WorldWideScience

Sample records for alpha dosimetry

  1. ALPHA THERMOLUMINESCENCE DOSIMETRY IN DATING OF POTTERY

    Institute of Scientific and Technical Information of China (English)

    王维达; 夏君定

    1994-01-01

    This article describes the measurement of internal alpha dose-rate in pottery using ultrathin CaSO4:Tm theromoluminescence dosimeter,Among the advantages of the technique are not only convenience,accuracy,lowcost,but also the beta dose-rate from pottery can be obtained at the same time.

  2. Alpha thermoluminescence dosimetry in dating of pottery

    International Nuclear Information System (INIS)

    The article describes the measurement of internal alpha dose-rate in pottery using ultrathin CaSO4: Tm thermoluminescence dosimeter. The advantages of the technique are not only convenience, accuracy, low cost, but also the beta dose-rate from pottery can be obtained at the same time

  3. In vivo dosimetry with L-alpha-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Boey, R.; Van Der Velden, K. [Industriele Hogeschool van het Gemeenschapsonderwijs Limburg, Hasselt (Belgium); Schaeken, B. [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Radiotherapy

    1995-12-01

    When organic substances are irradiated, stable electrons can be formed. The concentration of these electrons is detected via electron paramagnetic resonance (EPR), a non-destructive form of dosimetry. L-alpha-alanine is extremely suited as a detector because of its high stability and high yield of unpaired electrons. With an EMS 104 spectrometer, we measure the peak-to-peak value of the first derivate of the resonance-spectrum. This value is proportional to the concentration of unpaired electrons and therefore with the absorbed dose. Prior to the in vivo measurements in teletherapy, a calibration curve had to be established. This clearly showed a linear relationship between the EPR-signal and the absorbed dose, except for very low dose where precision was low (20% 1 sd). This indicates that the background signal of the dosimeter is strongly orientation dependent. For this reason it was decided to use pre-irradiated detectors. A number of in vivo measurements has been performed. It was found that the error propagation plays a major role in the calculation of the measured absorbed dose, in the range 1 Gy-6 Gy. Contrary to in vivo measurements in brachytherapy, where higher doses are measured, large uncertainties (30% 1 sd) on the entry dose calculations were observed. For this reason, it is recommended to use a statistical method of reducing this standard deviation to an acceptable level. The proposed method, consisting of 2 detectors and the usage of weight coefficients on our standard deviations, gave promising results. However, theoretical calculations and in vivo measurements show that this method is still not satisfactory to reduce the uncertainty to an acceptable standard in clinical situations.

  4. In vivo dosimetry with L-alpha-alanine

    International Nuclear Information System (INIS)

    When organic substances are irradiated, stable electrons can be formed. The concentration of these electrons is detected via electron paramagnetic resonance (EPR), a non-destructive form of dosimetry. L-alpha-alanine is extremely suited as a detector because of its high stability and high yield of unpaired electrons. With an EMS 104 spectrometer, we measure the peak-to-peak value of the first derivate of the resonance-spectrum. This value is proportional to the concentration of unpaired electrons and therefore with the absorbed dose. Prior to the in vivo measurements in teletherapy, a calibration curve had to be established. This clearly showed a linear relationship between the EPR-signal and the absorbed dose, except for very low dose where precision was low (20% 1 sd). This indicates that the background signal of the dosimeter is strongly orientation dependent. For this reason it was decided to use pre-irradiated detectors. A number of in vivo measurements has been performed. It was found that the error propagation plays a major role in the calculation of the measured absorbed dose, in the range 1 Gy-6 Gy. Contrary to in vivo measurements in brachytherapy, where higher doses are measured, large uncertainties (30% 1 sd) on the entry dose calculations were observed. For this reason, it is recommended to use a statistical method of reducing this standard deviation to an acceptable level. The proposed method, consisting of 2 detectors and the usage of weight coefficients on our standard deviations, gave promising results. However, theoretical calculations and in vivo measurements show that this method is still not satisfactory to reduce the uncertainty to an acceptable standard in clinical situations

  5. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  6. Dosimetry

    International Nuclear Information System (INIS)

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  7. Geant4 simulations for sedimentary grains in infinite matrix conditions: The case of alpha dosimetry

    International Nuclear Information System (INIS)

    Simulations based on the Geant4 toolkit have been performed in order to reproduce the electromagnetic interactions of alpha particles in a spherical grain embedded in an infinite radioactive matrix and to assess several dosimetric parameters; updated alpha attenuation factors have thus been calculated for a clay matrix. Their sensitivity to the chemical composition of both the coating matrix and the grain, as well as to the water content of the matrix, has also been investigated. Finally, differences between the energetic spectrum of the incident alpha particles and the deposited energy spectrum in the grain have been highlighted for fine and coarse grains, and their impact in terms of alpha dosimetry has been discussed. - Highlights: • We simulate sedimentary grains in an infinite matrix and alpha particles flux. • The dose deposited and the energetic spectra in the grain are studied. • Attenuation factors are calculated for several grain sizes and matrix compositions. • Grain size in regard of alpha range has to be considered for efficiency calculation

  8. Dosimetry

    International Nuclear Information System (INIS)

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source

  9. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters

    Directory of Open Access Journals (Sweden)

    Ernesto Amato

    2014-03-01

    Full Text Available We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'generalized radius', calculated as 3V/S, where V is the ellipsoid volume and S its surface. Radiation-specific parametric functions were obtained in order to calculate the absorbed fraction of a given radiation in a generic ellipsoidal volume. The dose from a generic radionuclide can be calculated through a process of summation and integration over the whole radionuclide emission spectrum, profitably implemented in an electronic spreadsheet. We compared the results of our analytical calculation approach with those obtained from the OLINDA/EXM computer software, finding a good agreement in a wide range of sphere radii, for the high-energy pure beta emitter 90Y, the commonly employed beta-gamma emitter 131I, and the pure alpha emitter 213Po. The generality of our approach makes it useful an easy to implement in clinical dosimetry calculations as well as in radiation safety estimations when doses from internal radionuclide uptake are to be taken into account.

  10. Quantification of activity by alpha-camera imaging and small-scale dosimetry within ovarian carcinoma micrometastases treated with targeted alpha therapy

    DEFF Research Database (Denmark)

    Chouin, N; Lindegren, S; Jensen, Holger;

    2012-01-01

    Targeted alpha therapy (TAT) a promising treatment for small, residual, and micrometastatic diseases has questionable efficacy against malignant lesions larger than the α-particle range, and likely requires favorable intratumoral activity distribution. Here, we characterized and quantified the...... activity distribution of an alpha-particle emitter radiolabelled antibody within >100-µm micrometastases in a murine ovarian carcinoma model. Nude mice bearing ovarian micrometastases were injected intra-peritoneally with 211At-MX35 (total injected activity 6 MBq, specific activity 650 MBq/mg). Animals......% IA/g at 4 h) in the outer tumor layer and a sharp drop beyond a depth of 50 µm. Small-scale dosimetry was performed on a multi-cellular micrometastasis model, using time-integrated activities derived from the experimental data. With injected activity of 400 kBq, tumors exhibiting uniform activity...

  11. Internal dosimetry for alpha emitters radiopharmaceuticals in biological tissue studied with the FLUKA code 10

    International Nuclear Information System (INIS)

    Clinical practices for neoplastic disease diagnose and treatment are based on the incorporation of α, β and γ radiotracers and radiopharmaceuticals, which might be associated with potential damage. Thus, being necessary accurate dosimetry strategies. In vivo absorbed dose appears as an ideal solution. However, its implementation in clinics does not attain enough reliability. On the other hand, different approaches were proposed for internal dosimetry calculations. Some special analytical methodologies were developed by the Committee on Medical Internal Radiation Dose (MIRD) to assess organ level dose values in nuclear medicine. Improvements in informatics achieve better computation performance, but Monte Carlo approaches for patient-specific dosimetry are sometimes high time-consuming l imitating its use in routine clinical practices. Analytical approaches introduce kernel convolution techniques aimed to patient spe ci dosimetry. Although scattering effects are not accurately handled, these methods are capable of fast dosimetry computation based on photon Energy Deposition Kernel (EDK and particle Dose Point Kernel (DPK) assessed for radionuclides in order to perform further dosimetry calculations. EDK and DPK are obtained according to specific source emission. It was considered a point source isotropically emitting within an homogeneous medium, so that radiation transport is accounted as uniformly distributed over concentric spherical regions by shell tally. Dedicated Monte Carlo simulations were performed by a subroutine adapted from the FLUKA co se. In water EDK were evaluated at different photon energies and some typical γ-emitters radiopharmaceuticals; whereas DPK were obtained for both α and β emitters. Additionally, EDK and DPK were calculated for several biological tissues. Obtained results agree with energy loss from stopping power calculated by Bethe-Bark as- Bloch theory in the continuous slowing down approximation

  12. Dosimetry of natural and man-made alpha emitters in plankton

    International Nuclear Information System (INIS)

    Comparison between the natural and man-made alpha radiation dose rates to plankton can be important for predicting the potential long-term effects on aquatic biota resulting from the routine or accidental radioactive releases from the nuclear fuel cycle. A contribution is made here towards the goal of comparing natural with man-made alpha radiation dose rates to plankton using the same method of calculation in both cases. (Author)

  13. Alpha alumina exoemissive and thermoluminescent properties. Application to the dosimetry of ionizing radiations in case of accident

    International Nuclear Information System (INIS)

    This work consists of two parts. In the first part, a phenomenon of phototransfer in Thermostimulated Exoelectronic Emission (T.S.E.E.) is pointed out. Study of intrinsic T.S.E.E. of alpha alumina exposed to ultraviolet (U.V.) excitation of energy superior to 4 eV shows three T.S.E.E. peaks situated at 240, 325, 5350C (heating rate of 20C.s-1). The phototransfer phenomenon is then characterized notably by the lowering of the U.V. excitation threshold to 3.5 eV and the increasing of T.S.E.E. response for U.V. energies between 3.5 and 6 eV. Discussion and interpretation of the results obtained are based on the perfect analogy with the phototransfer of Thermoluminescence (T.L.) observed on a similar type of alpha alumina. The second part describes the application of alpha alumina dosimetric properties to accidental irradiation dosimetry and cartography. The material is bound to a textile support to be used for clothes manufacturing for irradiation risking workers. T.S.E.E. and T.L. properties of the selected fabric have been studied. - T.S.E.E. response to a beta irradiation of strontium 90 covers the region [0.01 - 10 Gy], with a dispersion of ± 20%, a non significant thermic fading beyond 72 hours after irradiation and a very important optical fading; - the region in T.L. extends from 0.25 to 10 Gy with X irradiation (45 kV) and from 0.5 to 10 Gy with gamma irradiation of cobalt 60 and caesium 137; the dispersion is ± 20%, the thermic fading is weak and the optical fading is negligible in artificial light or does not vary any more after 5 days of sunlight exposition

  14. Determination of ultratrace amounts of plutonium-239 in bioassay samples for alpha dosimetry

    International Nuclear Information System (INIS)

    Potential alpha contamination in PHWRs is of concern when working with materials which may contain fuel debris, such as around fueling machines and feeders which are cut open. Traditional screening methods use alpha spectrometry of fecal samples. It is highly desirable to use less invasive methods. Screening of urine samples is well accepted in the industry for a variety of purposes. However, various solubility models and known biological throughputs indicate that it is only practical to measure 239Pu/240Pu in urine and that these must be measured at very low concentrations in order to be a practical screening tool. It is necessary to achieve a detection limit of about 5 uBq in a daily urine output to correspond to a dose of 0.1 mSv/annum. This corresponds to about 2 femtograms (10-15 g) of 239Pu and 0.5 fg 240Pu in daily urine output. If the daily urine output is concentrated to 1 g, then the desired detection limit is 2 fg/g or 2 pg/kg for 239Pu, for example. Although alpha spectrometry would provide information on multiple isotopes of interest, its practical detection limit is about 100 to 300 uBq. The currently available methods for measuring uBq amounts of 239Pu/240Pu (the only alpha emitters in urine suitable for screening measurements) are all mass spectrometry based and vary in the means by which the analyte is presented to the mass spectrometer

  15. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride

    International Nuclear Information System (INIS)

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for 223Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on 99mTc-MDP whole-body images, and the ROIs superimposed on the 223Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T1/2eff) of 223Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), DRBE = 899 mGy/MBq (range 340-2,450 mGy/MBq). The percent uptake of 99mTc and 223Ra

  16. OSL and TL in LiF:Mg,Ti following alpha particle and beta ray irradiation: Application to mixed-field radiation dosimetry

    International Nuclear Information System (INIS)

    The optically stimulated luminescence (OSL) of LiF:Mg,Ti (TLD-100) following irradiation by beta and alpha particles was investigated by the measurement of the excitation and emission spectra of OSL and comparison with thermoluminescence (TL) characteristics. Measurements were also carried out on nominally pure LiF monocrystals. The preferential excitation of OSL compared to TL following high-ionisation density (HID) alpha irradiation is naturally explained via the identification of OSL with the 'two-hit' F2 or F3+ centre, whereas the major component of composite TL glow peak 5 is believed to arise from a 'one-hit' complex defect. This discovery allows near-total discrimination between HID radiation and low-ionisation density radiation and may have significant potential in mixed-field radiation dosimetry. (authors)

  17. Continuous three-dimensional radiation dosimetry in tissue-equivalent phantoms using electron paramagnetic resonance in L-. cap alpha. -alanine

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Maryanski, M.; Ciesielski, B.; Forman, A.; Reinstein, L.E.; Meek, A.G.

    1987-07-01

    A new tissue-equivalent phantom material has been developed which also acts as a dosimeter. The new phantom material has a similar elemental composition to that of soft tissue and has a density 1.1 g/cm/sup 3/. The phantom has an agar-gel base, and contains crystallized L-..cap alpha..-alanine which traps radiation-induced free radicals. Samples from the phantom were analyzed by an electron paramagnetic resonance (EPR) spectrometer and the intensity of the EPR signal was related to the absorbed dose. When calibrated, the phantom material acts as a dosimeter, with applications in radiation therapy.

  18. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting {sup 223}Ra-dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Medical Physics; Ventroni, Guido; Mango, Lucio [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Nuclear Medicin; De Vincentis, Giuseppe; Di Castro, Elisabetta; Frantellizzi, Viviana; Follacchio, Giulia Anna; Garkavaya, Tatiana [Rome Univ. (Italy). Dept. of Radiological, Oncological and Anatomo Pathological Sciences; Cassano, Bartolomeo; Lorenzon, Leda [Rome Univ. (Italy). Postgraduate School of Medical Physics; Pellegrini, Rosanna; Pani, Roberto [Rome Univ. (Italy). Dept. of Molecular Medicine; Ialongo, Pasquale [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Radiology

    2016-01-15

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for {sup 223}Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on {sup 99m}Tc-MDP whole-body images, and the ROIs superimposed on the {sup 223}Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T{sub 1/2eff}) of {sup 223}Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), D{sub RBE} = 899 mGy/MBq (range 340-2,450 mGy/MBq). The

  19. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  20. Dosimetry Service

    CERN Multimedia

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. http://service-rp-dosimetry.web.cern.ch/service-rp-dosimetry/

  1. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  2. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  3. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  4. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  5. ESR Dosimetry

    International Nuclear Information System (INIS)

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  6. Some practical and theoretical considerations of personal alpha-particle dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-2)

    International Nuclear Information System (INIS)

    The status of personal α-particle dosimetry in the uranium industry is presented. A brief description of personal dosimeters and prototypes is followed by some theoretical considerations regarding their practical use under steady-state and time-dependent field conditions. It is suggested that, at present, more effort should be placed on the evaluation of dosimeters than in the development of new ones. Also, more information should be gathered from countries which use personal α-particle dosimeters routinely. Furthermore, emphasis is recommended on comparison of personal dosimetry data with experimental data by area monitoring, using continuous monitoring systems, as well as with data by grab-sampling techniques. (author). 44 refs., 1 tab

  7. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  8. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  9. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8:30 to 11:00 and 14:00 to 16:00. For all other services we are at your disposition from 8:30 to 12:00 and 14:00 to 17:00. Do not forget to read your dosimeter. A regular read-out is indispensable in order to ensure a periodic monitoring of personal dose. This read-out should be done during the first week of every month. Thank you for your cooperation. The personnel of the Dosimetry Service wish you a Merry Christmas and a Happy New Year. Dosimetry Service Tel. 767 21 55 http://cern.ch/rp-dosimetry

  10. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.; Mehta, K. K.

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  11. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  12. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226Ra, 228Ra, and 224Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  13. Dosimetry standards

    International Nuclear Information System (INIS)

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  14. Dosimetry Service

    CERN Multimedia

    2005-01-01

    The Dosimetry Service will be closed every afternoon the week of 21st to 25th February 2005. The opening hours will be from 8.30 am to 12.00 midday. Don't forget to read your dosimeter, as regular read-outs are indispensable to ensure periodic monitoring of personal doses. Thank you for you cooperation.

