (TUNEL) fluorescence method employed to detect DNA strand breaks. The staining results were investigated by flow cytometer. The preliminary results showed that more strand breaks occurred in cells hit by alpha particles with lower energies. Moreover, large TUNEL positive signals were obtained even with small percentages of cells irradiated and TUNEL signals were also obtained from non-targeted cells. These provided evidence for the bystander effect.

  7. Preparation of large-area sources with uniform layers for the spectrometry of alpha-emitting nuclides

    International Nuclear Information System (INIS)

    A procedure for the preparation of large-area sources with uniform layers for α-spectrometry for the large-area grid ionization chamber has been developed. It is based on the direct evaporation of a sample solution in the counting dish in the presence of an excess of a sublimable chemical compound like ammonium nitrate. In the course of evaporation this excess compound precipitates and thus avoids the formation of clusters during the further evaporation process. After dryness, the excess compound is removed from the source by sublimation. Samarium nitrate is added as an internal standard and the alpha-activity of the isotope 147Sm is chosen to measure the counting efficiency due to self-absorption. Examples are presented of the application of large-area sources for α-spectrometry for the large-area grid ionization chamber. (author)

  8. Lyman-Alpha Emitting Galaxies as a Probe of Reionization: Large-Scale Bubble Morphology and Small-Scale Absorbers

    CERN Document Server

    Kakiichi, Koki; Ciardi, Benedetta; Graziani, Luca

    2015-01-01

    The visibility of LyA emitting galaxies during the Epoch of Reionization is controlled by both diffuse HI patches in large-scale bubble morphology and small-scale absorbers. To investigate the impact on LyA photons, we apply a novel combination of analytic and numerical calculations to three scenarios: (i) the `bubble' model, where only diffuse HI outside ionized bubbles is present; (ii) the `web' model, where HI exists only in overdense self-shielded gas; and (iii) the more realistic 'web-bubble' model, which contains both. Our analysis confirms that there is a degeneracy between the ionization structure of the intergalactic medium (IGM) and the HI fraction inferred from LyA surveys, as the three models suppress LyA flux equally with very different HI fractions. We argue that a joint analysis of the LyA luminosity function and the rest-frame equivalent width distribution/LyA fraction can break this degeneracy and provide constraints on the reionization history and its topology. We further show that constrain...

  9. Questions of the optical potential for alpha-particles at low energies

    International Nuclear Information System (INIS)

    Among the high-priority elements for the accelerator driven systems (ADS) and fusion-reactor projects are also Zr, Mo and Li, so that the corresponding nuclear data for nucleon-, deuteron-, and α-particle interactions are of actual interest for neutron production, activation, heating, shielding requirements, and material damage estimation as well as radioactive waste transmutation projects. By using advanced nuclear models that account for details of nuclear structure and the quantum nature of the nuclear scattering, significant gains in accuracy can be achieved below 150 MeV, where intranuclear cascade calculations become less accurate. It is why this work reports on the progress of the analysis of optical potentials for nucleons, deuterons and α-particles on isotopes of these elements, and corresponding reaction cross sections calculations. The elastic-scattering angular distributions measured at deuteron energies between 3 and 50 MeV on the target nucleus 6Li, and between 1 and 14.7 MeV for the target nucleus 7Li have been thus analyzed by using the computer codes SCAT2 for pure elastic scattering processes and FRESCO for the coupled reaction channels for taking into account the effects of the elastic and inelastic alpha transfer in the d+6Li interaction. The good overall agreement obtained with the experimental data for both 6,7Li target nuclei from 1 to 50 MeV has finally proved suitable optical model potentials (OMPs). Within the double folding formalism of the alpha-nucleus optical potential, used previously for a semi-microscopic analysis of the alpha-particle elastic scattering on A∼100 nuclei at energies below 32 MeV, effects due to changes of the nuclear density at a finite temperature are considered. Parameterizations of the double-folding (DF) real potential as well as of a regional phenomenological potential have been used in the study of the (n,α) reaction cross sections for the target nuclei 92,95,98,100Mo. Taking the microscopic DF potentials

  10. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?

    Directory of Open Access Journals (Sweden)

    Hong Song

    2012-06-01

    Full Text Available Alpha-particle emitter labeled monoclonal antibodies are being actively developed for treatment of metastatic cancer due to the high linear energy transfer (LET and the resulting greater biological efficacy of alpha-emitters. Our knowledge of high LET particle radiobiology derives primarily from accelerated heavy ion beam studies. In heavy ion beam therapy of loco-regional tumors, the modulation of steep transition to very high LET peak as the particle approaches the end of its track (known as the Bragg peak enables greater delivery of biologically potent radiation to the deep seated tumors while sparing normal tissues surrounding the tumor with the relatively low LET track segment part of the heavy ion beam. Moreover, fractionation of the heavy ion beam can further enhance the peak-to-plateau relative biological effectiveness (RBE ratio. In contrast, internally delivered alpha particle radiopharmaceutical therapy lack the control of Bragg peak energy deposition and the dose rate is determined by the administered activity, alpha-emitter half-life and biological kinetics of the radiopharmaceutical. The therapeutic ratio of tumor to normal tissue is mainly achieved by tumor specific targeting of the carrier antibody. In this brief overview, we review the radiobiology of high LET radiations learned from ion beam studies and identify the features that are also applicable for the development of alpha-emitter labeled antibodies. The molecular mechanisms underlying DNA double strand break repair response to high LET radiation are also discussed.

  11. Bayesian analysis of nanodosimetric ionisation distributions due to alpha particles and protons.

    Science.gov (United States)

    De Nardo, L; Ferretti, A; Colautti, P; Grosswendt, B

    2011-02-01

    Track-nanodosimetry has the objective to investigate the stochastic aspect of ionisation events in particle tracks, by evaluating the probability distribution of the number of ionisations produced in a nanometric target volume positioned at distance d from a particle track. Such kind of measurements makes use of electron (or ion) gas detectors with detecting efficiencies non-uniformly distributed inside the target volume. This fact makes the reconstruction of true ionisation distributions, which correspond to an ideal efficiency of 100%, non-trivial. Bayesian unfolding has been applied to ionisation distributions produced by 5.4 MeV alpha particles and 20 MeV protons in cylindrical volumes of propane of 20 nm equivalent size, positioned at different impact parameters with respect to the primary beam. It will be shown that a Bayesian analysis performed by subdividing the target volume in sub-regions of different detection efficiencies is able to provide a good reconstruction of the true nanodosimetric ionisation distributions. PMID:21112893

  12. Nucleon-alpha particle interactions from inversion of scattering phase shifts

    International Nuclear Information System (INIS)

    Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-α) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the 'Martin' condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - α and p - α (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs

  13. The Rest-frame Ultraviolet Light Profile Shapes of Ly-alpha-Emitting Galaxies at z=3.1

    CERN Document Server

    Gronwall, Caryl; Ciardullo, Robin; Gawiser, Eric; Altmann, Martin; Blanc, Guillermo A; Feldmeier, John J

    2010-01-01

    We present a rest-frame ultraviolet morphological analysis of 78 resolved, high S/N z ~ 3.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S). Using HST/ACS V -band images taken as part of the GEMS, GOODS, and HUDF surveys. For each LAE system identified via our ground-based narrow-band imaging, we have identified those LAE systems with multiple components. We measure the concentration index and present the results of our GALFIT fits for ellipticity, Sersic index, and sizes for each resolved component with S/N > 30 as well as for each LAE system with S/N > 30. The LAEs show a heterogeneous distribution of morphologies while the ma jority tend to be highly concentrated and compact in size. We only measure the morphological properties of resolved LAEs. For systems showing multiple components we also measured the morphology of the individual components. The resolved LAEs are highly concentrated (2 < C < 4) and show a similar distribution to that measured for stars, suggesting th...

  14. Nuclear transparency in {alpha}-particle scattering beyond the eikonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, S.M. [Bogoliubov Laboraroty of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Hanna, K.M. [Matematics and Theoretical Physics Departement, AtomyEnergy Authority, Cairo (Egypt)

    1999-08-01

    An independent, complementary, and unbiased study to calculate the transparency functions beyond the eikonal approach by adding the higher-order (up to the third-order term) non eikonal (Ne) corrections, in five different effective optical potentials all of them reproduce well the elastic scattering of intermediate energy {alpha}-particles ({epsilon}{sub {alpha}} 140-288 MeV) from the two neighborly nuclei {sup 48}Ti and {sup 58}Ni. The effects of switching (off/on) the Coulomb potential on the results are studied. The individual and the combined effects of the Ne corrections and Coulomb potential are explored in the transparency function for a wide range of the impact parameter 'b' from the nuclear surface towards the nuclear interior. No violation is detected in the flux conservation for the considered projectile incident energy and the impact parameter ranges. It is found that, in some cases, it is not necessarily true, as usually believed, that the Coulomb potential decreases the absorption (less transparency) in the central region of the nucleus, the phenomenon which can be explained by a modification of the balance between the nominal real and imaginary parts of some optical potential in the rather complicate transparency function.

