WorldWideScience

Sample records for alpha particle emission

  1. Pre-Equilibrium Alpha-Particle Emission as a Probe to Explore Alpha Clustering in Nuclei

    Science.gov (United States)

    Kravchuk, V. L.; Fotina, O. V.; Gramegna, F.; Bruno, M.; D'Agostino, M.; Sambi, S.; Barlini, S.; Casini, G.

    Experimental data of the double-differential spectra of light particles emitted at pre-equilibrium stage of nuclear processes were obtained at Laboratori Nazionali di Legnaro for the heavy-ion reactions 130 and 250 MeV 16O + 116Sn. Light charged particles were measured in coincidence with evaporation residues in order to avoid unwanted competing mechanisms. The experimental data were collected in a wide angular range from 29 to 82 degrees in the laboratory system. Theoretical model was developed in order to describe simultaneously evaporative and pre-equilibrium emission of the light particles in heavy-ion reactions. Griffin exciton model was used for the description of the pre-equilibrium stage of the compound nucleus formation, while the equilibrium evaporation processes were analyzed in the framework of the statistical theory of heavy-ion reactions. Experimental data were compared with the results of the model calculations and new approach was suggested to take into account alpha cluster formation in the projectile nucleus by measuring and analyzing pre-equilibrium alpha-particle spectra.

  2. Pre-equilibrium {\\alpha}-particle emission as a probe to study {\\alpha}-clustering in nuclei

    CERN Document Server

    Fotina, O V; Eremenko, D O; Platonov, S Yu; Yuminov, O A; Kravchuk, V L; Gramegna, F; Marchi, T; Cinausero, M; D'Agostino, M; Bruno, M; Baiocco, G; Morelli, L; Degerlier, M; Casini, G; Barlini, S; Valdrè, S; Piantelli, S; Pasquali, G; Bracco, A; Camera, F; Wieland, O; Benzoni, G; Blasi, N; Giaz, A; Corsi, A

    2013-01-01

    A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {\\alpha}-particle production. Griffin's model of non-equilibrium processes is used to account for the first stage of the compound system formation, while a Monte Carlo statistical approach was used to describe the further decay from a hot source at thermal equilibrium. The probabilities of neutron, proton and {\\alpha}-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Fission and {\\gamma}-ray emission competition were also considered after equilibration. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and {\\alpha}-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to th...

  3. Alpha-particle emission probabilities in the decay of {sup 240}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Sibbens, G., E-mail: goedele.sibbens@ec.europa.e [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Pomme, S.; Altzitzoglou, T. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Garcia-Torano, E. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Janssen, H.; Dersch, R.; Ott, O. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Martin Sanchez, A. [Departamento de Fisica, Universidad de Extremadura, Badajoz, E-06071 (Spain); Rubio Montero, M.P. [Departamento de Fisica Aplicada, Universidad de Extremadura, Merida, Badajoz, E-06800 (Spain); Loidl, M. [Laboratoire National Henri Becquerel, LNE/CEA-LIST, 91191 Gif-sur-Yvette (France); Coron, N.; Marcillac, P. de [Institut d' Astrophysique Spatiale, CNRS, 91405 Orsay Campus (France); Semkow, T.M. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States)

    2010-07-15

    Sources of enriched {sup 240}Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of {sup 240}Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from {gamma}-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while {gamma}-ray spectrometry confirms that its intensity is much lower than expected from literature.

  4. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  5. Emission of alpha particles and other light nuclei as a fission process

    International Nuclear Information System (INIS)

    The fission theory was successfully applied to the emission of alpha particles and other light nuclei from a heavy nucleus. Good agreement (within +-0.8 orders of magnitude) of the theoretical life times with experimental ones over a range of 24 orders of magnitude, was obtained. Three macroscopic models have been extended for the nuclear systems with different charge densities. A phenomenological shell correction was introduced. WKB approximation was used. By taking into account the nuclear deformation, the life-time of the alpha decay from a shape isomeric state was predicted. A new semiempirical relationship for the alpha decay life-time was derived. (author)

  6. Alpha-particle emission from contaminants in counter materials

    International Nuclear Information System (INIS)

    Energy spectra of surface activities from thorium and uranium contaminants have been investigated for typical counter materials. Soft-tempered stainless steel with a rate of 1.2±0.1 α-particles emitted per 100 cm2 in one hour was found better than other stainless steel and far better than brass and aluminum. Energy spectra provide information about the contaminating activity and about its depth profile. Thorium, uranium and 210Pb contamination was also observed for thin sources of other materials including isotopically enriched materials. (orig.)

  7. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    Science.gov (United States)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-10-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  8. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Man; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10{sup -6} at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV.

  9. Long-Range Alpha Particle Emission in the Fission of U235 by 3-MeV Neutrons

    International Nuclear Information System (INIS)

    The energy and angular distribution of long-range alpha particles emitted in the fission of U235 induced by 3-MeV neutrons have been measured. The alpha panicles were detected by solid-state detector and the fission fragments were detected by a gas scintillation counter. The neutrons were produced by the T (p, n) He3 reaction using a 5.5- MeV Van de Graaff accelerator. About 3000 fission events accompanied by the emission of a high-energy alpha panicle were recorded. The most probable energy of the alpha particles is between 15-16 MeV. and the energy distribution has a full width at half maximum of about D MeV, which is the same as observed in tliermal- neutron fission. The angular distribution of the long-range alpha panicles with respect to the incident neutron direction was found to be forward-peaked, in agreement with previous work on alpha emission in 14-MeV neutron-induced fission of LP. At angles of 0° and 90° with respect to the incident neutron direction the alpha panicles were detected with an angular spread of about ± 25°. The anisotropy [Nα(0°)/ Nα(90°)] was found to be 1.320 ± 0.12. This value is in agreement with the anisotropy calculated on the basis of statistical evaporation of panicles. The results of the present investigation are consistent with the hypothesis that the emission of long-range alpha panicles in fission is an evaporation process. The implications of the results of this work and of other recent investigations on long-range alpha emission are discussed. (author)

  10. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  11. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    Science.gov (United States)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  12. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  13. Alpha particle emitters in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  14. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  15. Study of compound nucleus formation via bremsstrahlung emission in proton $\\alpha$-particle scattering

    CERN Document Server

    Maydanyuk, Sergei P

    2016-01-01

    In this paper a role of many-nucleon dynamics in formation of the compound $^{5}{\\rm Li}$ nucleus in the scattering of protons off $\\alpha$-particles at the proton incident energies up to 20 MeV is investigated. We propose a bremsstrahlung model allowing to extract information about probabilities of formation of such nucleus on the basis of analysis of experimental cross-sections of the bremsstrahlung photons. In order to realize this approach, the model includes elements of microscopic theory and also probabilities of formation of the short-lived compound nucleus. Results of calculations of the bremsstrahlung spectra are in good agreement with the experimental cross-sections.

  16. The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2014-01-01

    The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes have been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particle have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for th...

  17. Effects of spins and resonance parities of 12C on the mechanism of emission of three alpha particles in the 11B (p, 3 α) reaction

    International Nuclear Information System (INIS)

    This research thesis reports the study of the mechanism of emission of alpha particles in the 11B (p, 3 α) reaction with respect to the effects of spins and parities of the various resonances met between 150 keV and 4 MeV. From an experimental point of view, the reaction has been studied by two methods: the detection of alpha particles by a semiconductor-based counter located at a given angle with respect to the beam direction and study of continuous spectra of alpha particles with respect to projectile energies, and recording, for a given resonance, of alpha-alpha coincidences by using the multi-parametric technique with two semiconductor-based sensors with a varying relative angular position. After a discussion of the main characteristics of resonance and of the mechanism of emission of alpha particles, the author first reports the theoretical study of a reaction producing three particles in the final state, and then reports the theoretical calculation of direct alpha spectrum shapes in the case of the 11B (p, 3 α) reaction (statistic hypothesis, hypothesis of interaction with two particles in the final state). The next part reports the experimental study of the 11B (p, 3 α) reaction

  18. A practical alpha particle irradiator for studying internal alpha particle exposure.

    Science.gov (United States)

    Lee, Ki-Man; Lee, Ui-Seob; Kim, Eun-Hee

    2016-09-01

    An alpha particle irradiator has been built in the Radiation Bioengineering Laboratory at Seoul National University (SNU) to investigate the cellular responses to alpha emissions from radon and the progeny. This irradiator is designed to have the energy of alpha particles entering target cells similar to that of alpha emissions from the radon progeny Po-218 and Po-214 residing in the human respiratory tract. For the SNU alpha particle irradiator, an irradiation system is equipped with cell dishes of 4µm thick Mylar bottom and a special setup of cells on slide for gamma-H2AX assay. Dose calibration for the alpha particle irradiator was performed by dual approaches, detection and computer simulation, in consideration of the source-to-target distance (STD) and the size of a cell dish. The uniformity of dose among cells in a dish is achieved by keeping the STD and the size of cell dish in certain ranges. The performance of the SNU alpha particle irradiator has been proven to be reliable through the gamma-H2AX assay with the human lung epithelial cells irradiated. PMID:27475622

  19. Two-source emission of relativistic alpha particles in 16O-Em interactions at 3.7 A GeV

    Institute of Scientific and Technical Information of China (English)

    Song Fu; Zhang Dong-Hai; Li Jun-Sheng

    2005-01-01

    The emission of alpha projectile fragments has been studied in 16O-emulsion interactions at 3.7 A GeV. The angular distributions of relativistic alphas cannot be explained by a clean-cut participant-spectator model. Therefore it is assumed that alphas originate from two distinct sources differing in their temperatures.

  20. Detection of alpha particles with undoped poly (ethylene naphthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hidehito, E-mail: hidehito@rri.kyoto-u.ac.jp [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirakawa, Yoshiyuki; Kitamura, Hisashi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sato, Nobuhiro; Takahashi, Sentaro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2014-03-01

    There has been recent interest in the use of undoped, aromatic-ring polymers as organic scintillation materials for radiation detectors. Here, we characterise the response of poly (ethylene naphthalate) (PEN) to alpha particles. The energy response to 5486 keV alpha particles emitted from {sup 241}Am was 554±45 keV electron equivalents (keVee), with an energy resolution of 11.2±0.1%. The energy response to 6118 keV alpha particles emitted from {sup 252}Cf was 618±45 keVee, with a resolution of 8.8±0.1%. It is also important to characterise the refractive index because it determines how efficiently light propagates in scintillation materials to the photodetector. By taking into account the PEN emission spectrum, it was revealed that its effective refractive index was 1.70. Overall, the results indicate that PEN has potential as a scintillation material for the detection of alpha particles. - Highlights: • PEN is characterised as a scintillation material for alpha particles. • The effective refractive index for PEN is 1.70 in its emission spectrum. • The response to 5486 (6118) keV alpha particles was 554±45 (618±45) keVee. • The energy resolution for 5486 (6118) keV alpha particles was 11.2±0.1 (8.8±0.1) %. • This work will stimulate future use of PEN for radiation detection.

  1. Alpha particle confinement in tandem mirrors

    International Nuclear Information System (INIS)

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step

  2. Measurements of nuclear $\\gamma$-ray line emission in interactions of protons and $\\alpha$ particles with N, O, Ne and Si

    OpenAIRE

    Benhabiles-Mezhoud, H.; Kiener, J.; Thibaud, J. -P.; Tatischeff, V.; Deloncle, I.; Coc, A.; Duprat, J.; Hamadache, C.; Lefebvre-Schuhl, A.; Dalouzy, J. -C.; de Grancey, F.; Oliveira, F.; Dayras, F.; De Séréville, N.; Pellegriti, M. -G.

    2010-01-01

    $\\gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $\\alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $\\gamma$-ray lines of $^{16}$O produced in proton and $\\alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and...

  3. A primary standard for the measurement of alpha and beta particle surface emission rate from large area reference sources.

    Science.gov (United States)

    Ravindra, Anuradha; Kulkarni, D B; Joseph, Leena; Kulkarni, M S; Babu, D A R

    2016-01-01

    A large area windowless gas flow multi wire proportional counting system for the calibration of large area reference sources has been developed as a primary standard at Bhabha Atomic Research Centre (BARC). The counting system consists of a multi wire proportional counter (MWPC), vacuum system, gas flow system and pulse processing units. The MWPC detector assembly consists of a vacuum tight aluminum enclosure, multi wire grid and sliding source tray. Various detector characteristics like operating characteristics curve, Fe-55 spectrum for beta discriminator threshold setting and dead time of the measurement system were studied and determined in order to achieve an optimized detection capability. The surface emission rates of different source strengths were measured and their relative combined standard uncertainties were determined. Large Area Sources Comparison Exercise (LASCE) was organized by International Committee on Radionuclide Metrology (ICRM) working group and coordinated by National Institute for Ionising Radiation Metrology (ENEA), Italy, to demonstrate equivalence of surface emission rate measurements at the international platform. BARC participated in the programme and the results of LASCE are also discussed in this paper. PMID:26457924

  4. High resolution alpha particle spectrometry through collimation

    International Nuclear Information System (INIS)

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides. - Highlights: • Alpha particle spectrometry with collimation a useful method for identifying nuclear materials among various radionuclides. • A collimator cut off alpha particles with low angle emitted from a source. • We confirm that that a collimator improves the resolution of alpha spectra through both simulation and experiments

  5. RPL in alpha particle irradiated Ag+-doped phosphate glass

    International Nuclear Information System (INIS)

    The objective of this study is to investigate the emission mechanism of radiophotoluminescence (RPL) in the Ag+-doped phosphate glass (glass dosimeter), which is now used as individual radiation dosimeter, because the emission mechanism of RPL in glass dosimeter has been not fully understood. We have investigated the assignments and characteristics of the X-ray induced color centers in the Ag+-doped phosphate glass up to now (Miyamoto et al., 2010). Optical properties such as optical absorption spectra related with alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. In this study optical properties such as optical absorption spectrum as a function of alpha-particles and X-rays irradiation were measured for commercially available glass dosimeter. Comparison of the RPL in Ag+-doped phosphate glass irradiated with alpha-particles and X-rays is discussed. - Highlights: • A Yellow and blue emission are included in the RPL of Ag+-doped phosphate glass. • The ratio of yellow and blue emission was different between alpha and X-ray irradiation. • RPL emission intensity increased in an atmosphere below room temperature

  6. Alpha particles diffusion due to charge changes

    Science.gov (United States)

    Clauser, C. F.; Farengo, R.

    2015-12-01

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, "cold" neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  7. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  8. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  9. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  10. Alpha particles energy straggling in noble gases

    International Nuclear Information System (INIS)

    The comparison of the calculated spectra by the Monte-Carlo simulation with the experimental alpha-particles spectra after their passage through noble gases target has good agreement for Ar, Kr, and Xe and significant deviation for He and Ne. These agreement or disagreement of the calculated and experimental spectra were ascribed to adequacy or inadequacy of the applied Bohr's charged particles energy loss formula for the specific medium. (author)

  11. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley;

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  12. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  13. Alpha particle diagnostics using impurity pellet injection

    International Nuclear Information System (INIS)

    We have proposed using impurity injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction Fo∞(E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the helium-like ionization state, e.g., Li+ ions, we can determine the incident alpha distribution dnHe2+/dE from the measured energy distribution of neutral helium atoms. Initial experiments were performed on TEXT in which we compared pellet penetration with our impurity pellet ablation model, and measured the spatial distribution of various ionization states in carbon pellet clouds. Experiments have recently begun on TFTR with the goal of measuring the alpha particle energy distribution during D-T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3He tail produced during ICH minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  14. Intercomparison of alpha particle spectrometry software packages

    International Nuclear Information System (INIS)

    Software has reached an important level as the 'logical controller' at different levels, from a single instrument to an entire computer-controlled experiment. This is also the case for software packages in nuclear instruments and experiments. In particular, because of the range of applications of alpha-particle spectrometry, software packages in this field are often used. It is the aim of this intercomparison to test and describe the abilities of four such software packages. The main objectives of the intercomparison were the ability of the programs to determine the peak areas and the peak area uncertainties, and the statistical control and stability of reported results. In this report, the task, methods and results of the intercomparison are presented in order to asist the potential users of such software and to stimulate the development of even better alpha-particle spectrum analysis software

  15. Particles Emission from Gasoline Vehicles

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-fang; GE Yun-shan; TAN Jian-wei; HE Chao; YOU Ke-wei; YOU Qiu-wen

    2009-01-01

    Number concentration and size distribution from gasoline cars are investigated at transient modes on the chassis dynamometers,which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles.Results indicate that,during cold start,particle number emission is higher than that under hot start.It is found that the number of particles increases with the vehicle speeds.Furthermore,particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle.In addition,the tentative information about composition of emitted particles is also discussed.

  16. Primary particles in ship emissions

    Science.gov (United States)

    Fridell, Erik; Steen, Erica; Peterson, Kjell

    There is not much data available regarding particle emissions from ships. In this study the size distributions of particles in ship exhaust from three different ships in normal operational conditions were studied using a cascade impactor. The ships were equipped with slow- or medium-speed main engines and medium-speed auxiliary engines. The fuel was residual oil except for the auxiliary engines on one ship which used marine diesel. Large emissions and a dependence of the sulfur content in the fuel were observed. High amounts of relatively large particles (around 8 μm) were observed. These are attributed to re-entrained soot particles from walls in the engine systems. A strong variation between different ships was observed for the particle-size distribution and for the dependence on engine load. The particle emissions were found to be reduced to about half, over the whole size range, by an SCR system. The total particle emission, measured after dilution, varied between 0.3 and 3 g kW h -1 depending on load, fuel and engine.

  17. Global alpha-particle optical potentials

    International Nuclear Information System (INIS)

    A search for a global optical potential for alpha-particles is described. It did not prove possible to find such a potential valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section. (author). 7 refs, 15 figs, 1 tab

  18. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    Science.gov (United States)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  19. Alpha-emission channeling investigations of the lattice location of Li in Ge

    NARCIS (Netherlands)

    Wahl, U; Jahn, SG; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Hofsass, H

    1996-01-01

    The alpha-emission channeling and blocking technique is a direct method for lattice site determination of radioactive atoms in single crystals. Position-sensitive detection of emitted alpha-particles provides an efficient means of carrying out such experiments at very low doses (10(10)-10(11) cm(-2)

  20. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  1. Validating modelling assumptions of alpha particles in electrostatic turbulence

    CERN Document Server

    Wilkie, George; Highcock, Edmund; Dorland, William

    2014-01-01

    To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.

  2. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    particle number concentration increased slightly with increasing load, at the same time the fine mode particles became smaller. This was probably caused by different degree of particle coagulation as the residence time in the boiler was changed. The mean diameter during combustion of forest residue was around 100 nm compared to 70-80 nm for dry wood and pellets, while the total number was close to constant. This explains the differences in mass concentration found in the impactor measurements. The concentrations of CO and THC was highest for the dry wood fuel, the PAH concentration was highest for pellets combustion in boiler 4, however this boiler was poorly tuned at the time of measurement. The PAH concentration was 5 times higher during combustion of dry wood compared to forest residue. The concentration of CO, THC and PAH varied to a great extend. The high concentrations were measured in boilers running at a low load. The concentration of particle organic carbon was less than 15% of PMI for all fuels. However we used heated primary dilution, which inhibits the condensation of organic components into, the particle phase. A significant fraction of the emitted organic carbon may condense to the particle phase during dilution after the stack or after being oxidized in the atmosphere. We also measured elemental carbon in the particle phase. The contribution to PM1 was as high as 25-30% during pellets combustion at low load and 8% at low load during combustion of dry wood. In all other cases the EC-concentration was less than 3% of PMI. PIXE and lon-chromatography confirmed that alkali-salts were the dominant chemical species. PIXE analysis revealed that emitted amounts of heavy metals such as Zn, Cd and Pb are strongly dependent on the type of the fuel used. Forest residues gave high emissions of Zn, Cd and Pb, while pellets gave very high emissions of Cd and Zn. The fuel with the lowest emissions of heavy metals was dry wood. This again could be related to ash content in

  3. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  4. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    CERN Document Server

    Pollmann, Tina; Kuźniak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  5. Determination of thin layer thickness from alpha particle energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Prague. Ustav pro Elektrotechniku); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Mikusik, P. (Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie a Elektrochemie J. Heyrovskeho)

    1982-10-01

    A method which uses alpha particles from the /sup 10/B(n,alpha)/sup 7/Li nuclear reaction for the determination of surface layer thicknesses is described and experimentally checked. The thickness measurements can be performed on samples implanted with boron.

  6. New concept for a wall detector for alpha particles

    International Nuclear Information System (INIS)

    A new concept for a wall-mounted detector is described here that would measure D-T alpha flux and corresponding pitch angle distribution in tokamaks (or related toroidal devices). The sensing element is a conical Micro Channel Ring (MCR) coated with 1 to 2μ of ZnS scintillator (or possibly ZnO). The collimation of the α particles is provided by two circumferential slots at the wall surface. The alpha scintillation events on the MCR are transferred through the ring channels and coupled fiber optics bundle to an external processor. From the magnetic field vector at a given point on the device wall, a certain relation can be set up between the α-induced scintillation position on the MCR and its original pitch angle (i.e., the angle between the α emission from the fusion reaction and the magnetic field vector) which is equal to the local pitch angle since the wall α flux is dominated by prompt losses

  7. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M C; Bertsche, W; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lai, W; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wasilenko, L; Wurtele, J S; Yamazaki, Y

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  8. Analysis of radiation risk from alpha particle component of soalr particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The Solar Particle Events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and Linear Energy Transfer (LET) spectra in shielding are discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  9. Analysis of radiation risk from alpha particle component of solar particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  10. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  11. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  12. Alpha particle emission in the interaction of sup 1 sup 2 C with sup 5 sup 9 Co and sup 9 sup 3 Nb at incident energies of 300 and 400 MeV

    CERN Document Server

    Gadioli, E; Fabrici, E; Erba, E G; Birattari, C; Mica, I; Solia, S; Steyn, G F; Förtsch, S V; Lawrie, J J; Nortier, F M; Stevens, T G; Connell, S H; Sellschop, J P Friedel; Cowley, A A

    1999-01-01

    The results of measured inclusive double differential cross sections of alpha particles emitted in the interaction of sup 1 sup 2 C ions with sup 5 sup 9 Co and sup 9 sup 3 Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation functions, forward recoil ranges and angular distributions of residues produced in the interaction of sup 1 sup 2 C with a target nucleus in the same mass range. In particular, the probabilities associated with alpha-particle reemission following incomplete fusion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of sup 1 sup 2 C with nuclei are presented.

  13. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  14. Radon monitor and control system based upon alpha particle detection

    International Nuclear Information System (INIS)

    A system is designed for monitoring or controlling the level of radon in indoor air, based upon measuring alpha particles due to the decay of radon or its daughter atoms. In one embodiment, the alpha particle decay of radon itself is detected and analyzed to control a vent in the heating and air conditioning system to automatically keep the radon level below a preselected level. In another embodiment, the daughter atoms 218Po and 214Po are collected from the indoor air and their alpha particle decays are analyzed to provide a sensitive monitor of radon levels or to control vents in the HVAC system to reduce radon concentrations to permissible levels. In addition, the system provides information on the quality of the air filter and indicates when it needs servicing

  15. Turbulent transport of alpha particles in tokamak plasmas

    CERN Document Server

    Croitoru, A; Vlad, M; Spineanu, F

    2016-01-01

    We investigate the ExB diffusion of fusion born \\alpha particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron modes (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the \\alpha particle. According to our results, signficant turbulent transport of the \\alpha particles can appear only at energies of the order of 100KeV. We determine the corresponding conditions.

  16. Alpha-particle decays from excited states in 24Mg

    Institute of Scientific and Technical Information of China (English)

    LIOTTA; R; J

    2011-01-01

    Using a cluster model based on the Woods-Saxon potential, alpha-particle decays from excited states in 24Mg have been system atically investigated. Calculations can in general reproduce experimental data, noticing the fact that the preformation factor P of alpha particle in alpha-decaying nuclei is of order from 100 to 10?2. This can be the evidence for the α+20Ne structure in 24Mg. Meanwhile, the results also show the existence of other configurations, such as 16O+2α. Since the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster (α particle), our results could serve as a guide to experimental spin assignments.

  17. Continental anthropogenic primary particle number emissions

    OpenAIRE

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-01-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies) model. This im...

  18. Optimization of cold K-alpha emission using copper foams

    Science.gov (United States)

    Hussein, Amina; Hager, Jonathan; Flippo, Kirk

    2015-11-01

    Experiments were conducted at the Trident Laser Facility to increase the conversion efficiency of short-pulse, copper K-alpha x-ray backlighter sources. New target designs using copper foams are in development to investigate the role of underdense/near-critical density targets on the optimization of cold K-alpha emission. K-alpha emission was measured using Highly Ordered Pyrolytic Graphic (HOPG) and imaged with a toroidally bent quartz crystal to determine uniformity, spatial resolution and conversion efficiency of the new designs. Results from this experiment will help inform the development of short-pulse Cu K-alpha back-lighters on facilities like Omega, OmegaEP and the NIF, with a particular emphasis on creating advanced narrow-band backlighter sources capable of producing strong signal to noise with high x-ray fluxes.

  19. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Schwartz, S. J. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, P. [Astronomical Institute, CAS, Prague (Czech Republic); Landi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze (Italy)

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  20. Production of $\\alpha$-particle condensate states in heavy-ion collisions

    CERN Document Server

    Raduta, Ad R; Geraci, E; Neindre, N Le; Napolitani, P; Rivet, M F; Alba, R; Amorini, F; Cardella, G; Chatterjee, M; De Filippo, E; Guinet, D; Lautesse, P; La Guidara, E; Lanzalone, G; Lanzano, G; Lombardo, I; Lopez, O; Maiolino, C; Pagano, A; Pirrone, S; Politi, G; Porto, F; Rizzo, F; Russotto, P; Wieleczko, J P

    2010-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $\\alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the $\\alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$\\alpha$ decay of the Hoyle state is isolated.

  1. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz;

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... were investigated. The experiments confirmed reports from literature that blue burning flames of domestic gas cookers emit submicron particles. The particle number concentrations varied in the range 103-106 particles/cm3, depending on the fuel, flow rate, and primary air addition. The diameters...

  2. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    A radiochemical method for 226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to 226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks). (author)

  3. Protons from the alpha-particle bombardment of 23Na

    NARCIS (Netherlands)

    Kuperus, J.

    1964-01-01

    Resonances in the yield of ground-state protons from alpha-particle bombardment of 23Na were investigated in the energy range Eα = 1.0 – 3.3 MeV. At least thirty-eight resonances were observed. Resonance energies and strengths are presented. At nine resonances angular distribution measurements lead

  4. Discrimination of nuclear recoils from alpha particles with superheated liquids

    CERN Document Server

    Aubin, F; Behnke, E; Beltran, B; Clark, K; Dai, X; Davour, A; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Krauss, C B; Leroy, C; Lessard, L; Levine, I; Levy, C; Martin, J -P; Noble, A J; Morlat, T; Nadeau, P; Piro, M -C; Pospísil, S; Shepherd, T; Sodomka, J; Starinski, N; Stekl, I; Storey, C; Wichoski, U; Zacek, V

    2008-01-01

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new effect offers the possibility of improved background suppression and could be especially useful for rare event searches such as dark matter experiments.

  5. Fine particle emissions from residential wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, J.

    2008-07-01

    Residential wood combustion (RWC) appliances have the high probability of incomplete combustion, producing e.g. fine particles and hazardous organic compounds. In this thesis, the fine particle number and mass emissions, particle composition and morphology, and gas emissions were investigated from the modern (MMH) and conventional masonry heaters (CMH), sauna stoves (SS) and pellet burner. The investigation was based on laboratory and field experiments applying extensive and unique particle sampling methods. The appliance type, fuel and operational practices were found to affect clearly the fine particle emissions. In good combustion conditions (e.g. in pellet combustion), the fine particle mass (PM{sub 1}) emission factors were low, typically below 0.3 g kg-1, and over 90% of the PM{sub 1} consisted of inorganic compounds (i.e fine ash). From the CMH the typical PM{sub 1} values were 1.6-1.8 g kg-1, and from the SS 2.7-5.0 g kg-1, but were strongly dependent on operational practices. The smouldering combustion in CMH increased PM{sub 1} emission up to 10 g kg-1. The good secondary combustion in the MMH reduced the particle organic matter (POM) and gaseous emissions, but not substantially the elemental carbon (EC, i.e. soot) emission, and the typical PM{sub 1} values were 0.7-0.8 g kg-1. The particle number emissions were high, and did not correspond with the completition of combustion. The particle number distributions were mainly dominated by ultrafine (<100 nm) particles, but varied dependent on combustion conditions. The electronmicroscopy analyses showed that ultrafine particles were composed mainly of K, S and Zn. From the smouldering combustion, particles were composed mainly of carbon compounds and they had a closed sinteredlike structure, due to organic matter on the particles. Controlling the gasification rate via the primary air supply, log and batch size, as well as fuel moisture content, is important for the reduction of emissions in batch combustion

  6. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  7. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  8. Particle Emission from Dark Matter

    International Nuclear Information System (INIS)

    When some kinds of symmetry breaking occur at the cosmological phase transition, the production of topological and/or non-topological defects can be expected. Here we consider the interaction of the defects within which the condensation of various fields may be realized at the core with dark matter particles, for example, axions or neutralinos. The astrophysical limits on the particle physics model are discussed

  9. Extended Ly$\\alpha$ emission around quasars with eclipsing damped Ly$\\alpha$ systems

    CERN Document Server

    Fathivavsari, Hassan; Noterdaeme, Pasquier; Pâris, Isabelle; Finley, Hayley; López, Sebastian; Srianand, Raghunathan

    2016-01-01

    We present spectroscopic observations of six high redshift ($z_{\\rm em}$ $>$ 2) quasars, which have been selected for their Lyman $\\alpha$ (Ly$\\alpha$) emission region being only partially covered by a strong proximate ($z_{\\rm abs}$ $\\sim$ $z_{\\rm em}$) coronagraphic damped Ly$\\alpha$ system (DLA). We detected spatially extended Ly$\\alpha$ emission envelopes surrounding these six quasars, with projected spatial extent in the range 26 $\\le$ $d_{\\rm Ly\\alpha}$ $\\le$ 51 kpc. No correlation is found between the quasar ionizing luminosity and the Ly$\\alpha$ luminosity of their extended envelopes. This could be related to the limited covering factor of the extended gas and/or due to the AGN being obscured in other directions than towards the observer. Indeed, we find a strong correlation between the luminosity of the envelope and its spatial extent, which suggests that the envelopes are probably ionized by the AGN. The metallicity of the coronagraphic DLAs is low and varies in the range $-$1.75 $<$ [Si/H] $<...

  10. Particle emissions from biomass combustion

    Science.gov (United States)

    Chabadová, Jana; Papučík, Štefan; Nosek, Radovan

    2014-08-01

    The paper presents an analysis of the impact of fuel feed to power and emissions parameters of the automatic domestic boiler for combustion of wood pellets. For the analysis has been proposed an experimental methodology of boiler measuring. The investigated boiler is designed for operation in domestic heating system. It has heat power equal to 18 kW. Concentrations of flue gas species were registered at the exit the boiler and based on the measured parameters was carried out evaluation of the impact of the fuel feed to heat power and production of emissions.

  11. Alpha particle effects on global MHD modes, and alpha particle transport in ignited tokamaks

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable primarily by the circulating α-particles through wave-particle resonances. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions, as well as Alfven continuum damping. Stability criteria are presented for TFTR, CIT, and ITER tokamaks in terms of the α-particle beta βα, the α-particle pressure gradient parameter (ω*/ωA), where ω* is the α-particle diamagnetic drift frequency, and the α-particle velocity (vα/vA) parameter. Typically the volume averaged α-particle beta threshold is on the order of 10-4. Rough estimates of the TAE mode saturation level give δBr/B ∼ 10-3 for typical D-T tokamak operations. Significant α-particle losses are found when the amplitude of the global MHD modes is large, on the order of (δBr/B) ≥ 10-4. For (δBr/B) = 5 x 10-4, the α-particle loss time is appreciably shorter than the α-particle slowing-down time. 13 refs., 1 fig

  12. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  13. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    Science.gov (United States)

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  14. On the Lyman-alpha Emission of Starburst Galaxies

    CERN Document Server

    Valls-Gabaud, D

    1993-01-01

    Nearby starburst galaxies have consistently shown anomalous Ly-alpha/H-beta ratios. By re-analysing the published IUE/optical observations, we show that most starbursts present a normal Ly-alpha emission, consistent with case B recombination theory, provided extinction laws appropriate to their metallicities are used. This implies that extinction is more important than multiple resonant scattering effects. The anomalous emission and absorption lines present in a few remaining galaxies are simply explained if they are observed in the post-burst phase, between about 10$^7$ and 10$^8$ yrs after the start of the burst. We use updated stellar population synthesis models to show that anomalous ratios are produced by the aging of stellar populations, since the underlying stellar Ly-alpha line is important in the cooler massive stars. The inferred low-duty cycle of massive star formation accounts naturally for the failure to detect large numbers of Ly-alpha--emitting galaxies in deep surveys and at high redshift. Som...

  15. Theory of particle and cluster emission

    Energy Technology Data Exchange (ETDEWEB)

    Delion, Doru S. [Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania). Theoretical Physics Department

    2010-07-01

    Nowadays experimental nuclear physics pushes its limits towards highly unstable nuclei. The theoretical description of proton-rich and neutron-rich nuclei or superheavy elements has become an important part of the modern nuclear physics. The main tool to investigate such unstable nuclei concerns radioactive decays, from proton emission to fission processes. We review the main theoretical methods describing decay processes induced by the strong interaction, like Coupled channels method for Gamow resonances, R-matrix theory, Distorted wave approach, Semiclassical approach, Multi step and Two center shell model. Thus, most of the book is addressed to a broad audience within the nuclear physics community. Secondly, this book is an attempt to clarify some fundamental aspects connected with the fine structure or anisotropy in alpha decay and ternary cold fission. Finally, the self consistent microscopic theory of the alpha decay is analyzed. (orig.)

  16. GaN-based PIN alpha particle detectors

    International Nuclear Information System (INIS)

    GaN-based PIN alpha particle detectors are studied in this article. The electrical properties of detectors have been investigated, such as current-voltage (I-V) and capacitance-voltage (C-V). The reverse current of all detectors is in nA range applied at 30 V, which is suitable for detector operation. The charge collection efficiency (CCE) is measured to be approximately 80% but the energy resolution is calculated to be about 40% mostly because the intrinsic layer is not sufficiently thick enough.