  15. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  16. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  17. Hematological dosimetry

    International Nuclear Information System (INIS)

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues

  18. Radiation dosimetry.

    OpenAIRE

    Cameron, J.

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  19. Dosimetry Service

    CERN Multimedia

    2004-01-01

    We wish to remind the people who are invited to the Dosimetry Service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. Do not forget to read your dosimeter. The reading should be done during the first week of every month. Thank you for your cooperation.

  20. Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: a semi-automated approach

    Science.gov (United States)

    Altman, Michael B.; Wang, Steven J.; Whitlock, Jenny L.; Roeske, John C.

    2005-01-01

    A novel alpha-particle irradiator has recently been developed that provides the ability to characterize cell response. The irradiator is comprised of a collimated, planar alpha-particle source which, from below, irradiates cells cultured on a track-etch material. Cells are imaged using phase-contrast microscopy before and following irradiation to obtain geometric information and survival rates; these can be used with data from alpha-particle track images to assess cell response. A key step in this process is determining cell location within the pre-irradiation images. Although this can be done completely by a human observer, the number of images requiring analysis makes the process time-consuming and tedious. To reduce the potential human error and decrease user interaction time, a semi-automated, computer-aided method of cell detection has been developed. The method employs a two-level adaptive thresholding technique to obtain size and position information about potential cell cytoplasms and nuclei. Proximity and geometry-based thresholds are then used to mark structures as cells. False-positive detections from the automated algorithm are due mostly to imperfections in the track-etch background, camera effects and cellular residue. To correct for these, a human observer reviews all detected structures, discarding false positives. When analysing two randomly selected cell dish image databases, the semi-automated method detected 92-94% of all cells and 94-97% of cells with a well-defined cytoplasm and nucleus while reducing human workload by 32-83%.

  1. Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium

    International Nuclear Information System (INIS)

    Urinary excretion of uranium of 40 uranium miners was determined by the high-resolution inductively coupled mass spectrometry method. The concentration of uranium in the urine of the miners was converted to daily excretion of. 238U either under the assumption that the daily urinary excretion is 1.6 l or daily urinary excretion of creatinine is 1.7 g and compared with the excretion of. 238U calculated with a biokinetic model. Input data to the excretion model were derived from personal three- component ALGADE dosemeters, using the component for the estimation of inhalation of long-lived alpha radionuclides. Experimentally found contents of uranium in the urine of uranium miners are generally lower than the modelled ones, which means that the dosimetric approach is conservative. The uncertainty of inhalation intakes, derived from the measurements of filters from personal dosemeters, and the uncertainty of the concentration of uranium in the urine are discussed. (authors)

  2. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  3. Breast dosimetry

    International Nuclear Information System (INIS)

    The estimation of the absorbed dose to the breast is an important part of the quality control of the mammographic examination. Knowledge of breast dose is essential for the design and performance assessment of mammographic imaging systems. This review gives a historical introduction to the measurement of breast dose. The mean glandular dose (MGD) is introduced as an appropriate measure of breast dose. MGD can be estimated from measurements of the incident air kerma at the surface of the breast and the application of an appropriate conversion factor. Methods of calculating and measuring this conversion factor are described and the results discussed. The incident air kerma itself may be measured for patients or for a test phantom simulating the breast. In each case the dose may be determined using TLD measurements, or known exposure parameters and measurements of tube output. The methodology appropriate to each case is considered and the results from sample surveys of breast dose are presented. Finally the various national protocols for breast dosimetry are compared

  4. Neutron dosimetry - A review

    International Nuclear Information System (INIS)

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  5. Neutron dosimetry

    International Nuclear Information System (INIS)

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq 241 Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s-1 and 0,5 μSv s-1. A calibrated 50 nSv s-1 thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the 241 Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold 241 Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,α) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kVpp cm-1, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46± 0,09) 104 tracks cm-2 mSv-1 for thermal neutrons, (9±3) 102 tracks cm-2 mSV-1 for intermediate neutrons and (26±4) tracks cm-2 mSv-1 for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990's ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is sufficiently sensitive to thermal and intermediate neutrons but fast neutron monitoring ar radiological protection level

  6. Silicon diode dosimetry

    International Nuclear Information System (INIS)

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry. (author)

  7. Silicon diode dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.L.; Ekstrand, K.E. (Wake Forest Univ., Winston-Salem, NC (USA). Bowman Gray School of Medicine)

    1982-11-01

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry.

  8. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    The symposium was organized in order to focus on the problems, developments and areas of further research in the life sciences. Forty-nine papers were presented dealing with instrumentation, techniques, experimental and theoretical studies. They included neutron sources and mixed-field dosimetry; developments (e.g. thermocurrent dosimetry) in dosimetry; physical aspects of radiation therapy, and treatment planning; international, national and regional radiation metrology programmes; diagnostic medical x-ray sources, imaging systems and patient doses; high-energy electron and γ-ray dosimetry; and doses determination for ingested or administered radionuclides

  9. Measurement assurance in dosimetry

    International Nuclear Information System (INIS)

    The uses of radiation in medicine and industry are today wide in scope and diversity and there is a need for reliable dosimetry in most applications. In particular, high accuracy in dosimetry is required in the therapeutic use of radiation. Consequently, calibration procedures for radiotherapy generally meet also the accuracy requirements for applications in other fields, such as diagnostic radiology, radiation protection and industrial radiation processing. The emphasis at this symposium was therefore mainly or radiotherapy dosimetry, but the meeting also included one session devoted to dosimetry in diagnostic radiology. Refs, fig and tabs

  10. Internal sources dosimetry

    International Nuclear Information System (INIS)

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  11. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  12. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  13. Dosimetry service removal

    CERN Multimedia

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  14. Radiation therapy dosimetry system

    International Nuclear Information System (INIS)

    New therapeutic treatments generally aim to increase therapeutic efficacy while minimizing toxicity. Many aspects of radiation dosimetry have been studied and developed particularly in the field of external radiation. The success of radiotherapy relies on monitoring the dose of radiation to which the tumor and the adjacent tissues are exposed. Radiotherapy techniques have evolved through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments or radiosurgery and robotic radiation therapy. These advances push the frontiers in our effort to provide better patient care by improving the precision of the absorbed dose delivered. This paper presents state-of-the art radiation therapy dosimetry techniques as well as the value of integral dosimetry (INDOS), which shows promise in the fulfillment of radiation therapy dosimetry requirements. - highlights: • Pre-treatment delivery and phantom dosimetry in brachytherapy treatments were analyzed. • Dose distribution in the head and neck was estimated by physical and mathematical dosimetry. • Electron beam flattening was acquired by means of mathematical, physical and “in vivo” dosimetry. • Integral dosimetry (INDOS) has been suggested as a routine dosimetric method in all radiation therapy treatments

  15. Dosimetry in process control

    International Nuclear Information System (INIS)

    Measurement of absorbed dose and dose distribution in irradiated medical products relies on the use of quality dosimetry systems, trained personnel and a thorough understanding of the energy deposition process. The interrelationship of these factors will be discussed with emphasis on the current and future practices of process control dosimetry. (author)

  16. Usage of JENDL dosimetry file for material dosimetry in JOYO

    International Nuclear Information System (INIS)

    A cross section set with covariance error matrix for neutron spectrum unfolding has been newly prepared from JENDL-3 dosimetry file and was applied to the dosimetry test in the MK-II core (the irradiation core) of Experimental Fast Reactor 'JOYO'. The dosimetry results by the new cross section set were compared with the previous ones by ENDF/B-V dosimetry file to evaluate the applicability and accuracy for the fast reactor dosimetry. In this work, it has been concluded that more improvement can be expected for the JOYO dosimetry test by employing JENDL-3 dosimetry file. (author)

  17. Research needs in metabolism and dosimetry of the actinides

    International Nuclear Information System (INIS)

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  18. INFORMATION: INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2004-01-01

    We inform you that the Individual Dosimetry Service will be exceptionally closed on April 13 and 14 (Tuesday and Wednesday). Only the very urgent cases will be handled during the days mentioned above.

  19. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors...... international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...

  20. Individual Dosimetry Service

    CERN Multimedia

    2004-01-01

    Individual Dosimetry Service will be closed on Thursday 9 September (Jeûne genevois) and on Friday 10 September. We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period SEPTEMBER-OCTOBER 2004 are available from their usual dispatchers. Please have your films changed before the 13 SEPTEMBER 2004. The color of the dosimeter valid in SEPTEMBER-OCTOBER 2004 is RED.

  1. News on personal dosimetry

    International Nuclear Information System (INIS)

    What is going on in personal monitoring? The DIS-1 dosimeter (Rados/Mirion Technologies), on the market since 2000, is being introduced in the 4th dosimetry service in Switzerland. In Germany, dosimetry services are looking for alternatives to the film dosimeter. They have recently taken the decision for two technical solutions. IEC has published a standard which shall regulate technical requirements for dosimeters world-wide. (orig.)

  2. Radiation dosimetry in radiotherapy with internal emitters

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, Michael G. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-12-31

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  3. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  4. Dosimetry of radium-223 and progeny

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R. [Pacific Northwest National Lab., Richland, WA (United States); Sgouros, G. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  5. Alpha-emitters for medical therapy workshop

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  6. Alpha-emitters for medical therapy workshop

    International Nuclear Information System (INIS)

    A workshop on ''Alpha-Emitters for Medical Therapy'' was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference

  7. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of

  8. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  9. Topics in radiation dosimetry radiation dosimetry, v.1

    CERN Document Server

    Attix, Frank H

    2013-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  10. Dosimetry of neutron irradiations

    International Nuclear Information System (INIS)

    Biological dosimetry of neutron irradiation appears to be of great difficulty due to the multiparametric aspect of the relative biological effectiveness and the heterogeneity of the neutron dose distribution. Dosimetry by sodium 24 activation which can be performed by means of portable radiameters appears to be very useful for early triage within the 3 h following neutron irradiation, whereas hematological dosimetry by slope and level analysis of the lymphocyte drop cannot be used in this case. Chromosomic aberration analysis allows to evaluate the neutron dose heterogeneity by the frequency measurement of acentric fragments not originating from the formation of dicentrics or rings. Finally, recent experimental data on large primate models (baboons) have shown that some plasma hemostasia factors appear to be reliable biological indicators and noticeable markers of the prognosis of neutron irradiation

  11. Interstitial brachytherapy dosimetry update

    International Nuclear Information System (INIS)

    In March 2004, the American Association of Physicists in Medicine (AAPM) published an update to the AAPM Task Group No. 43 Report (TG-43) which was initially published in 1995. This update was pursued primarily due to the marked increase in permanent implantation of low-energy photon-emitting brachytherapy sources in the United States over the past decade, and clinical rationale for the need of accurate dosimetry in the implementation of interstitial brachytherapy. Additionally, there were substantial improvements in the brachytherapy dosimetry formalism, accuracy of related parameters and methods for determining these parameters. With salient background, these improvements are discussed in the context of radiation dosimetry. As an example, the impact of this update on the administered dose is assessed for the model 200 103Pd brachytherapy source. (authors)

  12. Secondary standards dosimetry laboratories

    International Nuclear Information System (INIS)

    The Secondary Standards Dosimetry Laboratory (SSDL) is part of an international network of dosimetry laboratories established by the IAEA and WHO. The network services maintain the consistency and accuracy of the therapeutic dose by exercising a national and international intercomparison program as well as providing calibration services to the end users, mainly radiotherapy departments in hospitals. The SSDL's are designated by national laboratories (such as Primary Standards Dosimetry Laboratories, PSDL's) to provide national and international absorbed dose traceability for users in that country. The advantage of the SSDL is that the absorbed dose measurements are consistent among the stakeholder countries.The Physics and Safety divisions have recently re-established an SSDL at ANSTO. The SSDL utilises a collimated cobalt-60 source of activity 170 TBq and dose rate of SmGy/sec at 1 metre (within ±2%), and provides a service to calibrate therapy level thimble ionisation chambers and electrometers

  13. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  14. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  15. Status of radiation processing dosimetry

    DEFF Research Database (Denmark)

    Miller, A.

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been or are...... being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in...

  16. Coefficient Alpha

    OpenAIRE

    Panayiotis Panayides

    2013-01-01

    Heavy reliance on Cronbach’s alpha has been standard practice in many validation studies. However, there seem to be two misconceptions about the interpretation of alpha. First, alpha is mistakenly considered as an indication of unidimensionality and second, that the higher the value of alpha the better. The aim of this study is to clarify these misconceptions with the use of real data from the educational setting. Results showed that high alpha values can be obtained in multidimensional scale...

  17. Ion storage dosimetry

    Science.gov (United States)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  18. Individual Dosimetry Service

    CERN Multimedia

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MAY-JUNE 2004 are available from their usual dispatchers. Please have your films changed before the 11th MAY 2004. The color of the dosimeter valid in MAY-JUNE 2004 is YELLOW.

  19. Individual dosimetry service

    CERN Multimedia

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MARCH/APRIL 2004 are available from their usual dispatchers. Please have your films changed before the 11th MARCH 2004. The color of the dosimeter valid in MARCH/APRIL 2004 is BLUE.

  20. Individual dosimetry service

    CERN Multimedia

    2004-01-01

    We inform all staff and users under regular dosimetry control that the dosimeters for the monitoring period JULY-AUGUST 2004 are available from their usual dispatchers. Please have your films changed before the 15 JULY 2004. The color of the dosimeter valid in July-August 2004 is PINK.

  1. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  2. Dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures.

  3. Ion-kill dosimetry

    Science.gov (United States)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  4. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  5. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  6. Dosimetry for food irradiation

    International Nuclear Information System (INIS)

    A Manual of Food Irradiation Dosimetry was published in 1977 under the auspices of the IAEA as Technical Reports Series No. 178. It was the first monograph of its kind and served as a reference in the field of radiation processing and in the development of standards. While the essential information about radiation dosimetry in this publication has not become obsolete, other publications on radiation dosimetry have become available which have provided useful information for incorporation in this updated version. There is already a Codex General Standard for Irradiated Foods and an associated Code of Practice for Operation of Irradiation Facilities used for Treatment of Food, issued in 1984 by the Codex Alimentarius Commission of the FAO/WHO Food Standard Programme. The Codex Standard contains provisions on irradiation facilities and process control which include, among other requirements, that control of the processes within facilities shall include the keeping of adequate records including quantitative dosimetry. Appendix A of the Standard provides an explanation of process control and dosimetric requirements in compliance with the Codex Standard. By 1999, over 40 countries had implemented national regulations or issued specific approval for certain irradiated food items/classes of food based on the principles of the Codex Standard and its Code of Practice. Food irradiation is thus expanding, as over 30 countries are now actually applying this process for the treatment of one or more food products for commercial purposes. Irradiated foods are being marketed at retail level in several countries. With the increasing recognition and application of irradiation as a sanitary and phytosanitary treatment of food based on the provisions of the Agreement on the Application of Sanitary and Phytosanitary Measures of the World Trade Organization, international trade in irradiated food is expected to expand during the next decade. It is therefore essential that proper dosimetry

  7. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  8. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  9. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  10. Ambiguities in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    On one hand, thermoluminescence dosimetry is one of most reliable, rugged and economical system of passive dosimetry but on the other hand there are several ambiguities, which need attention. The PTTL is a complex phenomenon and it is difficult to identify the source for the transfer of the charge carrier to repopulate the traps related to the glow peaks. For the photon energy dependence it is difficult to explain the change in the response for 662 keV gamma rays of 137Cs as compared to the response for 1.25 MeV gamma rays of 60Co. The increase in the response of a TLD with increasing heating rate poses another ambiguity and so is the case with the observations of the supra linearity of different glow peaks. To over come the ambiguities, efforts have to continue to enhance the understanding and to harmonize the protocol for reliable experimental data

  11. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  12. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  13. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  14. Personnel radiation dosimetry

    International Nuclear Information System (INIS)

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  15. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  16. Imaging based, patient specific dosimetry

    International Nuclear Information System (INIS)

    Full text: The prognosis of achieving longtime remission for disseminated cancer disease is in many cases poor. A systemic treatment is required and therefore external beam radiation therapy is less suited. Treatment with radiolabeled pharmaceuticals, so called radionuclide therapy is such a systemic treatment. In radionuclide therapy, the absorbed dose is delivered by administration of radionuclides that emit electrons or alpha particles. It is here assumed that the released kinetic energy is transferred by interactions to sensitive parts of the cells activating cell death, and thus an accurate dosimetry is important. However, absorbed dose planning for radionuclide therapy is a real challenge in that the source cannot be turned on or off (as in external beam therapy) but decays exponentially with characteristics depending on the biokinetics and the radionuclide half-life. On a small-scale, the radiopharmaceutical is also heterogeneously distributed which means that the energy deposition is generally nonuniform. The biokinetics may also change over time which means that activity measurements need to be made at several time points to estimate the total amount of released energy in an organ or tumour. Practical issues regarding the number of measurements and patient mobility may therefore limit the accuracy in this calculation. The dose-rate for radionuclide therapy is also much lower than in external beam therapy. Since the treatment is systemic, circulating activity may result in absorbed doses to normal organs and tissues. Often this poses a problem and puts a limit on the amount of activity to can be administered. This is one of the major reasons for the requirement of an accurate patient-specific dosimetry. One of the major problems is that the biokinetics varies between patients and the activity uptake and clearance should therefore be measured for each individual patient in order to estimate the total number of decays in a particular organ/tissue. The way

  17. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  18. Spanish National Dosimetry Bank

    International Nuclear Information System (INIS)

    The National Dosimetry Bank (BDN) was designed to be a useful instrument for the protection of exposed workers. On the basis of individual doses, in conjunction with the type of facility where they were received and the type of work involved, it is possible to monitor and control the individual conditions of an exposed worker. In addition to this primary objective, the BDN's structure and utilities are such that it can be used for applications such as determining the suitability of the working conditions in various areas of ionizing radiation applications, evaluating exposure trends and the most affected areas, and supplying statistical data that can be used for legal studies

  19. Relocation of Dosimetry Service

    CERN Multimedia

    2007-01-01

    The Dosimetry Service is moving from Building 24 to Building 55 and will therefore be closed on Friday, March 30. From Monday, April 2 onwards you will find us in building 55/1-001. Please note that during that day we might still have some problems with the internet connections and cannot fully guarantee normal service procedures. The service's opening hours and telephone number will not change as a result of the move 8.30 - 12.00, afternoons closed Tel. 72155

  20. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  1. Dosimetry in Radiology

    International Nuclear Information System (INIS)

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors)

  2. Fast neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  3. A small-scale anatomical dosimetry model of the liver

    International Nuclear Information System (INIS)

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source–target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose–effect relationships in the liver. (paper)

  4. Dosimetry of industrial sources

    International Nuclear Information System (INIS)

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  5. Internal Dosimetry. Chapter 18

    International Nuclear Information System (INIS)

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented

  6. Thermo-luminescent dosimetry

    International Nuclear Information System (INIS)

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber (1, 2, 3, 4, 6, 7, 10, 11, 12, 14, and 14). The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field. (orig.)