  15. Properties of an $\\alpha$ particle in a Bohrium $270$ Nucleus under the Generalized Symmetric Woods-Saxon Potential

    CERN Document Server

    Lütfüoğlu, B C

    2016-01-01

    The energy eigenvalues and the wave functions of an $\\alpha$ particle in a Bohrium $270$ nucleus were calculated by solving Schr\\"odinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature were calculated. Stability and emission characteristics are interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed $\\alpha$ particle was calculated using the quasi-bound states, which is found close to the experimental value.

  16. Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

    International Nuclear Information System (INIS)

    Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20--30% reduction in alpha particle heating is predicted for qa = 6--14, R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion

  17. A route for polonium 210 production from alpha-particle irradiated bismuth-209 target

    International Nuclear Information System (INIS)

    A method is proposed for production of polonium-210 via the 209Bi(α,3n)210 At nuclear reaction. Bombardment of a bismuth-209 target was performed with a 37 MeV alpha-particle beam that leads to the production of astatine-210 (T1/2 = 8.1 h), which decays to polonium-210. It is purified from the bismuth target matrix by employing liquid-liquid extraction using tributyl phosphate (TBP) in para-xylene from 7 M hydrochloric acid. Back extraction of polonium-210 was performed by 9 M nitric acid. This method allows to purify a tracer amount of Po-210 (2.6 x 10-13 mol) from macroscopic amount of Bi (2.8 x 10-2 mol).

  18. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  19. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  20. Is the first excited state of the $\\alpha$-particle a breathing mode?

    CERN Document Server

    Bacca, Sonia; Leidemann, Winfried; Orlandini, Giuseppina

    2014-01-01

    The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy distribution itself at different momentum transfers q. Realistic nuclear forces of chiral and phenomenological nature are employed. Various indications for a collective breathing mode are found: i) the specific shape of the transition density, ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q and iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of the alpha-particle values between 20 and 30 MeV are found.

  1. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  2. CO2 laser collective Thomson scattering for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In JT-60U (JAEA Tokamak 60 - Upgrade), a collective Thomson scattering (CTS) technique based on a CO2 laser is being developed in order to establish a diagnostic method of confined alpha-particles in burning plasmas. In order to the demonstrate feasibility of the CTS system, a new laser systems is being developed, with which improved signal-to-Noise (S/N) ratio of a detection signal and temporal resolution will be obtained. The laser has cavity length of ∼4 m and has high repetition rate (10 Hz). To improve the spectral purity of the laser, cavity length will be feedback-controlled and a spectral filter will be installed in the output of the laser. Numerical calculation shows that ion temperature will be evaluated from the scattered spectrum with the new CO2 laser. (author)

  3. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  4. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon–1) to a GeV nucleon–1, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-3He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun

  5. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  6. ON THE RELATIVE SPEED AND TEMPERATURE RATIO OF SOLAR WIND ALPHA PARTICLES AND PROTONS: COLLISIONS VERSUS WAVE EFFECTS

    International Nuclear Information System (INIS)

    We study the relative flow speed and the temperature ratio of alpha particles and protons and their connections to the helium ion abundance, the collisional age, and the power of transverse fluctuations within the inertial range. It is found that the alpha-to-proton temperature ratio, Tα/Tp , anti-correlates with the helium ion abundance. Despite a relatively high collisional age and small wave power, the ratio Tα/Tp can reach comparatively high values (even above 2) whenever the helium ion abundance is below about 0.02. In contrast, the differential speed of alpha particles with respect to protons is correlated with the total wave power and anti-correlated with the collisional age. Ultimately, the individual heating of each ion species is positively correlated with the total wave power. Our findings suggest that a high-friction collision could be efficient in reducing the differential speed between alpha particles and protons, but appears not to be sufficient to equalize the alpha and proton temperatures, i.e., to make Tα ≅ Tp . This is a hint that the local wave heating process is acting on a timescale shorter than the collision time.

  7. Fraction of energy absorbed from β-emitting particles in the rat lung

    International Nuclear Information System (INIS)

    Forty-four male Fischer-344 rats were exposed, nose only, to a relatively insoluble aerosol of 144Ce-labeled fused aluminosilicate particles. Fractional β energy absorption was measured 7 to 9 days after exposure for 28 rats (ages 12 to 25 weeks and body weights of 183 to 337 g); lung burdens were 13 to 82 nCi. An additional group of 16 rats was exposed when 12 weeks old and maintained for 6 months prior to analysis; body weights and lung burdens 6 months after exposure ranged from 276 to 368 g and 16 to 46 nCi, respectively. Lungs were carefully removed, inflated, and frozen by immersion in liquid nitrogen. The energy spectrum from each lung was measured in a 4π β spectrometer, keeping the lung frozen throughout this procedure. Over the range of lung sizes in this study (0.88 to 1.66 g) the mean fractional energy absorption and standard deviation were 0.23 +- 0.078, respectively. Results agreed well with theory, indicating that calculated values for fractional energy absorption in the lung can be used for a range of lung sizes and β energies. Calculated values for fractional energy absorption as a function of β energy are included for several lung sizes between 0.5 and 10 g

  8. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  9. Comparison of the effects of inhaled alpha- and beta-emitting radionuclides on pulmonary function of the dog

    International Nuclear Information System (INIS)

    Pulmonary function changes of representative dogs after inhalation of a relatively insoluble form of 144Ce in fused aluminosilicate particles and 238PuO2 were compared. Both radionuclide forms had approximately the same effective half-life, but the 238PuO2 irradiated 11 percent of the lung while the 144Ce irradiated 100 percent. Both groups developed restrictive lung disease progressing to pulmonary failure but the sequence of functional changes differed. The first change in dogs that inhaled 144Ce was a reduced CO diffusing capacity followed later by changes in breathing pattern, lung compliance and alveolar-capillary O2 exchange. The first change in dogs that inhaled 238PuO2 was an increase in respiratory frequency which persisted for several months before nearly simultaneous changes in diffusing capacity, compliance and gas mixing. An impairment in alveolar-capillary O2 exchange occurred later in dogs that inhaled 238PuO2. Functional alterations of both groups in pulmonary failure were similar. The differences in the pattern of functional changes were thought to be related to differences in dose pattern, but the exact relationships are unknown

  10. Alpha spectroscopy for in-situ liquid radioisotope measurements

    International Nuclear Information System (INIS)

    Using calculation and SRIM simulations of alpha particle energy spectroscopy, we show that the initial energies and concentrations of alpha-emitting radioisotopes can be measured in-situ in a liquid environment. We quantify the effect on the alpha spectrum of reducing the thickness of the liquid source in front of the alpha particle detector as well as adding a cover material onto the alpha particle detector surface. In all cases, initial energies and concentrations are recoverable from the alpha particle energy spectra. By reducing the thickness of the liquid source, the contribution to the spectrum for low count rate, low energy radioisotopes can be revealed. However, adding a cover on the detector obscures the contributions of these radioisotopes

  11. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  12. Lyman alpha radiation in external galaxies

    Science.gov (United States)

    Neufeld, David A.; Mckee, Christopher F.

    1990-01-01

    The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.

  13. A Catalog of z=3.1 Lyman Alpha Emitting Galaxies Discovered in Narrow-band Imaging of MUSYC 1030+05

    Science.gov (United States)

    Christenson, Holly; Gangolli, Nakul; Raney, Catie Ann; Walker, Jean P.; Gawiser, Eric J.; MUSYC Collaboration

    2016-01-01

    We present a catalog of ~200 Lyman Alpha Emitting galaxies (LAEs) at redshift z=3.1 found in a 5015 Å narrow-band image of the MUSYC 1030+05 field. We reduced raw optical images taken with the MOSAIC II CCD camera at the CTIO 4m telescope with the IRAF MSCRED package. The reduction included the crucial steps of bias subtraction, flat-field correction, cosmic ray and satellite trail rejection, astrometric calibration, tangent plane projection, weighted stacking, and sky background removal. Our initial catalog of sources detected in the narrow-band filter contains ~20,000 sources. We used additional photometric measurements in the MUSYC broad-band filters to identify LAEs via their flux density excess in the narrow-band. This catalog of LAEs will undergo further analysis to characterize how the number density, clustering, colors, and star formation rates of LAEs vary with position and evolve with redshift.We gratefully acknowledge support from NSF grants AST-1055919 & PHY-1263280.

  14. Development of a three-layer phoswich alpha-beta-gamma imaging detector

    Science.gov (United States)

    Yamamoto, Seiichi; Ishibashi, Hiroyuki

    2015-06-01

    For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: ~5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was ~1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.