  17. Properties of an $\\alpha$ particle in a Bohrium $270$ Nucleus under the Generalized Symmetric Woods-Saxon Potential

    CERN Document Server

    Lütfüoğlu, B C

    2016-01-01

    The energy eigenvalues and the wave functions of an $\\alpha$ particle in a Bohrium $270$ nucleus were calculated by solving Schr\\"odinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature were calculated. Stability and emission characteristics are interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed $\\alpha$ particle was calculated using the quasi-bound states, which is found close to the experimental value.

  18. How Lyman Alpha Emission Depends On Galaxy Stellar Mass

    CERN Document Server

    Oyarzún, Grecco A; González, Valentino; Mateo, Mario; Bailey, John I; Finkelstein, Steven L; Lira, Paulina; Crane, Jeffrey D; Olszewski, Edward W

    2016-01-01

    In this work, we show how the stellar mass (M) of galaxies affects the 3alpha equivalent width (EW) distribution. To this end, we design a sample of 629 galaxies in the M range 7.6 < logM/Msun < 10.6 from the 3D-HST/CANDELS survey. We perform spectroscopic observations of this sample using the Michigan/Magellan Fiber System, allowing us to measure Ly-alpha fluxes and use 3D-HST/CANDELS ancillary data. In order to study the Ly-alpha EW distribution dependence on M, we split the whole sample in three stellar mass bins. We find that, in all bins, the distribution is best represented by an exponential profile of the form dN(M)/dEW= A(M)exp(-EW/W0(M))/W0(M). Through a Bayesian analysis, we confirm that lower M galaxies have higher Ly-alpha EWs. We also find that the fraction A of galaxies featuring emission and the e-folding scale W0 of the distribution anti- correlate with M, recovering expressions of the forms A(M)= -0.26(.13) logM/Msun+3.01(1.2) and W0(M)= -15.6(3.5) logM/Msun +166(34). Th...

  19. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  20. Alpha particle response characterization of CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Amman, Mark; Lee, Julie S.; Luke, Paul N.

    2001-06-28

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance.

  1. Alpha particle response characterization of CdZnTe

    International Nuclear Information System (INIS)

    The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance

  2. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter

    2014-01-01

    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  3. Measuring soot particles from automotive exhaust emissions

    Science.gov (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  4. Sawtooth mixing of alpha particles in TFTR D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, M.P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Budny, R.V.; Chang, Z. [Princeton Plasma Physics Physics Lab., Princeton, NJ (United States)] [and others

    1996-12-31

    Radially resolved confined alpha particle energy and density distributions are routinely measured on TFTR using two diagnostics: PCX and {alpha}-CHERS. The Pellet Charge-eXchange (PCX) diagnostic uses the ablation cloud formed by an impurity pellet (Li or B) for neutralization of the alphas followed by analysis of the escaping helium neutrals. PCX detects deeply trapped alpha particles in the energy range 0.5 - 3.8 MeV. The {alpha}-CHERS technique, were the alpha signal is excited by charge-exchange between alphas and the deuterium atoms of one of the heating beams and appears as a wing on the He{sup +} 468.6 nm line, detects mainly passing alphas in the range of 0.15 - 0.7 MeV. Studies of alpha losses during DT experiments on TFTR have also been conducted using lost alpha detectors located on the walls of the plasma chamber. All of these diagnostics were used for investigating the influence of sawtooth crashes on alphas in high power D-T discharges in TFTR. Both PCX and {alpha}-CHERS measurements show a strong depletion of the alpha core density and transport of trapped alphas radially outwards well beyond q = 1 surface after a sawtooth crash. Lost alpha detectors measure bursts of alpha loss of the previously confined alphas (<1%). Thus, a sawtooth crash leads mainly to radial redistribution of the alphas rather than losses. For modeling of alpha sawtooth mixing, a code is used which is based on the conventional model of magnetic reconnection and the conservation of particles, energy and magnetic flux. The effect of the particle orbit averaged toroidal drift in a perturbed helical electric field generated by the crash has also been included in the code. It is shown that mixing of the passing alphas is dominated by the magnetic reconnection whereas trapped alphas are affected mainly by ExB drift.

  5. A Feasibility Study of a Portable Alpha Particle Spectrometer

    International Nuclear Information System (INIS)

    Alpha spectroscopy is widely used for detecting undeclared nuclear facilities, activities, and materials. Due to the heavy equipment required to carry out this technique, its applications is limited. With the goal of quickly and efficiently responding to undeclared nuclear facilities, activities, and materials, the present authors have designed and built a portable α-particle spectrometer. This study was conducted in order to develop a new portable α-particle spectrometer with the purpose of detecting undeclared nuclear facilities, activities, and materials on site quickly and efficiently. All heavy and large components, which are typically required for a laboratory such as a αparticle spectrometry system, were minimized and placed in a small container with a weight of 14 kg and a size of 30 cm x 30 cm x 30 cm. In the feasibility study, the calculated enrichment values of 235U obtained from the portable α-particle spectrometer were 1.868 % and 3.083 %, similar to the results from a commercial spectrometry system used in laboratories, 2.049 % and 3.253 %. These differences were possibly caused by different channel setups for each system

  6. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  7. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  8. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  9. A novel experiment to investigate the attenuation of alpha particles in air

    International Nuclear Information System (INIS)

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium 226. The experimental results are in close agreement with the theoretical predictions

  10. [Ultrafine particle emissions from laser printers].

    Science.gov (United States)

    Grana, Mario; Vicentini, Laura; Pietroiusti, Antonio; Magrini, Andrea

    2015-01-01

    In recent years there has been growing attention to the importance of indoor air quality on which scientist and experts have no doubts since in modern society we tend to spend most of the time in various types of indoor environments (office, private homes, etc.). Laser printers, in particular, release an aerosol into the environment including solid and liquid particles and gaseous compounds. The measurement of all these components is not practically feasible. Therefore, it is necessary to identify a marker which, when measured, shows accurately the frequency, duration and magnitude of the exposure. The measure with an optical particle counter (OPC) and a condensation particle counter (CPC) is an indicator with high sensitivity and representativeness. The major advantage of using these tools is the ability to detect the presence of ultrafine particles and also detect the particles in the liquid phase. The continuous recording of submicron particulate matter emitted during the printing activity allows to measure the exposure of personnel, while the ratio between the peak values and the values without printing activity can be used to classify the printers according to their emissivity. The particulate generated during the processes of printing has size less than 0.3 micron and therefore extends in the size range of nanoparticles (ultrafine particles less than 100 nm). These activities lead to high concentrations of ultrafine particles with a variability related to factors such as type of printer, toner, paper type, frequency of maintenance and air exchange. The concentrations of ultrafine particles in office environments can be reduced by proper choice of the printers, with the use of appropriate filtration techniques and placing the equipment away from workstations. PMID:26749975

  11. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υalpha ∼ (PRF/nαε0) ρp, where PRF is the ICRF-wave power density, nα is the alpha density, ε0 is the alpha birth energy, and ρp is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  12. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  13. The use of the long-range alpha detector (LRAD) for alpha emission surveys at active and inactive firing sites

    International Nuclear Information System (INIS)

    Surveys were carried out at five different firing sites at Los Alamos National Laboratory to measure residual alpha emissions in earth contaminated with natural and depleted uranium. This contamination is caused by controlled experimental explosions during testing of the non fissile components of nuclear weapons. Two conclusions were reached: the first is that post shot clearing of the experimental areas is effective at removing contamination and the second is that the diminution of alpha emissions due to aging is small

  14. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.W.

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  15. Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?

    Institute of Scientific and Technical Information of China (English)

    HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze

    2001-01-01

    The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.

  16. Time dependent particle emission from fission products

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory

    2010-01-01

    Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.

  17. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  18. The Ly$\\alpha$ emission from high-$z$ galaxies hosting strong Damped Ly$\\alpha$ systems

    CERN Document Server

    Joshi, Ravi; Noterdaeme, Pasquier; Petitjean, Patrick

    2016-01-01

    We study the average Ly$\\alpha$ emission associated with high-$z$ strong (log $N$(H I) $\\ge$ 21) damped Ly$\\alpha$ systems (DLAs). We report Ly$\\alpha$ luminosities ($L_{\\rm Ly\\alpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(r-i)$ colours of QSOs and rest equivalent width of Si II$\\lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{\\rm Ly\\alpha}$$< 10^{41} (3\\sigma)\\ \\rm erg\\ s^{-1}$ with a $2.8\\sigma$ level detection of Ly$\\alpha$ emission in the red part of the DLA trough. The $L_{\\rm Ly\\alpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $\\geq 3\\sigma$, redshifted by about 300-400 $\\rm km\\ s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$\\alpha$ emitters. A clear signature of a double-hump Ly$\\alpha$ profile is seen when we consider $W_{1526} \\ge 0.4$ \\AA\\ and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our...

  19. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles

  20. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  1. Computation and measurement of differential ranges of low-energy alpha particles in matter

    International Nuclear Information System (INIS)

    The stopping power formula of Bethe is discussed and is used to compute differential ranges of low-energy alpha particles in air, argon, aluminium and copper. A single radioactive source containing three active elements is used in experiments to measure the differential ranges in these materials. Finally a range-energy relationship for the alpha particles in air is deduced. (author)

  2. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    International Nuclear Information System (INIS)

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  3. The biokinetics of alpha-particle emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.M. [School of Chemistry, Cardiff Univ., Cardiff (United Kingdom); Duffield, J.R. [Faculty of Applied Sciences, Univ. of the West of England, Bristol (United Kingdom)

    2005-07-01

    The past two decades have seen wide interest in the application of alpha-particle emitting radionuclides for targeted endoradiotherapy and a large number of compounds labeled with {sup 211}At (T{sup 1}/{sub 2} 7.21 h), {sup 212}Bi (T{sup 1}/{sub 2} 1 h) or {sup 213}Bi (T{sup 1}/{sub 2} 0.78 h) have been studied. Knowledge of the biokinetic behaviour of such agents is important both for their optimal clinical exploitation and for general radiological protection purposes. Animal studies of the distribution and retention of {sup 211}At compounds, including ionic astatide, substituted aromatic compounds and labelled monoclonal antibodies, have provided new information on the biochemistry of astatine. With respect the thyroid gland the uptake of the astatide ion has been shown to be very much lower than that of the iodide ion. Less information is available for {sup 212}Bi-labelled radiopharmaceuticals. The available data for both {sup 211}At and {sup 212}Bi radiopharmaceuticals are reviewed. Cautious generic biokinetic models for inorganic and simple organic compounds of {sup 211}At and {sup 212}Bi; for [{sup 211}At]-, and [{sup 212}Bi]-biphosphonates and for [{sup 211}At]-, and [{sup 212}Bi]-monoclonal antibodies, are proposed for use in general radiological protection when compound-specific data are not available. (orig.)

  4. Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

    Indian Academy of Sciences (India)

    Basudeb Sahu

    2014-04-01

    A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.

  5. Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    CERN Document Server

    Verscharen, Daniel; Chandran, Benjamin D G

    2013-01-01

    We investigate the conditions under which parallel-propagating Alfv\\'en/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which $w_{\\parallel \\alpha} \\gtrsim 0.25 v_{\\mathrm A}$, where $w_{\\parallel \\alpha} $ is the parallel alpha-particle thermal speed and $v_{\\mathrm A}$ is the Alfv\\'en speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon $w_{\\parallel \\alpha}/v_{\\mathrm A}$, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle b...

  6. Assessment of gamma, beta and alpha-particle-emitting nuclides in marine samples

    International Nuclear Information System (INIS)

    Depending on the physical properties of radionuclides different systems must be used for their measurement. Most convenient is if gamma spectrometry can be used by germanium, Silicon or Scintillation detectors (eg. NaI). If, however, the main emission consists of beta or alpha particles or low-energy photons as is the case for radionuclides decaying by electron capture, radiochemical separation and specific source preparations must be undertaken. In such cases also the radiochemical yield must be determined. The radiochemical part mainly follows the lines presented by prof. T. Jaakkola, Department of Radiochemistry, Helsinki, Finland, at a course in radioecology in Lurid, 1991. For very long-lived radionuclides other methods such as mass spectrometry are superior although often associated with sophisticated expensive instrumentation. (author)

  7. Lung cancer risk at low doses of alpha particles.

    Science.gov (United States)

    Hofmann, W; Katz, R; Zhang, C X

    1986-10-01

    A survey of inhabitant exposures arising from the inhalation of 222Rn and 220Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the "high background" and the "control" area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 222Rn and 220Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli.

  8. The simulation of the response of superheated emulsion to alpha particles

    International Nuclear Information System (INIS)

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.:  −1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures

  9. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    International Nuclear Information System (INIS)

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described

  10. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  11. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Park's low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation), and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, so that it approximates its observed flow along the magnetic field, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in poor agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. The failure of the model appears to be the breakdown of the assumption that charge-state equilibrium exists in the cloud. This problem is particularly severe for the TEXT parameters so modifications in the model to include non-equilibrium effects are being implemented

  12. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Parks' low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation) and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in pretty good agreement with the TEXT data as to the dimensions of the C+3 region of the cloud along the magnetic field. Also a small improvement has been made in the low-Z pellet plasma-penetration program, which brings the predictions of the model in closer agreement with the carbon pellet injection experiments on TFTR. 22 refs., 3 figs

  13. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood

  14. Interaction of neutrons with alpha particles: A tribute to Heinz Barschall

    CERN Document Server

    Hoop, B

    2015-01-01

    As a tribute to our teacher and mentor on the occasion of his centennial celebration, we provide a brief historical overview and a summary of sustained interest in the topic of interaction of neutrons with alpha particles.

  15. Alpha-particle-induced bystander effects between zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Choi, V.W.Y.; Nikezic, D. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, V.W.T.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Dechorionaed embryos of the zebrafish, Danio rerio, at 1.5 h post-fertilization (hpf) were irradiated with alpha particles from an {sup 241}Am source. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 mum were used as support substrates for holding the embryos and recorded alpha-particle hit positions, and thus enabled calculation of the dose absorbed by the embryos. The irradiated embryos were subsequently incubated with naive (unirradiated) embryos in such a way that the irradiated and naive embryos were spatially separated but the medium was shared. Acridine orange was used to perform in vital staining to show cell deaths in the naive embryos at 24 hpf. Our results gave evidence in supporting the existence of alpha-particle-induced bystander effects between zebrafish embryos in vivo, and a general positive correlation between the cell death signals in the naive embryos and the alpha-particle dose absorbed by the irradiated embryos.

  16. Measurement of $\\alpha$-particle quenching in LAB based scintillator in independent small-scale experiments

    CERN Document Server

    von Krosigk, B; Hans, S; Junghans, A R; Kögler, T; Kraus, C; Kuckert, L; Liu, X; Nolte, R; O'Keeffe, H M; Tseung, H S Wan Chan; Wilson, J R; Wright, A; Yeh, M; Zuber, K

    2015-01-01

    The $\\alpha$-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, $\\alpha$-particles were produced in the scintillator via $^{12}$C($n$,$\\alpha$)$^9$Be reactions. In the second approach, the scintillator was loaded with 2% of $^{\\mathrm{nat}}$Sm providing an $\\alpha$-emitter, $^{147}$Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants $^{222}$Rn, $^{218}$Po and $^{214}$Po provided the $\\alpha$-particle signal. The behavior of the observed $\\alpha$-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter $kB$ ranges from $(0.0071\\pm0.0003)$ cm/MeV to $(0.0076\\pm0.0003)$ cm/MeV. In the first approach, the $\\alpha$-particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proto...

  17. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    Science.gov (United States)

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  18. Feasibility of ion temperature measurement with a gyrotron scattering alpha particle diagnostic

    International Nuclear Information System (INIS)

    Collective Thomson scattering can be used to diagnose localized ion temperature as well as alpha particle velocity distribution and density in a D-T burning tokamak. With one diagnostic beam a simultaneous, but independent, measure of the bulk ion temperature and alpha particle parameters can be made. Use of a long pulse, millimeter-wave gyrotron offers a significant margin in signal to noise ratio capability (√Δftau > 1000) not previously possible with lasers. 9 refs., 2 figs

  19. Effect of Magnetohydrodynamic Perturbations on the Orbit Loss of Alpha Particles in Tokamak Plasma

    Institute of Scientific and Technical Information of China (English)

    邬良能; 俞国扬

    2002-01-01

    We investigate the orbit loss of alpha particles under helical magnetic perturbation in a tokamak. The results show that low-frequency andlow-mode number magnetic perturbation can cause stochastic loss ofalpha particles.This effect is significant for those particles close to the boundary between the transit zone and the trapped zone.The particle loss is sensitive to the phase of the magnetic perturbation, indicating the modulation of the particle loss with respect to magnetic perturbation. It is also found that the precession of the particle banana orbit can even further enhance the particle loss.

  20. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  1. Silicon Array for Multi-particle Emission

    Institute of Scientific and Technical Information of China (English)

    XU; Xin-xing; LIN; Cheng-jian; SUN; Li-jie; BAO; Peng-fei; YANG; Lei; YANG; Feng; ZHANG; Huan-qiao; LIU; Zu-hua; JIA; Hui-ming; MA; Nan-ru

    2013-01-01

    Remarkable progress in the study of two-proton emission has been made in recent years.One of the next destinations is the realization of high-precision direct measurements of decay-energy and emission-angle correlations inβ-delayed two-proton(β2p)emission.We have studiedβ2p correlated emission of the ground state of 26P at the proton drip line with the direct measurement at the National

  2. Lyman alpha emission from the first galaxies : Implications of UV backgrounds and the formation of molecules

    NARCIS (Netherlands)

    Latif, M. A.; Schleicher, D. R. G.; Spaans, Maarten; Zaroubi, S.

    2011-01-01

    The Lyman alpha line is a robust tracer of high redshift galaxies. We present estimates of Lyman alpha emission from a protogalactic halo illuminated by UV background radiation fields with various intensities. For this purpose, we performed cosmological hydrodynamics simulations with the adaptive me

  3. Coincidence techniques (time correlation) alpha-gamma particles associated experiments on PGFNAA

    International Nuclear Information System (INIS)

    PGFNAA (Prompt Gamma Fast Neutron Alpha Associated) techniques offers capabilities far beyond those of the conventional inspection system to detect hazardous materials such as explosives or drugs. This technique uses the time coincidence between alpha and gamma particles to reduce the background produced by fast neutron interactions not only with the objects but also with the surrounding material. This paper reports the experimental setup that have been conducted to capture coincident events between alpha and gamma particles. Although not perfect, but the reduction of the background almost 100 % had been obtained on the outside area of the spectrum energy interest for water and graphite samples. (author)

  4. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  5. Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V

    2016-01-01

    Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...

  6. ICRF enhancement of fusion reactivity in the presence of alpha particles

    International Nuclear Information System (INIS)

    Absorption of ICRF (ion cyclotron range of frequency) waves by alpha particles and fusion reactivity enhancement due to the ICRF induced ion tail are investigated. The rate of linear absorption by alpha particles increases with the cyclotron harmonic number, and decreases with the ratio of the electron plasma frequency to the electron cyclotron frequency. The deformation of the distribution due to ICRF waves is also examined by using a solution to a Fokker-Planck equation combined with a quasi-linear RF (radiofrequency) diffusion term. It is found that second harmonic ICRF heating is comparatively applicable to the enhancement of the fusion power density even in the presence of alpha particles, while the efficiency of the enhancement is deteriorated markedly by wave deposition to alphas for higher harmonic ICRF heating in the high magnetic field. (author)

  7. The effect of temperature on the crystallization of {alpha}-Fe{sub 2}O{sub 3} particles from dense {beta}-FeOOH suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Zic, Mark [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ristic, Mira, E-mail: ristic@irb.hr [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2010-03-15

    The effect of temperature on the crystallization of {alpha}-Fe{sub 2}O{sub 3} particles from dense {beta}-FeOOH suspensions was monitored by {sup 57}Fe Moessbauer spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. Dense suspensions of very long laterally arranged {beta}-FeOOH fibrils were obtained at 90 deg. C. Crystallization at 120 deg. C between 18 and 72 h yielded monodisperse {alpha}-Fe{sub 2}O{sub 3} particles of a shape close to that of double spheres with ring. The double spheres with ring showed two narrow particle size distributions. In these particles a substructure was detected, i.e., the spheres consisted of the linear chains of interconnected {alpha}-Fe{sub 2}O{sub 3} subparticles. With further rise in the crystallization temperature the increase in {alpha}-Fe{sub 2}O{sub 3} particles and porosity became pronounced. Obviously, the aggregation mechanism played an important role in the formation of {alpha}-Fe{sub 2}O{sub 3} particles.

  8. Measurements of Gas and Particle Emissions From Commercial Marine Vessels

    Science.gov (United States)

    Williams, E.; Lerner, B.; Quinn, P.; Bates, T.

    2005-12-01

    Commercial marine vessels are powered by large diesel engines with power outputs up to 80 MW and typically consume high-sulfur fuel. They can be viewed as small floating power plants that produce large quantities of nitrogen oxides, sulfur dioxide, and particles. Thus these vessels can be significant pollution sources globally, regionally (e.g., coastal shipping lanes) and locally (e.g., ports). Assessment of this significance is done via emission inventory modelling in which activity factors are combined with emission factors to produce estimates of source strengths over different scales. This work addresses potential uncertainties in marine vessel emission factors. Measurements of trace gases and particles in the exhaust plumes from commercial marine vessels were made from the NOAA research vessel Ronald H. Brown during the 2002 and 2004 NEAQS missions in the Gulf of Maine. Numerous encounters with these exhaust plumes provided the opportunity to examine emission of NOx, SO2, CO, CO2, particle number, and particle composition from these ships. Data from these studies suggest that emission factors used in current inventories may not adequately represent emission from ships under actual operating conditions. For example, our NOy data indicate that current inventories may overestimate these emissions by 20-30%. Though emission of CO by marine diesel engines is typically very low, several encounters with diesel-powered fishing vessel exhaust plumes showed high levels of CO which may indicate that engine maintenance plays a large role in the actual emissions from these vessels. Particle composition data from a container ship plume indicate that sub-micron mass was principally organic and not sulfate while literature data suggest a strong dependence of particle mass emission on the fuel sulfur level. In this presentation we will discuss the emission factors determined from our data and the importance of marine vessel emissions at different scales.

  9. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  10. The influence of a Cr-dopant on the properties of {alpha}-FeOOH particles precipitated in highly alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)], E-mail: krehul@irb.hr; Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2009-02-05

    The effects of a Cr-dopant on the precipitation of acicular {alpha}-FeOOH particles, the formation of solid solutions, particle size and shape were investigated using X-ray powder diffraction (XRD), Moessbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE-SEM). Acicular and monodisperse {alpha}-FeOOH particles were precipitated at a very high pH by heating the suspension obtained by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl{sub 3}. The influence of the Cr-dopant was investigated by addition of various amounts of Cr{sup 3+} ions to the initial FeCl{sub 3} solution, where r = 100[Cr]/([Cr] + [Fe]) stands for the added amount of Cr. XRD analysis of the obtained powders (with r values from 0 to 23.08) showed only the presence of the diffraction lines characteristic for {alpha}-FeOOH. Moessbauer spectroscopy showed a decrease in hyperfine magnetic field of {alpha}-FeOOH with an increase in Cr addition which indicates Cr incorporation into the {alpha}-FeOOH structure. The OH bending bands in the FT-IR spectra showed only a slight change in position with an increase in r, but the considerable increase in the lattice band wave number indicated a decrease in thickness of the lath-like {alpha}-FeOOH particles. This conclusion was confirmed by FE-SEM observations.

  11. The role of alpha particles in the dynamics of ring-stabilized devices

    International Nuclear Information System (INIS)

    The use of relativistic electron rings to stabilize plasmas against the interchange modes has been utilized in such devices as the Elmo Bumpy Torus (EBT) and the plugs of a Tandem Mirror device (STM). In the EBT case enhanced stability is reflected in higher betas (ratio of plasma to magnetic field pressures), while in the Tandem Mirror case symmetry in the plug magnetic geometry results in reduced particle diffusion across the magnetic field in the central cell. Regardless of the application, the question arises as to what effect would alpha particles generated by the Deuterium-Tritium (DT) reactions have on the stability of such ring-stabilized devices. In this paper the macroscopic stability of such systems is reexamined in order to assess the effect of alphas on the background interchange mode, the interacting interchange mode, and the high frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizeable Larmor radii. The destabilization is most pronounced at high alpha energies i.e., at birth, and near complete recovery of stability is achieved as these particles approach thermalization with the background ions. It is also shown that the alphas completely stabilize the high frequency modes. (orig.)

  12. Effect of alpha particles on the stability of Elmo Bumpy Torus (EBT) reactor. Final report

    International Nuclear Information System (INIS)

    The macroscopic stability of an ignited EBT reactor is investigated by studying the effects of the alpha particles generated by the Deuterium-Tritium (D-T) fusion reaction on the background interchange mode, the interacting interchange mode, and the high-frequency compressional Alfven and coupled modes. A fluid description is used for the background plasma while a kinetic treatment is utilized for the hot electron species and the alpha particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while stabilizing the background interchange due to their sizable Larmor radii. The destabilization is most pronounced when the beta of the alpha particles in highest, i.e., at birth, and recovery of stabilization takes place as these particles slow down toward thermalization. It is also shown that the alphas completely stabilize the high frequency modes so that it can safely be concluded that fusion alphas present no detrimental effects on the stability of an EBT reactor that possesses an appropriate hot electron ring for macroscopic stability

  13. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects

  14. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. PMID:25634901

  15. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Light emission during impact stressing of a particle layer

    International Nuclear Information System (INIS)

    The mechanical stress detection technique was developed based on light emission properties of ZnS:Mn particles. The light emission properties of ZnS:Mn particles were characterized by the use of the impact tester that includes a stressing tool, photomultiplier and a contact time measurement system. The mechanical stressing of particles was caused by the impact of a metallic ball, dropped from different heights. At impact, the metallic ball achieves direct contact with the upper surface of the metallic anvil. This allows the measurement of the contact time by means of the electrical current that flows between the anvil and the metallic ball during contact time. The stress, caused at the collision, is transmitted through a metallic anvil to the layer of particles and produces the deformation of particles. The applied stress was detected using a piezoelectric sensor. It was shown that the ZnS:Mn particles generate the light during the action of the loading force. After removal of the loading force the light emission from the particle layer disappears in a few microseconds. The measurement was carried out using different ranges of applied forces. In this way, it was shown that the particle layer exhibits a high damping factor and failure resistance. One of the possible applications of these sensor systems based on light emission properties of ZnS:Mn particles is structural health monitoring. (paper)

  17. Review of alpha-particle spectrometric measurements of actinides

    International Nuclear Information System (INIS)

    At present the silicon surface-barrier detector is the most used α-particle detector mainly due to its high energy resolution, excellent stability, low background and low cost. In this presentation various parameters of importance for α-particle spectrometry are discussed, i.e. energy resolution and interval selection, energy calibration, background and peak tailing. Examples of α-particle spectra recorded from various actinides (Th, U, Np, Pu, Am, and Cm) separated from environmental samples are shown, and the choice of yield determinants is discussed for each case. (author)

  18. The H alpha Galaxy Survey. III. Constraints on supernova progenitors from spatial correlations with H alpha emission

    CERN Document Server

    James, P A

    2006-01-01

    Aims: We attempt to constrain progenitors of the different types of supernovae from their spatial distributions relative to star formation regions in their host galaxies, as traced by H alpha + NII line emission. Methods: We analyse 63 supernovae which have occurred within galaxies from our H alpha survey of the local Universe. Three statistical tests are used, based on pixel statistics, H alpha radial growth curves, and total galaxy emission-line fluxes. Results: Many more type II supernovae come from regions of low or zero emission line flux than would be expected if the latter accurately traces high-mass star formation. We interpret this excess as a 40% `Runaway' fraction in the progenitor stars. Supernovae of types Ib and Ic do appear to trace star formation activity, with a much higher fraction coming from the centres of bright star formation regions than is the case for the type II supernovae. Type Ia supernovae overall show a weak correlation with locations of current star formation, but there is evide...

  19. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  20. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  1. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  2. Slow Heavy-Particle Induced Electron Emission from Solid Surfaces

    CERN Document Server

    Burgdörfer, Joachim

    2007-01-01

    The emission of electrons from solid surfaces bombarded by slow neutral and ionized heavy particles (atoms, molecules) is reviewed both theoretically and in the light of recent experimental studies by leading groups in the field: Kinetic emission from grazing incidence of atoms and kinetic and potential emission from grazing incidence of singly and multiply charged ions on monocrystalline metal and insulator surfaces; modelling of slow electron transport in solids; emission of spin-polarized electrons by ion neutralization; electron emission from slow ion induced plasmons and excitons.

  3. Alpha Particle Induced X-ray Emission in the Classroom

    International Nuclear Information System (INIS)

    We report on an experimental demonstration in an introductory modern physics course to elucidate the X-ray line spectra, and how they arise from transitions of electrons to inner shells. We seek to determine the effect of limited use of an interactive component as a supplement to a traditional lecture, and how it would improve the student achievement. In this preliminary study the students were exposed to traditional lectures on X-ray production and Bohr's model, they then were given a homework on the abc of X-ray spectra, after which they were given a pre-test on the materials, followed by an in-class demonstration, and a final post-exam. The gain, as measured from pre- to post-exams appears to remark the differences in how students approached the subject before and after the use of the demonstration. This initial study shows the validity of in-class demonstrations as teaching tools and opens a wide new area of research in modern physics teaching

  4. A z ~ 5.7 Ly{\\alpha} Emission Line with an Ultra Broad Red Wing

    CERN Document Server

    Yang, Huan; Zheng, Zhen-Ya; Malhotra, Sangeeta; Rhoads, James E; Infante, Leopoldo

    2014-01-01

    Using Ly{\\alpha} emission line as a tracer of high redshift star forming galaxies, hundreds of Ly{\\alpha} emission line galaxies (LAEs) at z > 5 have been detected. These LAEs are considered to be low mass young galaxies, critical to the reionization of the universe and the metal enrichment of circumgalactic medium (CGM) and intergalactic medium (IGM). It is assumed that outflows in LAEs can help ionizing photons and Ly{\\alpha} photons escape out of galaxies. However we still know little about the outflows in high redshifts LAEs due to observational difficulties, especially at redshift > 5. Models of Ly{\\alpha} radiative transfer predict asymmetric Ly{\\alpha} line profiles with broad red wing in LAEs with outflows. Here we report a z ~ 5.7 Ly{\\alpha} emission line with a broad red wing extending to > 1000 km/s relative to the peak of Ly{\\alpha} line, which has been detected in only a couple of z > 5 LAEs till now. If the broad red wing is ascribed to gas outflow instead of AGN activity, the outflow velocity c...

  5. Ly$\\alpha$ emission from Green Peas: the role of circumgalactic gas density, covering, and kinematics

    CERN Document Server

    Henry, Alaina; Martin, Crystal; Erb, Dawn

    2015-01-01

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Ly$\\alpha$ emission and interstellar absorption lines in a sample of ten star-forming galaxies at z~0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed "Green Peas," make some of the best analogs for young galaxies in an early Universe. We detect Ly$\\alpha$ emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H I column density. We measure Ly$\\alpha$/H$\\alpha$ flux ratios of 0.5-5.6, implying that 5% to 60% of Ly$\\alpha$ photons escape the galaxies. These data confirm previous findings that low-ionization metal absorption (LIS) lines are weaker when Ly$\\alpha$ escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Ly$\\alpha$ output cannot be the result of a varying H I covering: the Lyman absorption lines (Ly$\\beta$ and higher) show a covering fraction near unity for gas with N...

  6. The Temporal Behaviour of Lyman-alpha Emission During Solar Flares From SDO/EVE

    CERN Document Server

    Milligan, Ryan O

    2015-01-01

    Despite being the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly$\\alpha$) emission during solar flares in recent years. The few examples that do exist, however, have shown Ly$\\alpha$ emission to be a substantial radiator of the total energy budget of solar flares (on the order of 10%). It is also a known driver of fluctuations in earth's ionosphere. The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory now provides broadband, photometric Ly$\\alpha$ data at 10 s cadence, and has observed scores of solar flares in the 5 years since it was launched. However, the time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H$\\alpha$, Ly$\\beta$, LyC, C III, etc.). Furthermore, the Ly$\\alpha$ emission peaks around the time of the peak of thermal soft X-ray e...

  7. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO2 laser beam from such a plasma, a resonance in the scattered power occurs near 900 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  8. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    The uranium exploration method is based on the register of 222Rn alpha particles; 222Rn gas is generated in the chain 238U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  9. High resolution alpha particle detectors based on 4H-SiC epitaxial layer

    International Nuclear Information System (INIS)

    We fabricated and characterized 4H-SiC Schottky diodes as a spectrometric detector of alpha particles. A thin blocking contact of Ni/Au (15 nm) was used to minimize the influence on alpha particles energy. Current-voltage characteristics of the detector were measured and a low current density below 0.3 nAcm−2 was observed at room temperature. 239Pu241Am244Cm was used as a source of alpha particles within the energy range between 5.1 MeV and 5.8 MeV for detector testing. The charge collection efficiency close to 100 % at reverse bias exceeding 50 V was determined. The best spectrometric performance shows a pulse height spectrum at a reverse bias of 200 V giving an energy resolution of 0.25 % in the full width and half maximum for 5.486 MeV of 241Am

  10. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena;

    2014-01-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same...... levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels...... cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles....