  7. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  8. Radiation dosimetry in Cyprus

    International Nuclear Information System (INIS)

    Cyprus is a small island in the eastern part of the mediterranean sea with a population of 700,000. A small Physics Department in the Nicosia General Hospital is responsible for all matters related to ionising radiation. The main applications of ionising radiation are in medicine, some applications of radioisotopes in agriculture and hydrology research and very few applications in industry with sealed radiation sources. The same problems in radiation dosimetry are encountered as in any other countries but on a smaller scale. These have to be solved locally, because of the island's geographic isolation. All the infrastructure including Secondary Standard Dosemeters, field instruments and calibration sources is needed in order to achieve this, but the financial resources available are very limited. For this reason improvisation is often necessary. The Co-60 and other X-ray units intended for radiotherapy or other clinical use, are used as radiation sources for dosimetry and calibration of the instruments. Simple, locally made phantoms are designed in order to decrease costs whenever possible. (author). 7 refs, 1 fig

  9. Radiation dosimetry instrumentation and methods

    CERN Document Server

    Shani, Gad

    2000-01-01

    Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.

  10. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  11. Gamma environmental dosimetry and radon concentration in Venezuela

    International Nuclear Information System (INIS)

    The environmental radiation levels have been determined in Venezuela by means of different techniques including the passive dosimeters and the alpha and gamma dosimetry besides the gross alpha/beta counting. The most important conclusion is that the presence of artificial radionuclides (Cesium-137, Beryllium-7 and Cadmium-109) was observed in different environmental samples and in food considered contaminant. The values of gamma levels are between 28 and 40 mGy/day and the mean value of radon concentration in closed environment is 36 Bq/m3 ; the higher values of a factor 10 have been measured in the Andes region. The 20% of analysed drinking water has a concentration of alpha radionuclides emitters less than 0.005 Bq/l and only the 8% is greater than 0.450 Bq/l. (authors). 6 refs., 1 fig

  12. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  13. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000)

  14. Radioembolization Dosimetry: The Road Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Maarten L. J., E-mail: m.l.j.smits-3@umcutrecht.nl; Elschot, Mattijs [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Sze, Daniel Y. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Kao, Yung H. [Austin Hospital, Department of Nuclear Medicine (Australia); Nijsen, Johannes F. W. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Iagaru, Andre H. [Stanford University School of Medicine, Division of Nuclear Medicine and Molecular Imaging (United States); Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  15. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  16. Medical dosimetry in Hungary

    Science.gov (United States)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  17. Dosimetry of breast cancer

    International Nuclear Information System (INIS)

    The systemic therapy of breast cancer has also changed profoundly during the last 60 years, and in this time the integration of treatment modalities involve a major area of investigation. The dosimetry of breast cancer presents different complications which can range from the Physician's handling of the neoplasia up to the simple aspects of physical simulation, contour design, radiation fields, irregular surfaces and computer programs containing mathematical equations which differ little or largely with the reality of the radiation distribution into the volume to be irradiated. We have studied the problem using two types of measurements to determine how the radiation distribution is in irregular surfaces, and designing an easier skill to be used with each patient, in order to optimize the treatment with respect to the simulation and verification process. (author). 7 refs

  18. Dosimetry of iodoantipyrine

    International Nuclear Information System (INIS)

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96±0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 μGray, 0.5 μGray and 2.9 μGray per MBq of 123I, 123I, and 131I administered respectively. (orig.)

  19. Strahlungsmessung und Dosimetrie

    CERN Document Server

    Krieger, Hanno

    2013-01-01

    „Strahlungsquellen und Dosimetrie“ ist Teil einer Lehrbuchreihe zur Strahlungsphysik und zum Strahlenschutz. Der erste Teil befasst sich mit den physikalischen Grundlagen der Strahlungsdetektoren und der Strahlungsmessung. Im zweiten Teil werden die Konzepte und Verfahren der klinischen Dosimetrie dargestellt. Der dritte Abschnitt erläutert ausführlich die Dosisverteilungen der klinisch angewendeten Strahlungsarten. Im vierten Teil werden weitere Messaufgaben der Strahlungsphysik einschließlich der Messsysteme für die Bildgebung mit Röntgenstrahlung dargestellt. Neben den grundlegenden Ausführungen enthält dieser Band im laufenden Text zahlreiche Tabellen und Grafiken zur technischen und medizinischen Radiologie, die bei der praktischen Arbeit sehr hilfreich sein können und 199 Übungsaufgaben mit Lösungen zur Vertiefung der Inhalte. Für die zweite Auflage wurden die Darstellungen der Elektronen- und der Protonendosimetrie sowie der bildgebenden Verfahren mit Computertomografen deutlich erweit...

  20. Radioiodotherapy: dosimetry planning

    International Nuclear Information System (INIS)

    The results of treatment of 142 case histories of 125 patients who had been treated with radioactive iodine at the Medical Radiological Research Center of Russian Academy of Medicine Sciences from 1983 to 1999 are given in the presentation. Among the patients, 35 cases of diffuse toxic goiter with signs of thyrotoxicosis of a mild degree, 25 cases of Diffuse toxic goiter with severe thyrotoxicosis, 6 cases of differentiated thyroid cancer with metastases to lymph-nodes of the neck, 30 cases of thyroid cancer with metastases to lymph-nodes of the neck and lung and 1 case of thyroid cancer with metastases to bones were diagnosed. This paper gives recommendations for individual dosimetry planning for radioiodine-therapy. (authors)

  1. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β-emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  2. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  3. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  4. Hanford internal dosimetry program manual

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  5. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  6. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  7. Alpha fetoprotein

    Science.gov (United States)

    Fetal alpha globulin; AFP ... Greater than normal levels of AFP may be due to: Cancer in testes , ovaries, biliary (liver secretion) tract, stomach, or pancreas Cirrhosis of the liver Liver cancer ...

  8. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  9. On multichannel film dosimetry with channel-independent perturbations

    International Nuclear Information System (INIS)

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  10. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  11. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  12. Latest developments in silica fibre luminescence dosimetry

    International Nuclear Information System (INIS)

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of 223RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an 241Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO2 fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Zeff of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  13. Personal Dosimetry Enhancement for Underground Workplaces

    Directory of Open Access Journals (Sweden)

    L. Thinová

    2005-01-01

    Full Text Available Personal dosimetry for underground workers mainly concerns measurement of the concentration of radon (and its daughters and the correct application of the data in dose calculation, using a biokinetic model for lung dosimetry. A conservative approach for estimating the potential dose in caves (or underground is based on solid state alpha track detector measurements. The obtained dataset is converted into an annual effective dose in agreement with the ICRP recommendations using the “cave factor”, the value of which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached and the attached fraction and on the equilibrium factor. The main difference between apartments and caves is the absence of aerosol sources, high humidity, low ventilation rate and the uneven surface in caves. A more precisely determined dose value would have a significant impact on radon remedies or on restricting the time workers stay underground. In order to determine  how the effective dose is calculated, it is necessary to divide these areas into distinct categories by the following measuring procedures: continual radon measurement (to capture the differences in EERC between working hours and night-time, and also between daily and seasonal radon concentration variations; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoils and in water inside/outside, a study of the radon sources in the cave; aerosol particle-size spectrum measurements to determine the free fraction; monitoring the behaviour of guides and workers to record the actual time spent in the cave, in relation to the continuously monitored levels of Rn concentration. 

  14. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  15. Upgrading the dosimetry at Ontario Hydro

    International Nuclear Information System (INIS)

    Ontario Hydro has embarked upon a major programme to replace and upgrade its external dosimetry systems. In two year's time, the utility expects to have two state-of-the-art dosimetry systems in place: a new TLD dosimetry of legal record that was designed nearly 30 years ago; and an electronic dosimetry system which could eventually replace the TLD as the primary system. (Author)

  16. Biological dosimetry; Dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C., E-mail: citlali.guerrero@inin.gob.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ) the works to establish a laboratory of biological dosimetry were initiated in 1998, with the purpose that could assist any situation with respect to the exposition to radiation, so much of the occupational exposed personnel as of individuals not related with the handling of radio-active material. The first activity that was realized was to develop the corresponding curves in vitro of dose response for different qualities and radiation types. In the year 2000 the curve corresponding to the gamma radiation of {sup 60}Co was published and up to 2002 the curve corresponding to the X rays of 58 KeV, 120 and 250 kVp. In all the cases, the curves contain the requirements to be used in the determination of the exposition dose. At the present time the curves dose-response are developing for neutrons take place in the reactor Triga Mark III of ININ. Additionally to these activities, cases of suspicion of accidental exposition to radiation have been assisted, using in a beginning the curves published by the IAEA and, from the year 2000, the curves developed in the ININ. (Author)

  17. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  18. Dosimetry of iodoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R.Y.L.; Ekeh, S. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Radiological Sciences; Veterans Administration Medical Center, Oklahoma City, OK (USA)); Basmadjian, G. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Pharmaceutical Sciences)

    1989-12-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of {sup 131}I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96+-0.55 h for blood. Cumulated activity estimates for {sup 123}I, {sup 125}I and {sup 131}I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 {mu}Gray, 0.5 {mu}Gray and 2.9 {mu}Gray per MBq of {sup 123}I, {sup 123}I, and {sup 131}I administered respectively. (orig.).

  19. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    The book informs of the whole range of the physical foundations of dosimetry. In the chapter dealing with the interaction of ionizing radiation with matter the processes are described of the interaction between the individual types of ionizing radiation and matter and the effects of ionizing radiation on matter. The chapter dealing with dosimetric quantities and units gives a survey and definitions of quantities and their inter-relations. The chapters relating to the determination of basic dosimetric quantities and to integral dosimetric methods give a detailed description of the individual methods. The chapter relating to radionuclides in the environment concerns the occurrence of natural radionuclides in the environment and in the human organism, cosmic radiation and artificial sources of radioactivity connected with the development of civilisation and technology. The chapter related to radiation protection gives guidelines for the calculation of shielding for individual types of radiation. The supplement contains a list of the properties of certain radionuclides widespread in the environment, their basic physico-chemical and biological characteristics, parameters of metabolism and values of maximum permissible concentrations. (M.D.)

  20. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  1. Standardization of dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Three objectives of dosimetry in diagnostic radiology can be identified: (1) Measurement of patient doses for comparison with diagnostic reference levels; (2) Assessment of equipment performance; (3) Patient dose measurements for risk assessment. In this paper author deals with problems of standardization of dosimetry in diagnostic radiology. Recommended application specific quantities for dosimetry in diagnostic radiology are presented

  2. 4.2 Methods for Internal Dosimetry

    Science.gov (United States)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  3. Initial radiation dosimetry at Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed

  4. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  5. Dosimetry Termoluminiscent a new personal dosimetry concept in Nicaragua

    International Nuclear Information System (INIS)

    The present work is based on to study carried out along one year April 1996 until April 1997 at a hospital that located in Managua, here to control of personal dosimetric has been taken in 20 of people that work in the same one, this has been using jointly so much pocket dosemeters (ionization chambers) and thermoluminiscent dosemeters (TLD). To comparison was made among the two systems of personal dosimetry and the varying b was shown among the same ones, considering the fact that the pocket dosemeters to be able to carry out such to delicate company ace it is it the personal dosimetry inside the radiological protection

  6. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  7. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  8. For information: Individual dosimetry service

    CERN Multimedia

    2004-01-01

    The service has noticed that there are dosimeter holders who have changed their activities and thus have no longer need of dosimeter as a permanent basis in their work (persons who go rarely to the controlled areas). The reduction of persons in the regular distribution list of dosimeters will lighten the work of the service (distribution, evaluation and consolidation of doses) as well as the work of the distributors, needless to say the economical input this would have for CERN. For the persons who only need a dosimeter temporarily we would like to remind that there is a quick and simple procedure to have one immediately from the Individual Dosimetry Service. Please contact the service (dosimetry.service@cern.ch) if you do not need a dosimeter regularly. Thank you for your cooperation. http://cern.ch/rp-dosimetry

  9. $\\alpha_s$ review (2016)

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The current world-average of the strong coupling at the Z pole mass, $\\alpha_s(m^2_{Z}) = 0.1181 \\pm 0.0013$, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD "data", (ii) $\\tau$ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in $e^+e^-$ collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other $\\alpha_s$ extractions, usually with a lower level of theoretical and/or experimental precision today, have been proposed: pion, $\\Upsilon$, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and $\\gamma$-p collisions; and photon F$_2$ structure function in $\\gamma\\,\\gamma$ collisions. These 14 $\\alpha_s$ determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

  10. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  11. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter

  12. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  13. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  14. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 to 12.00 and is closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  15. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 - 12.00, and closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  16. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  17. Ideal dosimetry system: dosimetry systems in current use

    International Nuclear Information System (INIS)

    In radiation processing - validation and process control (sterilization, food irradiation, etc.) depend on the measurement of absorbed dose. Measurements of absorbed dose shall be performed using a dosimetric system or systems having a known level of accuracy and precision (European standard EN552:1994). Lecture describes application of different dosimetry systems in the radiation processing of different materials

  18. The $\\alpha-\\alpha$ fishbone potential revisited

    CERN Document Server

    Day, J P; Elhanafy, M; Smith, E; Woodhouse, R; Papp, Z

    2011-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  19. In aqua vivo EPID dosimetry

    NARCIS (Netherlands)

    Wendling, M.; McDermott, L.N.; Mans, A.; Olaciregui-Ruiz, I.; Pecharroman-Gallego, R.; Sonke, J.J.; Stroom, J.; Herk, M. van; Mijnheer, B.J.

    2012-01-01

    PURPOSE: At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because t

  20. Manual of food irradiation dosimetry

    International Nuclear Information System (INIS)

    Following items are discussed: Fundamentals of dosimetry; description of irradiators; dose distribution in the product and commissioning the process; plant operation and process control; detailed instructions on using various dose-meter systems; references; glossary of some basic terms and concepts

  1. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, Joanna E.

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the...

  2. Thermoluminescence dosimetry environmental monitoring system

    International Nuclear Information System (INIS)

    In this report, characteristics and performances of an environmental monitoring system with thermoluminescence dosimetry are presented. Most of the work deals with the main physical parameters necessary for measurements of ambiental dose. At the end of this report some of level doses in the environment around the site of the ENEA Center of Energy Research Salluggia (Italy) are illustrated

  3. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimet...