  15. Moisture content of seeds affects relative biological effectiveness of alpha particles but not protons in thermal neutron exposure

    International Nuclear Information System (INIS)

    The influences of moisture content of barley (Hordeum vulgare L.) seeds which were presoaked for 13 h and re-dried before irradiation on boron addition effect (BAE) and relative biological effectiveness (RBE) of alpha particles and protons were evaluated. Seeds of normal (10.21% in embryo), low (2.55%) and high (28.0%) moisture content showed different regression of BAE values on the absorbed amount of sup(10)B. The regression coefficient was highest for normal moisture content, followed by low moisture content, and the lowest for high moisture content. RBE of alpha particles also significantly differed between the moisture contents. Seeds of normal, low and high moisture contents showed 46.4, 37.4 and 17.0 of RBE value, respectively. Contrarily, RBE values of protons did not significantly vary with moisture content. It was found that the ratio of RBE of alpha particles between different moisture contents could be expressed by the product of the three ratios, i.e. ratio of sensitivity to gamma-rays, ratio of BAE, and ratio of moisture content. It was concluded that adjustment of moisture of the seeds to normal content (about 10%) is important to get a high value of both BAE and RBE of alpha particles

  16. Proton and alpha-particle capture reactions at sub-Coulomb energies relevant to the p process

    Energy Technology Data Exchange (ETDEWEB)

    Harissopulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Lagoyannis, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Spyrou, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Zarkadas, Ch [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Galanopoulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Perdikakis, G [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Becker, H-W [Dynamitron-Tandem-Laboratorium, Ruhr Universitaet Bochum, 44801 Bochum (Germany); Rolfs, C [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Strieder, F [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Kunz, R [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Fey, M [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Hammer, J W [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Dewald, A [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Zell, K-O [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Brentano, P von [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Julin, R [Department of Physics, University of Jyvaeskylae, 40014 Jyvaeskylae (Finland); Demetriou, P [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP226, 1050 Brussels (Belgium)

    2005-10-01

    Several cross-section measurements of proton as well as {alpha}-particle capture reactions in the Se-Sb region have been carried out at sub-Coulomb energies with the aim to obtain global input parameters for Hauser-Feshbach (HF) calculations. Some of the results are compared with HF calculations using various optical model potentials and nuclear level densities.

  17. AVERAGE REACTION CROSS-SECTIONS FOR 74-MEV TO 112-MEV ALPHA-PARTICLES ON I-127 AND CS-133

    NARCIS (Netherlands)

    WARNER, RE; WILSCHUT, HW; RULLA, WF; FELDER, GN

    1991-01-01

    The average reaction cross section for 74- to 112-MeV alpha particles on I-127 and Cs-133 was measured by a new method using a magnetic spectrograph and a CsI scintillation detector. The result, sigma-R = 2220+/-50 mb, is in good agreement with optical model calculations and finite-range microscopic

  18. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  19. Nano-objects emitted during maintenance of common particle generators: direct chemical characterization with aerosol mass spectrometry and implications for risk assessments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Patrik T., E-mail: patrik.nilsson@design.lth.se; Isaxon, Christina [Lund University, Ergonomics and Aerosol Technology (Sweden); Eriksson, Axel C. [Lund University, Nuclear Physics (Sweden); Messing, Maria E. [Lund University, Solid State Physics (Sweden); Ludvigsson, Linus; Rissler, Jenny [Lund University, Ergonomics and Aerosol Technology (Sweden); Hedmer, Maria; Tinnerberg, Håkan [Lund University, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine (Sweden); Gudmundsson, Anders [Lund University, Ergonomics and Aerosol Technology (Sweden); Deppert, Knut [Lund University, Solid State Physics (Sweden); Bohgard, Mats; Pagels, Joakim H. [Lund University, Ergonomics and Aerosol Technology (Sweden)

    2013-11-15

    Nanotechnology gives us materials with enhanced or completely new properties. At the same time, inhalation of manufactured nano-objects has been related to an array of adverse biological effects. We characterized particle emissions, which occurred during maintenance of common metal nanoparticle generators and contrasted the properties of the emitted particles with those originally produced by the generators. A new approach using online aerosol mass spectrometry (AMS), for time- and size-resolved measurements of the particle chemical composition, was applied in combination with more conventional techniques for particle sampling and analysis, including electron microscopy. Emissions during maintenance work, in terms of mass and surface area concentration in the size range of 0.02–10 μm, were dominated by large agglomerates (1–5 μm). With AMS, we show that the particle composition depends on both generator type and maintenance task being performed and that the instrument can be used for highly time-resolved selective studies of metal nanoparticle emissions. The emitted agglomerates have a relatively high probability to be deposited in the lower respiratory tract, since the mean particle diameter coincided with a peak in the lung deposition curve. Each of these agglomerates consisted of a very high number (10{sup 3}–10{sup 5}/agglomerate) of nanometer-sized primary particles originating from the particle synthesis process. This made them possess large surface areas, one of the key properties in nanotoxicology. Similar agglomerates may be emitted in a wide range of processes when nanoparticles are manufactured or handled. The fate of such agglomerates, once deposited in the respiratory tract, is unknown and should therefore be considered in future particle toxicological studies. Our results highlight the importance of including micrometer-sized particles in exposure and emission assessments.

  20. Nano-objects emitted during maintenance of common particle generators: direct chemical characterization with aerosol mass spectrometry and implications for risk assessments

    International Nuclear Information System (INIS)

    Nanotechnology gives us materials with enhanced or completely new properties. At the same time, inhalation of manufactured nano-objects has been related to an array of adverse biological effects. We characterized particle emissions, which occurred during maintenance of common metal nanoparticle generators and contrasted the properties of the emitted particles with those originally produced by the generators. A new approach using online aerosol mass spectrometry (AMS), for time- and size-resolved measurements of the particle chemical composition, was applied in combination with more conventional techniques for particle sampling and analysis, including electron microscopy. Emissions during maintenance work, in terms of mass and surface area concentration in the size range of 0.02–10 μm, were dominated by large agglomerates (1–5 μm). With AMS, we show that the particle composition depends on both generator type and maintenance task being performed and that the instrument can be used for highly time-resolved selective studies of metal nanoparticle emissions. The emitted agglomerates have a relatively high probability to be deposited in the lower respiratory tract, since the mean particle diameter coincided with a peak in the lung deposition curve. Each of these agglomerates consisted of a very high number (103–105/agglomerate) of nanometer-sized primary particles originating from the particle synthesis process. This made them possess large surface areas, one of the key properties in nanotoxicology. Similar agglomerates may be emitted in a wide range of processes when nanoparticles are manufactured or handled. The fate of such agglomerates, once deposited in the respiratory tract, is unknown and should therefore be considered in future particle toxicological studies. Our results highlight the importance of including micrometer-sized particles in exposure and emission assessments

  1. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  2. I. Excluded Volume Effects in Ising Cluster Distributions and Nuclear Multifragmentation II. Multiple-Chance Effects in Alpha-Particle Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Breus, Dimitry E.

    2005-05-16

    In Part 1, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In part 2, an explanation is offered for the recently observed oscillations in the energy spectra of {alpha}-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of {alpha}-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental {alpha}-spectra has having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto

  3. Light charged particles emitted in coincidence with deeply inelastic collisions in the 280 MeV 40Ar + 58Ni reaction

    International Nuclear Information System (INIS)

    A detailed study was made of the light charged particles (mainly protons and alpha particles) in coincidence with the main fragments from deep inelastic collisions in the reaction 280 MeV 40Ar + 58Ni. A survey of relevant data is followed by a discussion of the origin of the light charged particles as it can be deduced from the p, α-fragment coincidence experiment. The results of out-of-plane distributions of the α-particles are presented and they are discussed in terms of the extreme sticking limit

  4. Kerr black hole parameters in terms of red/blue shifts of photons emitted by geodesic particles

    CERN Document Server

    Herrera-Aguilar, Alfredo

    2015-01-01

    We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving around the center of the Milky Way and the corresponding hypothesis about the existence of a supermassive black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black hole (assuming that the putative supermassive black hole is of this type), as well as the distance that separates the black hole from the Earth, can be estimated in a relativistic way in terms of i) the red and blue shifts of photons that are emitted by geodesic massive particles (stars and galactic gas) and travel along null geodesics towards a distant observer, and ii) the radius of these star/gas orbits. As a concrete example and as a first step towards a full relativistic analysis of the above mentioned star orbits around the center of our galaxy, we consider stable equatorial circular orbits of stars and express their corresponding red/blue shifts in terms of the metric parameters (mass and a...