  11. Intrinsic efficiency of LR-115 in alpha particles detection: simulations and experiments

    International Nuclear Information System (INIS)

    A numerical simulation is developed to characterize the response of the cellulose nitrate detector ''LR-115 type II'' to alpha particles of different incidence angles and energies. It permits to know whether an alpha particle at a given energy and direction is able to produce a visible etched track or not. For this purpose, a Vt-variable track etch rate model is used. We have considered that the track etch rate is a function of the ionization rate and the defect created by delta rays along the alpha particle trajectory. Validation of the model is presented in the form of comparisons between theoretically computed values of the sensitive energy range and the track diameters and experimentally determined ones

  12. Black hole particle emission in higher-dimensional spacetimes.

    Science.gov (United States)

    Cardoso, Vitor; Cavaglià, Marco; Gualtieri, Leonardo

    2006-02-24

    In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross sections, the relative emissivities, and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders. PMID:16606074

  13. Light emission from particle beam induced plasma - An overview

    CERN Document Server

    Ulrich, A

    2015-01-01

    Experiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

  14. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  15. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    International Nuclear Information System (INIS)

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  16. Applying alpha particle background ionization device in the development of pulsed nitrogen laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, C.E.; Rodegheri, C.C.; Tauber, U. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Espectroscopia e Laser (LEL); Guterres, R.F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas]. E-mail: rgutterr@cnen.gov.br

    2005-11-15

    An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)

  17. Ethanol emission from loose corn silage and exposed silage particles

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  18. Ly{\\alpha} Emission from High Redshift Sources in COSMOS

    CERN Document Server

    Mallery, Ryan P; Capak, Peter; Kakazu, Yuko; Masters, Dan; Ilbert, Olivier; Hemmati, Shoubaneh; Scarlata, Claudia; Salvato, Mara; McCracken, Henry; LeFevre, Olivier; Scoville, Nick

    2012-01-01

    We investigate spectroscopically measured Ly{\\alpha} equivalent widths and escape fractions of 244 sources of which 95 are Lyman Break Galaxies (LBGs) and 106 Lyman Alpha Emitters (LAEs) at z~4.2, z~4.8, and z~5.6 selected from intermediate and narrow band observations. The sources were selected from the Cosmic Evolution Survey (COSMOS), and observed with the DEIMOS spectrograph. We find that the distribution of equivalent widths shows no evolution with redshift for both the LBG selected sources and the intermediate/narrowband LAEs. We also find that the Ly{\\alpha} escape fraction of intermediate and narrow band LAEs is on average higher and has a larger variation than the escape fraction of LBG selected sources. The escape fraction does not show a dependence with redshift. Similar to what has been found for LAEs at low redshifts, the sources with the highest extinctions show the lowest escape fractions. The range of escape fractions increases with decreasing extinction. This is evidence that the dust extinct...

  19. Preequilibrium particle emission in 250 MeV {sup 16}O + {sup 116}Sn reaction

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S.; Kravchuk, V.L.; Gramegna, F. [INFN, Laboratori Nazionali di Legnaro Padova (Italy)] (and others)

    2005-07-01

    A certain progress in understanding the phenomenon of the Preequilibrium (fast) light charged particle and neutron Emission (PE) was achieved in the last two decades. However, there is a strong need to study systematically the dependence of the PE emission on the reaction mass asymmetry and the projectile energy. In the present work we present the results on the PE proton and alpha-particle multiplicities and the total energy loss of the composite system formed in fusion reaction E{sub b}eam=250 MeV (15.6 MeV/u) {sup 16}O + {sup 116}Sn. The experiment was performed at the Legnaro National Laboratory using a 1 ns (FWHM) pulsed beam provided by the TANDEM-ALPI acceleration system.

  20. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  1. Discovery of a very cool object with extraordinarily strong H(alpha) emission

    CERN Document Server

    Barrado y Navascués, D; Martín, E L; Béjar, V J S; Rebolo, R; Mundt, R; Navascues, David Barrado y; Osorio, Maria Rosa Zapatero; Martin, Eduardo L.; Bejar, Victor J.S.; Rebolo, Rafael; Mundt, Reinhard

    2002-01-01

    We report on the finding of the strongest H(alpha) emission -pseudoequivalent width of 705 Angstrom- known so far in a young, late type dwarf. This object, named as SOri71, is a substellar candidate member of the 1-8 Myr star cluster sigma Orionis. Due to its overluminous location in color-magnitude diagrams, SOri71 might be younger than other cluster members, or a binary of similar components. Its mass is in the range 0.021-0.012 M(sun), depending on evolutionary models and possible binarity. The broad H(alpha) line of SOri71 appears asymmetric, indicative of high velocity mass motions in the H(alpha) forming region. The origin of this emission is unclear at the present time. We discuss three possible scenarios: accretion from a disk, mass exchange between the components of a binary system, and emission from a chromosphere.

  2. Nuclear decay by emission of charged particle-superasymmetric fission process

    International Nuclear Information System (INIS)

    The macro-microscopic method, adapted for superasymmetric fission was applied to the alpha decay and other kinds of charged particles emission which are possible due to the nuclear shell structure. Three macroscopic models (the liquid drop model, the finite range of nuclear forces model and the Yukawa exponential model) are extended for nuclear systems with different charge densities. Various numerical methods for the computation of Coulomb and surface energy of a general shape nucleus are presented along with analytical results for some particular shapes. A phenomenological correction was used to obtain the experimental Q-value. This formalism was applied to the alpha decay from the ground state and from a fission isomeric state. A time dependent Hartree-Fock method is used to estimate the zero vibration energy. A new semiempirical formula giving the best estimates for the alpha decay lifetimes was derived and used to predict new alpha emitters. For this new mode of decay intermediate between alpha decay and the traditional fission, larger probabilities are obtained for the combinations of parent-nucleus-heavy cluster leading to a magic daughter nuclei or not too far from it

  3. Radiation electromagnetic effect in germanium crystals under high-energy. cap alpha. -particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    Results of experimental investigation into radiation electromagnetic effect (REM) in samples of germanium crystals under approximately 40 MeV ..cap alpha..-particle irradiation in a cyclotron are presented. A high level of excitation, volumetric character of generation of non-equilibrium carriers and formation of defects as well as the form of their spatial distribution are shown to result in some peculiarities of the EMF of the REM effect on the particle flux, fluence and sample parameters. Agreement of theoretical calculations, conducted with account of specificity of ..cap alpha..-particle interaction with a crystal, and experimental data is obtained. It is revealed that the REM effect can be applied in obtaining data on spatial distribution of non-equilibrium carrier concentrations along the particle trajectory in the crystal.

  4. Radiation-electromagnetic effect in germanium crystals irradiated with high-energy. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    An experimental investigation was made of the radiation-electromagnetic effect in germanium crystals irradiated in a cyclotron with ..cap alpha.. particles of energies up to 40 MeV. The high excitation rate, the bulk nature of generation of nonequilibrium carriers and defects, and their spatial distributions gave rise to several special features in the dependence of the emf due to the radiation-electromagnetic effect on the particle flux, fluence, and parameters of samples. Theoretical calculations carried out allowing for the specific nature of the interaction of ..cap alpha.. particles with crystals agreed well with the experimental results. The radiation-electromagnetic effect could be used to obtain information on the nature of the spatial distribution of the density of nonequilibrium carriers along the trajectory of a particle in a crystal.

  5. A Deep Narrowband Imaging Search for CIV and He II Emission from Ly$\\alpha$ Blobs

    CERN Document Server

    Battaia, Fabrizio Arrigoni; Hennawi, Joseph F; Prochaska, J Xavier; Matsuda, Yuichi; Yamada, Toru; Hayashino, Tomoki

    2014-01-01

    We conduct a deep narrow-band imaging survey of 13 Ly$\\alpha$ blobs (LABs) located in the SSA22 proto-cluster at z~3.1 in the CIV and HeII emission lines in an effort to constrain the physical process powering the Ly$\\alpha$ emission in LABs. Our observations probe down to unprecedented surface brightness limits of 2.1 $-$ 3.4 $\\times$ 10$^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ per 1 arcsec$^2$ aperture (5$\\sigma$) for the HeII$\\lambda$1640 and CIV$\\lambda$1549 lines, respectively. We do not detect extended HeII and CIV emission in any of the LABs, placing strong upper limits on the HeII/Ly$\\alpha$ and CIV/Ly$\\alpha$ line ratios, of 0.11 and 0.16, for the brightest two LABs in the field. We conduct detailed photoionization modeling of the expected line ratios and find that, although our data constitute the deepest ever observations of these lines, they are still not deep enough to rule out a scenario where the Ly$\\alpha$ emission is powered by the ionizing luminosity of an obscured AGN. Our models can ac...

  6. Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations

    CERN Document Server

    Bourouaine, Sofiane; Chandran, Benjamin D G; Maruca, Bennett A; Kasper, Justin C

    2013-01-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\\'en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\\em Wind} spacecraft's Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\\perp\\alpha}/T_{\\perp p}$ ($T_{\\parallel\\alpha}/T_{\\parallel p}$) when alpha-proton differential flow vel...

  7. Emission spectrum of the atomic chain excited by channeled particle

    CERN Document Server

    Epp, V

    2014-01-01

    Basic properties of radiation of the atomic chains excited by a channeled particle are considered. Using a very simple two-dimensional model of a crystal lattice we have shown that the main part of this radiation is generated on the frequency of oscillations of a channeled particle between the crystal planes, shifted by the Doppler effect. Spectral and angular distribution and spectral distribution of the radiation of the atomic chain excited by channeled particle were calculated. Emission spectrum of the atomic chain excited by channeled particle was plotted.

  8. Determination of the time evolution of fission from particle emission

    International Nuclear Information System (INIS)

    Recently measured properties of the prescission particle emission from heavy-ion induced fission of systems with A∼200 were analyzed using the statistical model. Simultaneous fits to prescission neutron, proton, and α-particle multiplicities and mean kinetic energies can be obtained when the deformation dependence of both the particle transmission coefficients and particle binding energies are taken into account. The experimental data are consistent with a total fission time scale of (30±10)x10-21 s, with more than half of this time being spent beyond the saddle point

  9. The feasibility of [sup 225]Ac as a source of [alpha]-particles in radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geerlings, M.W.; Hout, R. van der (Akzo nv, Arnhem (Netherlands)); Kaspersen, F.M. (Organon International bv, Oss (Netherlands)); Apostolides, C. (Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements)

    1993-02-01

    This paper proposes the utilization of [sup 225]Ac for the [alpha]-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived [alpha]-and [beta]-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, [sup 213]Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of [alpha]-particles in radioimmunotherapy. This isotope is the last [alpha] emitter in the [sup 225]Ac decay-cascade and can be extracted from a [sup 225]Ac source at the bedside of the patient. [sup 225]Ac can quasi ad infinitum be obtained from one of its precursors, [sup 229]Th, which can be made available by various means. The indications for the use of [alpha]-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified. (author).

  10. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    Science.gov (United States)

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  11. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  12. Signature of the N=126 shell closure in dwell times of alpha-particle tunneling

    CERN Document Server

    Kelkar, N G

    2016-01-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number $N$ = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from $N=116$ to $N=132$ in Po nuclei reveals that the tunneling $\\alpha$ particle spends the least amount of time with an $N=126$ magic daughter nucleus. The shell closure at $N=126$ seems to affect the behaviour of the dwell times of the tunneling alpha particles and this occurs through the influence of the $Q$-values involved.

  13. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Budny, R.V.; McCune, D.C.; Miller, C.O.; White, R.B.

    1996-05-01

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold {delta}{sub s}/{delta}{sub GWB} {ge} 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations.

  14. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold δs/δGWB ≥ 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations

  15. Large-scale clustering of Lyman-alpha emission intensity from SDSS/BOSS

    CERN Document Server

    Croft, Rupert A C; Zheng, Zheng; Bolton, Adam; Dawson, Kyle S; Peterson, Jeffrey B; York, Donald G; Eisenstein, Daniel; Brinkmann, Jon; Brownstein, Joel; Delubac, Timothée; Font-Ribera, Andreu; Hamilton, Jean-Christophe; Lee, Khee-Gan; Myers, Adam; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Slosar, Anže; Vazquez, José; Viel, Matteo; Weinberg, David H; Yèche, Christophe

    2015-01-01

    (Abridged) We detect the large-scale structure of Lya emission in the Universe at redshifts z=2-3.5 by measuring the cross-correlation of Lya surface brightness with quasars in SDSS/BOSS. We use a million spectra targeting Luminous Red Galaxies at z, the amplitude of mass fluctuations, and the quasar and Lya emission bias factors. Using known values, we infer (b_alpha/3) = (3.9 +/- 0.9) x 10^-21 erg/s cm^-2 A^-1 arcsec^-2, where b_alpha is the Lya emission bias factor. If the dominant sources of Lya emission are star forming galaxies, we infer rho_SFR = (0.28 +/- 0.07) (3/b_alpha) /yr/Mpc^3 at z=2-3.5. For b_alpha=3, this value is a factor of 21-35 above previous estimates from individually detected Lya emitters, although consistent with the total rho_SFR derived from dust-corrected, continuum UV surveys. 97% of the Lya emission in the Universe at these redshifts is therefore undetected in previous surveys of Lya emitters. Our measurement is much greater than seen from stacking analyses of faint halos surroun...

  16. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  17. Alpha and beta particle induced scintillations in liquid and solid neon

    CERN Document Server

    Michniak, R A; McKinsey, D N; Doyle, J M

    2002-01-01

    Scintillations induced by alpha and beta particles in liquid and solid neon are studied and their light yield measured. Charged particle scintillation in neon is primarily in the extreme ultraviolet (EUV). We detect this EUV light by converting it to blue using a wavelength shifting fluor and detecting the blue light with a photomultiplier tube. It is observed that liquid neon is a somewhat less-efficient scintillator than liquid helium for both alpha and beta radiation while the light yield in solid neon is greater than in liquid helium. Based on our measurements of the relative light yields of liquid and solid neon to liquid helium whose absolute light yield has previously been determined, we find that an alpha source in liquid neon produces up to 5900 photons per MeV while a beta source produces up to 7400 photons per MeV. In solid neon, we find that an alpha particle produces up to 9300 photons per MeV while a beta particle produces up to 17,000 photons per MeV. We observe a significant dependence of the ...

  18. A variational calculation of 12C in the alpha-particle model

    International Nuclear Information System (INIS)

    Some physical properties of three structureless alpha particles interacting through two-body potentials were discussed. Comparison between them and the corresponding experimental observations for the 12C nucleus is done. The wave function is expanded in terms of translationally invariant harmonic-oscillator states, the coefficients being variational parameters

  19. Investigations of electrical properties of structures Al-DNA-ITO-Al exposed to alpha particles

    International Nuclear Information System (INIS)

    The detection of alpha particles and other radiation sources has been an important field of research since the inception of radioactive materials in medical technology approximately a century ago. While different types of radiation sensors exist, in recent history, in light of a few catastrophic nuclear meltdowns, the development of sensors with rapid and effective detection properties have become crucial. To probe the feasibility of incorporating such features into the detector architecture, a simple sensor based on mushroom Deoxyribonucleic acid or DNA (Aluminium (Al)/DNA/Indium Tin Oxide (ITO)) was built, and the possibility of employing DNA electronics for the potential detection of alpha particles was investigated. Current–voltage (I–V) profiles were obtained following radiation using alpha particles at different dosages and exposure periods at room temperature. Properties such as series resistance, RS and other properties (barrier height, ideality factor and hypersensitivity) were calculated and analyzed using Conventional, Cheung and Cheung and Norde methods. RS values of the non-radiated samples calculated using the first method was about 8.6 MΩ. Using Conventional and Norde methods, samples irradiated for 4 min demonstrated the highest RS values of 5.79 and 1.81 MΩ, respectively. The results obtained were used to demonstrate the possibility of applying the sensitivity of DNA sensors to the measurement of alpha radiation. - Highlights: • Freshly prepared DNA solution was deposited as thin films by using the self-assembly method. • Series resistances, barrier heights and ideality factors were determined from I–V measurements. • A novel DNA hypersensitivity phenomenon was observed at low alpha radiation. • DNA based diodes can be employed as sensitive alpha particle sensors

  20. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  1. Correlations with projectile-like fragments and emission order of light charged particles

    Science.gov (United States)

    Kohley, Z.; Bonasera, A.; Galanopoulos, S.; Hagel, K.; May, L. W.; McIntosh, A. B.; Stein, B. C.; Souliotis, G. A.; Tripathi, R.; Wuenschel, S.; Yennello, S. J.

    2012-10-01

    Correlations of midrapidity light charged particles (LCPs) and intermediate mass fragments (IMFs) with projectile-like fragments (PLFs) have been examined from the 35 MeV/u 70Zn+70Zn, 64Zn+64Zn, and 64Ni+64Ni reaction systems. A new method was developed to examine the flow of the particles with respect to the PLF. The invariant PLF-scaled flow allowed for the dynamics of the midrapidity Z=1-4 particles to be studied. Strong differences in the PLF-scaled flow were observed between the different isotopes. In particular, the most n-rich LCPs exhibited a negative PLF-scaled flow in comparison to the other LCPs. A classical molecular dynamics model and a three-body Coulomb trajectory simulation were both used to show that the PLF-scaled flow observable could be connected to the average order of emission of the LCPs. The experimental results suggest that the midrapidity region is preferentially populated with neutron-rich LCPs and Z=3-4 IMFs at a relatively early stage in the collision. The deuteron and 3He particles are emitted later followed, lastly, by protons and alphas. The average order of emission of the midrapidity LCPs was extracted from the constrained molecular dynamics simulations and showed good agreement with the emission order suggested by the experimental PLF-scaled flow results.

  2. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    Science.gov (United States)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  3. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  4. On the H$\\alpha$ emission from the $\\beta$ Cephei system

    CERN Document Server

    Schnerr, R S; Oudmaijer, R D; Telting, J H

    2006-01-01

    Be stars, which are characterised by intermittent emission in their hydrogen lines, are known to be fast rotators. This fast rotation is a requirement for the formation of a Keplerian disk, which in turn gives rise to the emission. However, the pulsating, magnetic B1IV star $\\beta$ Cephei is a very slow rotator that still shows H$\\alpha$ emission episodes like in other Be stars, contradicting current theories. We investigate the hypothesis that the H$\\alpha$ emission stems from the spectroscopically unresolved companion of $\\beta$ Cep. Spectra of the two unresolved components have been separated in the 6350-6850\\AA range with spectro-astrometric techniques, using 11 longslit spectra obtained with ALFOSC at the Nordic Optical Telescope, La Palma. We find that the H$\\alpha$ emission is not related to the primary in $\\beta$ Cep, but is due to its 3.4 magnitudes fainter companion. This companion has been resolved by speckle techniques, but it remains unresolved by traditional spectroscopy. The emission extends fr...

  5. Bremsstrahlung emission probability in the {alpha} decay of {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Boie, Hans-Hermann

    2009-06-03

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed. The measured differential emission probabilities, which could be followed up to {gamma}-energies of {proportional_to} 500 keV, allow for the first time for a serious test of various model calculations of the bremsstrahlung accompanied {alpha} decay. It is shown that corrections to the {alpha}-{gamma} angular correlation due to the interference between the electric dipole and quadrupole amplitudes and due to the relativistic character of the process have to be taken into account. With the experimentally derived angular correlation the measured energydifferential bremsstrahlung emission probabilities show excellent agreement with the fully quantum mechanical calculation. (orig.)

  6. Registration of alpha particles in Makrofol-E nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  7. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  8. Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    CERN Document Server

    Burgos, S; Ghag, C; Gold, M; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; McMillan, J E; Muna, D; Murphy, A StJ; Nicklin, G G; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Smith, N J T; Snowden-Ifft, D P; Spooner, N J C; Sumner, T J; Turk, J; Tziaferi, T

    2007-01-01

    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.

  9. Extended Lyman-alpha emission from cold accretion streams

    CERN Document Server

    Rosdahl, J

    2011-01-01

    {Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha radiation and the feasibility of cold accretion as the main driver behind giant Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos spanning two orders of magnitude in mass, from 10^11 to 10^13 solar masses. We use a version of the AMR code Ramses that includes radiative transfer of UV photons, and we employ a refinement strategy that allows us to resolve accretion streams in their natural environment to an unprecedented level. For the first time, we self-consistently model self-shielding in the cold streams from the cosmological UV background, which enables us to accurately predict their temperatures, ionization states and Lya luminosities. We find the efficiency of gravitational heating in cold streams in a ~10^11 solar mass halo is around 10-20% throughout most of the halo but reaching much higher values close to the center. As a result most of the Lya luminosity comes from the circumg...

  10. Clustering Pre-equilibrium Model Analysis for Nucleon-induced Alpha-particle Spectra up to 200 MeV

    Directory of Open Access Journals (Sweden)

    Watanabe Y.

    2012-02-01

    Full Text Available The clustering exciton model of Iwamoto and Harada is applied to the analysis of pre-equilibrium (N, xα energy spectra for medium-to-heavy nuclei up to 200 MeV. In this work, we calculate alpha-particle formation factors without any approximations that appear in the original model. The clustering process is also considered in both the primary and second pre-equilibrium emissions. We optimize the exciton and the clustering model parameters simultaneously by looking at the experimental (N, xN and (N, xα energy spectra. The experimental alpha-particle spectra are well reproduced with a unique set of clustering model parameters, which is independent of incident neutrons/protons. The present analysis also implies that the clustering model parameter is not so different between the medium and heavy nuclei. Our calculations reproduce experimental data generally well up to the incident energy of ~150 MeV, but underestimations are seen above this energy.

  11. Cerenkov Emission by Neutral Particles in Gravitoelectro-magnetic Fields

    CERN Document Server

    Liu, S Q

    2005-01-01

    It is shown that under the post-Newtonian approximation the Einstein equations can be reduced to the standard Maxwell-type field equations in a medium; in such a context the Cerenkov emission by a neutralparticle gives large energy loss while the particle moves at faster than the phase speed of waves in the medium.

  12. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author)

  13. Isospin effect on pre-scission particle emission

    CERN Document Server

    Ye Wei

    2003-01-01

    The isospin effect of particle emission for fissioning isobaric sources of sup 2 sup 1 sup 2 Tl, sup 2 sup 1 sup 2 Po and sup 2 sup 1 sup 2 Fr and for isotopic sources of sup 1 sup 8 sup 9 sup , sup 2 sup 0 sup 2 sup , sup 2 sup 1 sup 2 Po are explored in the framework of the Smoluchowski equation. The multiplicity of emitted particles shows a strong dependence on the isospin of the fission sources. Similar results are also observed for light fissioning isobaric sources of sup 1 sup 1 sup 0 Tc, sup 1 sup 1 sup 0 Pd and sup 1 sup 1 sup 0 In and for isotopic sources of sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 7 sup , sup 1 sup 2 sup 4 In. This indicates that the effect of isospin on the emission of particles is independent of the size of the fissioning system. It has been found with the increase of the isospin of heavy fissioning systems, the emission of charged particles is not sensitive to the viscosity strength. In addition, an Er isotopic chain is used to study the effects of isospin on pre-scission particle...

  14. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  15. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Science.gov (United States)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  16. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    Science.gov (United States)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  17. Particle number concentrations over Europe in 2030: the role of emissions and new particle formation

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2013-04-01

    Full Text Available The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulphur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5 focusing on a photochemically active period. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot will decrease by 30–70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100, a proxy for cloud condensation nuclei (CCN concentration, is predicted to decrease by 40–70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60–80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both Ntot and N100

  18. Particle Emission-Dependent Timing Noise of Pulsars

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong-Wei; NA Xue-Sen; XU Ren-Xin; QIAO Guo-Jun

    2011-01-01

    Though pulsars spin regularly, the differences between the observed and predicted ToA (time of arrival), known as "timing noise", can still reach a few milliseconds or more. We try to understand the noise in this study. As proposed by Xu and Qiao in 2001, both dipole radiation and particle emission would result in pulsar braking. Accordingly, possible fluctuation of particle current Sow is suggested here to contribute significant ToA variation of pulsars. We find that the particle emission fluctuation could lead to timing noise which cannot be eliminated in timing process and that a longer period fluctuation would arouse a stronger noise. The simulated timing noise proGle and amplitude are in agreement with the observed timing behaviors on the timescale of years.

  19. Fracto-emission - The role of charge separation. [in particle emission during fracture

    Science.gov (United States)

    Dickinson, J. T.; Jensen, L. C.; Jahan-Latibari, A.

    1984-01-01

    Fracto-emission is the emission of particles (e.g., electrons, ions, ground state and excited neutrals, and photons) during and following fracture. It is found that during fracture in vacuum of adhesive bonds and crystalline materials involving large amounts of charge separation on the surface the emission of charged particles, excited neutrals, light, and radio waves occurs with unique and revealing time dependencies. Simultaneous fracto-emission measurements on several systems are reported. The results are interpreted in terms of a conceptual model involving the following steps: (1) charge separation due to fracture, (2) desorption of gases from the material into the crack tip, (3) a gas discharge in the crack, (4) energetic bombardment of the freshly created crack walls, and (5) thermally stimulated electron emission, accompanied by electron stimulated desorption of ions and excited neutrals. In addition to evidence from fracture experiments, results from studies of electron bombardment of a polymer surface are presented.

  20. Modelling the orientation of accretion disks in quasars using H-alpha emission

    CERN Document Server

    Down, E J; Sivia, D S; Baker, J C

    2009-01-01

    Infrared spectroscopy of the H-alpha emission lines of a sub-sample of 19 high-redshift (0.8 < z < 2.3) Molonglo quasars, selected at 408 MHz, is presented. These emission lines are fitted with composite models of broad and narrow emission, which include combinations of classical broad-line regions of fast-moving gas clouds lying outside the quasar nucleus, and/or a theoretical model of emission from an optically-thick, flattened, rotating accretion disk. All bar one of the nineteen sources are found to have emission consistent with the presence of an optically-emitting accretion disk, with the exception appearing to display complex emission including at least three broad components. Ten of the quasars have strong Bayesian evidence for broad-line emission arising from an accretion disk together with a standard broad-line region, selected in preference to a model with two simple broad lines. Thus the best explanation for the complexity required to fit the broad H-alpha lines in this sample is optical emi...

  1. Physical properties of z~4 LBGs: differences between galaxies with and without Ly-alpha emission

    CERN Document Server

    Pentericci, L; Fontana, A; Salimbeni, S; Santini, P; De Santis, C; Gallozzi, S; Giallongo, E

    2007-01-01

    We have analysed the physical properties of z~4 Lyman Break Galaxies observed in the GOODS-S survey, in order to investigate the possible differences between galaxies where the Ly-alpha is present in emission, and those where the line is absent or in absorption. The objects have been selected from their optical color and then spectroscopically confirmed by Vanzella et al. (2005). From the public spectra we assessed the nature of the Ly-alpha emission and divided the sample into galaxies with Ly-alpha in emission and objects without Ly-alpha line (i.e. either absent or in absorption). We have then used the complete photometry, from U band to mid infrared from the GOODS-MUSIC database, to study the observational properties of the galaxies, such as UV spectral slopes and optical to mid-infrared colors, and the possible differences between the two samples. Finally through standard spectral fitting tecniques we have determined the physical properties of the galaxies, such as total stellar mass, stellar ages and so...

  2. The Deepest Spectrum in the Universe? Line Emission from Lyman-alpha Clouds at z 3

    Science.gov (United States)

    Bunker, Andrew J.; Rauch, M.; Haehnelt, M.; Becker, G.; Marleau, F.; Graham, J.; Research, European; Inter-Galactic Medium, Training Network on the

    2007-12-01

    We present the results of an extremely deep long-slit optical spectroscopic search for low-luminosity Lyman-alpha emitters. Over several years we have accumulated 150-hours integration on a single field with 8-10m telescopes (VLT/FORS2, Gemini/GMOS and Keck/LRIS) at a spectral resolution of 300km/s. This is the deepest spectrum ever obtained - our 1 sigma sensitivity to line emission in a 1 arcsec2 aperture is 1019erg/cm2/s. We have significant detections of 30 emission line objects, which are most likely Lyman-alpha emitters at 2.7emission may be powered by star formation in conditions of low metallicity and low dust, or alternatively may arise from cooling radiation or perhaps external photoionzation by the metagalactic Lyman continuum background. Many of the line emitters are significantly spatially extended (with median size 4arcsec, 30kpc) and could plausibly be the host population of the high column density Lyman-alpha absorption clouds seen in QSO spectra (the Damped Lyman-alpha Systems and the Lyman-Limit Systems).

  3. C IV and He II Line Emission of Lyman Alpha Blobs: Powered by Shock Heated Gas

    CERN Document Server

    Cabot, Samuel H C; Zheng, Zheng

    2016-01-01

    Utilizing {\\it ab initio} ultra-high resolution hydrodynamical simulations, we investigate the properties of the interstellar and circum-galactic medium of Ly$\\alpha$ Blobs (LABs) at $z=3$, focusing on three important emission lines: Ly$\\alpha$ 1216\\AA, \\heii 1640\\AA\\ and \\civ 1449\\AA. Their relative strengths provide a powerful probe of the thermodynamic properties of the gas when confronted with observations. By adjusting the dust attenuation effect using one parameter and matching the observed size-luminosity relation of LABs using another parameter, we show that our simulations can reproduce the observed \\civ/\\lya\\ and \\heii/\\lya\\ ratios adequately. This analysis provides the first successful physical model to account for simultaneously the LAB luminosity function, luminosity-size relation, and the \\civ/Ly$\\alpha$ and \\heii/Ly$\\alpha$ ratios, with only two parameters. The physical underpinning for this model is that, in addition to the stellar component for the \\lya\\ emission, the \\lya\\ and \\civ\\ emission...

  4. Signature of the N = 126 shell closure in dwell times of alpha-particle tunneling

    Science.gov (United States)

    Kelkar, N. G.; Nowakowski, M.

    2016-10-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number N = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from N = 116 to N = 132 in Po nuclei reveals that the tunneling α particle spends the least amount of time with an N = 126 magic daughter nucleus. The shell closure at N = 126 seems to affect the behavior of the dwell times of the tunneling alpha particles and this occurs through the influence of the Q-values involved.

  5. Technique for measuring the losses of alpha particles to the wall in TFTR

    International Nuclear Information System (INIS)

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is 10B(α,n)13N, although 14N(α,γ)18F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described

  6. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    Science.gov (United States)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  7. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  8. GAMCAT - a personal computer database on alpha particles and gamma rays from radioactive decay

    International Nuclear Information System (INIS)

    The GAMCAT database is a compilation of data describing the alpha particles and gamma rays that occur in the radioactive decay of all known nuclides, adapted for IBM Personal Computers and compatible systems. These compiled data have been previously published, and are now available as a compact database. Entries can be retrieved by defining the properties of the parent nuclei as well as alpha-particle and gamma-ray energies or any combination of these parameters. The system provides fast access to the data and has been completely written in C to run on an AT-compatible computer, with a hard disk and 640K of memory under DOS 2.11 or higher. GAMCAT is available from the Fachinformationszentrum Karlsruhe. (orig.)

  9. Revisiting alpha decay-based near-light-speed particle propulsion.

    Science.gov (United States)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days.

  10. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  11. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  12. Positron emission particle tracking-Application and labelling techniques

    Institute of Scientific and Technical Information of China (English)

    David J.Parker; Xianfeng Fan

    2008-01-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 ke V -γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.

  13. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  14. Ly\\alpha\\ emission line reconstruction for high-$z$ QSOs

    CERN Document Server

    Greig, Bradley; McGreer, Ian D; Gallerani, Simona; Haiman, Zoltán

    2016-01-01

    We introduce an intrinsic Ly\\alpha\\ emission line profile reconstruction method for high-$z$ quasars (QSOs). This approach utilises a covariance matrix of emission line properties obtained from a large, moderate-$z$ ($2 \\leq z \\leq 2.5$), high signal to noise (S/N > 15) sample of BOSS QSOs. For each QSO, we complete a Monte Carlo Markov Chain fitting of the continuum and emission line properties and perform a visual quality assessment to construct a large database of robustly fit spectra. With this dataset, we construct a covariance matrix to describe the correlations between the high ionisation emission lines Ly\\alpha, C IV, Si IV + O IV] and C III], and find it to be well approximated by an $N$-dimensional Gaussian distribution. This covariance matrix characterises the correlations between the line width, peak height and velocity offset from systemic while also allowing for the existence of broad and narrow line components for Ly\\alpha\\ and C IV. We illustrate how this covariance matrix allows us to statist...

  15. H$\\alpha$ Emission From Active Equal-mass, Wide M Dwarf Binaries

    CERN Document Server

    Gunning, Heather C; Davenport, James R A; Dhital, Saurav; Hawley, Suzanne L; West, Andrew A

    2014-01-01

    We identify a sample of near-equal mass wide binary M dwarf systems from the SLoWPoKES catalog of common proper-motion binaries and obtain follow-up observations of their chromospheric activity as measured by the H$\\alpha$ emission line. We present optical spectra for both components of 48 candidate M dwarf binaries, confirming their mid-M spectral types. Of those 48 coeval pairs, we find eight with H$\\alpha$ emission from both components, three with weak emission in one component and no emission in the other, and 37 with two inactive components. We find that of the eleven pairs with at least one active component, only three follow the net trend of decreasing activity strength $L_{\\rm H\\alpha}/L_{\\rm bol}$ with later spectral type. The difference in quiescent activity strength between the A and B components is larger than what would be expected based on the small differences in color (mass). For five binaries with two active components, we present 47 hours of time-resolved spectroscopy, observed on the ARC 3....

  16. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained. PMID:27341133

  17. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained.

  18. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    Science.gov (United States)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  19. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    Science.gov (United States)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  20. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  1. Mapping the Galactic Free-Free Foreground via Interstellar H-Alpha Emission

    CERN Document Server

    Reynolds, R J

    2000-01-01

    Recently completed H-Alpha surveys of large portions of the sky can be used to create maps of the free-free intensity distribution at high Galactic latitude that are independent of the spectral fits to the CMB data. This provides an opportunity to test the accuracy of the spectral fitting procedures and to search for other sources of Galactic forground contamination that could be confused spectrally with the free-free, such as spinning dust grains. The Wisconsin H-Alpha Mapper (WHAM) survey has sampled the sky north of declination -30 deg at about one degree angular resolution and has revealed that, except for a few isolated regions of enhanced emission, \\Delta T_{ff} (30 GHz) < 30 micro-K at Galactic latitudes near 15 deg, decreasing to \\Delta T_{ff} (30 GHz) < 4 mircro-K at latitudes above 50 deg. Also in progress are H-Alpha surveys that sample the sky at higher angular resolution.

  2. Strong Ly$\\alpha$ Emission in the Proximate Damped Ly$\\alpha$ Absorption Trough toward the Quasar SDSS J095253.83$+$011422.0

    CERN Document Server

    Jiang, Peng; Pan, Xiang; Jiang, Ning; Shu, Xinwen; Wang, Huiyuan; Gu, Qiusheng; Li, Zhenzhen; Wu, Maochun; Shi, Xiheng; Ji, Tuo; Tian, Qiguo; Zhang, Shaohua

    2016-01-01

    SDSS J095253.83$+$011422.0 (SDSS J0952$+$0114) was reported by Hall et al. (2004) as an exotic quasar at $z_{em}=3.020$. In contrast to prominent broad metal--line emissions with FWHM$\\sim9000$~km~s$^{-1}$, only a narrow Ly$\\alpha$ emission line is present with FWHM$\\sim$1000~km~s$^{-1}$. The absence of broad Ly$\\alpha$ emission line has been a mystery for more than a decade. In this paper, we demonstrate that this is due to dark Proximate Damped Ly$\\alpha$ Absorption (PDLA) at $z_{abs}=3.010$ by identifying associated Lyman absorption line series from the damped Ly$\\beta$ up to Ly9, as well as the Lyman limit absorption edge. The PDLA cloud has a column density of $\\log N_{\\rm H\\,I}({\\rm cm}^{-2})=21.8\\pm0.2$, a metallicity of [Zn/H]$>-1.0$, and a spatial extent exceeding the Narrow Emission Line Region (NELR) of the quasar. With a luminosity of $L_{{\\rm Ly}\\alpha}\\sim10^{45}$~erg~s$^{-1}$, the residual Ly$\\alpha$ emission superposed on the PDLA trough is of two orders of magnitude stronger than previous rep...