  4. Aluminium oxide exoelectron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Akselrod, M.S.; Odegov, A.L. (Urals State Technical Univ., Ekaterinburg (Russian Federation)); Durham, J.S. (Pacific Northwest Lab., Richland, WA (United States))

    1994-01-01

    The exoemission properties of aluminium oxide ([alpha]-Al[sub 2]O[sub 3]:C), in the forms of both a single crystal and of powder, have been investigated. Measurements obtained during readout in a vacuum showed that irradiated Al[sub 2]O[sub 3]:C dosemeters emit exoelectrons with a sensitivity that is 10-20 times higher than that achievable using beryllium oxide (BeO) exoelectron dosemeters (EEDs). This paper presents results of studies using a commercial methane gas reader. The investigators studied the response of the Al[sub 2]O[sub 3]:C EEDs as a function of beta energy and measured the dose-response relationship. The effect of humidity on the dosemeter response was also investigated. (Author).

  5. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  6. Alpha One Foundation

    Science.gov (United States)

    ... Tested Find Support Find Doctor What Is Alpha-1? Alpha-1 Antitrypsin Deficiency (Alpha-1) is a ... results for inhaled augmentation More News Our Number One Goal: Find a cure for Alpha-1. Website ...

  7. Alpha-1 Antitrypsin Test

    Science.gov (United States)

    ... helpful? Also known as: Alpha 1 -antitrypsin; A1AT; AAT Formal name: Alpha 1 Antitrypsin; α1-antitrypsin Related ... know? How is it used? Alpha-1 antitrypsin (AAT) testing is used to help diagnose alpha-1 ...

  8. ESR dosimetry: achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  9. ESR dosimetry: achievements and challenges

    International Nuclear Information System (INIS)

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  10. Dosimetry for radiopharmaceuticals (invited paper)

    International Nuclear Information System (INIS)

    Developments in internal dosimetry for radiopharmaceuticals are summarised, with special reference to work carried out within the International Commission on Radiological Protection (ICRP). Differences and similarities with internal dosimetry for occupationally exposed workers and for members of the public are identified. What is unique for radiopharmaceuticals is their special biokinetics. The products are designed to get high uptake in certain organs and tissues. When a new compound is introduced there are few long-term retention data for humans available. Therefore efforts have continuously to be made to investigate the biokinetics and dosimetry of new products as well as older products, for which the dosimetry is uncertain, e.g. pure β-emitters. Serial, quantitative gamma camera images of patients will continue to be the base for biokinetic information together with analysis of urine samples. The observed time-activity curves are described using exponential functions with specified fractional activities and half-times. The physical calculations are based on the MIRD formalism. For more detailed dosimetry, CT, MR and ultrasound can be used to localise organs and to determine their volumes. Such measurements are also needed for the construction of realistic phantoms (mathematically describable phantoms, 'voxel' phantoms and anthropomorphic phantoms) which are the geometrical base for dose calculations. Variations in anatomy and biokinetics between individuals due to age, gender and disease have to be given greater consideration in the future. Information on the distribution of a radionuclide within organs and tissues is of importance for its therapeutic use as is the intracellular localisation of low energy electron emitters both in therapy and diagnosis. (author)

  11. Alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Felix; Wilsenach, Heinrich; Zuber, Kai [IKTP TU-Dresden, Dresden (Germany)

    2014-07-01

    Alpha decays from long living isotopes are one of the limiting backgrounds for experiments searching for rare decays with stringent background constrains, such as neutrinoless double beta decay experiments. It is thus very important to accurately measure the half-lives of these decays, in order to properly model their background contribution. Therefore, it is important to be able to measure half-lives from alpha decays of the order of 1 x 10{sup 15} yr. A measurement of such a long lived decay imposes, however, a series of challenges, where the correct discrimination between background and true signal is critical. There is also a more general interest in such long living half-life measurements, as their value depends crucially on the underlying nuclear model. This work proposes a setup to measure long lived alpha decays, based on the design of the Frisch-Grid ionisation chamber. It is shown that the proposed design provides a good separation of signal and background events. It is also demonstrated that, with pulse shape analysis, it is possible to constrain the source position of the decay, further improving the quality of the data. A discussion of the characterisation of the detector is also presented as well as some results obtained with calibration sources.

  12. Alpha spectroscopy

    International Nuclear Information System (INIS)

    Alpha decays from long living isotopes are one of the limiting backgrounds for experiments searching for rare decays with stringent background constrains, such as neutrinoless double beta decay experiments. It is thus very important to accurately measure the half-lives of these decays, in order to properly model their background contribution. Therefore, it is important to be able to measure half-lives from alpha decays of the order of 1 x 1015 yr. A measurement of such a long lived decay imposes, however, a series of challenges, where the correct discrimination between background and true signal is critical. There is also a more general interest in such long living half-life measurements, as their value depends crucially on the underlying nuclear model. This work proposes a setup to measure long lived alpha decays, based on the design of the Frisch-Grid ionisation chamber. It is shown that the proposed design provides a good separation of signal and background events. It is also demonstrated that, with pulse shape analysis, it is possible to constrain the source position of the decay, further improving the quality of the data. A discussion of the characterisation of the detector is also presented as well as some results obtained with calibration sources.

  13. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  14. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry

    International Nuclear Information System (INIS)

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  15. Dosimetry Control: Technic and methods. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    There is a number of unsolved problems of both dosimetric and radiometric control, questions of the biological dosimetry, reconstruction of dozes of irradiation of the population at radiation incidents, which require coordination of efforts of scientists in various areas of a science. The submitted materials are grouped on five units: dosimetry engineering, biological dosimetry and markers of radiation impact, dosimetry of a medical irradiation, normative and measurement assurance of the dosimetric control, monitoring and reconstruction of dozes at radiation incidents

  16. Solid-state dosimetry applications: thermoluminescence dating, thermocurrent dosimetry

    International Nuclear Information System (INIS)

    In the new TL method for the testing of authenticity of archaeological findings the fraction between 100-250 μm from the whole substance of the pottery is used. The mass of the sample being about 0.1 g the method entails a negligible destruction of the object. For the determination of absolute age the TL of quartz grains separated from the ceramic object is used. A TLD method for the measurement of internal dose rate was developed an supplemented with elemental analysis to raise accuracy (at present about 20%). The temporary change in the conductivity of the insulating materials under ionizing radiation and heating - the so-called thermocurrent (TC) effect - offer new possibilities for the dosimetry of ionizing radiations. From the practical point of view the TC dosimetry distinguishes itself by the simplicity of read-out and, consequently, by excellent reproducibility. The dose measurable by sapphire crystals ranges from 100 μGy to 10 Gy, so the method is hopeful in personal dosimetry, too. The only drawback is the high scattering of parameters of the samples measured. (author)

  17. Worldwide quality assurance networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Several national and international organizations have developed various types and levels of external audit systems for radiotherapy dosimetry, either based on on-site review visits or using mailed dosimetry systems.Three major TLD (thermoluminescence dosimetry) networks make available postal dose audits to a large number of radiotherapy centres on a regular basis. These are the IAEA/WHO (World Health Organization) TLD postal dose audit service, which operates worldwide; the European Society for Therapeutic Radiology and Oncology (ESTRO) network, known as EQUAL, which operates in the European Union; and the Radiological Physics Center (RPC) network in North America. Other external audit programmes are either associated with national and international clinical trial groups or perform national dosimetry comparisons that check radiotherapy dosimetry at various levels. The paper discusses the present status of the worldwide quality assurance networks in radiotherapy dosimetry and reviews the activities of the three main TLD networks: the IAEA/WHO, EQUAL and RPC networks. (author)

  18. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  19. Dosimetry by ESR spectroscopy of alanine

    International Nuclear Information System (INIS)

    Dosimetry based on electron spin resonance analysis of radiation-induced free radicals in amino acids (e.g. L-alanine) is relevant to biological dosimetry applications. Typical features are a wide dose range covering more than 5 decades (1-105Gy), energy independent response for photons above 100 keV, long-term stability of the ESR signal, and fast straightforward readout technique. Typical dosimeter samples, consisting of small pellets of microcrystalline amino acids in paraffin, are rugged, non-toxic, and insensitive to surface contaminations. Moreover, they are prepared homogeneously and inexpensively in large batches and can be evaluated repeatedly and supply archival dosimetry data. They have proven to be highly useful in various applications of radiation processing and sterilization dosimetry, food irradiation, quality control, radiation dosimetry, radiation therapy measurements, and as a reference system for dosimetry mailing intercomparisons. (author)

  20. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  1. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    International Nuclear Information System (INIS)

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  2. Department of Radiation Shielding and Dosimetry: Overview

    International Nuclear Information System (INIS)

    Full text: The research activities of the Department in 1999, similarly to the previous year were focused on the following problems: -Dosimetry for medical purposes, - Microdosimetry at the nanometre level, -Numerical modelling of interaction of radiation with matter. The following activities should be emphasized: - DOSIMETRY: The method for standardisation of a scintillation detector with NE102A organic scintillator in the terms of absorbed dose has been accomplished. The method is based on the use of small size ionisation chamber ''pipe type'' with sensitive area of 0.8 cm2. The response of the chamber has been traced in SSDL laboratory against secondary standards. This scintillation detector has been used for standardisation of the of the absorbed dose depth dependence in water for the 106Ru ophthalmic applicators. A new type of an ionisation chamber, called Ring Ionisation Chamber for standardising of absorbed dose from beta-radioactive wires, used for endovascular brachytherapy has been designed. This activity is supported by Grant KBN Nr 4P05C01417. -MICRODOSIMETRY: After a prolonged time of research the success has ben achieved in developing the method for measuring the ion cluster spectra at the nanometre level. The ion clusters spectra created along nanometre size track of alpha particles with energy of 4.6 MeV were measured with the Jet Counter set up. The ion cluster spectra of nanometre size with dimension ranging from 0.15 to 13 nm (at unit density scale) have been measured. The deconvolution method, converting the measured spectra to the true ones has been developed. The results are the first of this kind ever obtained. This activity was supported by IV CEC Framework as well as by Polish Commission for Scientific Research. - NUMERICAL MODELLING: MCNP-A General Monte Carlo N-Particle Transport Code was used for modelling electron penetration in water eye ball phantom. Depth dose distributions in eye phantom have been calculated for different shapes of

  3. Gel dosimetry for conformal radiotherapy

    International Nuclear Information System (INIS)

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  4. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  5. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  6. Relative dosimetry by Ebt-3

    International Nuclear Information System (INIS)

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  7. Some aspects on neutron dosimetry

    International Nuclear Information System (INIS)

    The American National Council on Radiation Protection and measurements (1) has recently issued a statement regarding dose limitation system for neutrons. The changes proposed in that statement presented substantial problems regarding the personnel exposure to neutrons and had pointed out the need to reassess an adequate current neutron dosimetry practice. Generally, the same types of dosimeters i.e. Nuclear Track (NTA films) and TLD-Albedo, have been used at major nuclear facilities over the past 15 years. here recently, other dosimetry methods such as track etch with polycarbonates such as CR-39 have been developed. However these should be recognized as local systems aiming to the development of better and more applicable dosimeters. 4 tab

  8. Dosimetry in radiotherapy. V.2

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  9. NOTE FROM THE DOSIMETRY SERVICE

    CERN Document Server

    2002-01-01

    During March, the Dosimetry Service will be opened from 8h30 to 12h in the morning and closed every afternoon.   We have established that many people, who are provided regularly with a personal dosimeter (film badge), have changed their activity and do not need it anymore, because they do not, or only exceptionally, enter controlled areas. If you are one of these persons, please contact the Personal Dosimeter Service (tel: 72155). There is a simplified procedure for obtaining a dosimeter if you have an immediate need for short-term visits in controlled areas. A reduction of the number of persons on the regular distribution list of dosimeters would decrease our and the distributors workload. It would also contribute to significant savings in the dosimetry, and thus CERN, budget. We thank you in advance for your understanding and for your collaboration.

  10. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  11. MISTI Shielding and Dosimetry Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable on-orbit dosimetry is necessary for understanding effects of space radiation environments on spacecraft microelectronics performance and comparison of...

  12. Radio-analysis. Applications: biological dosimetry

    International Nuclear Information System (INIS)

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  13. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  14. Dosimetry of β extensive sources

    International Nuclear Information System (INIS)

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of β extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  15. Dosimetry of total body irradiation

    International Nuclear Information System (INIS)

    In the treatment of disseminated malignancies an improvement in the curability and reduction of complication rates require high precision total body irradiation (TBI) and correct reporting of relevant treatment parameters. Optimal TBI dosimetry is the basis. Radiooncological and radiobiological requirements as well as the special physical situation have to be considered. To review the efforts of medical physicists, highlights from TBI workshops and publications are summarized. Additionally, dosimetric data from 34 European radiooncological centres contributing to the recent ESTRO inquiry on TBI are analysed. The topics are: absorbed dose and dose monitor calibration, determination of absolute and relative doses, dose ratios, attenuation data and heterogeneity corrections; TBI dose calculation methods regarding patient position, beam incidence, body shape and thickness, lung size and density; methods of TBI treatment planning including calculated dose modification and of TBI quality assurance. In conclusion, the following recommendations can be given: TBI dosimetry shall be performed under TBI conditions, close to the real treatment situation. The absorbed dose to water must be determined. The dose monitor should be calibrated against dose measurements at the centre of a water equivalent phantom of TBI equivalent size and typical thickness. Photon fluence profiles have to be measured with small phantoms. Influences on the local dose must be investigated systematically. A reproducible AP/PA TBI technique should be used. The TBI dose shall be specified to mid-abdomen and reported in units of gray. The single and total dose and the dose rate to the lungs, the number of fractions and the treatment time schedule must be stated. In vivo dosimetry is required if non-reliable TBI techniques are used. An international TBI dosimetry intercomparison could assist these efforts to improve the treatment of acute leukaemia. (author). 89 refs, 3 figs, 13 tabs

  16. Topical Review: Polymer gel dosimetry

    OpenAIRE

    Baldock, C; De Deene, Y; Doran, S.; Ibbott, G; Jirasek, A.; Lepage, M.; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose ...

  17. Radiation protection, dosimetry and archaeometry

    International Nuclear Information System (INIS)

    The activities performed by the radiation protection, dosimetry and archeometry group of the Atomic Institute of the Austrian Universities during 1999-2001 are briefly described, they include: internal radiation protection (a pilot project based on select x-ray diagnostics investigations where the surface dose was measured and compared against the EU standards), dose rates for patients and personnel during radiological check up, environmental monitoring. In the field of dosimetry, a new dosimeter material (CaF2:Tm was investigated), an active and a passive Bonner-Kugel-spectrometer to measure the neutron spectrum and their dose at high altitudes was built. In the project phantom during 600 days the energy distribution and equivalent dose in a human phantom was measured. Dosimetry and spectrometry (neutrons) on high mountains and airplanes were performed. Earlier cells apoptosis after irradiation with 60Co gamma radiation and neutrons was investigated and age estimation was performed on samples from middle Neolithic period, Bronze age an Roman empire. (nevyjel)

  18. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  19. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  20. Dosimetry studies in Zaborie village

    Energy Technology Data Exchange (ETDEWEB)

    Takada, J. E-mail: jtakada@ipc.hiroshima-u.ac.jp; Hoshi, M.; Endo, S.; Stepanenko, V.F.; Kondrashov, A.E.; Petin, D.; Skvortsov, V.; Ivannikov, A.; Tikounov, D.; Gavrilin, Y.; Snykov, V.P

    2000-05-15

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m{sup 2} of Cs-137 with 0.7-4 {mu}Sv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  1. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  2. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  3. Department of Radiation Shielding and Dosimetry: Overview

    International Nuclear Information System (INIS)

    Full text: The research activities of the Department in 1998, similarly to the previous year were focused on the following problems: Dosimetry for medical purposes; Microdosimetry at the nanometer level; Numerical modelling of interaction of radiation with matter; DOSIMETRY: Based on experience gained in previous years in absolute and relative measurements of absorbed dose for 106Ru applicators, the detectors and methods for dosimetry of β radiation applied in intravascular brachytherapy have been undertaken. A new, small size scintillation probe with NE102A scintillator 1 mm dia. by 1 mm coupled to a 30 cm long flexible light guide and to a 9524S photomultiplier has been assembled and tested. The GAF Chromic foils, MDSS, have been found to be very promising detectors for intravascular and ocular brachytherapy. A miniature ionisation chamber for Kerma in air measurements in radiation field of a ''photon needle'' (small size X-ray tube operated at 30 KV) has been assembled and tested. MICRODOSIMETRY: The absolute efficiency of two types of electron multipliers, i.e. discrete dynode electron multiplier DM205IG and channel electron multiplier X719BL for Ar+ ions in energy range 1 keV to 10 keV has been determined in an experiment performed in cooperation with the Weizmann Institute of Science. These electron multipliers are used in the set up ''JET COUNTER'' as detectors for ion cluster studies. A method for measuring the spectra of ion clusters created along a charged particles track has been proposed. The ion clusters spectra produced by alpha particles 241Am source passed a distance of 3.6 to 10 nm (in units of density scale) in nitrogen have been measured. Also, preliminary measurements of ion clusters created by low energy electrons 50 and 100 eV have been carried out. Activities in this field were supported by IV CEC Framework Programme as well as by the Polish State Commission for Scientific Research. NUMERICAL MODELLING: Monte Carlo simulation is direct and

  4. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    Science.gov (United States)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  5. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...