  5. Stability and {alpha}-particle confinement in the Sphellamak reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2000-10-01

    The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs

  6. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    International Nuclear Information System (INIS)

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  7. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    Science.gov (United States)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  8. Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Max D. Kauther, Jie Xu, Christian Wedemeyer

    2010-01-01

    Full Text Available Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. Receptor activator of nuclear factor-κB ligand (RANKL and osteoprotegerin (OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.

  9. An intermediate baryon system formation and the angular distributions of the slow particles emitted in hadron-nuclear and nuclear-nuclear interactions at high energies

    OpenAIRE

    Suleymanov, M. K.; Abdinov, O. B.; Aliyev, R. M.; Aliyev, F. M.; Haseeb, M Q; Huseynaliyev, Y. H.; Khan, E. U.; Kravchakova, A; Shahaliev, E. I.; Vokal, S.; Vodopianov, A. S.

    2007-01-01

    We have analyzed the angular distributions of the b- particles emitted in Kr+Em -reaction at 0.95 A GeV and in Au+Em -reaction at 10.7 A GeV and compared these with lighter projectile experiments for which some structure in the angular distribution of slow particles was observed. The same structure for the b-particles almost disappears by increasing the projectile mass. We believe that it is connected with increasing rates of internuclear secondary interactions which could lead mainly to disa...

  10. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  11. Bernal liquid drop - alpha particle models of some heavy magic number nuclides

    International Nuclear Information System (INIS)

    Full text: Models of the bond structures of nickel 56, strontium 88, tin 120, cerium 140, lead 208 and uranium 240 nuclides based on Bernal's models of dense liquid drops, show good agreement between the binding energy data and shell structures when alpha particles are considered to be the densely packed hard spheres, of Bernal's models. These models, of the time-averaged structures of several closed shell nuclides have been developed as pedagogical aids for conceptualising some of the major aspects of nuclear matter and energy. These concepts include nuclear shape, size, charge density, quadrupole moment, viscosity, binding energy, coulomb repulsion, energy levels, magic numbers, shells and subshells; nucleon separation, bonding, pairing and clustering; nucleosynthesis, radioactivity and fission. The models discussed are based on those proposed by Bernal to account for the properties of normal liquids. Bernal's models have also been extended by others to explain the nature of metallic glasses considered as super cooled liquids. In Bernal's tetrahedral model of a normal liquid drop, a hard sphere representing an atom, ion, or molecule is added at whatever available position is closed to the centre of the existing cluster of spheres so that the densest possible configuration is created. Accordingly, two spheres form a dumbbell, three spheres form a triangle and four spheres form a tetrahedron and so on

  12. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  13. The blistering of 316L stainless steel irradiated with energetic alpha particles at 500 degrees C

    International Nuclear Information System (INIS)

    The physical process of blistering is investigated in the 316L stainless steel in both the solid solution and 20% cold-worked states. The material was irradiated with 1.8 MeV alpha particles to various fluences at 500deg C. There is a threshold fluence for blistering in the range of (0.869-1.346)x 1018 α/cm2. The microstructure, determined by TEM observation in the cross-section of irradiated samples, shows that the bubbles are accumulated at the surface layer. There is a bubble size and density distribution along the direction of depth. The bubble size and swelling increase progressively from the edge of the specimen to the damage peak region (DPR), then decrease. After 3 μm there are no bubbles. Due to bubble formation the thermal conductivity of the surface layer becomes lower and the temperature increases due to the irradiation energy deposited. Beyond the threshold fluence, the temperature of the surface layer is high, bubble coalescence at DPR becomes more serious and the bubble pressure becomes high enough that blistering occurs. (orig.)

  14. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  15. SU-E-T-588: Optimization of Imaging Following 223Ra Administration in Targeted Alpha-Emitting Radionuclide Therapy of Bone Metastases

    International Nuclear Information System (INIS)

    Purpose: With a growing demand of alpha-emitting radiopharmaceuticals, especially Xofigo (223RaCl2) which is used in the treatment of metastatic bone disease, the optimization of dosimetry becomes necessary. Indeed, in Europe, as stated on the council directive 2013/59/euratom, exposures of target volumes for radiotherapeutic purposes shall be individually planned taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable. To that aim, the possibility of imaging 223Ra was first investigated. Methods: The experiments were conducted at the Hopital Europeen Georges Pompidou with an Infinia Hawkeye 4 gamma camera, equipped with a medium-energy collimator. Imaging parameters, such as sensibility, spatial resolution and energy spectrum, were determined using several physical phantoms with a source of 6 MBq of 223Ra. Bone metastases were modeled with a NEMA Body Phantom to investigate image degradation based on the concentration of 223Ra. Results: The acquired energy spectrum allowed to visualize several photon peaks: at 85, 154 and 270 keV. Camera sensitivity measured from the phantom study was 102.3 cps/MBq for the 85 keV ± 20 %, 89.9 cps/MBq for the 154 ± 20 % window and 65.4 cps/MBq for the 270 ± 10 % window. The spatial resolution (full-width at half-maximum) was respectively 1.7, 1.9 and 1.8 cm for the three energy windows. SPECT/CT images of NEMA Body Phantom without and with attenuation have permitted to determine the best reconstruction parameters. Conclusion: This study has demonstrated that it is possible to obtain clinically relevant information from images of 223Ra. All these results will be valuable to analyze biodistribution imaging of the radiopharmaceutical in the patient body and go further in the reconstruction of patient images in order to personalize the dosimetry

  16. SU-E-T-588: Optimization of Imaging Following 223Ra Administration in Targeted Alpha-Emitting Radionuclide Therapy of Bone Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Benabdallah, N; Bernardini, M [Hopital Europeen George Pompidou, Paris, Ile de France (France); Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses, Ile-de-France (France); Labriolle-Vaylet, C de [Hopital Trousseau, Paris, Ile de France (France); Franck, D [Institut de Radioprotection et de Suretu Nucleaire, Fontenay Aux Roses, Ile de France (France)

    2015-06-15

    Purpose: With a growing demand of alpha-emitting radiopharmaceuticals, especially Xofigo ({sup 223}RaCl{sub 2}) which is used in the treatment of metastatic bone disease, the optimization of dosimetry becomes necessary. Indeed, in Europe, as stated on the council directive 2013/59/euratom, exposures of target volumes for radiotherapeutic purposes shall be individually planned taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable. To that aim, the possibility of imaging {sup 223}Ra was first investigated. Methods: The experiments were conducted at the Hopital Europeen Georges Pompidou with an Infinia Hawkeye 4 gamma camera, equipped with a medium-energy collimator. Imaging parameters, such as sensibility, spatial resolution and energy spectrum, were determined using several physical phantoms with a source of 6 MBq of {sup 223}Ra. Bone metastases were modeled with a NEMA Body Phantom to investigate image degradation based on the concentration of {sup 223}Ra. Results: The acquired energy spectrum allowed to visualize several photon peaks: at 85, 154 and 270 keV. Camera sensitivity measured from the phantom study was 102.3 cps/MBq for the 85 keV ± 20 %, 89.9 cps/MBq for the 154 ± 20 % window and 65.4 cps/MBq for the 270 ± 10 % window. The spatial resolution (full-width at half-maximum) was respectively 1.7, 1.9 and 1.8 cm for the three energy windows. SPECT/CT images of NEMA Body Phantom without and with attenuation have permitted to determine the best reconstruction parameters. Conclusion: This study has demonstrated that it is possible to obtain clinically relevant information from images of {sup 223}Ra. All these results will be valuable to analyze biodistribution imaging of the radiopharmaceutical in the patient body and go further in the reconstruction of patient images in order to personalize the dosimetry.