  3. Lyman alpha emission from the first galaxies: Implications of UV backgrounds and the formation of molecules

    CERN Document Server

    Latif, M A; Spaans, M; Zaroubi, S

    2011-01-01

    The Lyman alpha line is a robust tracer of high redshift galaxies. We present estimates of Lyman alpha emission from a protogalactic halo illuminated by UV background radiation fields with various intensities. For this purpose, we performed cosmological hydrodynamics simulations with the adaptive mesh refinement code FLASH, including a detailed network for primordial chemistry,comprising the formation of primordial molecules, a multi-level model for the hydrogen atom as well as the photo-ionization and photo-dissociation processes in a UV background. We find that the presence of a background radiation field J_21 excites the emission of Lyman alpha photons, increasing the Lyman alpha luminosity up to two orders of magnitude. For a halo of \\sim 10^10 M_sun, we find that a maximum flux of 5 \\times 10^-15 erg cm^-2 s^-1 is obtained for J21 \\times f_esc = 0.1, where f_esc is the escape fraction of the ionizing radiation. Depending on the environmental conditions, the flux may vary by three orders of magnitude. For...

  4. Particle and gaseous emissions from individual diesel and CNG buses

    Science.gov (United States)

    Hallquist, Å. M.; Jerksjö, M.; Fallgren, H.; Westerlund, J.; Sjödin, Å.

    2013-05-01

    In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG)-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz) and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz). The gaseous constituents (CO, HC and NO) were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.). Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III-V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs) with different after-treatment, including selective catalytic reduction (SCR), exhaust gas recirculation (EGR) and with and without diesel particulate filter (DPF). The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN) were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel-1. In the accelerating mode, size-resolved emission factors (EFs) showed unimodal number size distributions with peak diameters of 70-90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel)-1 and for the CNG buses 41 ± 26 g (kg

  5. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  6. ENVISION, developing Positron Emission Tomography for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Positron Emission Tomography (PET) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  7. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω*α > ωA, where ωA is the shear-Alfven modal frequency and ω*α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  8. Nucleon-alpha particle interactions from inversion of scattering phase shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, N.; Amos, K.; Apagyi, B.; Lun, D.R.

    1996-03-01

    Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-{alpha}) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the `Martin` condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - {alpha} and p - {alpha} (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs.

  9. Ultrafine particle emissions from desktop 3D printers

    Science.gov (United States)

    Stephens, Brent; Azimi, Parham; El Orch, Zeineb; Ramos, Tiffanie

    2013-11-01

    The development of low-cost desktop versions of three-dimensional (3D) printers has made these devices widely accessible for rapid prototyping and small-scale manufacturing in home and office settings. Many desktop 3D printers rely on heated thermoplastic extrusion and deposition, which is a process that has been shown to have significant aerosol emissions in industrial environments. However, we are not aware of any data on particle emissions from commercially available desktop 3D printers. Therefore, we report on measurements of size-resolved and total ultrafine particle (UFP) concentrations resulting from the operation of two types of commercially available desktop 3D printers inside a commercial office space. We also estimate size-resolved (11.5 nm-116 nm) and total UFP (PLA) feedstock to ˜1.9 × 1011 # min-1 for the same type of 3D printer utilizing a higher temperature acrylonitrile butadiene styrene (ABS) thermoplastic feedstock. Because most of these devices are currently sold as standalone devices without any exhaust ventilation or filtration accessories, results herein suggest caution should be used when operating in inadequately ventilated or unfiltered indoor environments. Additionally, these results suggest that more controlled experiments should be conducted to more fundamentally evaluate particle emissions from a wider arrange of desktop 3D printers.

  10. A Search for "Dwarf" Seyfert Nuclei; 4, Nuclei with Broad H-$\\alpha$ Emission

    CERN Document Server

    Ho, L C; Sargent, W L W; Peng, C Y; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.; Peng, Chien Y.

    1997-01-01

    We present the results of an optical spectroscopic survey designed to search for low-luminosity, "dwarf" Seyfert nuclei in a magnitude-limited sample of 486 bright, northern galaxies. Moderate-resolution spectra of exceptionally high quality were obtained in part to detect broad H-alpha emission, similar in character to, but much weaker than, the broad permitted lines that define type 1 Seyfert nuclei. One of the primary goals of the survey is to better quantify the faint end of the luminosity function of active galactic nuclei. This paper describes the subset of nuclei showing definite or probable evidence of broad H-alpha emission. We outline the procedures for determining the presence of this elusive spectral feature, steps for its quantitative measurement, and the associated systematic errors. Of the 211 emission-line galaxies classified as having Seyfert or LINER nuclei in our survey, the broad H-alpha line was detected with confidence in 34 objects, and with less certainty in another 12. Most of the det...

  11. Fine and ultrafine particle emissions from microwave popcorn.

    Science.gov (United States)

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 . PMID:24106981

  12. Self-consistent analysis of alpha-particle heating of a fast-solenoid plasma

    International Nuclear Information System (INIS)

    A numerical technique has been developed to analyse the dynamics of a linear, magnetically confined plasma column and its associated fusion-produced alpha-particles in a self consistent manner. The thermonuclear background plasma is considered as a radially non-uniform, axially symmetric magnetofluid in pressure equilibrium with the surrounding axial magnetic field. A multi-group technique is utilized to examine the alphas as a collection of particles distributed among a continuous spectrum of confined orbits. The technique is shown to be an effective one for observing the interaction between super-thermal particles with large orbit sizes and a stable plasma of comparable size. The use of a distribution function in an adiabatic-invariant representation results in an enormous increase in the time scale which can be treated. This enables analysis of the entire duty cycle of a laser solenoid plasma in reasonable computation times. An analysis of a fast solenoid plasma is described, where the initial plasma radius and temperature are varied parametrically. A plasma column of radius 7mm, temperature 6keV, and β=0.95 will reach an ion temperature of 10keV, corresponding to a fusion energy gain of 8, after 3ms. A range of maximum gain occurs for initial temperatures of 5 to 7keV, with larger radius plasmas more favoured by the cooler limits. The effect of increasing the alpha-particle-electron energy transfer rate by a moderate amount to account for anomalous effects is to increase the plasma temperature at longer times, as long as this energy transfer is well-coupled to the electron-ion energy transfer. Increasing the rate at which plasma transport processes occur (''anomalous transport'') always results in lower fusion yield, because of rapid plasma diffusion. (author)

  13. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-03-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O-H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modelling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of O3 precursors changes due to aircraft emissions (NOx, HOx,Clx,Brx and stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4±0.3 DU, with a net radiative forcing (IR+UV of −2.5±2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal efficiency from

  14. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  15. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  16. Mechanistic model of radon-induced lung cancer risk at low exposure levels based on cellular alpha particle hits

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Hofmann; Hatim, Fakir [Salzburg Univ., Div. of Physics and Biophysics, Dept. of Material Science (Austria); Lucia-Adina, Truta-Popa [Babes-Bolyai Univ., Faculty of Physics (Romania)

    2006-07-01

    To explore the role of the multiplicity of cellular hits by radon progeny alpha particles for lung cancer incidence, the number of single and multiple alpha particle hits were computed for basal and secretory cells in the bronchial epithelium of human airway bifurcations employing Monte Carlo methods. Hot spots of alpha particle hits were observed at the branching points of bronchial airway bifurcations, suggesting that multiple alpha particle hits may occur primarily at carinal ridges. Random alpha particle intersections of bronchial cells during a given exposure period, selected from a Poisson distribution, were simulated by an initiation-promotion model, based on experimentally observed cellular transformation and survival functions. To consider potential bystander effects, which have been observed in cellular in vitro studies, alpha particle interactions were also simulated for larger sensitive target volumes in bronchial epithelium, consisting of a collection of cells. Lung cancer risk simulations indicated that cancer induction for continuous exposures is related to the cycle time of an irradiated cell, thus exhibiting a distinct dose-rate effect. While the dominant role of single hits leads to a linear dose-response relationship at low radon exposure levels, predicted lung cancer risk for a collection of interacting cells exhibits a linear-quadratic response, suggesting that bystander effects, if operating at all under in vivo irradiations, may be restricted to a small number of adjacent cells. (author)

  17. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12C nucleus is described as a three-alpha particle bound state. The binding energy of 12C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  18. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  19. Sources of variability in alpha emissivity measurements at LA and ULA levels, a multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Brendan D., E-mail: brendan@xia.com [XIA LLC, 31057 Genstar Rd., Hayward, CA 94544 (United States); Coleman, Stuart; Warburton, William K. [XIA LLC, 31057 Genstar Rd., Hayward, CA 94544 (United States); Autran, Jean-Luc [Aix-Marseille University and CNRS, Faculté des Sciences–Service 142, F-13397 Marseille Cedex 20 (France); Clark, Brett M. [Honeywell, 15128 E. Euclid Ave., Spokane, WA 99216 (United States); Cooley, Jodi [Southern Methodist University–Physics Department, Dallas, TX 75275 (United States); Gordon, Michael S. [IBM TJ Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY 10598 (United States); Zhu, Zhengmao [IBM SRDC, 2070 Rte 52, Bldg 300, 1W4-111, Hopewell Junction, NY 12533 (United States)

    2014-06-01

    Alpha emissivity measurements are important in the semiconductor industry for assessing the suitability of materials for use in production processes. A recently published round-robin study that circulated the same samples to several alpha counting centers showed wide center-to-center variations in measured alpha emissivity. A separate analysis of these results hypothesized that much of the variation might arise from differences in sample-to-entrance window separations. XIA recently introduced an ultra low background counter, the UltraLo-1800 (“UltraLo”), that operates in a fundamentally different manner from the proportional counters used at most of the centers in the original study. In particular, by placing the sample within the counting volume, it eliminates the sample-to-entrance window separation issue noted above, and so offers an opportunity to test this hypothesis. In this work we briefly review how the UltraLo operates and describe a new round-robin study conducted entirely on UltraLo instruments using a set of standard samples that included two samples used in the original study. This study shows that, for LA (“Low Alpha” between 2 and 50 α/khr-cm{sup 2}) sample measurements, the only remaining site-to-site variations were due to counting statistics. Variations in ULA (“Ultra-Low Alpha”<2 α/khr-cm{sup 2}) sample measurements were reduced three-fold, compared to the earlier study, with the measurements suggesting that residual activity variations now primarily arise from site-to-site differences in the cosmogenic background. - Highlights: • We sent a set of samples to 6 counting centers for alpha emissivity measurement. • The counting centers conducted measurements using a recently developed instrument. • The variability in measurement results is examined and compared to a prior study. • Minimal variability observed in measurements of LA level samples. • Variability in ULA measurements appears to be due to cosmogenic background.

  20. Sources of variability in alpha emissivity measurements at LA and ULA levels, a multicenter study

    International Nuclear Information System (INIS)

    Alpha emissivity measurements are important in the semiconductor industry for assessing the suitability of materials for use in production processes. A recently published round-robin study that circulated the same samples to several alpha counting centers showed wide center-to-center variations in measured alpha emissivity. A separate analysis of these results hypothesized that much of the variation might arise from differences in sample-to-entrance window separations. XIA recently introduced an ultra low background counter, the UltraLo-1800 (“UltraLo”), that operates in a fundamentally different manner from the proportional counters used at most of the centers in the original study. In particular, by placing the sample within the counting volume, it eliminates the sample-to-entrance window separation issue noted above, and so offers an opportunity to test this hypothesis. In this work we briefly review how the UltraLo operates and describe a new round-robin study conducted entirely on UltraLo instruments using a set of standard samples that included two samples used in the original study. This study shows that, for LA (“Low Alpha” between 2 and 50 α/khr-cm2) sample measurements, the only remaining site-to-site variations were due to counting statistics. Variations in ULA (“Ultra-Low Alpha”2) sample measurements were reduced three-fold, compared to the earlier study, with the measurements suggesting that residual activity variations now primarily arise from site-to-site differences in the cosmogenic background. - Highlights: • We sent a set of samples to 6 counting centers for alpha emissivity measurement. • The counting centers conducted measurements using a recently developed instrument. • The variability in measurement results is examined and compared to a prior study. • Minimal variability observed in measurements of LA level samples. • Variability in ULA measurements appears to be due to cosmogenic background

  1. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131iodine or the90yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  2. Humidity control of particle emissions in aeolian systems

    Science.gov (United States)

    McKenna Neuman, Cheryl; Sanderson, Steven

    2008-06-01

    Humidity is an important control of the wind speed required to entrain particles into an air flow and is well known to vary on a global scale, as do dust emissions. This paper reports on wind tunnel experiments which quantify this control through placing a polymer capacitance sensor immediately at the bed surface. The sensor measured changes in the humidity (RH) of the pore air in real time. RH was varied between 15% and 80% and the critical wind speed determined for the release of particles to the air stream. The results strongly support earlier suggestions that fine particles are most affected in relatively dry atmospheres, particularly those which are tightly packed. An analytical model is proposed to describe this relationship which depends on determination of the matric potential from the Kelvin equation. The total contact area between particle asperities adjoined by pendular rings is represented as a power function of the number of layers of adsorbed water. The value of the exponent appears to be governed by the surface roughness of the particles and their packing arrangement. Parallel developments in colloid interface science and atomic force microscopy, relevant to industrial and pharmaceutical applications, support these conclusions in principle and will likely have an important bearing on future progress in parameterization of the proposed model.

  3. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    In recent years, the use of high linear energy transfer (LET) radiation for radiotherapeutic applications has gained increased interest. Astatine-211 (211At) is an alpha-particle emitting radionuclide, promising for targeted radioimmunotherapy of isolated tumor cells and microscopic clusters. To improve development of safe radiotherapy using 211At it is important to increase our knowledge of the radiobiological effects in cells. During radiotherapy, both tumors and adjacent normal tissue will be irradiated and therefore, it is of importance to understand differences in the radio response between proliferating and resting cells. The aim of this thesis was to investigate effects in fibroblasts with different proliferation status after irradiation with alpha-particles from 211At or X-rays, from inflicted DNA damage, to cellular responses and biological consequences. Throughout this work, irradiation was performed with alpha-particles from 211A or X-rays. The induction and repair of double-strand breaks (DSBs) in human normal fibroblasts were investigated using pulsed-field gel electrophoresis and fragment analysis. The relative biological effectiveness (RBE) of 211At for DSB induction varied between 1.4 and 3.1. A small increase of DSBs was observed in cycling cells compared to stationary cells. The repair kinetics was slower after 211At and more residual damage was found after 24 h. Comparison between cells with different proliferation status showed that the repair was inefficient in cycling cells with more residual damage, regardless of radiation quality. Activation of cell cycle arrests was investigated using immunofluorescent labeling of the checkpoint kinase Chk2 and by measuring cell cycle distributions with flow cytometry analysis. After alpha-particle irradiation, the average number of Chk2-foci was larger and the cells had a more affected cell cycle progression for several weeks compared with X-irradiated cells, indicating a more powerful arrest after 211At

  4. Pulse-shape discrimination and energy quenching of alpha particles in Cs$_2$LiLaBr$_6$:Ce$^{3+}$

    CERN Document Server

    Mesick, Katherine E; Stonehill, Laura C

    2016-01-01

    Cs$_2$LiLaBr$_6$:Ce$^{3+}$ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from $^{227}$Ac to determine the quenching factor of the alphas. A linear quenching relationship $L_{\\alpha} = E_{\\alpha} \\times q + L_0$ was found at alpha particle energies above 5 MeV, with a quenching factor $q = 0.71$ MeVee/MeV and an offset $L_0 = - 1.19$ MeVee.

  5. Spatial Correlation Between Dust and H$\\alpha$ Emission in Dwarf Irregular Galaxies

    CERN Document Server

    Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola; Salmon, Brett; Forrest, Ben

    2016-01-01

    Using a sample of dwarf irregular galaxies selected from the ALFALFA blind HI-survey and observed using the VIMOS IFU, we investigate the relationship between H$\\alpha$ emission and Balmer optical depth ($\\tau_{\\text{b}}$). We find a positive correlation between H$\\alpha$ luminosity surface density and Balmer optical depth in 8 of 11 at $\\geq$ 0.8$\\sigma$ significance (6 of 11 at $\\geq$ 1.0$\\sigma$) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearman's rank correlation coefficient to test for correlation between $\\Sigma_{\\text{H}\\alpha}$ and $\\tau_{\\text{b}}$ in all the galaxies combined, we find $\\rho = 0.39$, indicating a positive correlation at 4$\\sigma$ significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of ...

  6. Sources of Variability in Alpha Emissivity Measurements at LA and ULA Levels, a Multicenter Study

    CERN Document Server

    McNally, B D; Warburton, W K; Autran, J; Clark, B M; Cooley, J; Gordon, M S; Zhu, Z

    2014-01-01

    Alpha emissivity measurements are important in the semiconductor industry for assessing the suitability of materials for use in production processes. A recently published round-robin study that circulated the same samples to several alpha counting centers showed wide center-to-center variations in measured alpha emissivity. A separate analysis of these results hypothesized that much of the variation might arise from differences in sample-to-entrance window separations. XIA recently introduced an ultra low background counter, the UltraLo-1800 (UltraLo), that operates in a fundamentally different manner from the proportional counters used at most of the centers in the original study. In particular, by placing the sample within the counting volume, it eliminates the sample-to-entrance window separation issue noted above, and so offers an opportunity to test this hypothesis. In this work we briefly review how the UltraLo operates and describe a new round-robin study conducted entirely on UltraLo instruments using...

  7. The Properties of H{\\alpha} Emission-Line Galaxies at $z$ = 2.24

    CERN Document Server

    An, F X; Wang, W -H; Huang, J -S; Kong, X; Wang, J -X; Fang, G W; Zhu, F; Gu, Q -S; Wu, H; Hao, L; Xia, X -Y

    2014-01-01

    Using deep narrow-band $H_2S1$ and $K_{s}$-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 H$\\alpha$ emission-line galaxies (ELGs) at $z=2.24$ with the 5$\\sigma$ depths of $H_2S1=22.8$ and $K_{s}=24.8$ (AB) over 383 arcmin$^{2}$ area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 H$\\alpha$ ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the H$\\alpha$ ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction form SEDs. We find that dust extinction is generally correlated with H$\\alpha$ luminosity and stellar mass (SM). Our res...

  8. Selection of filter media used for monitoring airborne alpha-emitting particles in a radiological emergency

    International Nuclear Information System (INIS)

    We have developed on air monitor for alpha-emitting particles released to the atmosphere at an accident of nuclear reprocessing plant. Selection of a suitable filter for the monitor is considerably important in order to achieve the high-sensitive measurement of radioactive concentration. We have examined surface collection efficiencies and pressure drops for the various filters that are commercially available in Japan. It was found that the PTFE membrane filter with backing had superior performance to the others, that is, a high surface collection efficiency and low pressure drop. (author)

  9. Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios

    CERN Document Server

    Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E

    2016-01-01

    An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.

  10. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institute, Beutenbergstr.11, D07745 Jena (Germany)

    2015-07-01

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: m{sub particle} = α{sup -n} x β m x 27.2 eV/c{sup 2} allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c{sup 2} (experimental 511 keV/c{sup 2}) With n=2, m=1 the proton mass is 937.9 MeV/c{sup 2} (literature 938.3 MeV/c{sup 2}). For n=3 and m=1 a particle with 128.6 GeV/c{sup 2} close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  11. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car

    Science.gov (United States)

    Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi

    2016-07-01

    Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.

  12. Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for an ICE diagnostic in ITER

    CERN Document Server

    McClements, K G; Dendy, R O; Carbajal, L; Chapman, S C; Cook, J W S; Harvey, R W; Heidbrink, W W; Pinches, S D

    2014-01-01

    Fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) have provided a valuable diagnostic of confined and escaping fast ions in many tokamaks. This is a passive, non-invasive diagnostic that would be compatible with the high radiation environment of deuterium-tritium plasmas in ITER, and could provide important information on fusion {\\alpha}-particles and beam ions in that device. In JET, ICE from confined fusion products scaled linearly with fusion reaction rate over six orders of magnitude and provided evidence that {\\alpha}-particle confinement was close to classical. In TFTR, ICE was observed from super-Alfv\\'enic {\\alpha}-particles in the plasma edge. The intensity of beam-driven ICE in DIII-D is more strongly correlated with drops in neutron rate during fishbone excitation than signals from more direct beam ion loss diagnostics. In ASDEX Upgrade ICE is produced by both super-Alfv\\'enic DD fusion products and sub-Alfv\\'enic deuterium beam ions.

  13. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2002-11-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  14. The fine structure constant alpha: relevant for a model of a self-propelling photon and for particle masses

    Science.gov (United States)

    Greulich, Karl O.

    2015-09-01

    A model for a self propelling (i.e. massless) photon1 is based on oscillations of a pair of charges amounting to elementary charge divided by SQRT alpha, where alpha is the fine structure (Sommerfeld) constant. When one assumes a similar model for particles that do have rest mas (i.e. which are non- self propelling), alpha plays also a role in the rest masses of elementary particles. Indeed all fundamental elementary particle masses can be described by the alpha / beta rule2 --> m(particle) = alpha-n * betam* 27.2 eV /c2 where beta is the proton to electron mass ratio 183612 and n= 0….14, m= -1,0 or Thus, photons and particle masses are intimately related to the fine structure constant. If the latter would not have been strictly constant throughout all times, this would have had consequences for the nature of light and for all masses including those of elementary particles.

  15. The Kinematics of Multiple-Peaked Ly-alpha Emission in Star-Forming Galaxies at z~2-3

    CERN Document Server

    Kulas, Kristin R; Kollmeier, Juna A; Zheng, Zheng; Steidel, Charles C; Hainline, Kevin N

    2011-01-01

    We present new results on the Ly-alpha emission-line kinematics of 18 z~2-3 star-forming galaxies with multiple-peaked Ly-alpha profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Ly-alpha emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Ly-alpha photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Ly-alpha from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of H-alpha (z~2) and [OIII] 5007 (z~3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions and emission-line fluxes for the objects in the sample. Accurate systemic redshifts allow us to translate the multiple-peaked Ly-alpha profiles into velocity space, revealing...

  16. Alfven waves, alpha particles, and pickup ions in the solar wind

    Science.gov (United States)

    Goldstein, B. E.; Neugebauer, M.; Smith, E. J.

    1995-01-01

    Past studies of the properties of Alfven waves in the solar wind have indicated that (1) the amplitude of the velocity fluctuations is almost always smaller than expected on the basis of the amplitude of the field fluctuations, even when the anisotropy of the plasma is taken into account, and (2) the alpha particles do not participate in the wave motions because they 'surf' on the waves carried by the proton fluid. Ulysses data are used to demonstrate that (1) the discrepancy between the velocity and field fluctuations is greater at high heliographic latitudes than in the ecliptic plane, and (2) the alphas do participate in the waves, being either in phase or out of phase with the proton motions depending on whether the differential flow speed between the alphas and protons is greater than or less than the 'observed' wave speed, B(sub o)(delta v squared / delta B squared)exp 1/2, as determined from the ratio of the amplitudes of the velocity and magnetic fluctuations. It is proposed that the modification of Alfven wave propagation speed is due to pressure anisotropies resulting from asymmetric distributions of interstellar pickup ions. If the proposed explanation is correct, it indicates that scattering of pickup ions onto a (bi)spherical shell may not be as complete as generally supposed.

  17. Lyman-alpha and CIII] Emission in z=7-9 Galaxies: Accelerated Reionization Around Luminous Star Forming Systems?

    CERN Document Server

    Stark, Daniel P; Charlot, Stephane; Chevallard, Jacopo; Tang, Mengtao; Belli, Sirio; Zitrin, Adi; Mainali, Ramesh; Gutkin, Julia; Vidal-Garcia, Alba; Bouwens, Rychard; Oesch, Pascal

    2016-01-01

    We discuss new Keck/MOSFIRE spectroscopic observations of four luminous galaxies at z~7-9 selected to have intense optical line emission by Roberts-Borsani et al. (2016). Previous follow-up has revealed Lyman-alpha in two of the four galaxies. Our new MOSFIRE observations confirm that Lyman-alpha is present in the entire sample. We detect Lyman-alpha emission in COS-zs7-1, confirming its redshift as z=7.154, and we detect Lyman-alpha in EGS-zs8-2 at z=7.477, verifying a tentative detection presented in an earlier study. The ubiquity of Lyman-alpha in this sample is puzzling given that the IGM is likely significantly neutral over 77 is expected to be strongly luminosity-dependent, with the most effective transmission occurring in systems with intense star formation.

  18. Detection of Iron K{\\alpha} Emission from a Complete Sample of Submillimeter Galaxies

    CERN Document Server

    Lindner, Robert R; Beelen, Alexandre; Owen, Frazer N; Polletta, Mari

    2012-01-01

    We present an X-ray stacking analysis of a sample of 38 submillimeter galaxies with =2.6 discovered at >4{\\sigma} significance in the Lockman Hole North with the MAMBO array. We find a 5{\\sigma} detection in the stacked soft band (0.5-2.0 keV) image, and no significant detection in the hard band (2.0-8 keV). We also perform rest-frame spectral stacking based on spectroscopic and photometric redshifts and find a ~4{\\sigma} detection of Fe K{\\alpha} emission with an equivalent width of EW>1 keV. The centroid of the Fe K{\\alpha} emission lies near 6.7 keV, indicating a possible contribution from highly ionized Fe XXV or Fe XXVI; there is also a slight indication that the line emission is more spatially extended than the X-ray continuum. This is the first X-ray analysis of a complete, flux-limited sample of SMGs with statistically robust radio counterparts.

  19. A Survey for H-alpha Emission from Late L dwarfs and T dwarfs

    CERN Document Server

    Pineda, J Sebastian; Kirkpatrick, J Davy; Cotter, Garret; Kao, Melodie M; Mooley, Kunal

    2016-01-01

    Recently, studies of brown dwarfs have demonstrated that they possess strong magnetic fields and have the potential to produce radio and optical auroral emissions powered by magnetospheric currents. This emission provides the only window on magnetic fields in the coolest brown dwarfs and identifying additional benchmark objects is key to constraining dynamo theory in this regime. To this end, we conducted a new red optical (6300 - 9700 Angstrom) survey with the Keck telescopes looking for H-alpha emission from a sample of late L dwarfs and T dwarfs. Our survey gathered optical spectra for 29 targets, 18 of which did not have previous optical spectra in the literature, greatly expanding the number of moderate resolution (R~2000) spectra available at these spectral types. Combining our sample with previous surveys, we confirm an H-alpha detection rate of 9.2 (+3.5/-2.1) % for L and T dwarfs in the optical spectral range of L4 - T8. This detection rate is consistent with the recently measured detection rate for ...

  20. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    International Nuclear Information System (INIS)

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: mparticle = α-n x β m x 27.2 eV/c2 allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c2 (experimental 511 keV/c2) With n=2, m=1 the proton mass is 937.9 MeV/c2 (literature 938.3 MeV/c2). For n=3 and m=1 a particle with 128.6 GeV/c2 close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  1. The Lyman-$\\alpha$ emission in local Star-Forming Galaxies Scenario and Connection with Primeval Galaxies

    CERN Document Server

    Kunth, D; Terlevich, R J; Tenorio-Tagle, G

    1998-01-01

    We review the Lyan alpha emission in local star-forming galaxies. In most cases as already shown by the IUE, the emission is absent or much weaker than expected. This occurs because Lyman alpha photons can be resonantly scattered by the neutral gas and destroyed by even very low amounts of dust. However new Hubble Space Telescope observations (HST) indicate that other factors such as the velocity structure of the gas play a crucial role. Gas flows are likely to occur as powered by the kinetic energy released via stellar winds and supernova. We propose a scenario based on the hydrodynamics of superbubbles powered by massive bursts of star formation that naturally accounts for the variety of Lyman alpha line detections in star-forming galaxies. We caution with the attempts to derive the co-moving star formation rate at high redshift from Lyman alpha emission searches.

  2. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Science.gov (United States)

    Takács, S.; Takács, M. P.; Ditrói, F.; Aikawa, M.; Haba, H.; Komori, Y.

    2016-09-01

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the natTi(α,x)51Cr reaction. The irradiations were done with Eα = 20.7 and Eα = 51.25 MeV, Iα = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the 72,73,75Se, 71,72,74,76,78As, and 69Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  3. Etching characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector

    International Nuclear Information System (INIS)

    This study reports the characteristic studies for the detection of alpha particles in DAM–ADC nuclear track detector. Several important parameters that control the track formation such as, the bulk etch rate (VB), track etching rate (VT), dependence of VB and VT on etching concentration and temperature have been extensively studied. The activation energy (Eb) of the bulk etching rate for the DAM–ADC sheets has been calculated, the dependence of etching efficiency and sensitivity upon etchant concentrations and temperature has been investigated, registration efficiency of DAM–ADC detector etched at the optimum etching condition has been examined. The detailed studied results presented in this study provide various useful information about the mechanism of track formation in polymers. - Highlights: • Detection of alpha particles in DAM–ADC nuclear track detector. • The activation energy of the bulk etching rate for the DAM–ADC sheets. • The dependence of etching efficiency upon etchant concentrations • Registration efficiency of DAM–ADC detector

  4. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM241 source were compared to systems made with imported stages. (Author)

  5. Revisiting alpha decay-based near-light-speed particle propulsion.

    Science.gov (United States)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. PMID:27161512

  6. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  7. A new method for alpha-particle detection in a classroom experiment

    International Nuclear Information System (INIS)

    Complete text of publication follows. The World Year of Physics (WYP 2005) was a worldwide celebration of Physics and its importance in our everyday lives. In harmony with its aims, that is to raise the worldwide awareness of Physics and Physical Science, we introduced a novel lab work involving a new imaging and data evaluation method for alpha-particle detection, which can be easily implemented in a classroom environment. The target group of the experiments is mainly secondary school students (age between 16-18 years). Our aim is to motivate students to develop a better understanding of Physics, allowing them to experience for themselves something of its fascination. In order to increase their attractiveness, the experiments include using a CMOS video image sensor with a video output. The covering glass window of the sensor must be carefully removed in order to make it sensitive for alpha rays. The sensor is connected to a computer where the images are recorded as a short video clip. The recorded video is played back by frames. The resulted frames are then merged together into one image. On this image the student can count the number of spots, where each spot corresponds to a hit of an alpha particle. The experiment can also be visible on a TV screen even by a whole class, however the authors suggest implementing the following experiments as a practical work individually or in small groups. As students are familiar with modern information technology, we think that they will be highly motivated to make these experiments on their own. Acknowledgements. The development of the above experimental setup was funded by ATOMKI and it was presented to the interactive science centre 'Magic corner', Debrecen, Hungary at Christmas, 2005. (author)

  8. Using k-alpha emission to determine fast electron spectra using the Hybrid code ZEPHYROS

    CERN Document Server

    White, Thomas; Gregori, Gianluca

    2014-01-01

    A high intensity laser-solid interaction invariably drives a non-thermal fast electron current through the target, however characterizing these fast electron distributions can prove difficult. An understanding of how these electrons propagate through dense materials is of fundamental interest and has applications relevant to fast ignition schemes and ion acceleration. Here, we utilize an upgraded version of the Hybrid code ZEPHYROS to demonstrate how the resulting k-alpha emission from such an interaction can be used as a diagnostic to obtain the characteristic temperature, divergence and total energy of the fast electron population.

  9. IUE high resolution spectrophotometry of H Ly alpha emission from the local interstellar medium

    Science.gov (United States)

    Clarke, J. T.; Bowyer, S.; Fahr, H. J.; Lay, G.

    1984-01-01

    IUE high dispersion spectra of resonantly scattered solar Ly alpha emission from H moving into the solar system with the local interstellar wind are reported which are based on observations conducted in April 1981 and April 1983. A heliocentric velocity of -29 + or - 5 km/s has been observed from the ISW component along with a surface brightness which has decreased from about 1000 to 800 Rayleighs over the two-year interval. A preliminary derivation of the velocity of the ISM at large distances from the sun yields a value of 25.6 + or - 5 km/s.

  10. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2012-10-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA 3.1. The buses studied were diesel-fuelled Euro II–V and CNG-fuelled Enhanced Environmental Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 8.0 ± 3.1 × 1014, EFPN, no DPF =2.8 ± 1.6 × 1015 and EFPN, CNG = 7.8 ± 5.7 × 1015 (kg fuel−1. In the accelerating mode size-resolved EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm.

    Emission

  11. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  12. Laser-assisted {alpha} decay

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda Cortes, Hector Mauricio; Palffy, Adriana; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Popruzhenko, Sergey [Moscow State Engineering Physics Institute (Russian Federation)

    2012-07-01

    The spontaneous emission of alpha particles by unstable nuclei was one of the first physical processes to be described by quantum tunneling of a quasistationary state, i.e. a long-lived state. The development of new powerful coherent light sources opens the possibility to study the direct interaction between strong laser fields and atomic nuclei, assisting the tunneling of the {alpha} particle through the nuclear barrier. In this work we investigate for the first time the effect of strong laser fields on the tunneling and {alpha} particle emission of several medium-mass and heavy nuclei. To this end we make use of the formalism we have developed starting from the well-known Strong-Field Approximation and its complex trajectories formulation to describe the laser-assisted decay of quasistationary states [1]. The effect of a static as well as optical and X-ray monochromatic fields on the {alpha} decay lifetimes and {alpha} particle emission spectra is determined. We find that even at strong intensities, the laser-induced acceleration of the {alpha} decay is negligible, and only the spectra are significantly changed by the laser field. In particular, for optical fields, high laser intensities can lead to rescattering of the {alpha} particle off the daughter nucleus.