  6. Patient dosimetry and protection in diagnostic radiology

    International Nuclear Information System (INIS)

    The paper discussed the following subjects: x-ray in medicine as they represent by far the largest man-made sources of population exposure to ionizing radiation, methods of patient dosimetry, entrance surface dose per radiograph, dose-area product per examination, dosimetry for assessing risk, potential of dose reduction

  7. Good Practice of Clinical Dosimetry Reporting

    International Nuclear Information System (INIS)

    The intention of the guidance of this paper, Good Practice of Clinical Dosimetry Reporting, by the Dosimetry Committee of the European Association for Nuclear Medicine, is to guide the reader through a series of suggestions for reporting dosimetric approaches in nuclear medicine. (author)

  8. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  9. Basics of the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    The dosimetry basic physics issues, ionizing irradiation interaction with the substance and the radiation parameter regulation principles were considered. The special attention was paid to the methods of the ionizing radiation measurement. The edition is the manual on the dosimetry principles and is intended, first of all, for the university students of the technical and engineering specialties

  10. Internal dosimetry of uranium isotopes using bayesian inference methods

    International Nuclear Information System (INIS)

    A group of personnel at Los Alamos National Laboratory is routinely monitored for the presence of uranium isotopes by urine bioassay. Samples are analysed by alpha spectroscopy, and the results are examined for evidence of an intake of uranium. Because the measurement uncertainties are often comparable to the quantities of material we wish to detect, statistical considerations are crucial for the proper interpretation of the data. The problem is further complicated by the significant, but highly non-uniform, presence of uranium in local drinking water and, in some cases, food supply. Software originally developed for internal dosimetry of plutonium has been adapted to the problem of uranium dosimetry. The software uses an unfolding algorithm to calculate an approximate Bayesian solution to the problem of characterising any intakes which may have occurred, given the history of urine bioassay results for each individual in the monitored population. The program uses biokinetic models from ICRP Publications 68 and later, and a prior probability distribution derived empirically from the body of uranium bioassay data collected at Los Alamos over the operating history of the Laboratory. For each individual, the software creates a posterior probability distribution of intake quantity and solubility type as a function of time. From this distribution, estimates are made of the cumulative committed dose (CEDE) to each individual. Results of the method are compared with those obtained using an earlier classical (non-Bayesian) algorithm for uranium dosimetry. We also discuss the problem of distinguishing occupational intakes from intake of environmental uranium, within a Bayesian framework. (author)

  11. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  12. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  13. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Materials grouped to six main issues: dosimetry and radiometry equipment, dosimetry of the medical irradiation, standard and metrology support of dosimetric and radiometric control, biological dosimetry and markers of radiation effects, monitoring and reconstruction of radiation doses at radiation accidents and dosimetry of unionizing radiations

  14. ESR dosimetry using eggshells and tooth enamel for accidental dosimetry

    International Nuclear Information System (INIS)

    The CO2- signal of eggshells showed a good dose linearity and was appropriate in the wide dose range from 1 to 10 kGy, while ESR signal of CO2- in sea and fresh water shells were saturated at a dose od below 10 kGy. The minimum detectable dose and G-value of CO2- in eggshells were estimated 0.3 Gy and 0.28, respectively. The lifetime of CO2- in eggshells could not be determined exactly because of overlapping organic signals, however it is still sufficiently long for practical use as ESR dosimeter materials. Various bird's or reptile's eggshells would be available as natural retrospective ESR dosimeter materials after nuclear accidents. Eggshells will be useful for the food irradiation dosimetry in the dose range of about a few kGy. Tooth enamel is one of the most useful dosimeter materials in public at a accident because of its high sensitivity. ESR dosimetry will replace TLD in near future if the cost of an ESR reader is further reduced . (author)

  15. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources (60Co and 137Cs) and a reference source system with six gamma ray sources (60Co and 137Cs). In addition a set of calibrated beta ray sources are provided (147Pm, 204Tl and 90Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137Cs and 60Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  16. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  17. Air Force neutron dosimetry program

    International Nuclear Information System (INIS)

    Approximately 1000 Air Force personnel are monitored for neutron radiation resulting from various sources at more than thirty worldwide locations. Neutron radiation spanning several orders of magnitude in energy is encountered. The Air Force currently uses albedo thermoluminescent neutron dosimeters for personnel monitoring. The energy dependence of the albedo neutron dosimeter is a current problem and the development of site specific correction factors is ongoing. A summary of data on the energy dependence is presented as well as efforts to develop algorithms for the dosimeter. An overview of current Air Force neutron dosimetry users and needs is also presented

  18. Relocation of the Dosimetry Service

    CERN Multimedia

    2007-01-01

    The Dosimetry Service is moving from Building 24 to Building 55 and will therefore be closed on Friday, 30 March. From Monday, 2 April onwards you will find us in Building 55/1-001. Please note that we cannot exclude problems with Internet connections on that day and are therefore unable to guarantee normal service. The Service's opening hours and telephone number will not change as a result of the move: Open from 8.30 - 12.00. Closed in the afternoons. Tel. 7 2155

  19. Quality assurance of BNCT dosimetry

    International Nuclear Information System (INIS)

    The Phase I clinical trials for boron neutron capture therapy (BNCT) started in May 1999 in Otaniemi, Espoo. For BNCT no uniform international guidance for the quality assurance of dosimetry exists, so far. Because of the complex dose distribution with several different dose components, the international recommendations on conventional radiotherapy dosimetry are not applicable in every part. Therefore, special guidance specifically for BNCT is needed. To obtain such guidelines a European collaboration project has been defined. The aim of the project is a generally accepted Code of Practice for use by all European BNCT centres. This code will introduce the traceability of the dosimetric methods to the international measurement system. It will also ensure the comparability of the results in various BNCT beams and form the basis for the comparison of the treatment results with the conventional radiotherapy or other treatment modalities. The quality assurance of the dosimetry in BNCT in Finland covers each step of the BNCT treatment, which include dose planning imaging, dose planning, boron infusion, boron kinetics, patient positioning, monitoring of the treatment beam, characterising the radiation spectrum, calibration of the beam model and the dosimetric measurements both in patients (in viva measurements) and in various phantoms. The dose planning images are obtained using a MR scanner with MRI sensitive markers and the dose distribution is computed with a dose planning software BNCTRtpe. The program and the treatment beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantom. Dosimetric intercomparison has been done with the Brookhaven BNCT beam (BMRR). Before every patient irradiation the relationship between the beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Kinetic models used to estimate the time-behavior of the blood boron concentration have been verified

  20. The Future of Medical Dosimetry

    International Nuclear Information System (INIS)

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given

  1. Radiation dosimetry by potassium feldspar

    Indian Academy of Sciences (India)

    Arun Pandya; S G Vaijapurkar; P K Bhatnagar

    2000-04-01

    The thermoluminescence (TL) properties of raw and annealed feldspar have been studied for their use in gamma dosimetry. The raw gamma exposed feldspar shows glow peaks at 120°C and 319°C. Gamma dose beyond 500 cGy can be measured without any significant fading even after 40 days of termination of exposure. The annealed feldspar shows a glow peak at 120°C after gamma exposure. This peak can be used to measure gamma doses beyond 25 cGy when the TL is measured after 24 h from termination of exposure.

  2. The Future of Medical Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Robert D., E-mail: robert_adams@med.unc.edu

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  3. Foibles of internal dosimetry systems

    International Nuclear Information System (INIS)

    Any system of internal dosimetry intended for widespread use must provide a series of assumptions, and models of calculation. These models will depend upon the basic limitations of dose, risk, or quantity of material that the system is designed to meet. The quirks in most systems arise at this point, depending upon the desires of the designers to provide a workable system that provides safety and depends on the proper use of the models chosen to implement the system. This paper presents illustrations of some of the quirks, or foibles in the past and the current system and discusses a few of the options open for the future. 16 figs

  4. Solid-State Personal Dosimetry

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  5. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  6. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Michael Ljungberg

    2015-07-01

    Full Text Available Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT, generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions.

  7. Application of track detectors in personnel neutron dosimetry

    International Nuclear Information System (INIS)

    A survey is presented of the use of track detectors with emitters of fission fragments and alpha particles and without emitters for the measurement of neutron doses, and the advantages of this system are emphasized. The results are given of a study of the best dosimetric system (radiation sources Th; Th+0.5%Usub(nat); U enriched to 6.5% + detectors Melinex 9 μm and Makrofol KG 10 μm) for the optimal track counting method (spark counter). The dosimetric properties of the system, e.g. fading, dose and energy dependence etc., were determined. A dosimetric badge and an etching device were developed to serve personal dosimetry. (author)

  8. Anniversary Paper: Fifty years of AAPM involvement in radiation dosimetry

    International Nuclear Information System (INIS)

    This article reviews the involvement of the AAPM in various aspects of radiation dosimetry over its 50 year history, emphasizing the especially important role that external beam dosimetry played in the early formation of the organization. Topics covered include the AAPM's involvement with external beam and x-ray dosimetry protocols, brachytherapy dosimetry, primary standards laboratories, accredited dosimetry chains, and audits for machine calibrations through the Radiological Physics Center

  9. Retrospective dosimetry by chromosomal analysis

    International Nuclear Information System (INIS)

    The joint EU/CIS project ECP-6, was set up to examine whether cytogenetic dosimetry is possible for persons irradiated years previously at Chernobyl. The paper describes the possibility of achieving this by the examination of blood lymphocytes for unstable and stable chromosome aberrations; dicentrics and translocations. Emphasis was placed on the relatively new fluorescence in situ hybridization (FISH) method for rapid screening for stable translocations. In a collaborative experiment in vitro dose response calibration curves for dicentrics and FISH were produced with gamma radiation over the range 0-1.0 Gy. A pilot study of about 60 liquidators with registered doses ranging from 0-300 mSv was undertaken to determine whether the chromosomal methods may verify the recorded doses. It was concluded that the dicentric is no longer valid as a measured endpoint. Translocations may be used to verify early dosimetry carried out on highly irradiated persons. For the vast majority of lesser exposed subjects FISH is impractical as an individual dosimeter; it may have some value for comparing groups of subjects

  10. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Progress in the dosimetry of internally deposited radionuclides since World War II is reviewed. The Permissible Doses Conference held at Chalk River in 1949 defined the Standard Man and a biokinetic lung model, setting maximum permissible body burdens (MPBB), maximum permissible concentrations in air (MPCA), and maximum permissible concentrations in water (MPCW) for selected radionuclides. ICRP publications 2, 6 and 9 followed, focusing on setting MPCs. The use of the power function to describe radionuclide retention in the human body was discussed in Publication 2, but not recommended for use until Publication 6. Publication 2 defined the term effective energy. The integration time for internal exposures became 50 years, and the committed dose was defined. ICRP publications 10, 10A and 54 provided guidance for the calculation of doses from measured activity in vivo or in excreta. In 1979 ICRP publication 30 replaced publication 2 as the handbook for internal dosimetry. There will be a major revision of Publication 30 following the release of the new ICRP recommendations. A future publication will give doses to patients who have been administered radiopharmaceuticals. New computer tools will allow the development of more realistic metabolic models, and new dosimetric models that calculate doses to cells will be developed. The availability of high resolution solid state detectors has resulted in improvement in measurements of radionuclides in vivo, and some improvement in radiochemical analyses of excreta. However, poor sensitivity to actinides leaves something to be desired in vitro measurements and air monitoring

  11. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  12. Instrumentation for Dosimetry. Chapter 21

    International Nuclear Information System (INIS)

    Measurements of absorbed dose (or air kerma) are required in varying situations in diagnostic radiology. The radiation fields vary from plain, slit and even point projection geometry, and may be stationary or moving, including rotational. Owing to the use of low photon energies for these fields, it is important that dosimeters have a satisfactory energy response. In general, the requirements for dosimeter accuracy are less stringent than those in radiation therapy; however, the dose and dose rate measurements cover a large range. Patient dosimetry (see Chapter 22) is a primary responsibility of the medical physicist specializing in diagnostic radiology and is required by legislation in many countries. Dose data are also required in the optimization of examinations for image quality and dose. Radiation measurement is also critical for occupational and public exposure control (see Chapter 24). Dose measurements are essential in acceptance testing and quality control (see Chapter 19). Several types of dosimeter can be used, provided that they have a suitable energy response, but typically, ionization chambers of a few cubic centimetres in volume, or solid state detectors specifically designed for such measurements, are used. If dosimeters are used to make measurements during an examination, they must not interfere with the examination. These devices are also used for determination of the half value layer (HVL). Special types of ionization chamber are employed for computed tomography (CT), mammography and interventional radiology dosimetry

  13. Dosimetry effects of film packing

    International Nuclear Information System (INIS)

    Full text: Dosimetric artefacts in film based dosimetry have been addressed by a number of authors. We have investigated the influence on film dose results, of a number of materials that are commonly packed against the film including, solid water, paper, air and plastic. The results indicate that variations in optical density occur due to the character and relative quantity of the packing material as well as the film itself. Kodak X-omat V and GAFChromic film samples were placed in a solid water cassette with packing sheets of various materials placed in contact with the film. Photon and electron exposures were carried out with various film orientation and beam qualities. Results have been obtained for solid water, paper and air. An example of the relative change in film density as a function of depth due to four paper sheets packed adjacent to a film aligned with the central axis of a 6MV photon beam is shown. Other results indicate dose variation can be attributed to Cerenkov radiation. Packing materials in contact or in close proximity with dosimetric film, contribute to optical density variations of the order of several percent. Careful consideration of these effects is necessary when using film in high accuracy dosimetry. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  14. CT dosimetry and risk estimates

    International Nuclear Information System (INIS)

    Conventional approaches to CT dosimetry are inadequate because they fail to evaluate the risk to the patient. A risk related approach to CT dosimetry is developed which explicitly takes into account the non-uniform dose distribution in the body and the relative sensitivities of different organs and tissues. The principal radiological risks to patients undergoing CT examinations are the stochastic processes of carcinogenesis and genetic effects. Radiation risk estimates have been obtained for an EMI 5005 CT scanner by measuring the mean organ doses in a Rando phantom for CT studies on the head, chest, abdomen and pelvis. The application of these risk estimates to the population served by this CT scanner indicates that during the lifetime of the CT scanner, approximately 50,000 patients will undergo CT scanning and 60% will result in a positive diagnosis. The radiation detriment is estimated to be about 1 induced cancer and a negligible genetic effect. The radiation detriment is considerably smaller than the total detriment associated with contrast material used in 76% of the CT studies. (author)

  15. Health physics research reactor reference dosimetry

    International Nuclear Information System (INIS)

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs

  16. Non-conventional personal dosimetry techniques

    International Nuclear Information System (INIS)

    Established dosimetry has achieved a high standard in personnel monitoring. This applies particularly to photon dosimetry. Nevertheless, even in photon dosimetry, improvements and changes are being made. The reason may be technological progress, or the introduction of new tasks on the basis of the recommendations of international bodies (e.g. the new ICRU measurement unit) of national legislation. Since we are restricting ourselves here to technical trends the author would like to draw attention to various activities of current interest, e.g. the computation of receptor-related conversion coefficients from personal dose to organ or body doses, taking into account the conditions of exposure with respect to differential energy and angular distribution of the radiation field. Realistic data on exposure geometry are taken from work place analyses. Furthermore, the data banks of central personal dosimetry services are subject to statistical evaluation and radiation protection trend analysis. Technological progress and developments are considered from the point of view of personal dosimetry, partial body or extremity dosimetry and accidental dosimetry

  17. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  18. Basic physical data for neutron dosimetry

    International Nuclear Information System (INIS)

    Based on the results of a workshop on basic physical data for neutron dosimetry held in Rijswijk (The Netherlands) on 19-21 May 1976, this monograph reviews the current status in neutron dosimetry and the agreements that were reached on the use of some common basic physical parameters. As appendices are joint tables of kerma factors and a draft of a protocol for neutron dosimetry for radiobiological and medical applications. Main topic treated: source and field characteristics; cross sections and mass energy transfer coefficients; measurements and calculations; detector response, measurements and calculations; dose distributions in phantoms for a limited set of conditions; standardization, calibration and intercomparison

  19. Introduction to radiological physics and radiation dosimetry

    CERN Document Server

    Attix, Frank Herbert

    2004-01-01

    A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem

  20. A TLD for whole body dosimetry our experience in neutron personnel dosimetry

    International Nuclear Information System (INIS)