  17. Engineered Modular Recombinant Transporters: Application of New Platform for Targeted Radiotherapeutic Agents to α-Particle Emitting 211At

    International Nuclear Information System (INIS)

    Purpose: To generate and evaluate a modular recombinant transporter (MRT) for targeting 211At to cancer cells overexpressing the epidermal growth factor receptor (EGFR). Methods and Materials: The MRT was produced with four functional modules: (1) human epidermal growth factor as the internalizable ligand, (2) the optimized nuclear localization sequence of simian vacuolating virus 40 (SV40) large T-antigen, (3) a translocation domain of diphtheria toxin as an endosomolytic module, and (4) the Escherichia coli hemoglobin-like protein (HMP) as a carrier module. MRT was labeled using N-succinimidyl 3-[211At]astato-5-guanidinomethylbenzoate (SAGMB), its 125I analogue SGMIB, or with 131I using Iodogen. Binding, internalization, and clonogenic assays were performed with EGFR-expressing A431, D247 MG, and U87MG.wtEGFR human cancer cell lines. Results: The affinity of SGMIB-MRT binding to A431 cells, determined by Scatchard analysis, was 22 nM, comparable to that measured before labeling. The binding of SGMIB-MRT and its internalization by A431 cancer cells was 96% and 99% EGFR specific, respectively. Paired label assays demonstrated that compared with Iodogen-labeled MRT, SGMIB-MRT and SAGMB-MRT exhibited more than threefold greater peak levels and durations of intracellular retention of activity. SAGMB-MRT was 10-20 times more cytotoxic than [211At]astatide for all three cell lines. Conclusion: The results of this study have demonstrated the initial proof of principle for the MRT approach for designing targeted α-particle emitting radiotherapeutic agents. The high cytotoxicity of SAGMB-MRT for cancer cells overexpressing EGFR suggests that this 211At-labeled conjugate has promise for the treatment of malignancies, such as glioma, which overexpress this receptor

  18. Energy and time spreads of a particle beam used in APM technique

    International Nuclear Information System (INIS)

    A Monte Carlo code has been developed to simulate neutron and alpha production in the time correlated associated particle method (TCAPM). The atomic and molecular composition of the deuterium beam, tritium ratio in the target, slowing-down and straggling of deuterons as well as the angular dependence of emitted neutrons and alpha particles are both taken into account in these calculations. The following physical characteristics are obtained: mean energy of detected alpha particles and their spread, mean time of flight and its spread values for alpha particles, alpha and associated neutron spectra as well as neutron spatial cone distribution. (author). 11 refs, 10 figs, 4 tabs

  19. Study of the stopping power and straggling for alpha particles and protons in organic solids, liquids and gases

    International Nuclear Information System (INIS)

    The stopping power and straggling for 5.5 MeV alpha particles in liquid and vapour phases of water, methanol, ethanol, propanol, h-hexane, n-octane and cyclohexane, and those for low energy protons in ethylene, styrene and propylene and their polymers, have been measured. Range-energy data have been fitted with inverse stopping power functions to give the cross sections. In each case, five parameters have been adjusted to obtain the best fit. The value of chi-squared per degree of freedom has been calculated, together with the parameters. The theoretical stopping cross section has been considered employing the Bethe-Bloch expression together with various corrections (shell correction using Walske and Bichsel procedure, Z13 contribution according to Ashley and Bloch correction based on Lindhard formalism). The existence of a phase effect has been clearly demonstrated for the stopping of both alpha particles and protons. (author)

  20. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z; Helou, Khalil; Nemes, Szilárd; Elmroth, Kecke; Elgqvist, Jörgen; Jensen, Holger; Hultborn, Ragnar

    2013-01-01

    Purpose: The aim of this study was to identify gene expression profiles distinguishing alpha-particle (211)At and (60)Co irradiation. Materials and methods: Gene expression microarray profiling was performed using total RNA from confluent human fibroblasts 5 hours after exposure to (211)At labeled...... trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). Results: We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts...... transcription, cell cycle regulation, and cell cycle arrest, whereas mitosis, spindle assembly checkpoint, and apoptotic chromosome condensation were uniquely enriched for alpha particle irradiation. Conclusions: LET-dependent transcriptional modulations were observed in human fibroblasts 5 hours after...

  1. Energetic resolution study on pure and CsBr doped CsI under gamma excitations and alpha particles

    International Nuclear Information System (INIS)

    Pure and doped CsI crystals were grown using the Bridgman technique. Bromine was the doping element which was studied in the range of 1.5x10-1 M to 10-2 M. The distribution of the doping element at crystalline volume was determined by neutron activation. Concerning gamma radiation response it was carried out measurements to evaluate the developed scintillators in the energy range of 350 keV to 1330 keV. For alpha particles measurements an 241Am source was used with 5.54 MeV energy. The resolution of 3.7% was obtained for the CsI:Br 10-2 M crystal, when excited with alpha particles from an 241Am source. For CsI:Br 10-1 M crystal 9.1% resolution was obtained when excited with gamma radiation from 22Na source, with 1275 keV energy. (author)

  2. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Final performance technical report

    International Nuclear Information System (INIS)

    The goal of this project was to develop theoretical/computational tools for evaluating the risks incurred by populations exposed to radon alpha particles. Topics of concern include the following: compound dual radiation action (general aspects); a mathematical formalism describing the yield of radiation induced single-and double-strand DNA breaks, and its dependence on radiation quality; a study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations; nanodosimetry of radon alpha particles; application of the HSEF to assessing radiation risks in the practice of radiation protection; carcinogenic risk coefficients at environmental levels of radon exposures: a microdosimetric approach; and hit-size effectiveness approach in radiation protection

  3. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Final performance technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1997-12-31

    The goal of this project was to develop theoretical/computational tools for evaluating the risks incurred by populations exposed to radon alpha particles. Topics of concern include the following: compound dual radiation action (general aspects); a mathematical formalism describing the yield of radiation induced single-and double-strand DNA breaks, and its dependence on radiation quality; a study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations; nanodosimetry of radon alpha particles; application of the HSEF to assessing radiation risks in the practice of radiation protection; carcinogenic risk coefficients at environmental levels of radon exposures: a microdosimetric approach; and hit-size effectiveness approach in radiation protection.

  4. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  5. Comparative cytotoxicity, mutagenicity, and transforming potency of X-rays, alpha particles and MNNG for rat tracheal epithelial cells

    International Nuclear Information System (INIS)

    To characterize the potential roles of high- and low-LET radiation in respiratory carcino-genesis, the biological effects of X rays and alpha particles on rat tracheal epithelial (RTE) cells were determined and compared to the effects of the direct-acting carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Each agent caused logarithmic, dose-dependent killing of RTE cells, although the curve for X rays had a significant shoulder. At equitoxic doses, all three agents induced similar frequencies of preneoplastic transformation. Similarly, each agent was capable of inducing a similar level of mutations in RTE cell lines. These data suggest that both high- and low-LET radiation can induce changes involved in early stages of carcinogenesis. In addition, it suggests that inactivation of critical genes, caused by alpha particle-induced deletions, may play a role in the preneoplastic transformation of RTE cells. (author)

  6. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Progress report, July 1990--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-12-31

    We report on a theory for describing the biological effects of ionizing radiation in particular radon {alpha} particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  7. Increase in the area of etched alpha-particle tracks in CR-39 plastic with increasing storage time under nitrogen

    CERN Document Server

    Bhakta, J R; Miles, J C H

    1999-01-01

    The area of etched tracks in CR-39 (polyallyl diglycol carbonate, PADC) exposed to alpha-particles from an americium-241 source has been investigated as a function of post-exposure storage time in a dry nitrogen atmosphere. Data were collected over 2.5 years and the results show that the nominal maximum area of the track area distribution increases with increasing storage time.

  8. Alpha emitters activity measurement using the defined solid angle method

    International Nuclear Information System (INIS)

    The defined solid angle counting method can reach a very high accuracy, specially for heavy ions as alpha particles emitted by a radioactive source. The activity measurement of such sources with a relative uncertainty of the order of 0.01% is investigated. Such an accuracy is available only under suitable conditions: the radiation emitted by the source must be isotropic and all the particles emitted in the effective solid angle must be detected. The efficiency detection value must be equal to unity and phenomena such as absorption or scattering must be null. It is shown that corrections often become necessary. All parameters which can influence the measurements are studied

  9. LET in dose distributions, from spectral measurements of charged particles emitted at the capture of negative pions in biologically significant materials

    International Nuclear Information System (INIS)

    The yields of charged particles that are emitted following the capture of negative pions in carbon, water, muscle equivalent solution and rigid bone substitute have been measured. A counter telescope was set up consisting of various combinations of Si and CsI(Tl) detectors. The counter telescope was able to measure yields of protons, deuterons and tritons down to 2 MeV and also helium and heavier nuclei down to 5 MeV

  10. Production of helium and helium-hydrogen positive ion beams for the alpha particle measurement

    International Nuclear Information System (INIS)

    In order to produce diagnostic helium neutral beam for alpha particle measurement in nuclear fusion plant of deuterium-tritium reation, helium ion (He+) or helium-hydrogen ion (HeH+) beams of ∼20 keV have been considered as a primary beam. For He+ beam, it is important to produce focused high-current-density ion beam in order to pass through small apertures of alkali gas cell with an enough signal level. For HeH+ beam, conditions producing HeH+ has not been investigated in detail as yet. In order to extract these beams, focused high-current-density neutral beam system is applied. For He+ beam extraction of ∼22 kV, it is confirmed that current density of ∼86 mA/cm2 is achieved, whose value is close to necessary value in ITER. For HeH+ beam extraction in the case of ∼300 V acceleration, the production rate of HeH+ component increases with the increase of helium gas pressure ratio to hydrogen gas pressure when its value is > ∼75%. In the case of 25 kV acceleration, if 15% of total current (which includes H+, H2+, H3+, He+ and HeH+ components) is HeH+ component, current density of HeH+ is estimated as ∼13 mA/cm2, whose value is larger than necessary value in ITER. From melted traces of the target plate, it is estimated that the divergence angle is about ±0.8deg. (author)

  11. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Progress report, July 1, 1991--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described.