  13. HST Emission Line Galaxies at z ~ 2: Comparing Physical Properties of Lyman Alpha and Optical Emission Line Selected Galaxies

    CERN Document Server

    Hagen, Alex; Behrens, Christoph; Ciardullo, Robin; Gebhardt, Henry S Grasshorn; Gronwall, Caryl; Bridge, Joanna S; Fox, Derek B; Schneider, Donald P; Trump, Jonathan R; Blanc, Guillermo A; Chiang, Yi-Kuan; Chonis, Taylor S; Finkelstein, Steven L; Hill, Gary J; Jogee, Shardha; Gawiser, Eric

    2015-01-01

    We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrared grism spectroscopy. Both sets of galaxies extend over the same range in stellar mass (7.5 < logM < 10.5), size (0.5 < R < 3.0 kpc), and star-formation rate (~1 < SFR < 100). Remarkably, a comparison of the most commonly used physical and morphological parameters -- stellar mass, half-light radius, UV slope, star formation rate, ellipticity, nearest neighbor distance, star formation surface density, specific star formation rate, [O III] luminosity, and [O III] equivalent width -- reveals no statistically significant differences between the populations. This suggests that the processes and conditions which regulate the escape of Ly-alpha from a z ~ 2 star-forming galaxy do not depend on these quantities. In particular, the lack of dependence on ...

  14. Questions of the optical potential for alpha-particles at low energies

    International Nuclear Information System (INIS)

    Among the high-priority elements for the accelerator driven systems (ADS) and fusion-reactor projects are also Zr, Mo and Li, so that the corresponding nuclear data for nucleon-, deuteron-, and α-particle interactions are of actual interest for neutron production, activation, heating, shielding requirements, and material damage estimation as well as radioactive waste transmutation projects. By using advanced nuclear models that account for details of nuclear structure and the quantum nature of the nuclear scattering, significant gains in accuracy can be achieved below 150 MeV, where intranuclear cascade calculations become less accurate. It is why this work reports on the progress of the analysis of optical potentials for nucleons, deuterons and α-particles on isotopes of these elements, and corresponding reaction cross sections calculations. The elastic-scattering angular distributions measured at deuteron energies between 3 and 50 MeV on the target nucleus 6Li, and between 1 and 14.7 MeV for the target nucleus 7Li have been thus analyzed by using the computer codes SCAT2 for pure elastic scattering processes and FRESCO for the coupled reaction channels for taking into account the effects of the elastic and inelastic alpha transfer in the d+6Li interaction. The good overall agreement obtained with the experimental data for both 6,7Li target nuclei from 1 to 50 MeV has finally proved suitable optical model potentials (OMPs). Within the double folding formalism of the alpha-nucleus optical potential, used previously for a semi-microscopic analysis of the alpha-particle elastic scattering on A∼100 nuclei at energies below 32 MeV, effects due to changes of the nuclear density at a finite temperature are considered. Parameterizations of the double-folding (DF) real potential as well as of a regional phenomenological potential have been used in the study of the (n,α) reaction cross sections for the target nuclei 92,95,98,100Mo. Taking the microscopic DF potentials

  15. Particle acceleration and gamma-emission from solar flares

    Science.gov (United States)

    Miroshnichenko, Leonty; Gan, W. Q.; Troitskaia, E. V.

    Experiments on SMM, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics in flares and to the ambient abun-dance of the corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measure-ments (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays). A number of different plausible assump-tions are considered concerning the details of underlying physical processes during large flares: existence of a steeper distribution of surrounding medium density, enhanced content of the 3He isotope, formation of magnetic trap with specific properties etc. Possible implications of these results are briefly discussed. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and ener-getic particle observations during the same event. We especially note several promising lines for the further studies: 1) resonant acceleration of the 3He ions in the corona; 2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; 3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); 4) modeling of self-consistent time scenario of the event. Keywords: Sun: atmosphere density, solar flares; Particle acceleration

  16. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?

    Directory of Open Access Journals (Sweden)

    Hong Song

    2012-06-01

    Full Text Available Alpha-particle emitter labeled monoclonal antibodies are being actively developed for treatment of metastatic cancer due to the high linear energy transfer (LET and the resulting greater biological efficacy of alpha-emitters. Our knowledge of high LET particle radiobiology derives primarily from accelerated heavy ion beam studies. In heavy ion beam therapy of loco-regional tumors, the modulation of steep transition to very high LET peak as the particle approaches the end of its track (known as the Bragg peak enables greater delivery of biologically potent radiation to the deep seated tumors while sparing normal tissues surrounding the tumor with the relatively low LET track segment part of the heavy ion beam. Moreover, fractionation of the heavy ion beam can further enhance the peak-to-plateau relative biological effectiveness (RBE ratio. In contrast, internally delivered alpha particle radiopharmaceutical therapy lack the control of Bragg peak energy deposition and the dose rate is determined by the administered activity, alpha-emitter half-life and biological kinetics of the radiopharmaceutical. The therapeutic ratio of tumor to normal tissue is mainly achieved by tumor specific targeting of the carrier antibody. In this brief overview, we review the radiobiology of high LET radiations learned from ion beam studies and identify the features that are also applicable for the development of alpha-emitter labeled antibodies. The molecular mechanisms underlying DNA double strand break repair response to high LET radiation are also discussed.

  17. Influence of Mn-dopant on the properties of {alpha}-FeOOH particles precipitated in highly alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)]. E-mail: music@irb.hr

    2006-12-21

    The effects of Mn-dopant on the formation of solid solutions {alpha}-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference {alpha}-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, {delta} {sub OH} and {gamma} {sub OH}, were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin {alpha}-(Fe, Mn)OOH particles were observed. The length of these {alpha}-(Fe, Mn)OOH particles decreased, whereas their width increased. The {alpha}-Fe{sub 2}O{sub 3} phase was not detected in any of the samples prepared.

  18. Resolution of the discrepancy between Balmer alpha emission rates, the solar Lyman beta flux, and models of geocoronal hydrogen concentration

    Science.gov (United States)

    Levasseur, A.-C.; Meier, R. R.; Tinsley, B. A.

    1976-01-01

    New satellite Balmer alpha measurements and solar Lyman beta flux and line profile measurements, together with new measurements of the zodiacal light intensity used in correcting both ground and satellite Balmer alpha measurements for the effects of the Fraunhofer line in the zodiacal light, have been used in a reevaluation of the long-standing discrepancy between ground-based Balmer alpha emission rates and other geocoronal hydrogen parameters. The solar Lyman beta line center flux is found to be (4.1 plus or minus 1.3) billion photons per sq cm per sec per angstrom at S(10.7) equals 110 and, together with a current hydrogen model which has 92,000 atoms per cu cm at 650 km for T(inf) equals 950 K, gives good agreement between calculated Balmer alpha emission rates and the ground-based and satellite measurements.

  19. Particle acceleration by stimulated emission of radiation in cylindrical waveguide

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiu-Fang; WU Cong-Feng; JIA Qi-Ka

    2015-01-01

    In particle acceleration by stimulated emission of radiation (PASER),efficient interaction occurs when a train of micro-bunches has periodicity identical to the resonance frequency of the medium.Previous theoretical calculations based on the simplified model have only considered the energy exchange in the boundless condition.Under experimental conditions,however,the gas active medium must be guided by the metal waveguide.In this paper,we have developed a model of the energy exchange between a train of micro-bunches and a gas mixture active medium in a waveguide boundary for the first time,based on the theory of electromagnetic fields,and made detailed analysis and calculations with MathCAD.The results show that energy density can be optimized to a certain value to get the maximum energy exchange.

  20. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  1. Measurement and evaluation of the excitation functions for alpha particle induced nuclear reactions on niobium

    CERN Document Server

    Tarkanyi, F; Szelecsenyi, F; Sonck, M; Hermanne, A

    2002-01-01

    Alpha particle induced nuclear reactions were investigated with the stacked foil activation technique on natural niobium targets up to 43 MeV. Excitation functions were measured for the production of sup 9 sup 6 sup m sup g Tc, sup 9 sup 5 sup m Tc, sup 9 sup 5 sup g Tc, sup 9 sup 4 sup g Tc, sup 9 sup 5 sup m sup g Nb and sup 9 sup 2 sup m Nb. Cumulative cross-sections, thick target yields and activation functions were deduced and compared with available literature data. Applications of the excitation functions in the field of thin layer activation techniques and beam monitoring are also discussed.

  2. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  3. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt;

    1999-01-01

    particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to respresent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temprature is interpreted......We have studied the magnetic dynamics in nanocrystalline samples of alpha-Fe2O3 (hematite) and NiO by inelastic neutron scattering. By measuring around the structural and the antiferromagnetic reflections, we have probed uniform and staggered magnetic oscillations, respectively. In the hematite...... as a sign of superparamagnetic relaxation. Studies of the antiferromagnetic signal from NiO also show evidence of collective magnetic excitations, but with a higher energy of the precession state than for hematite. The inelastic signal at the structural reflection of NiO presents evidence for uniform...

  4. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    International Nuclear Information System (INIS)

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as μ-randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 references, 3 figures, 2 tables

  5. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  6. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  7. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  8. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  9. Study of interplanetary hydrogen from Lyman alpha emission and absorption determination

    International Nuclear Information System (INIS)

    The purpose of the work submitted in this paper is to contribute to the study of interplanetary hydrogen from Lyman alpha emission and absorption measurements, carried out on board the D2A, OSO-8 and Copernicus satellites. This study, which was undertaken from the D2A satellite, moved us to study the interplanetary environment as from observations made from the following experiments placed on board the OSO-8 and Copernicus satellites. The experiment set up on board the OSO-8 satellite made it possible to obtain the profile of the solar alpha Lyman emission. An absorption profile was observed for the first time on these profiles and this made it possible to attribute them to interplanetary hydrogen and enabled us to make a direct and local determination of the solar ionization rate. - The spectrometer set up on board Copernicus made it possible to obtain the emission spectrum of the interplanetary environment at the same time as the geocorona. The overall velocity of the interplanetary environment was deduced from the Doppler shift between the two spectra. In the first part, the principle of the REA and POLAR experiments is recalled but only the REA experiment is described in detail, particularly the problems arising from the construction and calibration of the cell. In the second part, a study of the interplanetary environment made from the D2A determinations is presented in synthesized form. On the other hand, the study to which theses initial results led us is presented in detail. Finally, in the third part, the results obtained by means of the OSO-8 and Copernicus satellites are given

  10. A catalogue of early-type emission-line stars and H{\\alpha} line profiles from LAMOST DR2

    CERN Document Server

    Hou, Wen; Hu, Jingyao; Yang, Haifeng; Du, Changde; Liu, Chao; Lee, Chien-De; Lin, Chien-Cheng; Wang, Yuefei; Zhang, Yong; Cao, Zihuang; Hou, Yonghui

    2016-01-01

    We present a catalogue including 11,204 spectra for 10,436 early-type emission-line stars from LAMOST DR2, among which 9,752 early-type emission-line spectra are newly discovered. For these early-type emission-line stars, we discuss the morphological and physical properties from their low-resolution spectra. In this spectral sample, the H$\\alpha$ emission profiles display a wide variety of shapes. Based on the H$\\alpha$ line profiles, these spectra are categorized into five distinct classes: single-peak emission, single-peak emission in absorption, double-peak emission, double-peak emission in absorption, and P-Cygni profiles. To better understand what causes the H$\\alpha$ line profiles, we divide these objects into four types from the view of physical classification, which include classical Be stars, Herbig Ae/Be stars, close binaries and spectra contaminated by HII regions. The majority of Herbig Ae/Be stars and classical Be stars are identified and separated using the (H-K, K-W1) color-color diagram. We al...

  11. Experimental Study of Two-Alpha Emission from High-Lying Excited States of 17,18Ne

    Science.gov (United States)

    Xu, Xinxing; Lin, Chengjian; Jia, Huiming; Yang, Feng; Jia, Fei; Wu, Zhendong; Zhang, Shitao; Liu, Zuhua; Zhang, Huanqiao; Xu, Hushan; Sun, Zhiyu; Wang, Jiansong; Hu, Zhengguo; Wang, Meng; Chen, Ruofu; Zhang, Xueying; Li, Chen; Lei, Xiangguo; Xu, Zhiguo; Xiao, Guoqing

    2012-05-01

    The experiments of two-alpha emission from 17,18Ne excited levels were performed at the HIRFL-RIBLL facility of the Institute of Modern Physics, Lanzhou. The beams of 17Ne at the energy of 49.9 MeV/u and 18Ne at 51.8 MeV/u bombarded a 197Au target to populate excited states of 17,18Ne via Coulomb excitation. Complete kinematics measurements were achieved by the detectors of a silicon strip and CsI+PIN array. The experimental results combined with simple MC simulations show the characteristic of sequential two-alpha emission via 14O excited states for 18Ne. The results of two-alpha emission from 17Ne are preliminary and need further analyses.

  12. The Stacked Lyman-Alpha Emission Profile from the Circum-Galactic Medium of z~2 Quasars

    CERN Document Server

    Battaia, Fabrizio Arrigoni; Cantalupo, Sebastiano; Prochaska, J Xavier

    2016-01-01

    In the context of the FLASHLIGHT survey, we obtained deep narrow band images of 15 $z\\sim2$ quasars with GMOS on Gemini-South in an effort to measure Ly$\\alpha$ emission from circum- and inter-galactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Ly$\\alpha$ nebulae (SB~10$^{-17}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at distances >50 kpc) around any of our sources, although we routinely ($\\simeq47$%) detect smaller scale <50 kpc Ly$\\alpha$ emission at this SB level emerging from either the extended narrow emission line regions powered by the quasars or by star-formation in their host galaxies. We stack our 15 deep images to study the average extended Ly$\\alpha$ surface brightness profile around $z\\sim2$ quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SB$_{\\rm Ly\\alpha}\\sim10^{-19}$ erg s$^{-1}$ cm$^{-2}...

  13. Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman-alpha absorption systems

    CERN Document Server

    Straka, Lorrie A; York, Donald G; Bowen, David V; Florian, Michael; Kulkarni, Varsha P; Lundgren, Britt; Peroux, Celine

    2015-01-01

    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope in Chile, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g; r; i; and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, strong NHI absorption systems in their spectra (Q0826-2230: zabs=0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377; 0.9281). We confirm host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two out of four of the Ly-alpha absorption systems. For these systems, we are able to determine the SFRs; impact parameters (known from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L>L*. The SFRs for these galaxies, based on [O II] emission, are in the range 11-25 M_sol/yr (uncorrected for dust), while the impact parameters l...

  14. Detection of HI in Emission in the Lyman Alpha Emitting Galaxy Haro 11

    CERN Document Server

    Pardy, Stephen A; Östlin, Göran; Hayes, Matthew; Bergvall, Nils

    2016-01-01

    We present the first robust detection of HI 21 cm emission in the blue compact galaxy Haro 11 using the 100m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Lyman Alpha and the Lyman continuum. We detect (5.1 $\\pm$ 0.7 $\\times$10$^8$) M$_{\\odot}$ of HI gas at an assumed distance of 88 Mpc, making this galaxy HI deficient compared to other local galaxies with similar optical properties. Given this small HI mass, Haro 11 has an elevated M$_{H2}$/M$_{HI}$ ratio and a very low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The HI emission has a linewidth of 71 kms$^{-1}$ and is offset 60 kms$^{-1}$ redward of the optical line center. It is undergoing a starburst after a recent merger which has elevated the star formation rate, and will deplete the gas supply in $<$ 0.2 Gyr. Although this starburst has elevated the SFR compared to galaxies with similar HI masses and linewidths, H...

  15. Low-level measurement of alpha-particle emitting nuclei in ceramics and lead

    International Nuclear Information System (INIS)

    Nearly all natural materials contain trace quantities of uranium (U) and thorium (Th) and their daughter nuclides, many of which emit α-particles in their decay. Lead, at the end of the U-decay chain, typically contains some radioactive 210Pb which is chemically inseparable from the other Pb isotopes. α-particle emission from these decays can affect sensitive electronic components, such as memory chips or processors. Measurement of α-particle emitters can be accomplished by direct detection of the α-particles (which typically provides no positive identification of the emitting isotope because of energy loss in the sample) or by low-background γ-ray spectroscopy (which does provide positive identification via characteristic γ-rays). The latter is by far the best method for screening kg-sized samples of materials like ceramics, aluminum, iron, or copper. The difference between α counting and γ-ray spectroscopy is less for measuring 210Pb in Pb since the 46.5 keV characteristic γ-rays directly following the 210Pb decay are strongly absorbed and both methods are limited to thin layers. This paper discusses these two cases and concludes that a large n-type germanium γ-ray spectrometer is probably the best overall system for both measurements. (author)

  16. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  17. Angular and velocity distributions of secondary particles emitted in interaction of 3. 6-GeV/nucleon. cap alpha. particles and lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Antonenko, V.G.; Vinogradov, A.A.; Galitskii, V.M.; Grigor' yan, Y.I.; Ippolitov, M.S.; Karadzhev, K.V.; Kuz' min, E.A.; Man' ko, V.I.; Ogloblin, A.A.; Paramonov, V.V.; Tsvetkov, A.A.

    1980-04-01

    The technique is described and results presented of measurements of the velocity and angular distributions of pions, protons, and deuterons, and tritons emitted in bombardment of lead nuclei by ..cap alpha.. particles with energy 3.6 GeV/nucleon.

  18. Determination of arsenic, antimony, and bismuth in silicon using 200 keV. cap alpha. -particle backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Krejci, P.; Rybka, V. (Tesla, Prague (Czechoslovakia)); Pelikan, L. (Technical University of Prague (Czechoslovakia). Dept. of Microelectronics)

    1982-11-16

    Concentration profiles of As, Sb, and Bi implanted into Si are studied using backscattering of the 200 keV ..cap alpha..-particles. A conventional ion implanter serves as a source of analyzing beam and the scattered particles are detected using a silicon surface barrier detector. Measured projected ranges R/sub P/ of implanted atoms are found to be in satisfactory agreement with theoretical predictions.

  19. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  20. Study of the performance of the ATLAS monitored drift tube chambers under the influence of heavily ionizing $\\alpha$-particles

    CERN Document Server

    Sampsonidis, Dimitrios; Liolios, Anastasios; Manolopoulou, Metaxia; Petridou, C

    2004-01-01

    The MDT chambers of the ATLAS Muon Spectrometer will operate in a heavy LHC background environment mainly from photons and neutrons. The ionization produced by neutron recoils is much higher than the one from photons or muons and can be simulated by the use of alpha particles. A systematic study of the behavior of the ATLAS Monitored Drift Tubes (MDTs) under controlled irradiation has been performed. The presence of alpha particles results in the reduction of the gas gain due to space charge effects. The gas gain reduction has been studied in a single tube set up using a well controlled radium (/sup 226/Ra) source in order to enrich the tube gas (Ar/CO/sub 2/) with the alpha emitter /sup 220/Rn and irradiate the tubes internally. The results are confronted with Garfield simulations.

  1. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  2. Analysis of EUV, UV, and H-alpha Emission from Two Very Different Prominences

    Science.gov (United States)

    Kucera, T.; Landi, E.

    2008-01-01

    We analyze the properties of a pair of prominences observed the UV and EUV in April 2004. One was a generally quiet prominence which exhibited a period of activation. Another was a large "coronal cloud" type prominence. Both were observed by SOHO/SUMER, TRACE, and in H$\\alpha$ by BBSO and MLSO. The quiet prominence was also observed by the SOHO/CDS instrument. TRACE and H$\\alpha$ data provide 2D images on with time cadences on the order of 1 minute. The SUMER data was taken from a single slit location with a 90 second cadence and included a number of lines spanning the temperature range 80,000 to 1.6 million K. This observing program was designed to allow us to study prominence dynamics . CDS raster data was taken with a slower cadence, in lines formed at temperatures from 20,000 - 1 million K. We combine these different data sets to analyze the thermal properties, including differential emission measures (DEMs), of these very different prominences, and compare the results to those of prominences previously analyzed by ourselves and others.

  3. Boxy H$\\alpha$ Emission Profiles in Star-Forming Galaxies

    CERN Document Server

    Chen, Yan-Mei; Tremonti, Christy A; Shi, Yong; Jin, Yi-Fei

    2016-01-01

    We assemble a sample of disk star-forming galaxies from the Sloan Digital Sky Survey Data Release 7, studying the structure of H$\\alpha$ emission lines, finding a large fraction of this sample contains boxy H$\\alpha$ line profiles. This fraction depends on galaxy physical and geometric parameters in the following way: (1) it increases monotonically with star formation rate per unit area ($\\Sigma_{\\rm SFR}$), and stellar mass ($M_*$), with the trend being much stronger with $M_*$, from $\\sim$0% at $M_*=10^{10}M_{\\odot}$ to about 50% at $M_*=10^{11}M_\\odot$; (2) the fraction is much smaller in face-on systems than in edge-on systems. It increases with galaxy inclination ($i$) while $i < 60\\,^{\\circ}$ and is roughly a constant of 25% beyond this range; (3) for the sources which can be modeled well with two velocity components, blueshifted and redshifted from the systemic velocity, these is a positive correlation between the velocity difference of these two components and the stellar mass, with a slope similar...

  4. Rotation and H-alpha Emission Above and Below the Substellar Boundary

    CERN Document Server

    Basri, G S

    2000-01-01

    I present the results of a multiyear survey of very low mass stars and brown dwarfs, at high spectral resolution. The spectra were gathered with the HIRES echelle at the Keck Observatory. Some of these objects are stellar and others are substellar (or ambiguous). Early indications that such objects can be rapidly rotating but display little H-alpha emission turn out to be commonly true. This is the opposite of the relation between rotation and activity in solar-type stars. The H-alpha surface flux drops precipitously at the bottom of the main sequence, and seems to be related to the luminosity or temperature of the objects. There is a general trend to higher rotation velocities as one looks at objects of lower luminosity. I discuss several possible explanations for these results. The dynamos for these objects are probably fully turbulent, driven by convection, and thus more directly related to the object's luminosity. They may be quenched when the rotational velocities become too fast in comparison to the con...

  5. AVERAGE REACTION CROSS-SECTIONS FOR 74-MEV TO 112-MEV ALPHA-PARTICLES ON I-127 AND CS-133

    NARCIS (Netherlands)

    WARNER, RE; WILSCHUT, HW; RULLA, WF; FELDER, GN

    1991-01-01

    The average reaction cross section for 74- to 112-MeV alpha particles on I-127 and Cs-133 was measured by a new method using a magnetic spectrograph and a CsI scintillation detector. The result, sigma-R = 2220+/-50 mb, is in good agreement with optical model calculations and finite-range microscopic

  6. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  7. Proton and alpha-particle capture reactions at sub-Coulomb energies relevant to the p process

    Energy Technology Data Exchange (ETDEWEB)

    Harissopulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Lagoyannis, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Spyrou, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Zarkadas, Ch [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Galanopoulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Perdikakis, G [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Becker, H-W [Dynamitron-Tandem-Laboratorium, Ruhr Universitaet Bochum, 44801 Bochum (Germany); Rolfs, C [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Strieder, F [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Kunz, R [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Fey, M [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Hammer, J W [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Dewald, A [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Zell, K-O [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Brentano, P von [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Julin, R [Department of Physics, University of Jyvaeskylae, 40014 Jyvaeskylae (Finland); Demetriou, P [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP226, 1050 Brussels (Belgium)

    2005-10-01

    Several cross-section measurements of proton as well as {alpha}-particle capture reactions in the Se-Sb region have been carried out at sub-Coulomb energies with the aim to obtain global input parameters for Hauser-Feshbach (HF) calculations. Some of the results are compared with HF calculations using various optical model potentials and nuclear level densities.

  8. Particle effects on the emissivity and temperature of optically thick, mixed media retrieved by mid-IR emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rego-Barcena, S.; Thomson, M.J. [University of Toronto, Toronto, ON (Canada)

    2008-05-15

    Passive diagnostics offer new ways of obtaining real-time data for the control and modeling of industrial furnaces. It has been proposed elsewhere that from the intensity profile between 3.8 and 4.7 {mu} m one may derive the temperature of a gas-particle medium and the particle emissivity ({epsilon}{sub p}) at 3.95 {mu} m. This technique applies to large columns of combustion products with enough CO{sub 2}. The temperature is retrieved by finding the best fit between Planck's function and the intensity profile between 4.56 and 4.7 {mu} m, which is that of a blackbody due to CO{sub 2} saturation. Here we consider the effect of particles on the intensity profile and, therefore, on the retrieved temperature and particle emissivity. We derive an analytic approximation of the effective emissivity for an optically thick gas-particle mixture that includes emission and absorption due to particles and gases, along with isotropic particle scattering. The derivation follows the method of embedded invariance and has been used already for particle-only clouds. It yields a spectral solution that is applicable in other infrared regions where gas and particle optical thicknesses are large. A key parameter {chi} is the ratio of the gas absorption coefficient to the particle extinction coefficient. For {chi}=1 and {epsilon}{sub p} = 0.5, particle effects decrease the gas band profile by 5% from that of a blackbody. For {chi} {lt}1 and {epsilon}{sub p} {lt} 0.5, particle effects on the calculated temperature and particle emissivity are noticeable and particle effects should be considered. If chi is known, an iterative procedure may be used to calculate temperature and particle emissivity. We illustrate this procedure with data from a coal-fired boiler. Accounting for particle effects, temperatures were 4% higher (at about 1500 K) and particle emissivities 28% lower (for {epsilon}{sub p} within 0.3-05) than without considering these effects.

  9. NUCLEIDE-LARA, a library for alpha, X and gamma emissions sorted by increasing energy; NUCLEIDE-LARA, bibliotheque des emissions alpha, X et gamma classees par ordre d'energie croissante

    Energy Technology Data Exchange (ETDEWEB)

    Be, M.M.; Dulieu, Ch.; Chiste, V

    2008-07-01

    The NUCLEIDE-LARA library presents, for almost 400 radionuclides of practical interest, the tables of alpha, X and gamma emissions sorted by increasing energy, as well as the associated intensity and radioactive half-life of the parent radionuclide. (authors)

  10. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    Science.gov (United States)

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  11. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f1(z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The fl(z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  12. Lyman alpha emission from the first galaxies: Signatures of accretion and infall in the presence of line trapping

    CERN Document Server

    Latif, M A; Spaans, M; Zaroubi, S

    2011-01-01

    The formation of the first galaxies is accompanied by large accretion flows and virialization shocks, during which the gas is shock-heated to temperatures of $\\sim10^4$ K, leading to potentially strong fluxes in the Lyman alpha line. Indeed, a number of Lyman alpha blobs has been detected at high redshift. In this letter, we explore the origin of such Lyman alpha emission using cosmological hydrodynamical simulations that include a detailed model of atomic hydrogen as a multi-level atom and the effects of line trapping with the adaptive mesh refinement code FLASH. We see that baryons fall into the center of a halo through cold streams of gas, giving rise to a Lyman alpha luminosity of at least $\\rm 10^{44} erg s^{-1}$ at $\\rm z=4.7$, similar to observed Lyman alpha blobs. We find that a Lyman alpha flux of $\\rm 5.0\\times 10^{-17} erg cm^{-2} s^{-1}$ emerges from the envelope of the halo rather than its center, where the photons are efficiently trapped. Such emission can be probed in detail with the upcoming J...

  13. HH 666: Different kinematics from H{\\alpha} and [Fe II] emission provide a missing link between jets and outflows

    CERN Document Server

    Reiter, Megan; Kiminki, Megan M; Bally, John

    2015-01-01

    HH 666 is an externally irradiated protostellar outflow in the Carina Nebula for which we present new near-IR [Fe II] spectra obtained with the FIRE spectrograph at Magellan Observatory. Earlier H{\\alpha} and near-IR [Fe II] imaging revealed that the two emission lines trace substantially different morphologies in the inner ~40" of the outflow. H{\\alpha} traces a broad cocoon that surrounds the collimated [Fe II] jet that extends throughout the parent dust pillar. New spectra show that this discrepancy extends to their kinematics. Near-IR [Fe II] emission traces steady, fast velocities of +/- 200 km/s from the eastern and western limbs of the jet. We compare this to a previously published H{\\alpha} spectrum that reveals a Hubble-flow velocity structure near the jet-driving source. New, second-epoch HST/ACS H{\\alpha} images reveal the lateral spreading of the H{\\alpha} outflow lobe away from the jet axis. H{\\alpha} proper motions also indicate a sudden increase in the mass-loss rate ~1000 yr ago, while steady ...

  14. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  15. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  16. Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car

    Directory of Open Access Journals (Sweden)

    P. Karjalainen

    2015-11-01

    Full Text Available Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.

  17. Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car

    Science.gov (United States)

    Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.

    2015-11-01

    Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.

  18. Stability and {alpha}-particle confinement in the Sphellamak reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2000-10-01

    The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs

  19. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology; Immunovectorisation de radioelements emetteurs de particules alpha: une nouvelle voie therapeutique en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, M

    2007-05-15

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the {sup 131}iodine or the{sup 90}yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  20. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    Science.gov (United States)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  1. Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Max D. Kauther, Jie Xu, Christian Wedemeyer

    2010-01-01

    Full Text Available Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. Receptor activator of nuclear factor-κB ligand (RANKL and osteoprotegerin (OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.

  2. An experimental method to determine enzyme particle emission rate in workplace

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junjie; Wang, Meng [School of Environmental Science and Technology, 92 Weijing Road, Tianjin University, Tianjin 300072 (China); Xu, Bin; Zhu, Yifang [Environmental Engineering Department, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States)

    2009-12-15

    The enzyme preparation industry has been developing rapidly in recent years whose products, such as food and detergents, benefit human life in many ways. However, enzyme particles emitted during feed-in processes at workplaces can impose great risks to the workers. Local exhausts are often used to improve the indoor air quality under such conditions. To design local exhausts efficiently, information about the movement and transport of enzyme particles in workplace is required. With Computational Fluid Dynamics (CFD), the workplace enzyme particle level can be predicted from given particle source emission factors. However, no research at present relates to the determination of this emission factor with respect to particle contaminant at micro-level. We used Elutriation Dust Column (EDC) experimental method to determine enzyme particle emission factors at workplace. The principle and operation of EDC were described in detail. By introducing the particle source emission factor obtained from EDC experiment into CFD calculation, enzyme concentration level was calculated for a workplace having one feed-in machine operated intermittently. Good agreements were observed between the calculated enzyme particle concentration distributions and onsite collected sample results. It concludes that EDC can be used to predict particle emission rate in the feed-in operation and may offer a way to predict enzyme particle emission rate in similar feed-in operation processes. (author)

  3. A search for H$\\alpha$ emission in high-metallicity damped Lyman-$\\alpha$ systems at $z \\sim 2.4$

    CERN Document Server

    Wang, Wei-Hao; Prochaska, J Xavier

    2015-01-01

    We report on a sensitive search for redshifted H$\\alpha$ line-emission from three high-metallicity damped Ly$\\alpha$ absorbers (DLAs) at $z \\approx 2.4$ with the Near-infrared Integral Field Spectrometer (NIFS) on the Gemini-North telescope, assisted by the ALTtitude conjugate Adaptive optics for the InfraRed (ALTAIR) system with a laser guide star. Within the NIFS field-of-view, $\\approx 3.22" \\times 2.92"$ corresponding to $\\approx 25$ kpc $ \\times 23$ kpc at $z=2.4$, we detect no statistically significant line-emission at the expected redshifted H$\\alpha$ wavelengths. The measured root-mean-square noise fluctuations in $0.4"$ apertures are $1-3\\times10^{-18}$ erg s$^{-1}$ cm$^{-2}$. Our analysis of simulated, compact, line-emitting sources yields stringent limits on the star-formation rates (SFRs) of the three DLAs, $< 2.2$~M$_{\\odot}$ yr$^{-1}$ ($3\\sigma$) for two absorbers, and $< 11$~M$_{\\odot}$ yr$^{-1}$ ($3\\sigma$) for the third, at all impact parameters within $\\approx 12.5$~kpc to the quasar s...

  4. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, S.K.; Krishna, R.M.; Zavalla, K.J. [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Mandal, K.C., E-mail: mandalk@cec.sc.edu [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-02-11

    Schottky barrier detectors have been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 360 μm SiC substrates by depositing ∼10 nm nickel contact. Current–voltage (I–V) and capacitance–voltage (C–V) measurements were carried out to investigate the Schottky barrier properties. The detectors were evaluated for alpha particle detection using a {sup 241}Am alpha source. An energy resolution of ∼2.7% was obtained with a reverse bias of 100 V for 5.48 MeV alpha particles. The measured charge collection efficiency (CCE) was seen to vary as a function of bias voltage following a minority carrier diffusion model. Using this model, a diffusion length of∼3.5 μm for holes was numerically calculated from the CCE vs. bias voltage plot. Rise-time measurements of digitally recorded charge pulses for the 5.48 MeV alpha particles showed a presence of two sets of events having different rise-times at a higher bias of 200 V. A biparametric correlation scheme was successfully implemented for the first time to visualize the correlated pulse-height distribution of the events with different rise-times. Using the rise-time measurements and the biparametric plots, the observed variation of energy resolution with applied bias was explained.

  5. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  6. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  7. Alpha particle spectroscopy for CR-39 detector utilizing matrix of energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Awad, E.M. [Department of General Sciences, Yanbu Industrial College, PO Box 30436, Madinat Yanbu Al-Sinaiya (Saudi Arabia); Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)], E-mail: ayawad@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; Rammah, Y.S. [Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)

    2007-10-01

    A method for determining alpha-particle energy using CR-39 detector by utilizing matrix of energy equation was described. The matrix was composed from two axes; the track minor axis (m) and diameter of etched out track end (d) axis of some selected elliptical tracks. The energy E in (m,d) coordinate was approximated by matrix of energy equations given by: E{sub k}={sigma}{sub i,j=0}{sup 2}a{sub ij}d{sub k}{sup i}m{sub k}{sup j}, which was identified using two different approaches. First, i and j were treated as power exponents for d and m. The adjusting parameters values a{sub ij} were obtained and the energy of a given track was deduced directly from it. Second, i and j were treated as indices of some chosen tracks that were fitted to obtain iso-energy curves that were superimposed on m-d scatter plot as calibration curves. The energy between any two successive iso-energy curves in this case was assumed varied linearly with d for a given m. The energy matrix in both cases was solved numerically. Results of the two approaches were compared.

  8. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  9. Quantification of particle number and mass emission factors from combustion of Queensland trees.