    One of the Greek Atomic Energy, Commission's (GAEC) responsibilities is the personnel dosimetry and the record keeping for the workers occupationally exposed to ionising radiation. The personnel dosimetry laboratory of the GAEC assures the monitoring of almost 7000 workers in the whole country, including about 100 working in areas where neutrons might be present. For this purpose a thermoluminescence dosimetry system (TLD) in neutron dosimetry has been introduced. Scope of the present work is the quality control and the preliminary results on the implementation of the TLD system. The quality control of the system has been completed and the results are presented. (authors)

  1. Electron paramagnetic resonance technique for radiation dosimetry: emerging trends for laboratory and accidental dosimetry

    International Nuclear Information System (INIS)

    The applications of Electron Paramagnetic Resonance (EPR) for radiation dosimetry are briefly reviewed. In particular, EPR-alanine dosimetry and accidental dosimetry using EPR signals from human tooth enamel have been discussed. The alanine dosimetry was found to be useful from low doses such as 1 Gy to high doses such as 100 kGy. The signals from tooth enamel are found to be invaluable in assessing the absorbed dose of people exposed to radiation accidents and also survivors of atomic bomb explosions. New emerging trends using EPR signals from bones exposed to radiation have also been briefly reviewed. (author)

  2. Need of reactor dosimetry preservation

    International Nuclear Information System (INIS)

    Full text: Today's nuclear renaissance in national and European aspect, expressed in building of new NPPs, as well as the development of Gen. IV nuclear reactors, meets new challenges of accuracy of the reactor analysis methods used for reliable operation and nuclear safety assessment. The nuclear safety requirements and philosophy have changed by the development of new nuclear systems and this imposes special research and development activity. Reactor Dosimetry (RD) which is applied for determination of neutron field parameters and neutron flux responses in different regions of the reactor system plays an important role in determining of consecutive effects from the irradiation. That is, for determination of radiation exposure on reactor system elements as reactor vessel, internals, shielding; dose determination for material damage study; determination of radiation field parameters for conditioning of irradiation; dose determination for medicine and industry application; induced activity determination for decommissioning purposes. The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve and transfer nuclear knowledge is compounded by recent trends such as ageing of the nuclear workforce, declining student numbers in nuclear related fields, and the threat of losing accumulated nuclear knowledge. Reinforcement of science and technology potential of many EU institutes is needed so to be able to support the nuclear operators and nuclear regulator in safety assessment as well as to strengthen the utilization of the research reactor for medicine and industry purposes. The ways to preserve and develop the RD knowledge could be asked in the good practice of the near past within the European Working Group for Reactor Dosimetry (EWGRD), members of which are research organizations of the countries in Europe operating VVER, PWR and BWR type reactors. Joint workshops and training, common intercomparisons will maintain the RD

  3. Alanine - ESR dosimetry, feasibility and possible applications

    International Nuclear Information System (INIS)

    Alanine ESR dosimetry presents a great interest for quality controls in radiotherapy. This new developed water equivalent alanine dosimeter allows a reproducible dose measurement, by a non-destructive readout technique in a large dose range. In this paper the stability of the dosimeter response has been shown but also its independence with the energy or the dose rate of the absorbed radiation. Through this different studies, one can broaden the application field of alanine / ESR dosimetry especially for in-vivo dosimetry. The results of the experiments and the intra operative treatment, indicate that this kind of dosimetry seems to be a promising technique for in-vivo quality controls in electron beam, γ ray or X ray radiotherapy. (authors)

  4. Biological dosimetry - Dose estimation method using biomakers

    International Nuclear Information System (INIS)

    The individual radiation dose estimation is an important step in the radiation risk assessment. In case of radiation incident or radiation accident, sometime, physical dosimetry method can not be used for calculating the individual radiation dose, the other complement method such as biological dosimetry is very necessary. This method is based on the quantitative specific biomarkers induced by ionizing radiation, such as dicentric chromosomes, translocations, micronuclei... in human peripheral blood lymphocytes. The basis of the biological dosimetry method is the close relationship between the biomarkers and absorbed dose or dose rate; the effects of in vitro and in vivo are similar, so it is able to generate the calibration dose-effect curve in vitro for in vivo assessment. Possibilities and perspectives for performing biological dosimetry method in radiation protection area are presented in this report. (author)

  5. The International Reactor Dosimetry File (IRDF-85)

    International Nuclear Information System (INIS)

    This document describes the contents of the second version of the International Reactor Dosimetry File (IRDF-85), distributed by the Nuclear Data Section of the International Atomic Energy Agency. This library superseded IRDF-82. (author)

  6. The BNFL legal electronic dosimetry service

    International Nuclear Information System (INIS)

    BNFL Magnox Generation started a three year scheme in April 1996 to introduce Siemens Electronic Personal Dosimetry (EPD) systems into its reactor sites as part of an initiative to improve the control of doses and the accuracy of dose statistics and to record personal legal dose. Concurrent with the installation of the EPD systems a successful application was made to the United Kingdom Health and Safety Executive (HSE) for approval of the BNFL dosimetry service to use the Siemens EPD Mk 1.2 for recording legal doses. This paper discusses the experiences of the BNFL dosimetry service in operating the approved dosimetry service since it's approval by the HSE in January 2000. (authors)

  7. Emerging technological bases for retrospective dosimetry.

    Science.gov (United States)

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel. PMID:9368303

  8. Audits for advanced treatment dosimetry

    International Nuclear Information System (INIS)

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits

  9. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  10. Development of radiation biological dosimetry

    International Nuclear Information System (INIS)

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay

  11. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  12. The future of medical dosimetry.

    Science.gov (United States)

    Adams, Robert D

    2015-01-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given. PMID:25861838

  13. Personal dosimetry in NPP refuelling

    International Nuclear Information System (INIS)

    Doses received by people involved in the operation of Nuclear Power Plants may reach high values, sometimes near limits, particularly during the refuelling operation. With the new ICRP recommendations, the doses produced may exceed the limits that have been now established, hence the practice used must be revised and/or exposure times reduced. In this paper, personal dosimetry from the workers of a Service Company involved in the operation of several Nuclear Power Plants, has been analyzed in order to state the implications of the new ICRP recommendations. Doses higher than new limits will imply a revision of the refuelling policies, thus exposure time would be reduced, and perhaps more workers must be involved in the operation, at least in critical stages. Statistics over the collected data have been estimated and major remarks on possible changes in the practice have been summarized. (author)

  14. Critical Reflections on Neutron Dosimetry

    International Nuclear Information System (INIS)

    Neutron dosimetry is unsatisfactory at present because the true meaning of the experimental data is not clear. Flux measurements cannot be used to determine the absorbed doses without simultaneous measurement of the spectral distribution of the neutrons, whose QF varies considerably according to the energy. Even with a unit of absorbed dose such as the rad (whose definition is based on physical measuring systems), there is still the problem of how to measure the absorbed energy. Essentially, an instrument for measuring absorbed doses should satisfy at least the following conditions: (1) It should produce no change in the primary flux incident on the subject or should modify it in the same proportions as the subject. (2) It should indicate the absorbed energy accurately. Calorimetric measurements come to mind, but they are insufficiently sensitive (100 rads/min in a substance of unit specific heat produces a temperature rise of 2.5 x 10-4 degC/min). (3) The absorbed energy per unit mass of the dosimeter should be equal or proportional to that absorbed per unit mass of human tissue. Personal dosimetry by means of film badges is inaccurate and insufficiently sensitive. At present, the most reliable dose measurements are those made with tissue-equivalent ionization chambers, but these, too, are unsatisfactory, at least for neutrons of energy between 0.025 eV and 20 keV and above 30 MeV. The authors propose a method for measuring high-energy neutron doses capable of causing nuclear disintegrations in the body. (author)

  15. Neutron excitation function guide for reactor dosimetry

    International Nuclear Information System (INIS)

    Neutron Excitation Function Guide for Reactor Dosimetry (NEFGRD) has been prepared in the Ukrainian Nuclear Data Center (UKRNDC) using ZVV 9.2 code for graphical data presentation. The data can be retrieved through Web or obtained on CD-ROM or as hard copy report. NEFGRD contains graphical and text information for 56 nuclides (81 dosimetry reactions). Each reaction is provided by the information part and several graphical function blocks (from one to nine). (author)

  16. Application of radiation damage effects in dosimetry

    International Nuclear Information System (INIS)

    some general aspects of radiation dosimetry are outlined. The techniques of radiophotoluminescence, radiothermoluminescence and exo-electron emission are discussed individually. It is thought that the trend in personnel dosimetry is such that thermoluminescence will steadily replace film and photoluminescence techniques over the next decade, and that more unusual techniques, such as exo-electron emission, will make inroads only for special purposes. (B.R.H.)

  17. EPR dosimetry of human dental enamel

    International Nuclear Information System (INIS)

    Dental enamel was the object of dosimetry with the use of electron paramagnetic resonance (EPR); the teeth extracted for medical causes in the residents of Kiev, the Kiev and Zhitomir regions were analyzed. New data on radiation defects in dental enamel are presented and problems of EPR dosimetry in humans analyzed, approaches to the development and improvement of the method of retrospective assessment of the dose load with this method are outlined

  18. Developments in Patient Dosimetry for Unsealed Sources

    International Nuclear Information System (INIS)

    In molecular radiotherapy, treatment planning essentially is the determination of the activity to administer to optimize safety and efficacy of a treatment. Individualization is possible, for example, by using quantitative imaging modalities, external counting and blood sampling for pre-therapeutic biokinetics measurements. Patient specific dosimetry can be performed as in radiation therapy. Over- or under treatment of patients can be avoided. Here, the standard methods and the expected advances in performing individualized dosimetry are discussed. (author)

  19. Ab initio alpha-alpha scattering.

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  20. Ab initio alpha-alpha scattering

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  1. Faddeev calculation of 3 alpha and alpha alpha Lambda systems using alpha alpha resonating-group method kernel

    CERN Document Server

    Fujiwara, Y; Kohno, M; Suzuki, Y; Baye, D; Sparenberg, J M

    2004-01-01

    We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are...

  2. Uncertainty in 3D gel dosimetry

    Science.gov (United States)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  3. In aqua vivo EPID dosimetry

    International Nuclear Information System (INIS)

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D γ evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D γ evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by applying

  4. In aqua vivo EPID dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  5. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99mTc, 123I, 111In, 67Ga, and 201Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (Dcel) have been compared with those obtained with conventional dosimetry (Dconv), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that Dcel/Dconv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, Dcel/Dconv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  6. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  7. Breast dosimetry in clinical mammography

    Science.gov (United States)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  8. The Hanford Emergency Dosimetry System

    International Nuclear Information System (INIS)

    The Hanford project is a major atomic industrial complex, including nuclear reactors, fuel fabrication plants, chemical separation facilities and research laboratories. In addition to a surveillance and control programme for personnel radiation exposures, an emergency dosimetry system has been developed to provide rapid assessment of high dose rates, identification and control of employees, staff notifications and formation of staff emergency control centres, assessment of external exposure doses, evaluation of body burdens of radioactive materials, detection and control of radioactive environmental contamination and rapid exposure estimates for guidance of rescue and medical personnel. Primary reliance is placed upon the Hanford Film Badge Dosimeter, worn by all persons within controlled areas. The badge provides positive identification of the wearer and the film can be evaluated within 90 min. Separately, yet simultaneously, the remaining components of the badge can be processed for determinations of the neutron spectrum and dose in five energy groups, as well as provide an early estimate of the single collision neutron dose from a few to several thousand rads. Gamma-ray detection ranges from 20 mr to 1500 r from the film components to 10 to 10 000 r from tantalum shielded fluorods. The emergency system includes programmes that ensure employee understanding, monitor training and management co-operation for fast identification, control and segregation of affected employees. Monitoring personnel, using portable instrumentation, obtain on-site in vivo measurements of Na24 or measurements of activated indium foil in the film-badge dosimeter for preliminary dose estimates. The staff notification and operation of emergency control centres provide technical guidance and mobile supportive equipment including a mobile whole-body counter. Back-up laboratory facilities give supportive dosimetry through the analysis of blood for Na24 activation, P32 hair content

  9. The ARN critical dosimetry system

    International Nuclear Information System (INIS)

    The ARN critical dosimetry system is shown in this work. It includes personal and area dosemeters, and the information of typical spectra. The spectra of the critical facilities in our country are characterised by measurements with our Bonner Sphere System (BSS) or by computational methods in order to evaluate the dose in each case with the actual spectrum. The personal and area dosemeters are able to evaluate the gamma and neutron contributions. The detectors used are thermoluminescents, (TLD) 7Li:Mg,Ti for gamma and threshold detectors (Indium and sulphur pellets) and activation detectors Au (bare and Cd cover) for neutron. The Gamma-ray spectrometry is made with GeHp and MCA (Canberra) calibrated with 133Ba and 137Cs sources. The Beta-ray counting is made with a Geiger Muller (LND)(8%) with an electronic counter prototype developed in Argentina. The system is calibrated with the tioacetamida-technique carried out in our chemistry laboratory. The TLD are calibrated in Argentine SSDL with 60Co source, free in air. The calibration curve has been extended up to 10Gy. The neutron fluence distribution is obtained considering the thermal region as a Maxwellian distribution with a modal energy of 0.0253 eV and the intermediate region with a 1/E spectrum from 0.5 eV to E=200 keV. The basic data are the measured activities in the gold foils. The fast neutron fluence is calculated considering the mean cross section for the selected spectrum over the energy range. The basic data are the measured activities in indium foil and sulphur pellets with threshold energy of 1.7MeV and 2.5MeV respectively. The neutron kerma dose, the recoil charged particle dose and the contribution of the 1H(n, γ) 2H dose component, are calculated applying the dose conversion factors published in TRS211. The area dosemeter gives the gamma incident radiation kerma, and the personal dosemeter, the gamma total dose. This system has participated at the International Intercomparison of Criticality

  10. Some methods for calibration and beta radiation dosimetry

    International Nuclear Information System (INIS)

    The calibration of beta radiation was studied from the point of view of primary and secondary standardization, using extrapolation chambers and examining several effects. The properties of a commercial ionization chamber were investigated, and the possibility of its use in calibration and dosimetry of 90Sr- 90Y beta radiation was demonstrated . A secondary standard calibration facility was developed and the results obtained with this facility were compared with those obtained from a primary system directly or indirectly. Nearly energy independent response was obtained in.the range 60 keV to 0,8 MeV with this secondary standard. Two solid state techniques namely thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) were also used for beta dosimetry. Various characteristics like reproducibility, response with dose,energy dependence, etc. were studied for the materials: LiF, CaF2,Li2B4O7, Be O, CaSO4 and Al2O3. TL detectors of thickness 0,9 mm underestimate the dose 60 μm thick CaSO4:Tm embedded on a thin aluminium plate gave energy independent response behind skin layers of 7 mg/cm2. Mixed field of beta, X and gamma radiation was analysed using this detector. Quartz based Be O and graphite based alpha beta-Al2O3 were found to be good beta radiation detectors when the TSEE technique is used. Energy independent CaSO4:Tm TL dosimeters were used in international comparison for dose measurements and the results obtained were in agreement with the actual given doses within 10%. The TL detectors were also used for dose rate measurements from glazed painted tiles used in construction industry and a 85Kr source used in textile and metal industries. Results obtained in the later case were Q compared with those using the secondary standard facility. (author)

  11. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry; Optimisation de la radioprotection en medecine nucleaire: de la dosimetrie de reference a la dosimetrie personnalisee

    Energy Technology Data Exchange (ETDEWEB)

    Hadid, Lama

    2011-09-09

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  12. Personnel neutron dosimetry at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  13. Dosimetry at a 400 keV accelerator

    DEFF Research Database (Denmark)

    Miller, A.

    1992-01-01

    Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes.......Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes....

  14. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  15. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  16. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o......Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy...

  17. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  18. Review of alpha_s determinations

    CERN Document Server

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupling is found to be alpha_s(M_Z^2)= 0.1186 \\pm 0.0007.