  12. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  13. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    International Nuclear Information System (INIS)

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed

  14. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    International Nuclear Information System (INIS)

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  15. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, C. G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J.; Mileham, C.; Sangster, T. C.; Frenje, J. A.

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  16. Effects of spins and resonance parities of 12C on the mechanism of emission of three alpha particles in the 11B (p, 3 α) reaction

    International Nuclear Information System (INIS)

    This research thesis reports the study of the mechanism of emission of alpha particles in the 11B (p, 3 α) reaction with respect to the effects of spins and parities of the various resonances met between 150 keV and 4 MeV. From an experimental point of view, the reaction has been studied by two methods: the detection of alpha particles by a semiconductor-based counter located at a given angle with respect to the beam direction and study of continuous spectra of alpha particles with respect to projectile energies, and recording, for a given resonance, of alpha-alpha coincidences by using the multi-parametric technique with two semiconductor-based sensors with a varying relative angular position. After a discussion of the main characteristics of resonance and of the mechanism of emission of alpha particles, the author first reports the theoretical study of a reaction producing three particles in the final state, and then reports the theoretical calculation of direct alpha spectrum shapes in the case of the 11B (p, 3 α) reaction (statistic hypothesis, hypothesis of interaction with two particles in the final state). The next part reports the experimental study of the 11B (p, 3 α) reaction

  17. Energy distributions and yields of 3H, 4He and 6He-particles emitted in the 245Cm(n_th,f) reaction

    CERN Document Server

    Serot, O; Wagemans, J; Goeminne, G; Köster, U; Geltenbort, P; Nesvizhevsky, V V

    2001-01-01

    The energy distributions and yields of light charged particles emitted during thermal neutron induced fission of 245Cm have been measured at the high flux reactor of the Institute Laue Langevin in Grenoble (France). The detection of the ternary particles was done using a Delta-E/E telescope, permitting a good separation of the ternary particles. In this way, the characteristics of the energy distribution (average energy and full width at half maximum) for 4He, 3H and 6He particles as well as their emission probabilities could be determined. For the emission probabilities per fission, the following values were obtained: LRA/B=(2.15+-0.05)E-3, 3H/B=(1.85+-0.10)E-4 and 6He/B=(4.95+-1.25)E-5.

  18. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  19. Kerr black hole parameters in terms of the redshift/blueshift of photons emitted by geodesic particles

    Science.gov (United States)

    Herrera-Aguilar, Alfredo; Nucamendi, Ulises

    2015-08-01

    We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving around the center of the Milky Way and the corresponding hypothesis about the existence of a supermassive black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black hole (assuming that the putative supermassive black hole is of this type), as well as the distance that separates the black hole from the Earth, can be estimated in a relativistic way in terms of (i) the redshift and blueshift of photons that are emitted by geodesic massive particles (stars) and travel along null geodesics towards a distant observer (located at a finite distance), and (ii) the radius of these star orbits. As a concrete example and as a first step towards a full relativistic analysis of the above-mentioned star orbits around the center of our Galaxy, we consider stable equatorial circular orbits of stars and express their corresponding redshift/blueshift in terms of the metric parameters (mass and angular momentum per unit mass) and the orbital radii of both the emitter star and the distant observer. These radii are linked through the constants of motion along the null geodesics followed by photons since their emission until their detection, allowing us to get a closed expression for the orbital radius of the observer in terms of the emitter orbital radius, which is known from observations, and the black hole parameters M and a . In principle, these expressions allow one to statistically estimate the mass and rotation parameters of the Kerr black hole, and the radius of our orbit, through a Bayesian fitting, i.e., with the aid of observational data: the redshift/blueshift measured at certain points of stars' orbits and their radii, with their respective errors, a task that we hope to perform in the near future. We also point to several astrophysical phenomena, like accretion disks of rotating black holes, binary systems and active

  20. Studies of SSNTDs made from LR-115 in view of their applicability in radiobiological experiments with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Doerschel, B. E-mail: doerschel@physik.tu-dresden.de; Hermsdorf, D.; Pieck, S.; Starke, S.; Thiele, H.; Weickert, F

    2003-06-01

    Radiobiological studies on cell monolayers irradiated by charged particles need to determine the number and position of particle traversals. Solid state nuclear track detectors used as basic substrate for the cell layers are in principle suitable for this purpose. The detector foils must be as thin as possible but still guaranteeing mechanical stability. Two types of LR-115, red coloured and colourless, were tested in the present work. The studies aimed at optimisation of the etching conditions and determination of the registration efficiency for alpha particles in a wide range of energies and angles of incidence. Specific requirements have to be fulfilled for application of the detector foils under the environmental conditions of radiobiological experiments. Most important are biocompatibility between detector and cells and registration properties insensible against special treatments, as UV sterilisation and cell plating prior to irradiation as well as cell incubation after the irradiation. The experimental studies performed with alpha particles showed that environmental conditions of radiobiological experiments do not change the registration properties of LR-115 detectors significantly.

  1. Alpha particle energy response of 1-mm-thick polycarbonate track detectors by 50 Hz-HV electrochemical etching method

    International Nuclear Information System (INIS)

    The electrochemical etching (ECE) method enlarges charged particle tracks to enhance its applications in particular in health physics and radiation dosimetry. The ECE method is usually based on using a high frequency-high voltage (HF-HV) generator with 250-μm-thick polycarbonate track detectors (PCTDs). The authors' recent studies on nitrogen and helium ions and alpha tracks in 1-mm-thick large-size PCTDs under a 50 Hz-HV ECE process provided promising results. In this study, alpha track efficiency and mean track diameter versus energy responses and registration energy range as well as alpha and background track shapes under three sets of 50 Hz-4, 5 and 6 kV applied field conditions have been studied and are reported. The efficiency versus alpha energy has a Bragg-type response from ∼15 keV to ∼4.5 MeV for the field conditions applied with an efficiency value of 40-50 % at the Bragg peak. The results are presented and discussed. (authors)

  2. Effect of UV radiation on the bulk etching rate activation energy and response of Cr-39 to alpha particles

    International Nuclear Information System (INIS)

    A set of CR-39 plastic sheets is exposed to UV radiation from mercury lamp for different periods of time. Then irradiated by alpha particles from 241Am point source at different energies. The Bulk etching rate activation energy is calculated for non-exposed and exposed sheets for time periods of 1.5 and 3 hr. It is found that their energy values are 0.76, 0.75 and 0.72 eV respectively. The track diameter (d) is calculated for different exposure times, it is found that d increased gradually as the exposure time increases before saturation. Further, two samples are irradiated by alpha particles but one is pre-exposed to UV for a time period of 3 h before being exposed to alpha, then the response function (V) is calculated for both. The values of V decreased for pre-exposed sample. The present data are the first measurements of the recent nuclear track laboratory at the experimental nuclear physics department, NRC, AEA

  3. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    Science.gov (United States)

    Al-Ta’Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  4. The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2014-01-01

    The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes have been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particle have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for th...

  5. An octahedral deformation with six alpha particles at the Z = 12 system, Mg nuclides: Third nucleons, Alpharons

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We suggest that the emergence of a large deformation in the magnesium, Mg, nuclides, especially at the Z = 12, N = 12, should be associated with an octahedral deformed shape. Within the framework of molecular geometrical symmetry, we find a possibility that the Z = 12, N = 12 system would form an octahedral structure consisting of six points of alpha(4He) particles, yielding the ground collectivity. With this point of view, we draw the following serial molecular structures; the Z = 10, N = 10, 20Ne, corresponds to a hexahedral, the Z = 8, N = 8, 16O, does to a tetrahedral, and the Z = 6, N = 6, 12C, does to a trigonal symmetry. Moreover, the Z = 2, N = 2, 4He(alpha), fits into a tetrahedral symmetry with four points of nucleons; two protons and two neutrons. The enhanced deformation at Z = 12 with N > 20 would be explained by a deformed shape related to an Ethene(Ethylene)-like skeleton with six alpha particles. The deformation at Z = 10, with N = 10 and 12, can be interpreted as being attributed to a hexahed...