    Science.gov (United States)

    Wardoyo, Arinto Y P; Morawska, Lidia; Ristovski, Zoran D; Marsh, Jack

    2006-09-15

    The quantification of particle emission factors under controlled laboratory conditions for burning of the following five common tree species found in South East Queensland forests has been studied: Spotted Gum (Corymbia citriodora), Blue Gum (Eucalyptus tereticornis), Bloodwood (Eucalyptus intermedia), Iron Bark (Eucalyptus crebra), and Stringybark (Eucalyptus umbra). The results of the study show that the particle number emission factors and PM2.5 mass emission factors depend on the type of tree and the burning rate. For fast burning conditions, the average particle number emission factors are in the range of 3.3-5.7 x 10(15) particles/kg for woods and 0.5-6.9 x 10(15) particles/kg for leaves and branches, and the PM2.5 emission factors are in the range of 140-210 mg/kg for woods and 450-4700 mg/kg for leaves and branches. For slow burning conditions, the average particle number emission factors are in the range of 2.8-44.8 x 10(13) particles/kg for woods and 0.5-9.3 x 10(13) particles/kg for leaves and branches, and the PM2.5 emissions factors are in the range of 120-480 mg/kg for woods and 3300-4900 mg/kg for leaves and branches. PMID:17007128

  10. Features of the gas discharge in the narrow gap micro-pattern gas detectors (MPGD) at a high level of alpha-particles background

    CERN Document Server

    Razin, V I

    2010-01-01

    In given article preliminary results of the research of the electron multiplication in MPGD are presented at a high level of alpha-particles background. This work has expanded borders of understanding of the streamer mode nature. It is seen as a complex from electrostatic and electromagnetic interactions which begin with appearance of the precursor in plasma state. In an inter-electrode gap the plasma oscillations occur, accompanied by longitudinal elastic waves of ionization, which can reach the cathode surface with induced negative charge. With the release of this charge due to previously established conducting channel there is a strong current pulse, accompanied by the emission due to recombination of positive and negative ions and a thin cord or streamer derive. In the aim of the MPGD protection from the spark breakdown at a high level of the alpha-particle background the next gas composition from a buffer, cooling and electronegative components are offered: 70% He +28% CF4 +2% SF6.

  11. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    Science.gov (United States)

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  12. Free-free and H42alpha emission from the dusty starburst within NGC 4945 as observed by ALMA

    CERN Document Server

    Bendo, G J; D'Cruze, M J; Dickinson, C; Fuller, G A; Karim, A

    2016-01-01

    We present observations of the 85.69 GHz continuum emission and H42alpha line emission from the central 30 arcsec within NGC 4945. Both sources of emission originate from nearly identical structures that can be modelled as exponential discs with a scale length of ~2.1 arcsec (or ~40 pc). An analysis of the spectral energy distribution based on combining these data with archival data imply that 84% +/- 10% of the 85.69 GHz continuum emission originates from free-free emission. The electron temperature is 5400 +/- 600 K, which is comparable to what has been measured near the centre of the Milky Way Galaxy. The star formation rate (SFR) based on the H42alpha and 85.69 GHz free-free emission (and using a distance of 3.8 Mpc) is 4.35 +/- 0.25 M/yr. This is consistent with the SFR from the total infrared flux and with previous measurements based on recombination line emission, and it is within a factor of ~2 of SFRs derived from radio data. The Spitzer Space Telescope 24 micron data and Wide-field Infrared Survey E...

  13. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  14. Particle emissions from pellets stoves and modern and old-type wood stoves

    International Nuclear Information System (INIS)

    The purpose of this work is to characterise particle emissions from pellets stoves and modern and old-type residential wood stoves. The mass concentration of particulate material in the hot flue gas was 19-82 mg/MJ, roughly the same for wood stoves and pellets stoves, but the old-type wood stoves tended to emit even higher quantities. Furthermore, during combustion of wood logs the considerably higher emission of organic gaseous carbon indicates an additional contribution to the emission from secondarily formed condensable organic particles. The particle mass emitted was dominated by fine particles (14-6.0.1014 Number Sign/MJ, from pellets 3.0.1013-5.0.1013 Number Sign/MJ, and in all cases dominated by fine particles. Efficient combustion of pellets resulted mainly in inorganic particles, dominated by potassium sulphate and potassium chloride. Zinc, the second most frequent metal, and calcium showed the highest concentrations among the less volatile components. The lowest concentration detected was for cadmium, about 105 times lower than for potassium. -- Highlights: → The mass concentration of particles in the hot flue gas was roughly the same for wood stoves and pellets stoves. → At combustion of wood logs, an additional contribution to the emission from secondarily formed condensable organic particles was indicated. → In all cases the particle mass emitted was dominated by fine particles (<1 μm). → The number of particles emitted was dominated by the ones smaller than 1 μm.

  15. A High Fraction of Ly-alpha-Emitters Among Galaxies with Extreme Emission Line Ratios at z ~ 2

    CERN Document Server

    Erb, Dawn K; Steidel, Charles C; Strom, Allison L; Rudie, Gwen C; Trainor, Ryan F; Shapley, Alice E; Reddy, Naveen A

    2016-01-01

    Star-forming galaxies form a sequence in the [OIII]/H-beta vs. [NII]/H-alpha diagnostic diagram, with low metallicity, highly ionized galaxies falling in the upper left corner. Drawing from a large sample of UV-selected star-forming galaxies at z~2 with rest-frame optical nebular emission line measurements from Keck-MOSFIRE, we select the extreme ~5% of the galaxies lying in this upper left corner, requiring log([NII]/H-alpha) = 0.75. These cuts identify galaxies with 12 + log(O/H) 20 A. We compare the equivalent width distribution of a sample of 522 UV-selected galaxies at 2.0alpha equivalent width -1 (-4) A, and only 9% of these galaxies qualify as LAEs. The extreme galaxies typically have lower attenuation at Ly-alpha than those in the comparison sample, and have ~50% lower median oxygen abundances. Both factors are likely to facilitate the escape of Ly-alpha: in less dusty galaxies Ly-alpha photons are l...

  16. Two-stage model for fast particle emission in heavy-ion collisions

    International Nuclear Information System (INIS)

    Using Bertsch's trajectory model two physically distinct approaches is applied to describe fast particle emission in heavy-ion collisions. In the early stage particle emission in the spirit of the Fermi-jet mechanism is calculated. In the later stage, after neck formation, particles are assumed to be emitted from a rapidly expanding hot zone of appreciably large initial dimension, which is strongly anisotropic in momentum space. Absolute double-differential cross sections for preequilibrium neutron emission and obtain a remarkable agreement with experimental data without introducing free parameters are calculated

  17. Increase in the area of etched alpha-particle tracks in CR-39 plastic with increasing storage time under nitrogen

    CERN Document Server

    Bhakta, J R; Miles, J C H

    1999-01-01

    The area of etched tracks in CR-39 (polyallyl diglycol carbonate, PADC) exposed to alpha-particles from an americium-241 source has been investigated as a function of post-exposure storage time in a dry nitrogen atmosphere. Data were collected over 2.5 years and the results show that the nominal maximum area of the track area distribution increases with increasing storage time.

  18. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties

    Science.gov (United States)

    Singh, Amita; Bezuidenhout, Michael; Walsh, Nichola; Beirne, Jason; Felletti, Riccardo; Wang, Suxiao; Fitzgerald, Kathleen T.; Gallagher, William M.; Kiely, Patrick; Redmond, Gareth

    2016-07-01

    The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.

  19. Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles.

    Science.gov (United States)

    Lioy, P J; Wainman, T; Zhang, J; Goldsmith, S

    1999-02-01

    The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl

  20. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    Science.gov (United States)

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  1. Particles and gaseous emissions from realistic operation of residential wood pellet heating systems

    Science.gov (United States)

    Win, Kaung Myat; Persson, Tomas; Bales, Chris

    2012-11-01

    Gaseous and particulate emissions from six residential wood pellet heating systems are determined at a realistic six day operation sequence. The study aims to investigate the total emissions from a realistic operation of the heating systems including start-up and stop phases. Five combined solar and pellet heating systems and one reference boiler without solar system with an integrated DHW preparation was tested in a laboratory at realistic operation conditions. The investigated emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (PM2.5). In this study, the emissions are presented as accumulated total emissions from the whole six days period and the emissions from start-up and stop phases are also presented separately to evaluate the influence of the emissions from these phases on the total emissions. Emission factors of the measured systems from the six day period are between 192 and 547 mg MJ-1 for the CO emissions, between 61 and 95 mg MJ-1 for the NO, between 6 and 45 mg MJ-1 for the TOC, between 31 and 116 mg MJ-1 for the particulate matter and between 2.1 × 1013 and 4 × 1013 for the number of particles. The emissions from the start-up and stop phases are significantly high for the CO (63-95 %) and the TOC (48-93 %). NO and particles emissions are shown to dominate during stationary operation. However, 30-40 % of the particle emissions arise from the start and stop periods. It is also shown that the average emissions of CO, TOC and particles under the realistic annual conditions were higher than the limit values of two eco labels.

  2. Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field

    CERN Document Server

    Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

    2014-01-01

    Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

  3. On the Lack of Correlation Between Mg II 2796, 2803 Angstrom and Lyman alpha Emission in Lensed Star-Forming Galaxies

    Science.gov (United States)

    Rigby, Jane Rebecca; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.

    2014-01-01

    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66 less than z less than 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km s(exp-1). When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km s(exp-1), implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.

  4. CADE, Multiple Particle Emission Cross-Sections by Weisskopf-Ewing Theory

    International Nuclear Information System (INIS)

    1 - Description of program or function: CADE calculates reaction cross sections for multi-particle emission. The total cross section for the emission of a particle at any particular stage is calculated together with the cross section as a function of energy. The probability of leaving the final nucleus in a state of any particular energy is also obtained. 2 - Method of solution: The program performs compound nucleus calculations using the Weisskopf-Ewing formalism. Multi-particle emissions are treated as a series of stages in a cascade. The relevant compound nucleus absorption cross sections for particle channels are calculated with built-in optical model routines. The gamma-ray emission is described by the giant dipole resonance formalism

  5. Multi-epoch Spectroscopy of Dwarf Galaxies with AGN Signatures: Identifying Sources with Persistent Broad H-alpha Emission

    CERN Document Server

    Baldassare, Vivienne F; Gallo, Elena; Greene, Jenny E; Graur, Or; Geha, Marla; Hainline, Kevin; Carroll, Christopher M; Hickox, Ryan C

    2016-01-01

    We use time-domain optical spectroscopy to distinguish between broad emission lines powered by accreting black holes (BHs) or stellar processes (i.e., supernovae) for 16 galaxies identified as AGN candidates by Reines et al. (2013). 14 of these have star-formation--dominated narrow-line emission ratios, one is a narrow-line AGN, and the last is a star-forming--AGN composite. We find that broad H$\\alpha$ emission has faded for 11/16 targets, based on spectra taken with the Magellan Echellette Spectrograph (MagE), the Dual Imaging Spectrograph, and the Ohio State Multi-Object Spectrograph with baselines ranging from 5 to 14 years. The 11 faded systems all have narrow-line ratios consistent with recent star formation, suggesting the broad emission for those targets was produced by a transient stellar process. The two objects with narrow-line AGN signatures (RGG 9 and RGG 119) have persistent broad H$\\alpha$ emission consistent with previous SDSS observations. The final three star-forming objects are classified a...

  6. Initial evaluation of {sup 227}Th-p-benzyl-DOTA-rituximab for low-dose rate {alpha}-particle radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway)]. E-mail: jostein.dahle@labmed.uio.no; Borrebaek, Jorgen [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Melhus, Katrine B. [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Bruland, Oyvind S. [Department of Clinical Medicine, University of Oslo, 0316 Oslo (Norway); Department of Oncology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Salberg, Gro [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Larsen, Roy H. [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway)

    2006-02-15

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with {beta}-emitting isotopes. In contrast to {beta}-emitters, the shorter range and high linear energy transfer (LET) of {alpha} particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of {alpha}-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The {alpha}-emitting radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the {alpha}-particle-emitting nuclide {sup 227}Th alone, the chelated form, {sup 227}Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of {sup 227}Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the {sup 227}Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of {sup 227}Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with {sup 227}Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of {sup 227}Th-DOTA-p-benzyl-rituximab.

  7. Frozen Hydrocarbon Particles of Cometary Halos as Carriers of Unidentified Emissions

    Indian Academy of Sciences (India)

    Irakli Simonia

    2005-12-01

    The possible nature of unidentified cometary emissions is under discussion. We propose a new model of the ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons and acyclic hydrocarbons.We describe principal properties of frozen hydrocarbon particles (FHPs) and suggest interpreting some of the unidentified cometary emission lines as the photoluminescence of FHPs. The results of comparative analysis are present.

  8. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    Science.gov (United States)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data. PMID:27209731

  9. Lyman-alpha Emission from a Luminous z=8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization

    CERN Document Server

    Zitrin, Adi; Belli, Sirio; Bouwens, Rychard; Ellis, Richard S; Roberts-Borsani, Guido; Stark, Daniel P; Oesch, Pascal A; Smit, Renske

    2015-01-01

    We report the discovery of Lyman-alpha emission (Ly$\\alpha$) in the bright galaxy EGSY-2008532660 (hereafter EGSY8p7) using the MOSFIRE spectrograph at the Keck Observatory. First reported by Roberts-Borsani et al. (2015), it was selected for spectroscopic observations because of its photometric redshift ($z_{phot}=8.57^{+0.22}_{-0.43}$), apparent brightness (H$_{160}=25.26\\pm0.09$) and red Spitzer/IRAC [3.6]-[4.5] color indicative of contamination by strong oxygen emission in the [4.5] band. With a total integration of $\\sim4.3$ hours, our data reveal an emission line at $\\simeq11776$ {\\AA} which we argue is likely Ly$\\alpha$ at a redshift $z_{spec}=8.68$, in good agreement with the photometric estimate. The line was detected independently on two nights using different slit orientations and its detection significance is $\\sim7.5\\sigma$. An overlapping sky line contributes significantly to the uncertainty on the total line flux but not the overall significance. By direct addition and a Gaussian fit, we estima...

  10. Studies of UV-cured CR-39 recording properties in view of its applicability in radiobiological experiments with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Sylvain [Laboratoire de Microanalyses Nucleaires, UMR CEA E4, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Ross, Caroline J. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Armbruster, Vincent [Laboratoire d' Optique P.M. DUFFIEUX, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Hill, Mark A. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Gharbi, Tijani [Laboratoire d' Optique P.M. DUFFIEUX, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France); Fromm, Michel [Laboratoire de Microanalyses Nucleaires, UMR CEA E4, UFR Sciences et Techniques, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon cedex (France)

    2005-11-15

    In radiobiology, low doses of high-LET radiation correspond to a few particle traversals through the cell population. Therefore, for studies on cell monolayers irradiated with a low dose of {alpha}-particles, it is extremely useful if the number and position of particle traversals can be determined. In this study we describe a new method, based on UV-curing, to obtain a 10{mu}m thick CR-39 grafted onto a 2.5{mu}m thick PolyEthylene Terephtalate (PET). This thin double polymeric layer, used as a dish base, has a regular and reproducible detector thickness which can be traversed by 3.5MeV {alpha}-particles, with a sufficient residual energy to traverse mammalian cells attached to the base. The recording properties of a PET-CR-39 dish, together with a demonstration of its use for radiobiological experiments, are presented. This new tool allows the precise determination of single-track impact parameters at a sub-cellular level.

  11. Search for charged-particle emission from deuterated palladium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-05-01

    Results are presented from the search for energetic charged particles possibly emitted from a deuterium loaded palladium electrode in an electrolysis cell. Within the sensitivity of our experimental set-up, we could not find events originating from 'cold nuclear fusion' processes. Based on this outcome, an upper limit for the non-observation of CNF of 2.0x10{sup -2}s{sup -1} emitted charged particles per cm{sup 3} (Pd) resp. 1.6x10{sup -24}s{sup -1} emitted charged particles per D pair has been deduced. (orig.).

  12. Direct measurement of particle formation and growth from the oxidation of biogenic emissions

    Directory of Open Access Journals (Sweden)

    T. M. VanReken

    2006-01-01

    Full Text Available A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different precursor gas mixtures: an α-pinene test mixture and the emissions of a Holm oak (Quercus ilex specimen and a loblolly pine (Pinus taeda specimen. The results demonstrate the variability between species in their potential to form new aerosol products. The emissions of Q. ilex specimen resulted in fewer particles than did α-pinene, although the concentration of monoterpenes was roughly equal in both experiments before the addition of ozone. Conversely, the oxidation of P. taeda specimen emissions led to the formation of more particles than either of the other two gas mixtures, despite a lower initial terpenoid concentration. These variations can be attributed to differences in the speciation of the vegetative emissions with respect to the α-pinene mixture and to each other. Specifically, the presence of β-pinene and other slower-reacting monoterpenes probably inhibited particle formation in the Q. ilex experiment, while the presence of sesquiterpenes, including β-caryophyllene, in the emissions of the P. taeda specimen were the likely cause of the more intense particle formation events observed during that experiment.

  13. Influence of emissivity on behavior of metallic dust particles in plasmas

    International Nuclear Information System (INIS)

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physics of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.

  14. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  15. Particle-in-cell simulations of an alpha channeling scenario: electron current drive arising from lower hybrid drift instability of fusion-born ions

    Science.gov (United States)

    Cook, James; Chapman, Sandra; Dendy, Richard

    2010-11-01

    Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.

  16. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    Science.gov (United States)

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  17. Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations

    Science.gov (United States)

    Palmgren, Finn; Wåhlin, Peter; Kildesø, Jan; Afshari, Alireza; Fogh, Christian L.

    The population is mainly exposed to high air pollution concentrations in the urban environment, where motor vehicle emissions constitute the main source of fine and ultrafine particles. These particles can penetrate deep into the respiratory system, and studies indicate that the smaller the particle, the larger the health impacts. The chemical composition, surface reactivity and physical properties are also important. However, the knowledge about chemical and physical properties of particles and the temporal and spatial variability of the smallest particles is still very limited. The present study summarises the first results of a larger project with the aims to improve the knowledge. The concentration and the emissions of ultrafine particles from petrol and diesel vehicles, respectively, have been quantified using Scanning Mobility Particle Sizer of ultrafine particles in the size range 6-700 nm and routine monitoring data from urban streets and urban background in Denmark. The quantification was carried out using receptor modelling. The number size distributions of petrol and diesel emissions showed a maximum at 20-30 nm and non-traffic at ≈100 nm. The contribution of ultrafine particles from diesel vehicles is dominating in streets. The same technique has been applied on PM 10, and ≈50% contribution from non-traffic. The technique has also been introduced in relation to elemental and organic carbon, and the first data showed strong correlation between traffic pollution and elemental carbon. The outdoor air quality has a significant effect on indoor pollution levels, and we spend most of the time indoors. Knowledge about the influence of ambient air pollution on the concentrations in the indoor environment is therefore crucial for assessment of human health effects of traffic pollution. The results of our studies will be included in air quality models for calculation of human exposure. Preliminary results from our first campaign showed, that the deposition

  18. Study of Deformation Effects in the Charged Particle Emission from 46Ti

    CERN Document Server

    Brekiesz, M; Maj, A; Kmiecik, M; Beck, C; Bednarczyk, P; Grebosz, J; Haas, F; Meczynski, W; Rauch, V; Rousseau, M; Zafra, A S; Styczen, J; Thummerer, S; Zieblinski, M; Zuber, K

    2004-01-01

    The 46Ti compound nucleus, as populated by the fusion-evaporation reaction 27Al + 19F at the bombarding energy of 144 MeV, has been investigated by charged particle spectroscopy using the multidetector array ICARE at the VIVITRON tandem facility of the IReS (Strasbourg). The light charged particles have been measured in coincidence with evaporation residues. The CACARIZO code, a Monte Carlo implementation of the statistical-model code CASCADE, has been used to calculate the spectral shapes of evaporated alpha-particles which are compared with the experimental spectra. This comparison indicates the possible signature of large deformations of the compound nucleus.

  19. Modified equipartition calculation for supernova remnants. Cases \\alpha =0.5 and \\alpha =1

    CERN Document Server

    Arbutina, B; Vucetic, M M; Pavlovic, M Z; Vukotic, B

    2013-01-01

    The equipartition or minimum-energy calculation is a well-known procedure for estimating magnetic field strength and total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous papers we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5<\\alpha <1. Here we extend the analysis to SNRs with \\alpha =0.5 and \\alpha =1.

  20. An octahedral deformation with six alpha particles at the Z = 12 system, Mg nuclides: Third nucleons, Alpharons

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We suggest that the emergence of a large deformation in the magnesium, Mg, nuclides, especially at the Z = 12, N = 12, should be associated with an octahedral deformed shape. Within the framework of molecular geometrical symmetry, we find a possibility that the Z = 12, N = 12 system would form an octahedral structure consisting of six points of alpha(4He) particles, yielding the ground collectivity. With this point of view, we draw the following serial molecular structures; the Z = 10, N = 10, 20Ne, corresponds to a hexahedral, the Z = 8, N = 8, 16O, does to a tetrahedral, and the Z = 6, N = 6, 12C, does to a trigonal symmetry. Moreover, the Z = 2, N = 2, 4He(alpha), fits into a tetrahedral symmetry with four points of nucleons; two protons and two neutrons. The enhanced deformation at Z = 12 with N > 20 would be explained by a deformed shape related to an Ethene(Ethylene)-like skeleton with six alpha particles. The deformation at Z = 10, with N = 10 and 12, can be interpreted as being attributed to a hexahed...

  1. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    Science.gov (United States)

    Al-Ta’Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  2. Influence of Shell on Pre-scission Particle Emission of a Doubly Magic Nucleus 208Pb

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2004-01-01

    Using Smoluchowski equation, we study the shell effects on the emission of light particles in the fission process of a doubly magic nucleus 208 pb. Calculated results show that shell has a considerable effect on the neutron emission and that shell effect gradually becomes weak with increasing excitation energy. In addition, a dependence of shell effects in the neutron emission on the angular momentum has been found.

  3. Emission, absorption and polarization of gyrosynchrotron radiation of mildly relativistic particles

    Science.gov (United States)

    Petrosian, V.; Mctiernan, J. M.

    1983-01-01

    Approximate analytic expressions are presented for the emissivity and absorption coefficient of synchrotron radiation of mildly relativistic particles with an arbitrary energy spectrum and pitch angle distribution. From these, an expression for the degree of polarization is derived. The analytic results are compared with numerical results for both thermal and non-thermal (power law) distributions of particles.

  4. Emission of ultrafine particles from the incineration of municipal solid waste: A review

    Science.gov (United States)

    Jones, Alan M.; Harrison, Roy M.

    2016-09-01

    Ultrafine particles (diameter waste, and this article reviews studies carried out on the emissions from modern municipal waste incinerators. The effects of engineering controls upon particle emissions are considered, as well as the very limited information on the effects of changing waste composition. The results of measurements of incinerator flue gas, and of atmospheric sampling at ground level in the vicinity of incinerators, show that typical ultrafine particle concentrations in flue gas are broadly similar to those in urban air and that consequently, after the dispersion process dilutes incinerator exhaust with ambient air, ultrafine particle concentrations are typically indistinguishable from those that would occur in the absence of the incinerator. In some cases the ultrafine particle concentration in the flue gas may be below that in the local ambient air. This appears to be a consequence of the removal of semi-volatile vapours in the secondary combustion zone and abatement plant, and the high efficiency of fabric filters for ultrafine particle collection.

  5. Light charged particle emission in heavy-ion reactions – What have we learnt?

    Indian Academy of Sciences (India)

    S Kailas

    2001-07-01

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles.

  6. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.;

    2002-01-01

    The generation and emission of combustion particles from two full-scale coal-fired power plants was studied by field measurements during which particles are sampled for size classification and chemical analysis simultaneously at three positions in the plants: before the electrostatic precipitator...... are in the PM2.5 range. The emitted particles primarily stern from the coal ash with a minor contribution of particles of entrained, dried-out droplets of scrubber slurry. The large emitted particles are compact, almost-spherical single particles originating from the ash mineral inclusions in the coal......, before the desulfurisation plant, and in the stack. The following sampling techniques are used: scanning mobility particle sizer, low pressure cascade impactor, dichotomous PM2.5 sampler, and total particle filter. The so-called multi-platform method used in this work Proves useful for gaining insight...

  7. Comparison Between Weisskopf and Thomas-Fermi Model for Particle Emission Widths from Hot Deformed Nuclei

    International Nuclear Information System (INIS)

    The emission widths Γn and Γp for emission of neutrons and protons are calculated within the Thomas-Fermi model, which we have recently developed, and are compared with those obtained in the usual Weisskopf approach for the case of zero angular momentum. Both methods yield quite similar results at small deformations, but rather important differences are observed for very deformed shapes, in particular for charged particles. A possible generalization of the model for emission of α-particles is also discussed. (author)

  8. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, D. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Llaurado, M., E-mail: montse.llaurado@ub.edu [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Rauret, G. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain)

    2012-04-15

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO{sub 3}, produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: Black-Right-Pointing-Pointer We study the effect of alpha and beta energies on PSA optimisation. Black-Right-Pointing-Pointer The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. Black-Right-Pointing-Pointer We study the effect of pH on the simultaneous determination of gross alpha/beta activities. Black-Right-Pointing-Pointer HNO{sub 3} produces a high amount of misclassification at very low pH. Black-Right-Pointing-Pointer The results improve when HCl is used to adjust the sample to low pH.

  9. Rapid Decline of Lyman-alpha Emission Toward the Reionization Era

    CERN Document Server

    Tilvi, Vithal; Finkelstein, Steven L; Long, James; Song, Mimi; Dickinson, Mark; Ferguson, Henry; Koekemoer, Anton M; Giavalisco, Mauro; Mobasher, Bahram

    2014-01-01

    The observed deficit of strongly Lyman-alpha emitting galaxies at z>6.5 is attributed to either increasing neutral hydrogen in the intergalactic medium (IGM) and/or to the evolving galaxy properties. To investigate this, we have performed very deep near-IR spectroscopy of z>7 galaxies using MOSFIRE on the Keck-I Telescope. We measure the Lyman-alpha fraction at z~8 (combined photometric redshift peak at z=7.7) using two methods. First, we derived NLy{\\alpha}/Ntot directly using extensive simulations to correct for incompleteness. Second, we used a Bayesian formalism (introduced by Treu et al. 2012) that compares the z>7 galaxy spectra to models of the Lyman-alpha equivalent width (WLy{\\alpha}) distribution at z~6. We explored two simple evolutionary scenarios: smooth evolution where Lyman-alpha is attenuated in all galaxies by a constant factor (perhaps owing to processes from galaxy evolution or a slowly increasing IGM opacity), and patchy evolution where Lyman-alpha is blocked in some fraction of galaxies (...

  10. Particle acceleration and non-thermal emission from galaxy clusters

    CERN Document Server

    Brunetti, G

    2004-01-01

    The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.

  11. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    Combustion of solid biomass under fixed bed conditions is a common technique to generate heat and power in both small and large scale grate furnaces (domestic boilers, stoves, district heating plants). Unfortunately, combustion of biomass will generate particle emissions containing both large fly ash particles and fine particles that consist of fly ash and soot. The large fly ash particles have been produced from fusion of non-volatile ash-forming species in burning char particle. The inorganic fine particles have been produced from nucleation of volatilised ash elements (K, Na, S, Cl and Zn). If the combustion is incomplete, soot particles are also produced from secondary reaction of tar. The particles in the fine fraction grows by coagulation and coalescence to a particle diameter around 0.1 pm. Since the smallest particles are very hard to collect in ordinary cleaning devices they contribute to the ambient air pollution. Furthermore, fine airborne particles have been correlated to adverse effects on the human health. It is therefore essential to minimize particle formation from the combustion process and thereby reduce the emissions of particulates to the ambient air. The aim with this project is to study particle emissions from small scale combustion of wood pellets and to investigate the impact of different operating, construction and fuel parameters on the amount and characteristic of the combustion generated particles. To address these issues, experiments were carried out in a 10 kW updraft fired wood pellets reactor that has been custom designed for systematic investigations of particle emissions. In the flue gas stack, particle emissions were sampled on a filter. The particle mass and number size distributions were analysed by a low pressure cascade impactor and a SMPS (Scanning Electron Mobility Particle Sizer). The results showed that the temperature and the flow pattern in the combustion zone affect the particle emissions. Increasing combustion

  12. Particle emissions from microalgae biodiesel combustion and their relative oxidative potential.

    Science.gov (United States)

    Rahman, M M; Stevanovic, S; Islam, M A; Heimann, K; Nabi, M N; Thomas, G; Feng, B; Brown, R J; Ristovski, Z D

    2015-09-01

    Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition. PMID:26238214

  13. Particle emissions from microalgae biodiesel combustion and their relative oxidative potential.

    Science.gov (United States)

    Rahman, M M; Stevanovic, S; Islam, M A; Heimann, K; Nabi, M N; Thomas, G; Feng, B; Brown, R J; Ristovski, Z D

    2015-09-01

    Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition.

  14. Emission of scalar particles from cylindrical black holes

    OpenAIRE

    Gohar, H.; Saifullah, K.

    2011-01-01

    We study quantum tunneling of scalar particles from black strings. For this purpose we apply WKB approximation and Hamilton-Jacobi method to solve the Klein-Gordon equation for outgoing trajectories. We find the tunneling probability of outgoing charged and uncharged scalars from the event horizon of black strings, and hence the Hawking temperature for these black configurations.

  15. Emission of scalar particles from cylindrical black holes

    Science.gov (United States)

    Gohar, H.; Saifullah, K.

    2013-01-01

    We study quantum tunneling of scalar particles from black strings. For this purpose we apply WKB approximation and Hamilton-Jacobi method to solve the Klein-Gordon equation for outgoing trajectories. We find the tunneling probability of outgoing charged and uncharged scalars from the event horizon of black strings, and hence the Hawking temperature for these black configurations.

  16. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogeneous inflow conditions using Positron Emission Particle Tracking

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Mohd Salleh, M.; Seville, J.P.

    2001-01-01

    A hard-sphere granular dynamics model of a two-dimensional gas-fluidised bed was experimentally validated using Positron Emission Particle Tracking (PEPT). In the model the Newtonian equations of motion are solved for each solid particle while taking into account the particle¿particle and particle¿w

  17. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Science.gov (United States)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  18. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  19. Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium

    CERN Document Server

    Birch, J; Clergeau, J -F; van Esch, P; Ferraton, M; Guerard, B; Hall-Wilton, R; Hultman, L; Höglund, C; Jensen, J; Khaplanov, A; Piscitelli, F

    2015-01-01

    Thermal neutron detector based on films of $^{10}$B$_4$C have been developed as an alternative to $^3$He detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of $\\alpha$ emitters, however, the background from $\\alpha$ particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as $\\alpha$ particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in...

  20. [Gas and particle emissions from housing in animal production].

    Science.gov (United States)

    Hartung, J

    1995-07-01

    Animal agriculture is increasingly regarded as a source of pollutants such as gases, odours and particulates which may be both aggravating and ecologically harmful. An overview of the origin, number and quantity of pollutants emitted from animal housing and from manure stores is presented and possible means of preventing or reducing them are discussed. Of the 136 trace gases in the air of animal houses ammonia (NH3), methane (CH4) and nitrous oxide (N2O) present the greatest risk to the environment. The gases and particulates are emitted principally from freshly deposited and stored excreta, from animal feed, from litter and from the animals themselves. Total NH3 emissions from animal production in Germany are estimated as approximately 750,000 t/a. It is calculated that the average of which is higher than the average "critical loads" for most natural habitats. However, there is still a shortage of satisfactory information on the extent of emissions, in particular on those from naturally ventilated animal houses. NH3 has a direct effect on the trees in the vicinity of animal houses and is also transported long distances through the air contributing to eutrophication and acidification of water and soil. This frequently results in changes in plant ecology, hence reducing plant diversity. CH4 and N2O contribute to the "greenhouse effect". Emissions of CH4 from animal husbandry in Germany are estimated at about 1.5 Mt/a. This corresponds to 0.2% of the assumed global emission from all sources. There is still little knowledge about the quantities of N2O released from agricultural animals. The concentration of airborne microorganisms in livestock housing is between some 100 and several 1000 per liter of air.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8591757

  1. FUV Irradiated Disk Atmospheres: Ly$\\alpha$ and the Origin of Hot H$_2$ Emission

    CERN Document Server

    Ádámkovics, Máté; Glassgold, Alfred E

    2015-01-01

    Protoplanetary disks are strongly irradiated by a stellar FUV spectrum that is dominated by Ly$\\alpha$ photons. We investigate the impact of stellar Ly$\\alpha$ irradiation on the terrestrial planet region of disks ($\\lesssim 1$AU) using an updated thermal-chemical model of a disk atmosphere irradiated by stellar FUV and X-rays. The radiative transfer of Ly$\\alpha$ is implemented in a simple approach that includes scattering by H I and absorption by molecules and dust. Because of their non-radial propagation path, scattered Ly$\\alpha$ photons deposit their energy deeper in the disk atmosphere than the radially propagating FUV continuum photons. We find that Ly$\\alpha$ has a significant impact on the thermal structure of the atmosphere. Photochemical heating produced by scattered Ly$\\alpha$ photons interacting with water vapor and OH leads to a layer of hot (1500 - 2500 K) molecular gas. The temperature in the layer is high enough to thermally excite the H$_2$ to vibrational levels from which they can be fluore...

  2. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  3. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Full text: High concentrations of airborne particles, in particular PM10 (particulate matter 10, but has been little used in Australia for airborne particulates. Two sets of 15 mm PM10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  4. Positron emission tomography in pebble beds. Part 1: Liquid particle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Ludwig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Kulenkampff, J.; Gründig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Franke, K. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy (IRP), Permoserstraße 15, 04318 Leipzig (Germany); Lippmann-Pipke, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2014-02-15

    Highlights: • Particle deposition in a pebble bed was recorded by positron emission tomography. • The particles were radioactively labelled and their spatial distribution was recorded. • Particle deposition was mainly driven by particle inertia and turbulent dispersion. • Particle deposits form hot spots on the upstream face of the single pebbles. - Abstract: Accidental scenarios such as the depressurisation of the primary circuit of high temperature gas cooled pebble bed reactors may lead to the release of fission products via the discharge of radioactive graphite dust. For a detailed source term assessment in such accident scenarios knowledge of the flow mechanics of dust transport in complex coolant circuit components, like pebble beds, recuperator structures and pipe systems is necessary. In this article an experimental study of aerosol deposition in a pebble bed is described. We investigated the deposition of radiolabelled liquid aerosol particles in a scaled pebble bed in an air-driven small-scale aerosol flow test facility under isothermal ambient conditions. The aerosol particles were generated by means of a condensational aerosol generator with potassium-fluoride (KF) condensation nuclei. Particle concentration measurements upstream and downstream of the pebble bed were performed by isokinetic sampling and particle counting. The results agree with typical deposition curves for turbulent and inertia driven particle deposition. Furthermore, positron emission tomography (PET) was performed to visualize and measure particle deposition distributions in the pebble bed. Results of a selected deposition experiment with moderately large particles (d{sub aero} = 3.5 μm, Re{sup ′}{sub pb}=2200) show that the deposited particles are located in the vicinity of the upstream stagnation points of the pebbles. These findings support the thesis that inertia driven particle deposition is predominating.