  19. Oesophageal dosimetry during cardial catheterisation

    International Nuclear Information System (INIS)

    The purpose of this two-fold study has been the measurement of absorbed dose to patients during cardiac catheterization. Radiothermoluminescence (RTL), the method of choice for dosimetry in vivo, has been used extensively in this work. The first part of the study involved 49 unselected patients. A ratio (the equivalent fluoroscopic time) was established between the duration of fluoroscopy and the length of film exposed; this simplified the calculation of patient-dose. The dose absorbed in a central region of the mediastinum was designated the heart dose and was calculated by means of a formula in which the variables were fluoroscopic time and length of film. It was shown that the dose absorbed was unrelated to the thoracic thickness of the patients examined. The second part of the study was confined to 15 selected patients; infants and young children could not be included because of the requirement to insert an oesophageal catheter. The catheter was made of flexible polyethylene with a lithium fluoride tip enabling measurement of the dose within the oesophagus. Employing this technique, we were able to confirm the accuracy of our earlier study by comparing the measured oesophageal dose with the estimated heart dose

  20. Semiconductor Compounds For Occupational Dosimetry

    International Nuclear Information System (INIS)

    One of the main objectives of radiation dosimetry is developing suitable sensitive materials for measurements in different radiation fields and applying it in practical situations. Semiconductors vary in their radiation response according to the nature of the material used and the impurities added to them. Our exploration of potentially suitable high gamma radiation dosimeters which can be used inside restricted areas, led us to a series of materials giving thermoluminescent emission upon giving exposure to gamma radiation in the range of 0.5-1.5 Mrad (0.5x104-1.5x104 gray). The experimental work has been carried out in part at the National Center for Radiation Research and Technology at the Atomic Energy Authority using industrial 60Co gamma ray unit giving a dose rate of 136 Gy/min. The results indicated that some of the tested materials have been shown to exhibit thermoluminescence linearly with dose. Hence it is suggested that these materials can act as radiation dosimeters for high exposures of occupational workers and for workplaces

  1. Sixth personnel dosimetry intercomparison study

    International Nuclear Information System (INIS)

    The Sixth Personnel Dosimetry Intercomparison Study was conducted March 25 to 27, 1980, at the Oak Ridge National Laboratory. Dosimeters from 28 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.8 to 11.5 mSv neutron, 0.1 to 1.1 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor (HPRR) operated in the steady-state mode served as the source of radiation for six separate exposures. Lucite and concrete shields along with the unshielded reactor were used to provide three different neutron and gamma spectra. Results reported by the participating agencies showed that TLD-albedo and TLD-700 dosimeters generally provided the most accurate measurements of neutron and gamma dose equivalents, respectively. Film was found to be unsatisfactory for measuring neutron doses produced by HPRR spectra in that measured dose equivalents were much lower than reference values. The TLD-100 dosimeters yielded gamma doses which were much too high indicating that this dosimeter type is generally unsuitable for use in mixed radiation fields similar to those encountered in this study without the use of large correction factors. Although the overall reported results exhibited improvement in performance relative to previous intercomparison studies, the composite measured data showed variations of more than a factor of 2 between measurements of the same exposure made by different agencies

  2. Radiosynoviorthesis. Clinical and preclinical dosimetry

    International Nuclear Information System (INIS)

    Accurate calculation of internal dose estimates in the Radiosynoviorthesis treatment requires several steps of analysis. The use of animal models (rabbits) to predict human kinetics and dosimetry is an essential first step in the evaluation of new radiocolloids, but involves many uncertainties. There is no gold standard method for extrapolating animal data to humans. Nonetheless, human dose estimates based on animal data are considered to be reasonable approximations to be used for proceeding with dose estimates based on human data, which are ultimately used to assess the safety and efficacy evaluations of radiopharmaceuticals, and continues to be an important element in the radiopharmaceutical approval process. The obtained absorbed dose profiles versus synovial tissue, bone and articular cartilage depth will permit the specialist to prescribe the adequate dose of radionuclide to treat rheumatoid arthritis in medium and large joints without expose the healthy structures of the synovial joint to an excessive and unnecessary irradiation risk, eliminating the fixed dose and fixed radionuclides for each joints (Author)

  3. EVA dosimetry in manned spacecraft

    International Nuclear Information System (INIS)

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space

  4. Dosimetry and Risk Assessment: Fundamental Concepts

    International Nuclear Information System (INIS)

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  5. Dosimetry in radiation processing- Indian scenario

    International Nuclear Information System (INIS)

    Radiation processing is a method for producing chemical, physical, and microbiological changes in substances by exposing to ionizing radiation. Availability of high intensity cobalt-60 gamma ray sources and high power electron beam accelerators has led to a continuous growth of radiation processing industry in India. Commercial viability and safe operation of these radiation-processing plants depends on accurate dosimetry. Depending on the purpose to be achieved, a widespread dose range, from few grays to few hundred kilo grays, is encountered in radiation processing technology and this necessitates the use of different dosimetry systems. In the present paper, current status of radiation processing facilities in India has been reviewed. Various indigenously developed dosimetry systems such as Alanine/glutamine (Spectrophotometric readout), FBX and ceric-cerous (potentiometry) are being used for quality assurance and routine plant dosimetry. Fricke dosimeter is used as a reference standard for calibrating other dosimetry systems. Glutamine (Spectrophotometric read out) dosimeter, used as transfer standard for Q.A. has traceability to NPL, UK and has shown an agreement within ±2% during dose intercomparisons carried out with various international standards laboratories. Performance of these dosimeters was found to be better than ±10% during dose measurements in radiation sterilization and food irradiation plants. (author)

  6. Long term nuclear data needs for internal radiation dosimetry

    International Nuclear Information System (INIS)

    The Evaluated Nuclear Structure Data File (ENSDF) is the principle source of nuclear data for internal radiation dosimetry and is, therefore, described briefly. Nuclear data needs and accuracy requirements for internal radiation dosimetry are summarized. Currently available sources of internal radiation dosimetry data are outlined and the need for traceability and documentation of these data is discussed. (author)

  7. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  8. Dosimetry methods for fuels, cladding and structural materials

    International Nuclear Information System (INIS)

    This volume of the proceedings of the symposium on reactor dosimetry covers the following topics: the metallurgy and dosimetry interface, radiation damage correlations of structural materials and damage analyses techniques, dosimetry for fusion materials, light water reactor pressure vessel surveillance in practice and irradiation experiments, fast reactor and reseach reactor characterization

  9. Development and implementation of own software for dosimetry multichannel film

    International Nuclear Information System (INIS)

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  10. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  11. Review of alpha_s determinations

    OpenAIRE

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupl...

  12. World Summary of $\\alpha_s$ (2015)

    CERN Document Server

    Bethke, Siegfried; Salam, Gavin P

    2015-01-01

    This is a preliminary update of the measurements of α s and the determination of the world average value of α s (M Z 2 ) presented in the 2013/2014 edition of the Review of Particle Properties [1]. A number of studies which became available since late 2013 provide new results for each of the (previously 5, now) 6 subclasses of measurements for which pre-average values of $\\alpha_s (M_Z^2)$ are determined.

  13. Assessment of internal dose from incorporated plutonium-239 by means of biological dosimetry

    International Nuclear Information System (INIS)

    Intra- and inter-chromosomal aberration frequency in Mayak P.A. nuclear workers was studied by mFISH and mBAND techniques. Intra-chromosomal aberrations in lymphocytes from the peripheral blood were found to be a bio marker of densely-ionizing radiation (alpha-particles) in workers exposed to radiation many years ago. A dependence of the frequency of intra-chromosomal aberrations in plutonium workers on absorbed dose to the red bone marrow from internal exposure to incorporated plutonium-239 was found. A preliminary 'bio dosimetry system' was developed. Its capability to estimate internal doses from incorporated plutonium-239 in plutonium production workers based on the frequency of intra-chromosomal aberrations detected in these workers was tested. Estimates of internal doses from incorporated plutonium - 239 obtained using the preliminary 'bio dosimetry system' were compared with doses calculated by a model based on measurements of plutonium excretion in urine ('Mayak Doses-2000'). Estimates of internal doses from incorporated plutonium-239 obtained using both independent techniques demonstrated a highly significant correlation (correlation coefficient, R2 = 74%). At the current research phase, the developed 'bio dosimetry system' is to be adjusted, which will allow to estimate plutonium-239 body burden with an uncertainty less than 30%. (authors)

  14. ESR dosimetry in calibration intercomparisons with high-energy photons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, K.J. (University Hospital of Copenhagen, Herlev (Denmark)); Hansen, J.W. (Risoe National Lab., Roskilde (Denmark)); Waligorski, M.P.R. (Institute of Nuclear Physics, Cracow (Poland))

    1989-01-01

    When alanine is exposed to radiation, stable free radicals are produced which may be measured by electron spin resonance (ESR) spectroscopy. Our dosimeters consist of L-{alpha}-alanine mixed with 5% polyvinyl pyrrolidone, compacted in the shape of 2-mm thick cylinders of 4.5 mm diameter. The alanine dosimeters were exposed to 0.25 to 16-MV {sub p} X-ray beams and 6 to 20-MeV electron beams and measured at Riso National Laboratory. Doses were determined by comparison with alanine dosimeters exposed to {sup 60}Co {gamma}-rays calibrated with Fricke dosimetry. At absorbed doses above 10 Gy, the standard deviation for the dose measurements was 1%. Dosimetry comparisons better than 2% at the 95% confidence level are possible. The dosimeters are easy to handle, robust and cheap, and may be read repeatedly. Fading after 100 Gy of {sup 60}Co {gamma}-rays and Linac-produced X-ray and electron beams is less than 2 and 6% in 4 years, respectively. Alanine dosimeters are useful for dosimetry comparisons both for photons and electrons, and the negligible fading make them ideal for documentation of patient doses in radiation therapy. (author).

  15. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  16. Instrumentation for the individual dosimetry of workers

    CERN Document Server

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  17. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  18. Dosimetry procedures for an industrial irradiation plant

    Science.gov (United States)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  19. Radiation dosimetry activities in the Netherlands

    International Nuclear Information System (INIS)

    The Netherlands Commission for Radiation Dosimetry (NCS) was officially established on 3 September 1982 with the aim of promoting the appropriate use of dosimetry of ionizing radiation both for scientific research and practical applications. The present report provides a compilation of the dosimetry acitivities and expertise available in the Netherlands, based on the replies to a questionnaire mailed under the auspices of the NCS and might suffer from some incompleteness in specific details. The addresses of the Dutch groups with the names of the scientists are given. Individual scientists, not connected with a scientific group, hospital or organization have not been included in this list. Also the names of commercial firms producing dosimetric systems have been omitted. (Auth.)

  20. Model selection for radiochromic film dosimetry

    CERN Document Server

    Méndez, Ignasi

    2015-01-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to...

  1. Reference dosimetry and measurement quality assurance

    International Nuclear Information System (INIS)

    Measurements of absorbed dose made by a reference dosimetry system, such as alanine, have been suggested for achieving quality assurance through traceability to primary standards. Such traceability can assist users of radiation worldwide in enhancing quality control in medicine, agriculture, and industry. International and national standards of absorbed dose are still needed for applications of γ-ray and electron dosimetry at high doses (e.g. radiation therapy, food irradiation and industrial radiation processing). Reference systems, such as ferrous sulfate dosimeters measured by spectrophotometry and alanine measured by electron spin resonance spectrometry are already well established. Another useful reference system for high doses is supplied as dichromate solutions measured by spectrophotometry. Reference dosimetry, particularly for electron beams, can be accomplished with thin alanine or radiochromic dye film dosemeters. (author)

  2. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  3. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  4. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  5. HSE performance tests for dosimetry services

    International Nuclear Information System (INIS)

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. (author)

  6. The mechanisms of radical formation in L-{alpha}-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bugay, A.A.; Onischuk, V.A.; Petrenko, T.L.; Teslenko, V.V

    2000-05-15

    Modeling of radical transformations in L-{alpha}-alanine after irradiation was performed for isolated radicals and for clusters. Special attention was devoted to the explanation of the experimental results concerning selective proton transfer and behavior of cation-radicals because a unique interpretation of the corresponding experiments is very difficult. Both semi-empirical and ab initio methods were used depending on the size of system under investigation. The results obtained show the usefulness of the computer simulation for processes in rather complex materials used in dosimetry.

  7. TL detectors in BNCT dosimetry

    International Nuclear Information System (INIS)

    The main detectors for characterising and controlling of BNCT beams are activation foils and paired ionisation chambers. Thermoluminescent (TL) dosimeters are also of interest because of their following advantages: i) small physical size, ii) no need for high voltage or cables, i.e. stand alone character, and iii) suitability for large scale measurements; with TL dosimeters it is possible to measure depth dose curves and profiles at the same time, with one irradiation. Also, TL dosimeters may be possible detectors for in vivo use. At the Finnish BNCT facility, a TL detector MTS-Ns of TLD Niewiadomski and Co. (Krakow, Poland) with an ultrathin active LiF:Mg,Ti layer for small self-shielding of thermal neutrons was selected for use as a neutron sensitive dosimeter. A TL detector MCP-7s (7LiF:Mg,Cu,P) of the same manufacturer was used for gamma detection because of its high sensitivity to gamma radiation compared to that to high LET radiation. The gamma dose and neutron fluence distributions have been measured in PMMA, water and brain substitute liquid phantoms at the BNCT beam. Gamma dose and neutron fluence profiles measured with TL detectors correlate with those calculated using DORT (Two Dimensional Discrete Ordinates Transport Code) and measured with ionisation chambers. NITS-Ns TL detectors were found to measure accurately (8%, 1 S.D.) the relative neutron fluence, and therefore to be a useful addition to the activation foils in BNCT neutron dosimetry. Due to the high uncertainty of the thermal neutron sensitivity of the MCP-7s TL detectors, the absorbed gamma doses can be measured with MCP-7s detectors within 20% in the mixed neutron-gamma field of BNCT. The treatments of glioma patients at the Finnish BNCT facility will start in the spring 1999. The doses to the target volume and sensitive organs, i.e. brain, will be calculated individually in the dose planning. Since it is also necessary to monitor the absorbed doses to the head and to the body, in vivo

  8. SNL RML recommended dosimetry cross section compendium

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  9. Eurados trial performance test for photon dosimetry

    DEFF Research Database (Denmark)

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.; Bartlett, D.T.; Christensen, P.; Colgan, T.; Hyvonen, H.

    paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...... 312 single results, 26 fell outside the limits of the trumpet curve and 32 were outside the range 1/1.5 to 1.5. Most outliers resulted from high energy R-F irradiations without electronic equilibrium. These fields are not routinely encountered by many of the participating dosimetry services. If the...

  10. Third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  11. An updated computer software for personal dosimetry

    International Nuclear Information System (INIS)

    For use in personal dosimetry the ALNOR electronic pocket dosimetry system was installed in 1992. The standard error obtained routinely with this system was less than 10 % in the dose range of 5 μSv to 10 Sv. To keep the database up-to-date, a new software was developed with special emphasis on speed, minimum handling error, and ease-of-use. Except for archivation, this menu-controlled and user-friendly software fits well to different tasks of both datahandling and data-processing. (author)

  12. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards......, the uncertainty of the dose measurement and the environmental influences must be known. This paper discusses how to obtain and maintain traceability and how to document measurement uncertainty. The implications of these requirements in the process control of radiation sterilization are further discussed. Known...

  13. Optically stimulated luminescence in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this progr......Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes...