  6. Light charged particles emitted in coincidence with deeply inelastic collisions in the 280MeV 40Ar+58Ni reaction

    International Nuclear Information System (INIS)

    A detailed study of the light charged particles (mainly protons and alpha particles) has been undertaken in coincidence with the main fragments from DIC in the reaction 280 MeV 40Ar + 58Ni. This study is divided in three sections. The first one is a quick survey of the preexisting data on the 40Ar + 58Ni that are relevant to this particular experiment. The second one deals mainly with the origin of the light charged particles as it can be deduced from the p, α-fragments coincidence experiment. Finally, the third section is devoted to the tangential friction aspects. The results of the out-of-plane distributions of the α-particles are presented and they are discussed in term of the extreme sticking limit

  7. Determination of Pt and Pd in particles emitted from automobile exhaust catalysts using ion-exchange matrix separation and voltammetric detection

    International Nuclear Information System (INIS)

    We report on the ion-exchange separation of Pt and Pd from the main elements emitted from catalysts of gasoline-fueled cars by exploiting the selective chelating ion exchanger Lewatit MonoPlus TP-214. Pt and Pd were then eluted with a recovery of 92% and 96%, respectively, using an acidified solution of thiourea, and the eluent was analyzed by sequential voltammetry. The detection limits are 0. 04 μg L-1 and 1 μg L-1 for Pt and Pd, respectively, and the relative standard deviation is about 4. 0% (for n = 10). The procedure was successfully applied to particles emitted from automobile exhaust catalysts of four capacity engine vehicles. Graphite furnace atomic absorption spectrometry was also employed for reasons of comparison. Emission by four vehicles with 1400, 2600, 3200, and 4800 cc engines, respectively, ranged from 19 to 28 ng km-1 for Pt, and from 102 to 150 ng km-1 for Pd. (author)

  8. An intermediate baryon system formation and the angular distributions of the slow particles emitted in hadron-nuclear and nuclear-nuclear interactions at high energies

    CERN Document Server

    Suleymanov, M K; Aliyev, R M; Aliyev, F M; Haseeb, M Q; Huseynaliyev, Y H; Khan, E U; Kravchakova, A; Shahaliev, E I; Vokal, S; Vodopyanov, A S

    2007-01-01

    We have analyzed the angular distributions of the b- particles emitted in Kr+Em -reaction at 0.95 A GeV and in Au+Em -reaction at 10.7 A GeV and compared these with lighter projectile experiments for which some structure in the angular distribution of slow particles was observed. The same structure for the b-particles almost disappears by increasing the projectile mass. We believe that it is connected with increasing rates of internuclear secondary interactions which could lead mainly to disappearance of the information about intermediate baryon system formation. We suggest that it should be taken into account at event generation for heavy ion interactions to restore the information on the intermediate baryon system formation.

  9. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, D. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Llaurado, M., E-mail: montse.llaurado@ub.edu [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Rauret, G. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain)

    2012-04-15

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO{sub 3}, produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: Black-Right-Pointing-Pointer We study the effect of alpha and beta energies on PSA optimisation. Black-Right-Pointing-Pointer The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. Black-Right-Pointing-Pointer We study the effect of pH on the simultaneous determination of gross alpha/beta activities. Black-Right-Pointing-Pointer HNO{sub 3} produces a high amount of misclassification at very low pH. Black-Right-Pointing-Pointer The results improve when HCl is used to adjust the sample to low pH.

  10. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  11. Modelling TF ripple loss of alpha particles in TFTR DT experiments

    International Nuclear Information System (INIS)

    Modelling of TF ripple loss of alphas in DT experiments on TFTR now includes neoclassical calculations of first orbit loss, stochastic ripple diffusion, ripple trapping and collisional effects. A rapid way to simulate experiment has been developed which uses a simple stochastic domain model for TF ripple loss within the TRANSP analysis code, with the ripple diffusion threshold evaluated by comparison with more accurate but computationally expensive Hamiltonian coordinate guiding center code simulations. Typical TF collisional ripple loss predictions are 6-10% loss of alphas for TFTR D-T experiments at Ip = 1.0-2.0 MA and R = 2.52 m

  12. The $\\alpha-\\alpha$ fishbone potential revisited

    CERN Document Server

    Day, J P; Elhanafy, M; Smith, E; Woodhouse, R; Papp, Z

    2011-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  13. Effects of complex symmetry-breakings on alpha particle power loads on first wall structures and equilibrium in ITER

    International Nuclear Information System (INIS)

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  14. Effects of Complex Symmetry-Breakings on Alpha Particle Power Loads on First Wall Structures and Equilibrium in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Kurki-Suonio, T. [Aalto University, Finland; Spong, Donald A [ORNL; Asunta, O. [Aalto University, Finland; Tani, K. [Japan Atomic Energy Agency (JAEA), Naka; Strumberger, E. [Max Planck Institute for Plasma Physics, Garching, Germany; Briguglio, S. [EURATOM / ENEA, Italy; Koskela, T. [Aalto University, Finland; Vlad, G. [EURATOM / ENEA, Italy; Günter, S. [Max-Planck Institute, Garching, Germany; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Putvinski, S. [ITER Organization, Cadarache, France; Hamamatsu, K. [Japan Atomic Energy Agency (JAEA), Naka

    2011-01-01

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  15. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Science.gov (United States)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  16. Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    International Nuclear Information System (INIS)

    Radioimmunotherapy with α-particle-emitting nuclides, such as213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of α-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2 x 104, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. 213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells. (orig.)

  17. Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas

    CERN Document Server

    Wei, Yuehuan; Zhang, Zhiyong; Lin, Qing; Wang, Xiaolian; Ni, Kaixuan; Zhao, Tianchi

    2013-01-01

    Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.

  18. Diffraction scattering of alpha particles on C, Al, Cu and Pb at 17.9 GeV/c

    International Nuclear Information System (INIS)

    New data on the diffraction scattering of relativistic alpha particles on C, Al, Cu and Pb targets at incident momentum of 17.9 GeV/c are presented. Differential cross sections at four-momentum transfers squared |t| ranging from 0.038 (GeV/c)2 up to 0.55 (GeV/c)2 have been measured with an accuracy of 3% of the absolute normalization. These data are compared with the predictions of the Glauber-Sitenko multiple scattering theory. (author)

  19. Attempt of analysis of the elastic scattering of 44 MeV alpha particles using a phase shift parameterization

    International Nuclear Information System (INIS)

    In order to ease the resolution of the problem of interaction of an alpha particle with a nucleus, and determine simpler hypotheses which enable the analysis of experimental results, this research thesis reports the use of a parameterization of phase shifts to reduce ambiguities and the number of parameters. After general remarks, a description of the Hamiltonian and a formulation of phase shifts, the author presents experimental data and the analytical method. Analysis is then performed for two-, three-, four- or five-parameter formulations. Efficient cross sections are then studied

  20. The Resonance Theory of Proton and Alpha Decay from Hot Sources

    CERN Document Server

    Karpeshin, F F; Vardaci, E; Brondi, A; Moro, R; Abramovich, S N; Serov, V I; Vardaci, Emanuele; Brondi, Augusto; Moro, Renata

    2005-01-01

    The consecutive microscopic solution is presented of the problem of tunneling of a particle through a potential barrier. The method is applied to the alpha and proton decay of compound systems formed in fusion reaction. Appearance of the peaks in the spectrum of emitted particles is predicted. The peaks correspond to quasistationary states inside the potential barrier.

  1. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    Science.gov (United States)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  2. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  3. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    International Nuclear Information System (INIS)

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p2)/σtot, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p2 d2σ/dpdΩ = C exp (-Bp2), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σtot is also described by exponential A0 exp (-A1p2), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  4. Backangle anomaly in scattering of {alpha} -particles from {sup 28} Si at low energies[25.55.Ci; 25.70.Ef; Nuclear reactions 28 Si( {alpha},{alpha})28 Si; E{alpha}=3.0 -7.8 MeV; Measured {sigma}(E{alpha},{theta}); {theta}lab=30 deg. -175 deg.; Deduced Regge-pole parameters; Natural target

    Energy Technology Data Exchange (ETDEWEB)

    Coban, A.; Khiari, F.Z.; Abdelmonem, M.S.; Aksoy, A.; Naqvi, A.A

    2000-09-25

    In order to resolve the differences in the literature on the existence of quasi-molecular states in the {alpha} -{sup 28} Si system, excitation functions were measured for the scattering of {alpha} -particles from {sup 28} Si in the incident energy range E{sub lab}=3 -7.8 MeV. An angular distribution measurement was carried out in the angular range {theta}{sub lab}=30 deg. -174.5 deg. for every potential resonance observed in the excitation functions. Data was analysed using a Regge-pole formalism by coherently adding specific resonances to an underlying diffraction term calculated by a strong absorption model. Furthermore, the usual compound elastic contribution was incoherently added to the direct interaction part of the cross section. The 6.8 MeV resonance was confirmed with J=3 and some evidence was observed for a J=1 resonance around 6.0 MeV.

  5. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  6. Comprehensive evaluation of the linear stability of Alfv\\'en eigenmodes driven by alpha particles in an ITER baseline scenario

    CERN Document Server

    Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E

    2016-01-01

    The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...