  5. A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  6. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  7. The $\\alpha-\\alpha$ fishbone potential revisited

    CERN Document Server

    Day, J P; Elhanafy, M; Smith, E; Woodhouse, R; Papp, Z

    2011-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  8. The BOSS Emission-Line Lens Survey. III. : Strong Lensing of Ly$\\alpha$ Emitters by Individual Galaxies

    CERN Document Server

    Shu, Yiping; Kochanek, Christopher S; Oguri, Masamune; Perez-Fournon, Ismael; Zheng, Zheng; Mao, Shude; Montero-Dorta, Antonio D; Brownstein, Joel R; Marques-Chaves, Rui; Menard, Brice

    2016-01-01

    We introduce the BOSS Emission-Line Lens Survey (BELLS) GALaxy-Ly$\\alpha$ EmitteR sYstems (BELLS GALLERY) Survey, which is a Hubble Space Telescope program to image a sample of galaxy-scale strong gravitational lens candidate systems with high-redshift Ly$\\alpha$ emitters (LAEs) as the background sources. The goal of the BELLS GALLERY Survey is to illuminate dark substructures in galaxy-scale halos by exploiting the small-scale clumpiness of rest-frame far-UV emission in lensed LAEs, and to thereby constrain the slope and normalization of the substructure mass function. In this paper, we describe in detail the spectroscopic strong-lens selection technique, which is based on methods adopted in the previous Sloan Lens ACS (SLACS) Survey, BOSS Emission-Line Lens Survey, and SLACS for the Masses Survey. We present the BELLS GALLERY sample of the 21 highest-quality galaxy-LAE candidates selected from $\\approx 1.4 \\times 10^6$ galaxy spectra in the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital...

  9. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles.

    Science.gov (United States)

    Xu, Ying; Little, John C

    2006-01-15

    A model that predicts the emission rate of volatile organic compounds (VOCs) from building materials is extended and used to predict the emission rate of semivolatile organic compounds (SVOCs) from polymeric materials. Reasonable agreement between model predictions and gas-phase di-2-ethylhexyl phthalate (DEHP) concentrations is achieved using data collected in a previous experimental study that measured emissions of DEHP from vinyl flooring in two very different chambers. While emissions of highly volatile VOCs are subject to "internal" control (the material-phase diffusion coefficient), emissions of the very low volatility SVOCs are subject to "external" control (partitioning into the gas phase, the convective mass-transfer coefficient, and adsorption onto interior surfaces). The effect of SVOCs partitioning onto airborne particles is also examined. The DEHP emission rate is increased when the gas-phase concentration is high, and especially when partitioning to the airborne particles is strong. Airborne particles may play an important role in inhalation exposure as well as in transporting SVOCs well beyond the source. Although more rigorous validation is needed, the model should help elucidate the mechanisms governing emissions of phthalate plasticizers, brominated flame retardants, biocides, and other SVOCs from a wide range of building materials and consumer products. PMID:16468389

  10. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  11. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  12. L-shell X-ray production cross sections induced by protons and alpha-particles in the 0.7-2.0 MeV/amu range for Ru and Ag

    Science.gov (United States)

    Bertol, A. P. L.; Trincavelli, J.; Hinrichs, R.; Vasconcellos, M. A. Z.

    2014-01-01

    The X-ray emissions induced by protons and alpha-particles of the elements Ag and Ru were measured on mono-elemental thin films. L-shell X-ray production cross sections were obtained for the three L-subshells, considering absorption corrections. The Ag X-ray production cross sections agree with experimental data of other authors and with theoretical models, and were used to endorse the quality of the experimental values for Ru, that were not found in the literature.

  13. Azimutal anisotropic particle emission in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    This thesis deals with the evaluation of one of the first experiments perforemd at the kaon spectrometer. In this experiment the 197Au+197Au reactions were measured at a beam energy of 1 GeV per nucleon. The essential results of the evaluation can be summarized as following: The widths of the measured distributions of the transverse momenta per nucleon of projectile spectators of different charge cannot be explained solely by Fermi-gas models. For particles of different fragment charge the mean transverse-momentum transfers per nucleon into the reaction plane at projectile rapidity were determined. (HSI)

  14. A Deeper Look at Faint H$\\alpha$ Emission in Nearby Dwarf Galaxies

    CERN Document Server

    Lee, Janice C; McDonald, Michael; Hilbert, Bryan

    2016-01-01

    We present deep H$\\alpha$ imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5m telescope. An effective bandpass of $\\sim$13\\AA\\ is used, and the images reach 3$\\sigma$ flux limits of $\\sim$8$\\times10^{-18}$ ergs s$^{-1}$ cm$^{-2}$, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local H$\\alpha$ galaxy surveys. The observations were originally motivated by the finding that the H$\\alpha$/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate and stellar mass decrease. The three dwarf galaxies selected for study have star formation rates, that when calculated from their H$\\alpha$ luminosities using standard conversion recipes, are $\\sim$50\\% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the H$\\alpha$/FUV flux ratio have been performed...

  15. Comprehensive evaluation of the linear stability of Alfv\\'en eigenmodes driven by alpha particles in an ITER baseline scenario

    CERN Document Server

    Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E

    2016-01-01

    The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...

  16. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    Science.gov (United States)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  17. Light Scattering and Thermal Emission by Primitive Dust Particles in Planetary Systems

    CERN Document Server

    Kimura, Hiroshi; Li, Aigen; Lebreton, Jérémy

    2016-01-01

    This review focuses on numerical approaches to deducing the light-scattering and thermal-emission properties of primitive dust particles in planetary systems from astronomical observations. The particles are agglomerates of small grains with sizes comparable to visible wavelength and compositions being mainly magnesium-rich silicates, iron-bearing metals, and organic refractory materials in pristine phases. These unique characteristics of primitive dust particles reflect their formation and evolution around main-sequence stars of essentially solar composition. The development of light-scattering theories has been offering powerful tools to make a thorough investigation of light scattering and thermal emission by primitive dust agglomerates in such a circumstellar environment. In particular, the discrete dipole approximation, the T-matrix method, and effective medium approximations are the most popular techniques for practical use in astronomy. Numerical simulations of light scattering and thermal emission by ...

  18. Preparation and Characterization of Sn-doped ZnO Particles with Low Infrared Emissivity

    Institute of Scientific and Technical Information of China (English)

    赵亮; 朱永平

    2012-01-01

    Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particles are of ellipsoid shape,their crystalline structure changed with thermal process temperature,the optimal thermal process temperature and Sn-doped proportion are 1000 ℃ and 15%,respectively,the minimum emissivity values are 0.42,0.28,0.46 and 0.48 corresponding to the infrared wavelengths of 0~∞,3~5,8~14 and 14~20 μm,which indicates that the Sn-doped ZnO particles have the application potential as low infrared emissivity material.

  19. Regional impacts of ultrafine particle emissions from the surface of the Great Lakes

    Directory of Open Access Journals (Sweden)

    S. H. Chung

    2011-12-01

    Full Text Available Quantifying the impacts of aerosols on climate requires a detailed knowledge of both the anthropogenic and the natural contributions to the aerosol population. Recent work has suggested a previously unrecognized natural source of ultrafine particles resulting from breaking waves at the surface of large freshwater lakes. This work is the first modeling study to investigate the potential for this newly discovered source to affect the aerosol number concentrations on regional scales. Using the WRF-Chem modeling framework, the impacts of wind-driven aerosol production from the surface of the Great Lakes were studied for a July 2004 test case. Simulations were performed for a base case with no lake surface emissions, a case with lake surface emissions included, and a default case wherein large freshwater lakes emit marine particles as if they were oceans. Results indicate that the lake surface emissions can enhance the surface-level aerosol number concentration by ~20% over the remote northern Great Lakes and by ~5% over other parts of the Great Lakes. These results were highly sensitive to the new particle formation (i.e., nucleation parameterization within WRF-Chem; when the new particle formation process was deactivated, surface-layer enhancements from the lake emissions increased to as much as 200%. The results reported here have significant uncertainties associated with the lake emission parameterization and the way ultrafine particles are modeled within WRF-Chem. Nevertheless, the magnitudes of the impacts found in this study suggest that further study to quantify the emissions of ultrafine particles from the surface of the Great Lakes is merited.

  20. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    Science.gov (United States)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  1. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement

    Institute of Scientific and Technical Information of China (English)

    Cheng Huang; Diming Lou; Zhiyuan Hu; Piqiang Tan; Di Yao; Wei Hu; Peng Li; Jin Ren; Changhong Chen

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements.The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) × 108 cm-3.The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles.The particle number concentration was down to 2.0 × 106 cm-3 and 2.7 × 107 cm-3 under decelerating and idling operations and as high as 5.0 × 108 cm-3 under accelerating operation.It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases.The particle number presented a "U" shaped distribution with changing speed at high engine load conditions,which implies that the particle number will reach its lowest level at medium engine speeds.The particle sizes of both measurements showed single mode distributions.The peak of particle size was located at about 50-80 nm in the accumulation mode particle range.Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  2. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    Science.gov (United States)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  3. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    Science.gov (United States)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range <0.3 μm and have been composed mainly of potassium chloride (KCl). The chemical analysis of PM1 and boiler ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  4. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    OpenAIRE

    Guyon, P; Frank, G. P.; M. Welling; D. Chand; Artaxo, P.; L. Rizzo; Nishioka, G.; Kolle, O.; Fritsch, H.; Silva Dias, M. A. F.; L. V. Gatti; Cordova, A. M.; Andreae, M.O.

    2005-01-01

    As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14–32 cm-3&nbs...

  5. 3D Effect of Ferromagnetic Materials on Alpha Particle Power Loads on First Wall Structures and Equilibrium on ITER

    International Nuclear Information System (INIS)

    Full text: The finite number and limited toroidal extent of the TF coils cause a periodic variation of the toroidal field called the magnetic ripple. This ripple can provide a significant channel for fast particle leakage, leading to very localized fast particle loads on the walls. Ferromagnetic inserts will be embedded in the double wall structure of the vacuum vessel in order to reduce the ripple. In ITER the toroidal field deviations are locally further enhanced by the presence of discrete ferromagnetic structures, e.g. TBM. Thus, there are complex symmetry-breaking effects. It is not yet fully understood how superimposing the periodic ripple and a local perturbation affect the fast ion confinement and concerns have been voiced that the combined effect might lead to significant channelling of the alpha power. In this work, the wall power loads due to fusion-born alpha particles were restudied for a variety of cases addressing issues such as different wall configurations, proper inclusion of the TBM effect on the magnetic background, and the possible corrections to 3D equilibrium introduced by the ferromagnetic materials using the 3D equilibrium code, VMEC, since 3D corrections to the equilibrium might enhance the alpha particle loss. To properly include the TBM effect on the magnetic background, the FEMAG code was used, and the effect was calculated on the total field including the poloidal field by the plasma current as well as the vacuum field. In the VMEC analysis, it was found that the difference between a full 3D equilibrium reconstruction and 'an axisymmetric equilibrium + vacuum fields' was small. Thus, it was concluded that no 3D equilibrium reconstruction was needed and that it was sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Under the new boundary condition, the wall load calculation was carried out by using ASCOT, DELTA5D, and F3D OFMC code. Including the plasma current contribution in the magnetic field

  6. X-ray luminescence spectra of graded-gap Al xGa 1- xAs structures irradiated by alpha particle

    Science.gov (United States)

    Šilėnas, A.; Požela, J.; Požela, K.; Jucienė, V.; Dapkus, L.

    2011-12-01

    The influence of 241Am alpha particle irradiation on X-ray luminescence spectra of the graded-gap AlxGa1-xAs structures of different thicknesses is investigated. It is observed that the integral X-ray luminescence intensity of nonirradiated thin (15 μm) structure is 1.4 times less than that in the thick (32 μm) structure, and this difference increases to 3 times after 3×1010 cm-2 dose of irradiation by alpha particle. The X-ray luminescence intensity of the energy hνFgg is responsible of that large difference, because it shifts the X-ray generated carriers to the narrow-gap surface with great nonradiative surface recombination rate. The alpha particle irradiation increases nonradiative recombination rate and causes a decrease of the X-ray luminescence intensity of all spectra lines in the thin (15 μm) detector. The most significant drop in X-ray luminescence efficiency is observed from the region at narrow-gap surface after the initial stage (109 cm-2 dose) of alpha particle irradiation. In the 32 μm thick detector, the luminescence intensity of the energy hν=1.8 eV does not change up to 2×1010 cm-2 of alpha particle irradiation dose. That means the high irradiation hardness of the thick graded-gap X-ray detector with optical response.

  7. More Detailed Study of Deformation Effects in Prescission Particle Emission by a Diffusion Model

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2003-01-01

    Deformation effects on particle emission in a fission process of 251Es nucleus as functions of excitationenergy, angular momentum, and viscosity coefficient have been investigated in detail within the framework of Smolu-chowski equation. Our calculations show that high excitation energy, low angular momentum, and large viscosity willenhance the influence of deformation on multiplicity of prescission particles, and that the roles of these three parameterswill become weak with decreasing deformation.

  8. More Detailed Study of Deformation Effects in Prescission Particle Emission by a Diffusion Model

    Institute of Scientific and Technical Information of China (English)

    YEWei

    2003-01-01

    Deformation effects on particle emission in a fission process of 251Es nucleus as functions of excitation energy, angular momentum, and viscosity coefficient have been investigated in detail within the framework of Smolu-chowski equation. Our calculations show that high excitation energy, low angular momentum, and large viscosity will enhance the influence of deformation on multiplicity of prescission particles, and that the roles of these three parameters will become weak with decreasing deformation.

  9. IGM Emission Observations with the Cosmic Web Imager: II. Discovery of Extended, Kinematically-Linked Emission around SSA22 Lyman-alpha Blob 2

    CERN Document Server

    Martin, D Christopher; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C; Matsuda, Yuichi

    2014-01-01

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large scale structure at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a Cold Dark Matter (CDM) dominated universe predict that the IGM is distributed in a cosmic web of filaments, and that galaxies should form along and at the intersections of these filaments (Bond et al. 1994; Miralda-Escude et al. 1996). While observations of QSO absorption lines and the large scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web has never been confirmed by direct imaging. Here we report the Lyman-alpha blob 2 (LAB2) in SSA22, with the Cosmic Web Imager. This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hours of total source exposure, CWI has revealed that LAB2 has extended Lyman-alpha emission which is consistent with filaments. We perform tests to secure the robustness of this result, which relies on data wi...

  10. Can a many-nucleon structure be visible in bremsstrahlung emission during $\\alpha$ decay?

    CERN Document Server

    Maydanyuk, Sergei P; Zou, Li-Ping

    2015-01-01

    We analyze if the nucleon structure of the $\\alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $\\alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $\\alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{\\rm Te}$ nucleus ($Q_{\\alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the ...

  11. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  12. On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration

    Directory of Open Access Journals (Sweden)

    A. Held

    2010-10-01

    Full Text Available During the ice-breaker borne ASCOS expedition (Arctic Summer Cloud Ocean Study direct eddy covariance measurements of aerosol number fluxes were carried out in August 2008 on the edge of an ice floe drifting in the central Arctic Ocean between 2°–10° W longitude and 87°–87.5° N latitude. The median aerosol transfer velocities over different surface types (open water leads, ice ridges, snow and ice surfaces ranged from 0.27 to 0.68 mm s−1 during deposition-dominated episodes. Emission periods were observed more frequently over the open lead, while the snow behaved primarily as a deposition surface. Directly measured aerosol fluxes were compared with particle deposition parameterizations in order to estimate the emission flux from the observed net aerosol flux. Finally, the contribution of the open lead particle source to atmospheric variations in particle number concentration was evaluated and compared with the observed temporal evolution of particle number. The direct emission of aerosol particles from the open lead can only explain 5–10% of the observed particle number variation in the mixing layer close to the surface.

  13. Measurements of double differential charged particle emission cross sections and development of a wide range charged particles spectrometer for ten`s MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Kiyosumi, Takehide [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1997-03-01

    We measured (n,xp), (n,xd) cross sections of C and Al for En=64.3 MeV neutrons at the {sup 7}Li(p,n) neutron sources facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy regions. In order to extend the measurements to low energy protons and {alpha} particles, a new spectrometer consisting of low pressure gas counters and BaF{sub 2} scintillators is now under development. A low threshold for low energy {alpha} particles will be achieved by using the gas counters. The particle identification over a wide energy range will be achieved by combining the {Delta}E-E method for low energy particles with the pulse shape discrimination (PSD) method of BaF{sub 2} for high energy particles. (author)

  14. Ultrafine particle size as a tracer for aircraft turbine emissions

    Science.gov (United States)

    Riley, Erin A.; Gould, Timothy; Hartin, Kris; Fruin, Scott A.; Simpson, Christopher D.; Yost, Michael G.; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  15. Airborne studies of emissions from savanna fires in southern Africa. 1. Aerosol emissions measured with a laser optical particle counter

    Science.gov (United States)

    Le Canut, P.; Andreae, M. O.; Harris, G. W.; Wienhold, F. G.; Zenker, T.

    1996-10-01

    During the SAFARI-92 experiment (Southern Africa Fire Atmosphere Research Initiative, September-October 1992), we flew an instrumented DC-3 aircraft through plumes from fires in various southern African savanna ecosystems. Some fires had been managed purposely for scientific study (e.g., those in Kruger National Park, South Africa), while the others were "fires of opportunity" which are abundant during the burning season in southern Africa. We obtained the aerosol (0.1-3.0 μm diameter) number and mass emission ratios relative to carbon monoxide and carbon dioxide from 21 individual fires. The average particle number emission ratio ΔN/ΔCO (Δ: concentrations in plume minus background concentrations) varied between 14 ± 2 cm-3 ppb-1 for grasslands and 23 ± 7 cm-3 ppb-1 for savannas. An exceptionally high value of 43 ± 4 cm-3 ppb-1 was measured for a sugarcane fire. Similarly, the mass emission ratio ΔM/ΔCO varied from 36 ± 6 ng m-3 ppb-1 to 83 ± 45 ng m-3 ppb-1, respectively, with again an exceptionally high value of 124 ± 14 ng m-3 ppb-1 for the sugarcane fire. The number and mass emission ratios relative to CO depended strongly upon the fire intensity. Whereas the emission ratios varied greatly from one fire to the other, the aerosol number and volume distributions as a function of particle size were very consistent. The average background aerosol size distribution was characterized by three mass modes (0.2-0.4 μm, ≈1.0 μm, and ≈2.0 μm diameter). On the other hand, the aerosol size distribution in the smoke plumes showed only two mass modes, one centered in the interval 0.2-0.3 μm and the other above 2 μm diameter. From our mean emission factor (4 ± 1 g kg-1 dm) we estimate that savanna fires release some 11-18 Tg aerosol particles in the size range 0.1-3.0 μm annually, a somewhat lower amount than emitted from tropical forest fires. Worldwide, savanna fires emit some 3-8 × 1027 particles (in the same size range) annually, which is expected

  16. The Grism Lens-Amplified Survey from Space (GLASS). III. A census of Ly\\alpha\\ Emission at $z\\gtrsim$7 from HST Spectroscopy

    CERN Document Server

    Schmidt, K B; Bradač, M; Vulcani, B; Huang, K -H; Hoag, A; Maseda, M; Guaita, L; Pentericci, L; Brammer, G B; Dijkstra, M; Dressler, A; Fontana, A; Henry, A L; Jones, T A; Mason, C; Trenti, M; Wang, X

    2015-01-01

    [abbreviated] We present a census of Ly\\alpha\\ emission at $z\\gtrsim7$ utilizing deep near infrared HST grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected galaxies we detect emission lines consistent with Ly\\alpha\\ in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations we expect the completeness and the purity of the sample to be 40-100% and 60-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1$\\sigma$ flux limits reaches $5\\times10^{-18}$erg/s/cm$^{2}$ per position angle over the full wavelength range of GLASS (0.8-1.7$\\mu$m). Based on the conditional probability of Ly\\alpha\\ emission measured from the ground at $z\\sim7$ we would have expected 12-18 Ly\\alpha\\ emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Ly\\alpha\\ emission with re...

  17. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  18. Influence of second phase particles on the deformation of. alpha. -Fe at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yue, S.; Bratina, W.J. (Univ. of Toronto (Canada))

    The deformation of fine grained polygonal ferrite (HSLA) steels was shown to be sensitive to variations in second phase particle characteristics. In particular a steel which contained a dispersion of fine niobium carbonitrides exhibited virtually no elongation to fracture at 77K, whereas a steel containing both fine niobium carbonitrides and coarser Fe{sub 3}C type particles exhibited considerable Luders strain and strain to fracture at 77K. It was observed that for the first steel, necking coincided with the nucleation of a Luders band whereas in the second steel, the nucleated Luders band propagated along the entire gauge length even at 77K. Luders band propagation and the delay of the onset of necking are connected by work hardening which, in turn, is governed by microstructural parameters such as grain size and second phase particles and it is these that result in this contrasting deformation behavior at 77K.

  19. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    Science.gov (United States)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  20. Possible Emission of Cosmic $X$-- and $\\gamma$--rays by Unstable Particles at Late Times

    CERN Document Server

    Urbanowski, K

    2014-01-01

    Not all astrophysical mechanisms of the emission of electromagnetic radiation including $X$-- and $\\gamma$-- rays coming from the space are clear. We find that charged unstable particles as well as neutral unstable particles with non--zero magnetic moment which live sufficiently long may emit electromagnetic radiation. This new mechanism is connected with the properties of unstable particles at the post exponential time region. Analyzing the transition time region between exponential and non-exponential form of the survival amplitude it is found that the instantaneous energy of the unstable particle can take very large values, much larger than the energy of this state for times from the exponential time region. Basing on the results obtained for the model considered, it is shown that this purely quantum mechanical effect may be responsible for causing unstable particles to emit electromagnetic--, $X$-- or $\\gamma$--rays at some time intervals from the transition time regions.

  1. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  2. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  3. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2006-01-01

    Full Text Available A model of iodine chemistry in the marine boundary layer (MBL has been used to investigate the impact of daytime coastal emissions of molecular iodine (I2. The model contains a full treatment of gas-phase iodine chemistry, combined with a description of the nucleation and growth, by condensation and coagulation, of iodine oxide nano-particles. In-situ measurements of coastal emissions of I2 made by the broadband cavity ring-down spectroscopy (BBCRDS and inductively coupled plasma-mass spectrometry (ICP/MS techniques are presented and compared to long path differential optical absorption spectroscopy (DOAS observations of I2 at Mace Head, Ireland. Simultaneous measurements of enhanced I2 emissions and particle bursts show that I2 is almost certainly the main precursor of new particles at this coastal location. The ratio of IO to I2 predicted by the model indicates that the iodine species observed by the DOAS are concentrated over a short distance (about 8% of the 4.2 km light path consistent with the intertidal zone, bringing them into good agreement with the I2 measurements made by the two in-situ techniques. The model is then used to investigate the effect of iodine emission on ozone depletion, and the production of new particles and their evolution to form stable cloud condensation nuclei (CCN.

  4. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  5. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    Science.gov (United States)

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.

  6. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    CERN Document Server

    Piantelli, S; Olmi, A; Bardelli, L; Bartoli, A; Bini, M; Casini, G; Coppi, C; Mangiarotti, A; Pasquali, G; Poggi, G; Stefanini, A A; Taccetti, N; Vanzi, E

    2006-01-01

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision and mass of the system. The data have been collected with the "Fiasco" setup in the reactions 93Nb+93Nb at 17, 23, 30, 38AMeV and 116Sn+116Sn at 30, 38AMeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code Gemini at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences for what concerns both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  7. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    Science.gov (United States)

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2006-09-01

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision, and mass of the system. The data have been collected with the FIASCO setup in the reactions Nb93+Nb93 at (17,23,30,38)A MeV and Sn116+Sn116 at (30,38)A MeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code GEMINI at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences in both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  8. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$I...

  9. Synthesis of alpha-MoTe2 nanorods via annealing Te-seeded amorphous MoTe2 particles.

    Science.gov (United States)

    Qiu, Longhui; Wei, Yun; Pol, Vilas G; Gedanken, Aharon

    2004-09-20

    Semiconductor alpha-MoTe2 nanorods have been synthesized by annealing Te-seeded particles of an amorphous MoTe2 intermediate. This intermediate is prepared by a solution reaction between Mo(CO)6 and elemental Te in diphenylmethane. The as-synthesized products were characterized by structural, compositional, and morphological techniques of X-ray diffraction, selected area electron diffraction, selected area energy dispersive spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results of the annealing process are MoTe2 nanorods with diameters of 50-200 nm and lengths ranging from 0.1 to 3.0 microm. Here, the rodlike structure of MoTe2 is reported for the first time, and added to the list as one kind of new morphology of MoTe2 nanomaterials. A mechanism for the formation of the nanorods is proposed. The sandwich-layered structure of Te-Mo-Te and the similarity in the structure between hexagonal alpha-MoTe2 and hexagonal Te are responsible for the formation of nanorods of MoTe2. PMID:15360257

  10. Alpha particle slowing-down characteristics and the effect on MHD instability excitation at high-density operation points in FFHRs

    International Nuclear Information System (INIS)

    Alpha-particle slowing-down behaviors at low-temperature, high-density operation points in force-free helical reactors (FFHRs) are examined on the basis of a Fokker-Planck (FP) simulation that simultaneously consider the balance among generation, slowing down, and loss from the plasma in parallel with the density dependence of the Alfvén speed. An accurate treatment of the boundary velocity region between thermal and non-thermal components is shown to be important in evaluating the alpha particle population that can induce instability. In a typical high-density, low-temperature operation point in an FFHR, this population is reduced. (author)

  11. H-alpha Variability in PTFO8-8695 and the Possible Direct Detection of Emission from a 2 Million Year Old Evaporating Hot Jupiter

    CERN Document Server

    Johns-Krull, Christopher M; McLane, Jacob N; Ciardi, David R; van Eyken, Julian C; Chen, Wei; Stauffer, John R; Beichman, Charles A; Frazier, Sarah A; Boden, Andrew F; Morales-Calderon, Maria; Rebull, Luisa M

    2016-01-01

    We use high time cadence, high spectral resolution optical observations to detect excess H-alpha emission from the 2 - 3 Myr old weak lined T Tauri star PTFO8-8695. This excess emission appears to move in velocity as expected if it were produced by the suspected planetary companion to this young star. The excess emission is not always present, but when it is, the predicted velocity motion is often observed. We have considered the possibility that the observed excess emission is produced by stellar activity (flares), accretion from a disk, or a planetary companion; we find the planetary companion to be the most likely explanation. If this is the case, the strength of the H-alpha line indicates that the emission comes from an extended volume around the planet, likely fed by mass loss from the planet which is expected to be overflowing its Roche lobe.

  12. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    International Nuclear Information System (INIS)

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between α-power driven sawtoothing and ideal MHD stability, and direct α-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional α-transport including the ambipolar electric field are discussed

  13. Biased impurity tunneling current emission spectrum in the presence of quasi-particle interaction

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2016-09-01

    We performed theoretical investigations of the tunneling current noise spectra through single-level impurity in the presence of quasi-particle (electron-phonon) interaction by means of the non-equilibrium Green function formalism. We demonstrated a fundamental link between quantum noise in tunneling contact and light emission processes. We calculated tunneling current noise spectra through a single level impurity atom both in the presence and in the absence of quasi-particle interaction for a finite bias voltage and identified it as a source of experimentally observed light emission from bias STM contacts. The results turn out to be sensitive to the tunneling contact parameters. Our findings provide important insight into the nature of non-equilibrium electronic transport in tunneling junctions with quasi-particle interaction.

  14. Poloidal drift enhancement for improved collisionless alpha particle confinement in stellarator configurations in the quasi-isodynamic category

    International Nuclear Information System (INIS)

    Poloidal closure of contours of the second adiabatic invariant has been reported to be an essential issue in the realization of good collisionless alpha particle confinement in stellarator configurations in the quasi-isodynamic category. This common feature is examined from a different aspect, that of the poloidal drift enhancement. This is realized by radial variation of the uniform magnetic field component with a diamagnetic effect for finite beta equilibria in the W7-X stellarator, which gives poloidal drift enhancement everywhere on a flux surface. On the other hand, the additional helicity introduced to the vacuum field in the quasi-isodynamic configuration can also enhance poloidal drift. The different methods for poloidal drift enhancement are clarified systematically on the basis of the magnetic field spectrum and the magnetic topography. (author)

  15. Special features of photoelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated by. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    Results of studies on a spatial distribution of defects arising in Ge crystals following ..cap alpha..-particle (40 MeV) irradiation are given. The distribution of defects playing the role of recombination centres is shown to produce the definite effect on diffusion-recombination processes in semiconductors. The carrier capture cross section on recombination centres is determined to be sigma approximately 10/sup -15/ cm/sup -2/. A representation of recombination wall appearing in the vicinity of radiation defect concentration peak is introduced. The experimental data are compared with the developed theoretical representations. It is shown that studies on the photoelectromagnetic effect can give information both on the pattern of radiation defect spatial distribution and recombination parameters of irradiated semiconductors.

  16. Characteristics of the photelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated with. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    The spatial distribution of defects created in Ge crystals by irradiation with 40-MeV ..cap alpha.. particles was investigated. The distribution of the defects acting as recombination centers had a decisive influence on the diffusion-recombination processes in this semiconductor. The carrier-capture cross section of the recombination centers (sigmaapprox.10/sup -15/ cm/sup 2/) was determined. A concept of a recombination wall, which appeared in the region of a maximum of the radiation defect concentration, was introduced. The experimental data were compared with theoretical representations. This comparison demonstrated that an investigation of the photoelectromagnetic effect could give information both on the nature of the spatial distribution of radiation defects and on the recombination parameters of an irradiated semiconductor.

  17. Development of diamond thin film-based alpha particle detectors for online assay of plutonium content in corrosive liquid medium

    International Nuclear Information System (INIS)

    In the present work, diamond thin films were prepared using microwave plasma chemical vapor deposition (MPCVD) method and characterized using XRD, OES, SEM, Raman spectroscopy and I-V techniques. These films were subjected to annealing and chemical cleaning for further improving the film quality. Surface metallization was obtained by gold deposition using PVD. These films were configured in semiconductor-insulator-metal heterostructure and mounted in SS shells. Gold coated growth surface (detector's active area) was sealed by chemical resistant sealing. Suitable bias was applied between the front and back electrical contacts to enable charge collection generated upon alpha particle interaction with diamond. The photograph of developed detector in the lab is shown

  18. Use of the Kalman filter in signal processing to reduce beam requirements for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Several techniques proposed for diagnosing the velocity distribution of fast alpha-particles in a burning plasma require the injection of a beam of fast neutral atoms as probes. The author discusses how improving signal detection techniques is a high leverage factor in reducing the cost of the diagnostic beam. Optimal estimation theory provides a computational algorithm, the Kalman filter, that can optimally estimate the amplitude of a signal with arbitrary (but known) time dependence in the presence of noise. In one example presented, based on a square-wave signal and assumed noise levels, the Kalman filter achieves an enhancement of signal detection efficiency of about a factor of 10 (as compared with the straightforward observation of the signal superimposed on noise) with an observation time of 100 signal periods

  19. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    International Nuclear Information System (INIS)

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies

  20. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Energy Technology Data Exchange (ETDEWEB)

    Paradzah, A.T.; Auret, F.D.; Legodi, M.J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between −50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30–350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 10{sup 10} cm{sup −2}. Current–voltage and capacitance–voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  1. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Science.gov (United States)

    Paradzah, A. T.; Auret, F. D.; Legodi, M. J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between -50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30-350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 1010 cm-2. Current-voltage and capacitance-voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  2. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  3. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1). PMID:27215988

  4. How are particle production, nucleon emission and target fragment evaporation processes interrelated in hadron-nucleus collisions?

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Relations between particle production, nucleon emission, and fragment evaporation processes were searched for in hadron-nucleus collisions. It was stated that: (1) the nucleon emission and target fragment evaporation proceed independently of the particle production process; and (2) relation between multiplicities of the emitted protons and of the evaporated charged fragments is expressed by simple formula.

  5. Investigation of Chemical-Vapour-Deposition Diamond Alpha-Particle Detectors

    Institute of Scientific and Technical Information of China (English)

    GU Bei-Bei; WANG Lin-Jun; ZHANG Ming-Long; XIA Yi-Ben

    2004-01-01

    Diamond films with [100] texture were prepared by a hot-filament chemical vapour deposition technique to fabricate particle detectors. The response of detectors to 5.5 MeV 241 Am particles is studied. The photocurrent increases linearly and then levels off with voltage, and 7hA is obtained at bias voltage of 100 V. The timedependent photocurrent initially increases rapidly and then tends to reach saturation. Furthermore, a little increase of the dark-current after irradiation can be accounted for by the release of the charges captured by the trapping centres at low energy levels during irradiation. An obvious peak of the pulse height distribution can be observed, associated with the energy of 5.5 MeV.

  6. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-02-02

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.

  7. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-01-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency. Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol

  8. Extended and Filamentary Lyman Alpha Emission from the Formation of a Protogalactic Halo at z=2.63

    CERN Document Server

    Rauch, Michael; Haehnelt, Martin G; Gauthier, Jean-Rene; Sargent, Wallace L W

    2012-01-01

    We report the observation of a further asymmetric, extended Lyman alpha emitting halo at z=2.63, from our ultra-deep, long-slit spectroscopic survey of faint high redshift emitters, undertaken with Magellan LDSS3 in the GOODS-S field. The Lya emission, detected over more than 30 kpc, is spatially coincident with a concentration of galaxies visible in deep broad-band imaging. While these faint galaxies without spectroscopic redshifts cannot with certainty be associated with one another or with the Lya emission, there are a number of compelling reasons why they very probably form a Milky Way halo-mass group at the Lya redshift. A filamentary structure, possibly consisting of Lya emission at very high equivalent width, and evidence for disturbed stellar populations, suggest that the properties of the emitting region reflect ongoing galaxy assembly, with recent galaxy mergers and star formation occurring in the group. Hence, the Lya provides unique insights into what is probably a key mode of galaxy formation at ...

  9. Influence of Neutron Shell Closure (Nc=126) on Prescission Particle Emission of Fissioning Systems 216,224Th

    Institute of Scientific and Technical Information of China (English)

    叶巍

    2003-01-01

    The effect of neutron shell closure Nc = 126 on the prescission-particle emission of 216Th and 224Th nuclei is investigated within the framework of an extensive Smoluchowski equation. It is found that there is a large difference in the prescission neutron multiplicity for the two Th nuclei, indicating a strong shell effect in neutron emission. Moreover, shell effects on particle emission are also investigated as functions of excitation energy,angular momentum and nuclear viscosity. The results show that with increasing excitation energy shell effects in prefission neutron evolve from continual strength to gradual weakness. Both high angular momenta and low viscosity weaken the shell effects on the particle emission.

  10. Orientation of the linear polarization plane of H-alpha emission in prominences

    CERN Document Server

    Suyunova, E Z; Osokin, A R

    2015-01-01

    2D distributions of deviations of the polarization plane from the direction tangential to the solar limb (angle \\chi) and the sign of \\chi are presented for H{\\alpha} prominences of March 29, 2006. The obtained values of \\chi are in agreement with non-eclipse coronagraphic measurements and indicate the existence of longitudinal magnetic fields. The 2D distributions of the sign of \\chi show the existence of both {\\guillemotleft}+{\\guillemotright} and {\\guillemotleft}-{\\guillemotright} polarities for each prominence. An interpretation in the frame of the existence of oppositely directed magnetic fields is noted.

  11. Acoustic emissions for particle sizing of powders through signal processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bastari, A.; Cristalli, C.; Morlacchi, R.; Pomponi, E. [Loccioni Group (Italy)

    2011-04-15

    The present work introduces an innovative method for measuring particle size distribution of an airborne powder, based on the application of signal processing techniques to the acoustic emission signals produced by the impacts of the powder with specific metallic surfaces. The basic idea of the proposed methodology lies on the identification of the unknown relation between the acquired acoustic emission signals and the powder particle size distribution, by means of a multi-step procedure. In the first step, wavelet packet decomposition is used to extract useful features from the acoustic emission signals: the dimensionality of feature space is further reduced through multivariate data analysis techniques. As a final step, a neural network is properly trained to map the feature vector into the particle size distribution. The proposed solution has several advantages, such as low cost and low invasiveness which allow the system based on this technique to be easily integrated in pre-existing plants. It has been successfully applied to the PSD measurement of coal powder produced by grinding mills in a coal-fired power station, and the experimental results are reported in the paper. The measurement principle can also be applied to different particle sizing applications, whenever a solid powder is carried in air or in other gases.

  12. Single particle optical investigation of gold shell enhanced upconverted fluorescence emission

    Science.gov (United States)

    Green, Kory; Lim, Shuang Fang; Hallen, Hans

    2014-03-01

    Upconverting nanoparticles (UCNPs) excited in the near IR offer novel advantages as fluorescent contrast agents, allowing for background free bio-imaging. However, their fluorescence brightness is hampered by low quantum efficiency due to the low absorption cross section of Ytterbium and Erbium ions in the near IR. We enhance the efficiency of these particles by investigating the plasmonic coupling of 30nm diameter core NaYF4: Yb, Er upconverting particles (UCNPs) with a gold shell coating. An enhancement of green emission by a factor of five and a three times overall increase in emission intensity has been achieved for single particle spectra. UV-Vis absorption has confirmed the surface plasmon resonance (SPR) of the gold shell to the near IR and transmission electron microscope (TEM) images demonstrates successful growth of a gold shell around the upconversion particle. Time-resolved spectroscopy shows that gold shell coupling changes the lifetime of the energy levels of the Erbium ion that are relevant to the emission process.

  13. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    Science.gov (United States)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed

  14. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  15. Modeling fundamental plasma transport and particle-induced emission in a simplified Test Cell

    Science.gov (United States)

    Giuliano, Paul Nicholas

    This work involves the modeling of fundamental plasma physics processes occurring within environments that are similar to that of the discharge and plume regions of electric propulsion devices such as Hall effect thrusters. The research is conducted as a collaborative effort with the Plasma & Space Propulsion Laboratory at the University of California, Los Angeles (UCLA), as part of the University of Michigan/AFRL Center for Excellence in Electric Propulsion (MACEEP). Transport physics, such as particle-particle collisions and particle-induced electron emission, are simulated within the UCLA experimental facility and its representative electric propulsion environment. Simulation methods employed include the direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) techniques for the kinetic simulation of charged, rarefied species on high-performance computing architectures. Momentum- (MEX) and charge-exchange (CEX) collision cross-section models for Xe and Xe+, both total and differential, are successfully validated at collision energies of ˜1.5 keV within the novel facility. Heavy-species collisional transport models are validated and the importance of scattering anisotropy in this collision-dominated environment is shown. The theory of particle-induced electron emission (PIE) is then investigated in the context of the relevant energies and environments of the UCLA facility and electric propulsion devices and diagnostics. Reduced, semi-empirical models for total yield and emitted electron energy distribution functions that are easily implemented in a DSMC-PIC code are developed for the simulation of secondary-electron emission due to low-energy ions and high-energy atoms, even in the case of incomplete target-material information. These models are important for the characterization of electric propulsion devices due to the problematic nature of low-temperature plasma diagnostic techniques in which the emission of electrons is physically indistinguishable

  16. The VIMOS Ultra Deep Survey: Lyman Alpha Emission and Stellar Populations of Star-Forming Galaxies at 2

    CERN Document Server

    Hathi, Nimish P

    2016-01-01

    The extensive ground-based spectroscopy campaign from the VIMOS Ultra-Deep Survey (VUDS), and the deep multi-wavelength photometry in three very well observed extragalactic fields (ECDFS, COSMOS, VVDS), allow us to investigate physical properties of a large sample (~4000 galaxies) of spectroscopically confirmed faint (i_{AB}20A) increases from ~10% at z~2 to ~40% at z~5-6, which is consistent with previous studies that employ higher Lyman alpha EW cut. This increase in the LAE fraction could be, in part, due to a decrease in the dust content of galaxies as redshift increases. When we compare best-fit SED estimated stellar parameters for LAEs and non-LAEs, we find that E(B-V) is smaller for LAEs at all redshifts and the difference in the median E(B-V) between LAEs and non-LAEs increases as redshift increases, from 0.05 at z~2 to 0.1 at z~3.5 to 0.2 at z~5-6. For the luminosities probed here (~L*), we find that star formation rates (SFRs) and stellar masses of galaxies, with and without Lyman alpha in emission,...

  17. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    Energy Technology Data Exchange (ETDEWEB)

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  18. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa

    Science.gov (United States)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Bertschi, Isaac T.; Blake, Donald R.; Simpson, Isobel J.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica

    2003-01-01

    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 microns). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3 - 15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide.

  19. Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense.

    Science.gov (United States)

    Yang, T T; Lin, T S; Wu, J J; Jhuang, F J

    2012-02-01

    Release of polycyclic aromatic hydrocarbons (PAHs) in particles of various sizes from smoldering incenses was determined. Among the three types of incense investigated, yielding the total PAH emission rate and factor ranges for PM0.25 were 2,139.7-6,595.6 ng/h and 1,762.2-8,094.9 ng/g, respectively. The PM0.25/PM2.5 ratio of total PAH emission factors and rates from smoldering three incenses was greater than 0.92. This study shows that total particle PAH emission rates and factors were mainly incenses. The benzo[a]pyrene accounted for 65.2%-68.0% of the total toxic equivalency emission factor of PM2.5 for the three incenses. Experimental results clearly indicate that the PAH emission rates and factors were influenced significantly by incense composition, including carbon and hydrogen content. The study concludes that smoldering incense with low atomic hydrogen/carbon ratios minimized the production of total polycyclic aromatic hydrocarbons of both PM2.5 and PM0.25.

  20. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-05-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14–32 cm-3 ppb-1 for most of the time, in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependant on the fire condition (combustion efficiency. Variability in the ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, indicating that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft. The correction, previously unpublished for tropical deforestation fires, suggested an EF about one and a half to twice as large for these species. Vertical transport of biomass-burning plumes from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non

  1. Study of the $\\beta$-delayed Particle Emission of $^{17}$Ne

    CERN Multimedia

    2002-01-01

    We intend to investigate the charged particle decay modes from the excited states of $^{17}$F populated in the $\\beta^+$- decay of $^{17}$Ne. In particular, we propose to study the proton decay branches to $^{16}$O states which are unstable to $\\alpha$- decay. We plan to use the recently developed ISOLDE Si-ball detector array in order to efficiently detect the charged particles in a wide solid angle. We ask for a total of 12 shifts, including 9 shifts for $^{17}$Ne and 3 shifts for stable beam and calibrations. We request the use of a Mg oxide target coupled to a plasma ion source with cooled transfer line or, if possible, to the new MINIMONOECRIS. We would like to make use of the ISOLDE VME DAQ and CERN data storage system.

  2. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    Science.gov (United States)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-05-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  3. Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei

    CERN Document Server

    Maydanyuk, Sergei P; Belchikov, Sergei V

    2015-01-01

    A high precision method to determine fusion in the capture of $\\alpha$-particles by nuclei is presented. For $\\alpha$-capture by $^{40}{\\rm Ca}$ and $^{44}{\\rm Ca}$, such an approach gives (1) the parameters of the $\\alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $\\alpha + ^{40}{\\rm Ca}$ and $34.06$ times for $\\alpha + ^{44}{\\rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wong's formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $\\alpha + ^{40}{\\rm Ca}$ and $\\alpha + ^{44}{\\rm Ca}$, which is connected with the theory ...

  4. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  5. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, T., E-mail: T.Dupuis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Chene, G., E-mail: Gregoire.Chene@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Mathis, F., E-mail: Francois.Mathis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); and others

    2011-12-15

    The 'IPNAS' laboratory, in collaboration with the 'Centre Europeen d'Archeometrie' is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  6. Beta-delayed particle emission from neutron-deficient tellurium, iodine, xenon, cesium and barium isotopes

    International Nuclear Information System (INIS)

    Using 58Ni, 63Cu(58Ni, xp yn) reactions and on-line mass separation the β-delayed proton and α-particle emission from neutron-deficient isotopes with 52113Xe, (protons), 114Cs (protons and α-particles) and 117Ba (protons). Coincidences between positons and β-delayed protons were recorded for 113Xe and 114Cs, yielding Qsub(EC)-Ssub(p) values of 7.92(15) and 8.73(15) MeV, respectively. The results are discussed within the statistical model. (orig.)

  7. Light Charged Particle Emission and the Giant Dipole Resonance in Ce Nucleus

    Science.gov (United States)

    Gramegna, F.; Barlini, S.; Kravchuk, V. L.; Lanchais, A. L.; Wieland, O.; Bracco, A.; Moroni, A.; Casini, G.; Benzoni, G.; Blasi, N.; Brambilla, S.; Brekiesz, M.; Bruno, M.; Camera, F.; Chiari, M.; Crespi, F.; Geraci, E.; Guiot, B.; Kmiecik, M.; Leoni, S.; Maj, A.; Mastinu, P. F.; Million, B.; Nannini, A.; Ordine, A.; Vannini, G.

    2005-04-01

    The 132Ce compound nucleus was formed in fusion reactions 64Ni + 68Zn and 16O + 116Sn at different excitation energies. High energy γ -rays have been measured in coincidence with Evaporation Residues (ER) in these reactions. At the same time Light Charged Particles (LCP) were measured with the same gate on ER for all the reactions in order to verify and compare the amount of pre-equilibrium emission using mass-symmetric and mass-asymmetric entrance channels. Results on α -particle spectra will be presented together with a moving source fit analysis.

  8. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    Science.gov (United States)

    Charpak, G.; Benaben, P.; Breuil, P.; Peskov, V.

    2008-02-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 104). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  9. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    Science.gov (United States)

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  10. Impacts of natural emission sources on particle pollution levels in Europe

    Science.gov (United States)

    Liora, Natalia; Poupkou, Anastasia; Giannaros, Theodore M.; Kakosimos, Konstantinos E.; Stein, Olaf; Melas, Dimitrios

    2016-07-01

    The main objective of this work is the study of the impact of windblown dust, sea-salt aerosol and biogenic emissions on particle pollution levels in Europe. The Natural Emissions MOdel (NEMO) and the modelling system consisted of the Weather Research and Forecasting model (WRF) and the Comprehensive Air Quality model with extensions (CAMx) were applied in a 30 km horizontal resolution grid, which covered Europe and the adjacent areas for the year 2009. Air quality simulations were performed for different emission scenarios in order to study the contribution of each natural emission source individually and together to air quality levels in Europe. The simulations reveal that the exclusion of windblown dust emissions decreases the mean seasonal PM10 levels by more than 3.3 μg/m3 (∼20%) in the Eastern Mediterranean during winter while an impact of 3 μg/m3 was also found during summer. The results suggest that sea-salt aerosol has a significant effect on PM levels and composition. Eliminating sea-salt emissions reduces PM10 seasonal concentrations by around 10 μg/m3 in Mediterranean Sea during summer while a decrease of up to 6 μg/m3 is found in Atlantic Ocean during autumn. Sea-salt particles also interact with the anthropogenic component and therefore their absence in the atmosphere decreases significantly the nitrates in aerosols where shipping activities are present. The exclusion of biogenic emissions in the model runs leads to a significant reduction of secondary organic aerosols of more than 90% while an increase in PM2.5 levels in central Europe and Eastern Mediterranean is found due to their interaction with anthropogenic component.

  11. Readout cross-talk for alpha-particle measurements in a pixelated sensor system

    International Nuclear Information System (INIS)

    Simulations in Medici are performed to quantify crosstalk and charge sharing in a hybrid pixelated silicon detector. Crosstalk and charge sharing degrades the spatial and spectral resolution of single photon processing X-ray imaging systems. For typical medical X-ray imaging applications, the process is dominated by charge sharing between the pixels in the sensor. For heavier particles each impact generates a large amount of charge and the simulation seems to over predict the charge collection efficiency. This indicates that some type of non modelled degradation of the charge transport efficiency exists, like the plasma effect where the plasma might shield the generated charges from the electric field and hence distorts the charge transport process. Based on the simulations it can be reasoned that saturation of the amplifiers in the Timepix system might generate crosstalk that increases the charge spread measured from ion impact on the sensor

  12. Readout cross-talk for alpha-particle measurements in a pixelated sensor system

    Science.gov (United States)

    Norlin, B.; Reza, S.; Krapohl, D.; Fröjdh, E.; Thungström, G.

    2015-05-01

    Simulations in Medici are performed to quantify crosstalk and charge sharing in a hybrid pixelated silicon detector. Crosstalk and charge sharing degrades the spatial and spectral resolution of single photon processing X-ray imaging systems. For typical medical X-ray imaging applications, the process is dominated by charge sharing between the pixels in the sensor. For heavier particles each impact generates a large amount of charge and the simulation seems to over predict the charge collection efficiency. This indicates that some type of non modelled degradation of the charge transport efficiency exists, like the plasma effect where the plasma might shield the generated charges from the electric field and hence distorts the charge transport process. Based on the simulations it can be reasoned that saturation of the amplifiers in the Timepix system might generate crosstalk that increases the charge spread measured from ion impact on the sensor.

  13. Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation.

    Directory of Open Access Journals (Sweden)

    Christian Wulbrand

    Full Text Available Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting (213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with (213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM. Survival and viability of CAL33 cells decreased both after incubation with increasing (213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml-1.48 MBq/ml and irradiation with increasing doses of photons (0.5-12 Gy. Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by (213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting (213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, (213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors.

  14. Detection of Lyman-Alpha Emission From a Triple Imaged z=6.85 Galaxy Behind MACS J2129.4-0741

    CERN Document Server

    Huang, Kuang-Han; Schmidt, Kasper B; Hoag, Austin; Bradač, Maruša; Treu, Tommaso; Dijkstra, Mark; Fontana, Adriano; Henry, Alaina; Malkan, Matthew; Mason, Charlotte; Morishita, Takahiro; Pentericci, Laura; Ryan, Russell E; Trenti, Michele; Wang, Xin

    2016-01-01

    We report the detection of Ly$\\alpha$ emission at $\\sim9538$\\AA{} in the Keck/DEIMOS and \\HST WFC3 G102 grism data from a triply-imaged galaxy at $z=6.846\\pm0.001$ behind galaxy cluster MACS J2129.4$-$0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is \\oii at $z=1.57$. After accounting for magnification, we calculate the weighted average of the intrinsic Ly$\\alpha$ luminosity to be $\\sim1.3\\times10^{42}~\\mathrm{erg}~\\mathrm{s}^{-1}$ and Ly$\\alpha$ equivalent width to be $74\\pm15$\\AA{}. Its intrinsic UV absolute magnitude at 1600\\AA{} is $-18.6\\pm0.2$ mag and stellar mass $(1.5\\pm0.3)\\times10^{7}~M_{\\odot}$, making it one of the faintest (intrinsic $L_{UV}\\sim0.14~L_{UV}^*$) galaxies with Ly$\\alpha$ detection at $z\\sim7$ to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at $z\\gtrsim7$; the inferred Ly$\\alpha$ escape fraction is ...

  15. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40Ar + 27Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  16. H_alpha Emission from High-Velocity Clouds and their Distances

    CERN Document Server

    Putman, M E; Veilleux, S; Gibson, B K; Freeman, K C; Maloney, P R

    2003-01-01

    We present deep Halpha spectroscopy towards several high-velocity clouds (HVCs) which vary in structure from compact (CHVCs) to the Magellanic Stream. The clouds range from being bright (~640 mR) to having upper limits on the order of 30 to 70 mR. The Halpha measurements are discussed in relation to their HI properties and distance constraints are given to each of the complexes based on f_esc = 6% of the ionizing photons escaping normal to the Galactic disk (f_escs = 1 - 2% when averaged over solid angle). The results suggest that many HVCs and CHVCs are within a ~40 kpc radius from the Galaxy and are not members of the Local Group at megaparsec distances. However, the Magellanic Stream is inconsistent with this model and needs to be explained. It has bright Halpha emission and little [NII] emission and appears to fall into a different category than the currently detected HVCs. This may reflect the lower metallicities of the Magellanic Clouds compared to the Galaxy, but the strength of the Halpha emission can...

  17. Light charged particles associated with subthreshold neutral pion emission in the 16O+27Al reaction

    International Nuclear Information System (INIS)

    The production of Z=1 and Z=2 particles associated with neutral pion emission in the 16O+27Al reaction at 94 MeV/nucleon has been studied. Results are compared with previous findings obtained by charged pions in the same collision at the same bombarding energy and with the prediction of a dynamical model based on a numerical solution of Boltzmann-Nordheim-Vlasov equation. (orig.)

  18. Pre-scission particle and gamma-ray emission in heavy-ion induced fission

    International Nuclear Information System (INIS)

    An introduction is given to the physics of the equilibrium transition model and of dissipative nuclear dynamics. Experimental data on pre-scission particle and gamma-ray emission and their interpretation are reviewed. They appear to indicate overdamped motion of the nuclear fluid. A time scale for compound-nucleus fission of about 30x10-21 sec or greater is indicated, whilst that for quasi- or fast-fission is somewhat shorter. 99 refs., 28 figs

  19. Ice nucleating particles from biomass combustion: emission rates and the role of refractory black carbon

    Science.gov (United States)

    Levin, E. J.; McMeeking, G. R.; McCluskey, C. S.; Carrico, C. M.; Nakao, S.; Stockwell, C.; Yokelson, R. J.; Sullivan, R. C.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleating particles (INPs) allow initial ice crystal formation in clouds at temperatures warmer than about -36 °C and are thus important for cloud and precipitation development. One potential source of INPs to the atmosphere is biomass combustion, such as wildfires, prescribed burning and agricultural burning, which emits large quantities of particulate matter into the atmosphere and is a major source of black carbon (BC) aerosol. To better understand and constrain INP emissions from biomass combustion, globally relevant fuels were used in a series of burns during a study called FLAME 4 at the USFS Fire Sciences Laboratory in Missoula, MT. Concentrations of immersion mode INPs were measured using a Colorado State University Continuous Flow Diffusion Chamber (CFDC). During the first part of the study, emissions were measured in real time as fires progressed from ignition to flaming and smoldering phases. INP emissions were observed predominately during periods of intensely flaming combustion. Roughly 75% of measured burns produced detectable INP concentrations and these had, on average, higher combustion efficiencies and higher BC emissions. During the second half of FLAME 4, we directly measured the contribution of refractory black carbon (rBC) to INP concentrations by selectively removing these particles via laser-induced incandescence (LII) using a Single Particle Soot Photometer (SP2; Droplet Measurement Technologies). The SP2 uses a 1064 nm Na:YAG laser to heat rBC aerosol to their vaporization temperatures, thus removing them from the sampled aerosol. By passing combustion aerosol through the SP2 with the laser on and off while measuring the remaining aerosol with the CFDC, we were able to determine the contribution of rBC to the INP population. Reductions in INPs of 0 - 70% were observed when removing rBC from the combustion aerosol, indicating the importance of rBC particles to INP concentrations for some burn scenarios.

  20. Light particle and gamma ray emission measurements in heavy ion reactions. Progress report

    International Nuclear Information System (INIS)

    Studies of neutron and charged particle emission in heavy ion reactions using the facilities at the HHIRF and the new computer facilities at Georgia State are briefly described. A progress report for 1982 to 1983 is combined with a proposal for work to be performed during 1983 to 1984. Present activities and immediate plans for a run already approved by the Program Advisory Committee of the HHIRF are discussed

  1. Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Directory of Open Access Journals (Sweden)

    E. M. Mårtensson

    2006-01-01

    Full Text Available Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m−2 s−1, in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA database, which is based on traffic intensity measurements. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh−1 km−1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=15±18×106 m−2 s−1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF . This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh

  2. [A proposal for calculating the dustlike particle emissions from livestock buildings].

    Science.gov (United States)

    Seedorf, J; Hartung, J

    2001-07-01

    Particles emitted from livestock buildings are supposed to cause health implications in nearby residents. This increasingly causes conflicts between farmers and neighbours. At the same time the national emission control regulations are tightened and focus also on the environmental impact of particulate emissions. In front of this background a calculation model is presented by which the emitted masses of PM10 and PM2.5 from animal houses can be estimated. The model may help to establish emission inventories for particulates in rural areas with livestock production and can become a valuable instrument of the emission control act. The validity of the proposed model depends largely on the quality and amount of the input data. The more valid data are available the more precise the model can work. Therefore it will be necessary to improve the data sets on emission amounts for PM10 and PM2.5. In spite of these limitations it appears that a first and reliable estimation of particulate emission amounts from animal buildings can be given by the proposed model calculation. PMID:11505849

  3. Characterization of gas and particle emissions from laboratory burns of peat

    Science.gov (United States)

    Black, Robert R.; Aurell, Johanna; Holder, Amara; George, Ingrid J.; Gullett, Brian K.; Hays, Michael D.; Geron, Chris D.; Tabor, Dennis

    2016-05-01

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organic carbon (OC), elemental carbon, light absorbing carbon, absorption Angstrom exponent, metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). CO from the smoldering burns, up to 7 h in duration, contributed approximately 16% of the total carbon emitted. Emission factors for black carbon (BC) and light absorbing carbon (UVPM) were considerably lower than those found for forest litter burns. Emission factors for PCDDs/PCDFs were near published values for forest fuels, at 1-4 ng toxic equivalents (TEQ)/kg carbon burned (Cb). Total PAH concentrations of ≥12 mg/kg were higher than published data from biomass burns, but roughly the same in terms of toxicity. Application of these emission factors to the noteworthy 2008 "Evans Road" fire in NC indicates that PM2.5 and PCDD/PCDF emissions from this fire may have been 4-6% of the annual US inventory and 5% of the annual OC amount.

  4. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  5. Spectral line decomposition and frequency shifts in Al He{alpha} group emission from laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Renner, O. [Institute of Physics, Academy of Sciences CR, Na Slovance 2, CZ-18221 Prague (Czech Republic)]. E-mail: renner@fzu.cz; Adamek, P. [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, CZ-11519 Prague (Czech Republic); Angelo, P. [LULI-Universite Pierre et Marie Curie, case 128, 4 place Jussieu, 75252 Paris Cedex 05 (France); Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Dalimier, E. [LULI-Universite Pierre et Marie Curie, case 128, 4 place Jussieu, 75252 Paris Cedex 05 (France); Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Foerster, E. [Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet, Max-Wien-Platz 1, D-07743 Jena (Germany); Krousky, E. [Institute of Physics, Academy of Sciences CR, Na Slovance 2, CZ-18221 Prague (Czech Republic); Rosmej, F.B. [CNRS-Universite de Provence, PIIM, Centre de Saint-Jerome, 13397 Marseille Cedex 20 (France); Schott, R. [LULI-Universite Pierre et Marie Curie, case 128, 4 place Jussieu, 75252 Paris Cedex 05 (France); Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France)

    2006-05-15

    Precise spectroscopic observations of K-shell emission from highly stripped Al ions immersed in dense, constrained-flow laser-produced plasma is reported. By using a vertical dispersion Johann spectrometer, the time-integrated spectra of the Al He{alpha} group were measured with a high spectral and spatial resolution. The complex spectral profiles modified by the satellite formation, line broadening and frequency shifts were decomposed into individual pseudo-Voigt components by using a code GASPED based on a problem-dependent genetic algorithm. The method uses eight operators tailored to the problem of spectral decomposition and variable-size genomes to fit the data with a varying number of spectral lines. The spectra fitting was based on anticipatory theoretical knowledge of the satellite structure simulated by the multilevel collisional-radiative code MARIA and on an assumption of the aggregate plasma-induced shift of the parent lines and their satellites. The analysis of the spectral profiles revealed systematic red shifts of the resonance and the intercombination lines. Their magnitude is commensurate with predictions of the atomic data and spectral line shape codes combined with the 1D hydrodynamic modeling of the plasma conditions and independent electron density measurements. The results obtained corroborate the feasibility of an accurate decomposition of the spectral profiles encompassing optically thick and thin lines overlapped by a strong satellite emission.

  6. Emission-line stars discovered in the UKST H-alpha survey of the Large Magellanic Cloud; Part 1: Hot stars

    CERN Document Server

    Reid, Warren A

    2012-01-01

    We present new, accurate positions, spectral classifications, radial and rotational velocities, H-alpha fluxes, equivalent widths and B,V,I,R magnitudes for 579 hot emission-line stars (classes B0 - F9) in the Large Magellanic Cloud which include 469 new discoveries. Candidate emission line stars were discovered using a deep, high resolution H-alpha map of the central 25 deg2 of the LMC obtained by median stacking a dozen 2 hour H-alpha exposures taken with the UK Schmidt Telescope. Spectroscopic follow-up observations on the AAT, UKST, VLT, the SAAO 1.9m and the MSSSO 2.3m telescope have established the identity of these faint sources down to magnitude R~23 for H-alpha (4.5 x 10^-17 ergs cm^2 s^-1 Ang). Confirmed emission-line stars have been assigned an underlying spectral classification through cross-correlation against 131 absorption line template spectra covering the range O1 to F8. We confirm 111 previously identified emission line stars and 64 previously known variable stars with spectral types hotter ...

  7. Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies

    CERN Document Server

    von Oertzen, Wolfram

    2010-01-01

    The formation of alpha-clusters in nuclei close to the decay thresholds is discussed. These states can be considered to be boson-condensates, which are formed in a second order phase transition in a mixture of nucleons and alpha-particles. The de Broglie wavelength of the alpha-particles is larger than the nuclear diameter, therefore the coherent properties of the alpha-particles give particular effects for the study of such states. The states are above the thresholds thus the enhanced emission of multiple-alphas into the same direction is observed. The probability for the emission of multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus decay.

  8. Stability of 248-254^Cf isotopes against alpha and cluster radioactivity

    OpenAIRE

    Santhosh, K. P.; Biju, R. K.

    2013-01-01

    Stability of 248-254^Cf nuclei against alpha and cluster emission is studied within our Coulomb and proximity potential model (CPPM). It is found that these nuclei are stable against light clusters (except alpha particle) and instable against heavy cluster emissions. For heavy cluster emissions the daughter nuclei lead to doubly magic 208^Pb or neighbouring one. The effect of quadrapole and hexadecapole deformations of parent nuclei, daughter nuclei and emitted cluster on half lives are also ...

  9. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  10. Lyman-alpha emission properties of simulated galaxies: interstellar medium structure and inclination effects

    CERN Document Server

    Verhamme, Anne; Blaizot, Jeremy; Garel, Thibault; Bacon, Roland; Devriendt, Julien; Guiderdoni, Bruno; Slyz, Adrianne

    2012-01-01

    [abridged] Aims. The aim of this paper is to assess the impact of the interstellar medium (ISM) physics on Lyman-alpha (Lya) radiation transfer and to quantify how galaxy orientation with respect to the line of sight alters observational signatures. Methods. We compare the results of Lya radiation transfer calculations through the ISM of a couple of idealized galaxy simulations with different ISM models. Results. First, the small-scale structuration of the ISM plays a determinant role in shaping a galaxys Lya properties.The artificially warm, and hence smooth, ISM of G1 yields an escape fraction of 50 percent at the Lya line center, and produces symmetrical double-peak profiles. On the contrary, in G2, most young stars are embedded in thick star-forming clouds, and the result is a 10 times lower escape fraction. G2 also displays a stronger outflowing velocity field, which favors the escape of red-shifted photons, resulting in an asymmetric Lya line. Second, the Lya properties of G2 strongly depend on the incl...

  11. Alpha particle spectroscopy — A useful tool for the investigation of spent nuclear fuel from high temperature gas-cooled reactors

    Science.gov (United States)

    Helmbold, M.

    1984-06-01

    For more than a decade, alpha particle spectrometry of spent nuclear fuel has been used at the Kernforschungsanlage Jülich (KFA) in the field of research for the German high temperature reactor (HTR). Techniques used for the preparation of samples for alpha spectrometry have included deposition from aqueous solutions of spent fuel, annealing of fuel particles in an oven and the evaporation of fuel material by a laser beam. The resulting sources are very thin but of low activity and the alpha spectrometry data obtained from them must be evaluated with sophisticated computer codes to achieve the required accuracy. Measurements have been made on high and low enriched uranium fuel and on a variety of parameters relevant to the fuel cycle. In this paper the source preparation and data evaluation techniques will be discussed together with the results obtained to data, i.e. production of alpha active actinide isotopes, correlations between actinide isotopes and fission products, build up and transmutation of actinides during burn-up of HTR fuel, diffusion coefficients of actinides for fuel particle kernels and coating materials. All these KFA results have helped to establish the basis for the design, licensing and operation of HTR power plants, including reprocessing and waste management.

  12. The outer atmosphere of the M-type supergiant alpha Orionis KI 7699A emission

    CERN Document Server

    Plez, B; Plez, Bertrand; Lambert, David L.

    2002-01-01

    Spatially-resolved high-resolution long-slit spectra of Betelgeuse's circumstellar shell are described for a spectral window centered on the 7699\\AA resonance line of neutral potassium. The K I emission from resonance fluorescent scattering of photospheric photons which is mapped out to 50 arcsec from the star is approximately spherically symmetric with a brightness decreasing as r^{-2.36 \\pm 0.03}, where $r$ is the radial distance from the star. Our measurements together with the earlier theoretical interpretation by Rodgers & Glassgold suggest that the mass loss rate is about 2 . 10^{-6} solar mass/year. The K I emission is far from homogeneous: intensity inhomogeneities are seen down to the seeing limit of about 1 arcsec and the velocity resolution of about 2 km/s. There is clear evidence for a thin shell of 50 arcsec radius. This is identified with the weaker circumstellar absorption component known as S2. Estimates are made of the density of K atoms in this shell (approx. 6 . 10^{-5} cm^{-3}).

  13. Monte Carlo particle-trajectory models for neutral cometary gases. I. Models and equations. II. The spatial morphology of the Lyman-alpha coma

    International Nuclear Information System (INIS)

    The mathematical derivations of various methods employed in the Monte Carlo particle-trajectory model (MCPTM) are presented, and the application of the MCPTM to the calculation of the photochemical heating of the inner coma through the partial thermalization of cometary hydrogen atoms produced by the photodissociation of water is discussed. This model is then used to explain the observed morphology of the spatially extended Ly-alpha comas of comets. The rocket and Skylab images of the Ly-alpha coma of Comet Kohoutek are examined. 90 references

  14. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  15. Pre-equilibrium α-particle emission as a probe to study α-clustering in nuclei

    Science.gov (United States)

    Fotina, O. V.; Goncharov, S. A.; Eremenko, D. O.; Platonov, S. Yu.; Yuminov, O. A.; Kravchuk, V. L.; Gramegna, F.; Marchi, T.; Cinausero, M.; D'Agostino, M.; Bruno, M.; Baiocco, G.; Morelli, L.; Degerlier, M.; Casini, G.; Barlini, S.; Valdrè, S.; Piantelli, S.; Pasquali, G.; Bracco, A.; Camera, F.; Wieland, O.; Benzoni, G.; Blasi, N.; Giaz, A.; Corsi, A.; Fabris, D.

    2014-03-01

    A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium α-particle production. The probabilities of neutron, proton and α-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and α-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to the experimental data.

  16. Impact of modelled particle characteristics on emissions inferred by inversion of tracer transport

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-02-01

    Full Text Available Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC.

    Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error.

    Uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10% to 20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81% to 870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and

  17. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  18. On-road particle number measurements using a portable emission measurement system (PEMS)

    Science.gov (United States)

    Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten

    2016-01-01

    In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.

  19. Trace gas and particle emissions from fires in large diameter and belowground biomass fuels

    Science.gov (United States)

    Bertschi, Isaac; Yokelson, Robert J.; Ward, Darold E.; Babbitt, Ron E.; Susott, Ronald A.; Goode, Jon G.; Hao, Wei Min

    2003-07-01

    We adopt a working definition of residual smoldering combustion (RSC) as biomass combustion that produces emissions that are not lofted by strong fire-induced convection. RSC emissions can be produced for up to several weeks after the passage of a flame front and they are mostly unaffected by flames. Fuels prone to RSC include downed logs, duff, and organic soils. Limited observations in the tropics and the boreal forest suggest that RSC is a globally significant source of emissions to the troposphere. This source was previously uncharacterized. We measured the first emission factors (EF) for RSC in a series of laboratory fires and in a wooded savanna in Zambia, Africa. We report EFRSC for both particles with diameter cyanide. We show that a model used to predict trace gas EF for fires in a wide variety of aboveground fine fuels fails to predict EF for RSC. For many compounds, our EF for RSC-prone fuels from the boreal forest and wooded savanna are very different from the EF for the same compounds measured in fire convection columns above these ecosystems. We couple our newly measured EFRSC with estimates of fuel consumption by RSC to refine emission estimates for fires in the boreal forest and wooded savanna. We find some large changes in estimates of biomass fire emissions with the inclusion of RSC. For instance, the wooded savanna methane EF increases by a factor of 2.5 even when RSC accounts for only 10% of fuel consumption. This shows that many more measurements of fuel consumption and EF for RSC are needed to improve estimates of biomass burning emissions.

  20. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    Science.gov (United States)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.