  7. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after {alpha}-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Shaopeng [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-02-03

    Low-dose {alpha}-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose {alpha}-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor {beta}1 (TGF-{beta}1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-{beta}1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  8. The induction of bystander mutagenic effects in vivo by alpha-particle irradiation in whole Arabidopsis thaliana plants.

    Science.gov (United States)

    Li, Fanghua; Liu, Ping; Wang, Ting; Bian, Po; Wu, Yuejin; Wu, Lijun; Yu, Zengliang

    2010-08-01

    Our previous studies demonstrated distant/abscopal bystander effects in A. thaliana seeds and embryos; the postembryonic development of bystander tissues, such as root hair differentiation, primary root elongation, lateral root initiation and survival, were inhibited significantly by localized irradiation with microbeam protons and low-energy ions. In the present study, we further investigated radiation-induced bystander mutagenic effects in vivo in A. thaliana plants using homologous recombination (HR) and the expression level of the HR-related AtRAD54 gene as mutagenic end points. We found that alpha-particle irradiation of distal primary roots of young seedlings resulted in a significant increase in the frequency of HR in the aerial plants; the increased induction of HR occurred in every true leaf over the course of rosette development. Moreover, we also found that localized alpha-particle irradiation of roots induced a short-term up-regulated expression of the HR-related AtRAD54 gene in the nonirradiated aerial plants. These results suggested the existence of bystander mutagenic effects in vivo in plants. Treatment with the ROS scavenger DMSO dramatically reduced the effects of localized root irradiation on the induction of HR and expression of the AtRAD54 gene in bystander tissues, suggesting that ROS play a critical role in mediating the bystander mutagenic effects in plants. PMID:20681789

  9. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts

  10. Alpha particle interactions with nuclei at 12 A GeV/c

    International Nuclear Information System (INIS)

    Pseudo-rapidity density distributions of shower particles from 12 A GeV/c α-emulsion interactions are presented. As compaerd to extrapolations from p-nucleus data, the central α+(Ag,Br) interactions exhibit an excess of particles in the mid pseudo-rapidity region. The correlation between and -1 are understood within a wounded nucleon model. (Author)

  11. Alpha-particle effects on high-n instabilities in tokamaks

    International Nuclear Information System (INIS)

    Hot α-particles and thermalized helium ash particles in tokamaks can have significant effects on high toroidal mode number instabilities such as the trapped-electron drift mode and the kinetically calculated magnetohydrodynamic ballooning mode. In particular, the effects can be stabilizing, destabilizing, or negligible, depending on the parameters involved. In high-temperature tokamaks capable of producing significant numbers of hot α-particles, the predominant interaction of the mode with the α-particles is through resonances of various sorts. In turn, the modes can cause significant anomalous transport of the α-particles and the helium ash. Here, results of comprehensive linear eigenfrequency-eigenfunction calculations are presented for relevant realistic cases to show these effects. 24 refs., 12 figs., 6 tabs

  12. Comparison of PHITS, GEANT4, and HIBRAC simulations of depth-dependent yields of β+-emitting nuclei during therapeutic particle irradiation to measured data

    International Nuclear Information System (INIS)

    For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β+-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β+-activity and dose is not feasible, a simulation of the expected β+-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β+-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β+-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET. (paper)

  13. Synthesis parameters affecting the exoemission properties of alpha aluminas. [X radiation, beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, J.F.; Turpin, D.; Guilhot, B. (Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France). Centre de Chimie Physique); Petel, M. (CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire)

    1983-01-01

    Thermally stimulated exoelectron emission (TSEE) is used in various fields of solid state physics. This technique was applied to gain an understanding of the mechanical and thermal effects affecting inorganic solids during the preparation phase. The work carried out supplements earlier experiments on the detection by thermoluminescence of defects created in solids, and considers the possibility of applying TSEE to the study of the reactivity of solids. The different stages in the preparation of alumina are described and attempts are made to correlate their effects on triboemission glow curves and TSEE emitted after irradiation.

  14. 3D Effect of Ferromagnetic Materials on Alpha Particle Power Loads on First Wall Structures and Equilibrium on ITER

    International Nuclear Information System (INIS)

    Full text: The finite number and limited toroidal extent of the TF coils cause a periodic variation of the toroidal field called the magnetic ripple. This ripple can provide a significant channel for fast particle leakage, leading to very localized fast particle loads on the walls. Ferromagnetic inserts will be embedded in the double wall structure of the vacuum vessel in order to reduce the ripple. In ITER the toroidal field deviations are locally further enhanced by the presence of discrete ferromagnetic structures, e.g. TBM. Thus, there are complex symmetry-breaking effects. It is not yet fully understood how superimposing the periodic ripple and a local perturbation affect the fast ion confinement and concerns have been voiced that the combined effect might lead to significant channelling of the alpha power. In this work, the wall power loads due to fusion-born alpha particles were restudied for a variety of cases addressing issues such as different wall configurations, proper inclusion of the TBM effect on the magnetic background, and the possible corrections to 3D equilibrium introduced by the ferromagnetic materials using the 3D equilibrium code, VMEC, since 3D corrections to the equilibrium might enhance the alpha particle loss. To properly include the TBM effect on the magnetic background, the FEMAG code was used, and the effect was calculated on the total field including the poloidal field by the plasma current as well as the vacuum field. In the VMEC analysis, it was found that the difference between a full 3D equilibrium reconstruction and 'an axisymmetric equilibrium + vacuum fields' was small. Thus, it was concluded that no 3D equilibrium reconstruction was needed and that it was sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Under the new boundary condition, the wall load calculation was carried out by using ASCOT, DELTA5D, and F3D OFMC code. Including the plasma current contribution in the magnetic field

  15. Health effects models for nuclear power plant accident consequence analysis. Modification of models resulting from addition of effects of exposure to alpha-emitting radionuclides: Revision 1, Part 2, Scientific bases for health effects models, Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamson, S. [Wisconsin Univ., Madison, WI (United States); Bender, M.A. [Brookhaven National Lab., Upton, NY (United States); Boecker, B.B.; Scott, B.R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.; Gilbert, E.S. [Pacific Northwest Lab., Richland, WA (United States)

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled {open_quotes}Health Effects Models for Nuclear Power Plant Consequence Analysis{close_quotes}, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled {open_quotes}Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,{close_quotes} was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model.

  16. Simulated ablation of carbon wall by alpha particles for a laser fusion reactor

    International Nuclear Information System (INIS)

    Thermal reactions of materials heated by charged particles may lead to serious damage in a laser fusion reactor. When charged particles irradiate and heat the wall material with high intensity like at above 109 W/cm2, the material can be ablated. Once the wall is ablated, expanding gas or plasma can disturb the propagation of laser light irradiating the fuel target if it stagnates long enough for next laser shot. In order to understand the ablation dynamics in detail, we have performed 1-D hydro simulation to evaluate this ablation. As a new feature, we introduce the calculation of energy deposition by charged particles focusing on the interaction between ablated material and charged particles

  17. Energy resolution for alpha particles in liquid argon doped with allene

    International Nuclear Information System (INIS)

    The charge response of liquid argon doped with small quantities of allene (C3H4) to α-particles has been studied. The addition of allene increased the amount of collected charge through photoionization and greatly improved the energy resolution of the incident α-particles. The noise subtracted resolution was 1.4% FWHM at the best with 4 ppm allene doped liquid argon. (orig.)

  18. Alpha-beta discrimination in LENA

    International Nuclear Information System (INIS)

    Alpha emitting isotopes, mainly 210Po, provide a background for the detection of 7Be neutrinos in LENA (Low Energy Neutrino Astronomy). This background can be reduced by a pulse shape analysis, as alpha particles and electrons have a different typical pulse shape, caused by the different energy deposition per unit path length ((dE)/(dx)). Thus, the efficiency of this method was analyzed by a detailed Monte Carlo study. Several scintillators as well as the influence of the photomultiplier performance on the discrimination efficiency were investigated.

  19. Cross-sections for Balmer-alpha excitation in heavy-particle collisions

    International Nuclear Information System (INIS)

    Doppler shifted and unshifted Balmer-alpha radiation has been observed in the absolute sense for energetic H+, H2+ and H3+ ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick-target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms

  20. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt; Vazquez, H.; Christensen, N.B.; Clausen, K.N.; Mørup, Steen

    We have studied the magnetic dynamics in nanocrystalline samples of alpha-Fe2O3 (hematite) and NiO by inelastic neutron scattering. By measuring around the structural and the antiferromagnetic reflections, we have probed uniform and staggered magnetic oscillations, respectively. In the hematite...... sign of superparamagnetic relaxation. Studies of the antiferromagnetic signal from NiO also show evidence of collective magnetic excitations, but with a higher energy of the precession state than for hematite. The inelastic signal at the structural reflection of NiO presents evidence for uniform...