  14. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  15. Use of semiconductor devices in integrating dosimetry

    International Nuclear Information System (INIS)

    Radiation effects in semiconductors have been investigated with a big effort during the last years and some results of these studies are also usable for dosimetric purposes. Silicon diodes for neutron dosimetry are the best known example of such application. Nevertheless, some other devices show measurable radiation-induced changes of parameters as well and can work as integrating dosemeters. The review of potential possibilities of using such effects in dosimetry is given in the first part of this paper. Dosimetric properties of one type of optoelectronic devices, namely photo-couplers of Czechoslovak make, are discussed in the other part. (author)

  16. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (58Co, 60Co, 54Mn, and 59Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  17. Role of dosimetry in quality control

    International Nuclear Information System (INIS)

    Dosimetry plays an important role in the quality control of radiation processing. Increasingly, quality control systems are based on the standards in the 9000 series from the International Organization for Standardization, ISO. This is true not only in radiation sterilization but also in food treatment, polymer modification and other uses of radiation. It is required that all measurements - including radiation measurements -are traceable to national standards, and the uncertainty of the measurements must be stated with appropriate confidence limits. The paper discusses the significance of dosimetry, the evaluation of uncertainty, and the way in which traceability may be obtained. (author). 11 refs, 2 tabs

  18. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (58Co, 60Co, 54Mn, and 59Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs

  19. Advances in electron dosimetry of irregular fields

    International Nuclear Information System (INIS)

    In this work it is presented an advance in Electron dosimetry of irregular fields for beams emitted by linear accelerators. At present diverse methods exist which are coming to apply in the Radiotherapy centers. In this work it is proposed a method for irregular fields dosimetry. It will be allow to calculate the dose rate absorbed required for evaluating the time for the treatment of cancer patients. Utilizing the results obtained by the dosimetric system, it has been possible to prove the validity of the method describe for 12 MeV energy and for square field 7.5 x 7.5 cm2 with percentile error less than 1 % . (Author)

  20. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  1. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  2. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  3. Kinetics model for lutate dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.F.; Mesquita, C.H., E-mail: mflima@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  4. Metabolic models for tritium dosimetry

    International Nuclear Information System (INIS)

    Tritium (3H or T) is the radioactive isotope of hydrogen, which is produced by both natural, and man made sources. Tritium has a small relative natural abundance compared to hydrogen and deuterium (D). As was assessed by the United Nations scientific committee the contribution of cosmogenic tritium to annual effective dose in human is very small, only about 0.01 μSv (UNSCEAR, 2000). In case of heavy water reactors annual tritium doses for critical groups are also very small but theoretically could reach values of several μSv. In this case professionally exposed personnel could be exposed to tritium doses of some mSv. According to these considerations environmental and dosimetric aspects of this radionuclide are of special concern for health physicists. Tritium dose assessment methodologies have special particularities because hydrogen is a chemical element with an important metabolic role in the human body. Operating experience to date of CANDU reactors has indicated that the major contributor to the internal dose of professionally exposed people is the tritiated heavy water (DTO). DTO, like the tritiated water HTO, is assumed to be uniformly mixed with body water pool and reaching equilibrium immediately after the intake. All the statements in this paper related to HTO dosimetry are also considered valid in case of DTO. The results of the computations performed with different retention functions corresponding to different compartment models are presented. The differences between the models due to OBT (Organically Bound Tritium) contribution are 5.6% for two- compartment model and 13% for three-compartment Dunford - Johnson model, respectively. In practice the contribution of OBT is considered to be about 10%. (authors)

  5. Automation at NRCN Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Running a dosimetric service based on TLD technology such as at the Nuclear Research Centre Negev (NRCN) requires a large group of workers to carry out simple mechanical actions such as opening and closing TLD badges, placing and removal of TLD cards from the badges and operating the TLD reader. These actions can be automated to free human resources for other assignments and to improve the quality assurance. At NRCN a project was undertaken to design and build a robotic system based on a manipulator arm. The design was based on the experience achieved with an earlier prototype (1,2). The system stores the TLD badges in special designed boxes, which are transported and stored in computer defined bins. The robotic arm loads and unloads TLD cards to the badges, and loads/unloads the cards to a magazine for the TLD reader. At the Nuclear Research Center Negev (NRCN) each badge is assigned to a specific worker and bears a sticker containing the worker's personal details, also in a machine readable form (barcode). In order to establish a proper QA check, a barcode reader records the information on the badge and on the TLD card placed in this badge and checks their compatibility with the information contained in the main database. Besides the TLD cards loading/unloading station, there is a contamination check station, a cards cleaning station and a UV irradiation box used to reduce the history dependent residual dose. The system was installed at the NRCN dosimetry laboratory It was successfully tested for several hundreds of cycles and will become operational in the first quarter of 2014. As far as we know, there is no similar product available for automatic handling in a TLD laboratory

  6. Kinetics model for lutate dosimetry

    International Nuclear Information System (INIS)

    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp®. The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  7. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  8. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  9. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  10. Study for applying microwave power saturation technique on fingernail/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Choi, Hoon; Nam, Hyun Ill; Lee, Byung Ill [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2012-10-15

    There is growing recognition worldwide of the need to develop effective uses of dosimetry methods to assess unexpected exposure to radiation in the event of a large scale event. One of physically based dosimetry methods electron paramagnetic resonance (EPR) spectroscopy has been applied to perform retrospective radiation dosimetry using extracted samples of tooth enamel and nail(fingernail and toenail), following radiation accidents and exposures resulting from weapon use, testing, and production. Human fingernails are composed largely of a keratin, which consists of {alpha} helical peptide chains that are twisted into a left handed coil and strengthened by disulphide cross links. Ionizing radiation generates free radicals in the keratin matrix, and these radicals are stable over a relatively long period (days to weeks). Most importantly, the number of radicals is proportional to the magnitude of the dose over a wide dose range (0{approx}30 Gy). Also, dose can be estimated at four different locations on the human body, providing information on the homogeneity of the radiation exposure. And The results from EPR nail dosimetry are immediately available However, relatively large background signal (BKS) converted from mechanically induced signal (MIS) after cutting process of fingernail, normally overlaps with the radiation induced signal (RIS), make it difficult to estimate accurate dose accidental exposure. Therefore, estimation method using dose response curve was difficult to ensure reliability below 5 Gy. In this study, In order to overcome these disadvantages, we measured the reactions of RIS and BKS (MIS) according to the change of Microwave power level, and researched about the applicability of the Power saturation technique at low dose.

  11. Overview on Solid State Dosimetry Research in Frame of the Hungarian-Croatian Cooperation (1979-2008)

    International Nuclear Information System (INIS)

    The thermoluminescence (TL) method for various dosimetry purposes was introduced in the Institute of Isotopes (IoI) and in the Rudjer Boskovic Institute (IRB) in the 70's, i.e. at about the same time as in well developed countries. In both institutes much effort were devoted to coordinating research activities on solid state dosimetry and on radiation protection. The history of our collaboration and the exchange visits (2-2 weeks/year) started 28 years ago within the scope of the scientific cooperation project between the Croatian Academy of Sciences and Arts and the Hungarian Academy of Sciences. It has to be mentioned that IRB had many years cooperation with the Central Research Institute for Physics, Budapest as well as with the Institute of Nuclear Research, Debrecen also in the field of solid state dosimetry. However, in this paper the survey of the scientific cooperation between IoI and IRB will be given. The main field of our scientific research work was the solid state thermoluminescent dosimetry and its applications. The most interesting research fields during our 'working together' were as follows: The study of the dosimetric characteristics of different TL phosphors for general personal dosimetry purposes using different dosimetry systems; To develop new TL systems for mixed neutron-gamma field dosimetry; To assess the self-induced TL properties of aluminium oxide TL dosimeters and to propose this new method to measure the gamma and the neutron dose of mixed fields separately by the same dosimeter; To examine the photo induced and photo transfer properties of various TL dosimeters to explain the connection of this properties and the crystal structure and defects in TL materials and to perform the re-evaluation of TL dosimeters by photo transfer effect; To investigate the TL sensitivity of dosimeters to low LET (gamma) and to high LET (alpha, neutron, proton) radiations; Comparative investigations on the newly developed TL dosimeters available on the

  12. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  13. The International Reactor Dosimetry File (IRDF-82)

    International Nuclear Information System (INIS)

    This document describes the contents of the first version of the International Reactor Dosimetry File (IRDF-82), distributed by the Nuclear Data Section of the International Atomic Energy Agency. This document is a brief summary of the IRDF-82 documentation contained in IAEA-NDS-41. (author)

  14. New dosimetry of atomic bomb radiations.

    Science.gov (United States)

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988. PMID:2889042

  15. Personnel radiation dosimetry symposium: program and abstracts

    International Nuclear Information System (INIS)

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry

  16. A history of medical internal dosimetry

    International Nuclear Information System (INIS)

    This paper presents a short history of the development of medical dosimetry. It reviews the evaluation of the equations and discusses the development of various mathematical models used to improve radiation absorbed dose estimates. The contributions of Leonides Marinelli, Edith Qulmby, William Mayneord, Robert Loevinger, Walter Snyder, and others are emphasized. (author), 74 Refs., 7 Figs., 3 Tabs

  17. Optically stimulated luminescence in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this...

  18. From ``micro`` to ``macro`` internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  19. The new dosimetry in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    In particular the recent data about the effects of atom bombs upon Hiroshima and Nagasaki have lead to new insights in the risks of radiation. In this article a survey is given of the effects of improved dosimetry. (author). 3 refs.; 2 tabs

  20. Secondary standard dosimetry laboratories: Development and trends

    International Nuclear Information System (INIS)

    This publication describes the work of the IAEA and the WHO in the establishment of a network of Secondary Standard Dosimetry Laboratories. Membership in the SSDL network has now risen to about 50 laboratories, of which 36 are in developing countries

  1. Dosimetry and control of radiation processing

    International Nuclear Information System (INIS)

    Eight invited papers on the general theme of 'Dosimetry and Control of Radiation Processing', presented at a one day symposium held at the National Physical Laboratory, are collected together in this document. Seven of the papers are selected and indexed separately. (author)

  2. GENMOD - A program for internal dosimetry calculations

    International Nuclear Information System (INIS)

    The computer code GENMOD was created to calculate the retention and excretion, and the integrated retention for selected radionuclides under a variety of exposure conditions. Since the creation of GENMOD new models have been developed and interfaced to GENMOD. This report describes the models now included in GENMOD, the dosimetry factors database, and gives a brief description of the GENMOD program

  3. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  4. The United Kingdom's radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    The first comprehensive national dosimetry intercomparison in the United Kingdom involving all UK radiotherapy centres was carried out in the late 1980s. Out of this a regular radiotherapy dosimetry audit network evolved in the early 1990s. The network is co-ordinated by the Institute of Physics and Engineering in Medicine and comprises eight co-operative regional groups. Audits are based on site visits using ionization chambers and epoxy resin water substitute phantoms. The basic audit methodology and phantom design follows that of the original national intercomparison exercise. However, most of the groups have evolved more complex methods, to extend the audit scope to include other parameters, other parts of the radiotherapy process and other treatment modalities. A number of the groups have developed phantoms to simulate various clinical treatment situations, enabling the sharing of phantoms and expertise between groups, but retaining a common base. Besides megavoltage external beam photon dosimetry, a number of the groups have also included the audit of kilovoltage X ray beams, electron beams and brachytherapy dosimetry. The National Physical Laboratory is involved in the network and carries out basic beam calibration audits to link the groups. The network is described and the methods and results are illustrated using the Scottish+ group as an example. (author)

  5. Dosimetry implant for treating restenosis and hyperplasia

    Science.gov (United States)

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  6. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested (double dosimetry). The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  7. Advances in reference and transfer dosimetry

    International Nuclear Information System (INIS)

    All prerequisites are now in place to create a fundamentally and radically different type of calibration service for the radiation processing industry. Advancements in dosimetry and information technology can be combined to provide industry with on-line calibrations, on demand at a low cost. The remote calibration service will serve as a basis for other areas of metrology. (Author)

  8. Development of A-bomb survivor dosimetry

    International Nuclear Information System (INIS)

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring

  9. The ENEA neutron personal dosimetry service

    International Nuclear Information System (INIS)

    The ENEA Radiation Protection Inst. has been operating the only neutron personal dosimetry service in Italy since the 1970's. Since the 1980's the service has been based on PADC (poly-allyl-diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and 7LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of Hp(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed. (authors)

  10. Czech results at criticality dosimetry intercomparison 2002

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Trousil, J.

    2004-01-01

    Roč. 110, 1-4 (2004), s. 455-458. ISSN 0144-8420 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z1048901 Keywords : personal dosimetry * thermoluminescent detectors * individual dosimeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  11. 3-dimensional polymer gel dosimetry

    International Nuclear Information System (INIS)

    was observed. Polymer gel dosimetry system used in this study proved that it is reliable system for dose distribution measurement with error less than 5 % for doses higher than 3 Gy. (author)

  12. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  13. Dose modulated computed tomography automated dosimetry

    International Nuclear Information System (INIS)

    Full text: Computed Tomography (CT) scans contribute a significant portion of the effective radiation dose from medical procedures and generally large effective radiation doses per diagnostic examination. With the advent of Multislice CT, the potential for large radiation exposures increased. This combined with the appeal of the resultant isotropic imaging and the increasing number of applications for which CT could be utilised (including screening procedures) has further increased the need for vigilant monitoring of CT protocols and use with respect to radiation dose. The introduction of dose modulated Computed Tomography has proven an effective method for reducing patient dose and is now widely used by CT manufacturers. This involves lowering the mA when scanning through anatomical regions which do not require a large mA. Many CT investigations now utilise dose modulation. Some of these studies will include over 900 images for which the mA and occasionally other factors could vary. In order to utilise the existing software to perform CT dosimetry a program has been written to automatically extract scan parameters from CT dicom image files and apply the ImPACT CT Patient Dosimetry Calculator, for slices with differing factors. Matlab has been used to write and compile a program which sorts through a folder of dicom images and extracts the appropriate dicom header information. Some manufacturers store different series and reformatted images all within the same folder. The images of the CT study for which the dosimetry is to be performed must be stored within the one folder and must be in a dicom format. The program has been written to accommodate several manufacturers, which all contain different information in their dicom headers. The Matlab program groups the various study/image types, extracting the relevant dicom header information, which is written to an Excel worksheet. An Excel file uses this information to run the ImPACT CT Patient Dosimetry Calculator with

  14. Aspects of dosimetry using radiation sensitive gels

    International Nuclear Information System (INIS)

    The use of radiation sensitive gels for dosimetry measurements was first suggested in the 1950s. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured. However, due to predominantly diffusion-related limitations, alternative polymer gel dosimeters were suggested. Clinical applications of these radiologically tissue equivalent gel dosimeters using magnetic resonance imaging (MRI) have subsequently been reported in the literature. In Fricke gels, Fe2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin or agarose hydrogel matrix. Radiation-induced changes in the dosimeters are considered to be either through direct absorption of ionising radiation or via intermediate water free radicals. Fe2+ ions are converted to Fe3+ ions with a corresponding change in paramagnetic properties that may be quantified using NMR relaxation measurements. In polymer gels, monomers are also dispersed in a gelatin or agarose hydrogel matrix. Monomers undergo a polymerisation reaction as a function of absorbed dose resulting in a three-dimensional polymer gel matrix. The radiation-induced formation of polymer influences NMR relaxation properties. The growth in polymer also results in other physical changes that may be used to quantify absorbed radiation dose. This thesis investigates various aspects of radiation dosimetry using radiation sensitive gels. Image processing software was developed to calculate NMR relaxation images of dosimetry gels. Measurements were undertaken to investigate the diffusion problem in Fricke gels. Radiological properties were theoretically modelled for both Fricke and polymer gels. A methodology was developed for the preparation of polymer gels. Vibrational spectroscopic studies were undertaken to investigate the underlying mechanism involved in the radiation-induced formation of polymer. MRI pulse

  15. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137Cs and 60Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20o and 60o. The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  16. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  17. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  18. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry . Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al2O3:C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  19. Characterization of thermoluminescent response of Al{sub 2}O{sub 3}:Tm/Teflon for gamma rays dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho Junior, Alvaro B. de; Barros, Vinicius S.M. de; Elihimas, Diego Rafael M.; Khoury, Helen J. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Azevedo, Walter M. de, E-mail: wma@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental

    2011-07-01

    In this work, {alpha}-Al{sub 2}O{sub 3} doped with Tm{sup 3+} was prepared by combustion synthesis techniques for thermoluminescent (TL) ionizing radiation dosimetry applications. After this, Al{sub 2}O{sub 3}:Tm{sub (0.1%)} pellets were manufactured from a 2:1 homogeneous mixture of Al{sub 2}O{sub 3}:Tm{sub (0.1%)} and powdered Teflon (PTFE). Ten pellets were used to characterize the dosimetric properties. The dosimetric characterization was performed by analyses of the reproducibility, sensitivity of the TL response vs. dose between 1 and 10 Gy to {sup 60}Co source and fading. The results showed a glow curve with a peak near to 225 deg C, a linear TL response with the gamma radiation dose in the range investigated and a reproducibility < 10%. These results indicate a potential use of these pellets for gamma radiation dosimetry. (author)

  20. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  1. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  2. Individual Monitoring and TL Dosimetry in Hungary

    International Nuclear Information System (INIS)

    The widespread development and application of X-ray and nuclear energy resulted in the problem of ionizing radiation dosimetry also in Hungary. The individual monitoring started in 1955 using film badge and various ''pen type'' ionization chambers with different measuring ranges to determine the external photon radiation doses. Since 1966 the film badge has been accepted as the official personal dosimeter system in Hungary. The film monitors are presently processed bimonthly. The personal monitoring for about 16 000 occupationally exposed ''A category'' workers is conducted by the National Research Institute of Radiobiology and Radiohygiene, with Kodak film badge. The calibration of dosimeters is performed in the primary standard laboratory of the National Standardization Laboratory (OMH) according to ISO17025 standard. The thermoluminescent (TL) method for personal dosimetry purposes was introduced in Hungary in the early 1970's. Central Research Insitute of Physics and Insitute of Isotopes developed together a solid state dosimetry system using first 2 pieces of LiF (TLD-100) TL dosimeters in the same badge together with the film. Later, the Harshaw LiF dosimeters were changed to the Polish LiF (MTS-N) ones, having higher sensitivity to gamma and to mixed neutron-gamma field dosimetry purposes. At present, besides the national film dosimetry service, there are three TL dosimetry services as well (Atomic Energy Research Institute, Institute of Isotopes, Nuclear Power Plant). The thermoluminescent (TL) whole body dosimeters are used for individual monitoring parallel with the film and the evaluation of the various types of LiF (TLD-100, Polish MTS-N etc.) is performed at ''home'' dosimetry services using different manual and automatic TL readers (Harshaw 4000, Harshaw 3500, Alnor TLD reader). Personal dosimetry data measured by film and TL method are regularly compared. In addition to the successful applications of various TL dosimeters for work place monitoiring

  3. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    A number of national or international organizations have developed various types and levels of external audits for radiotherapy dosimetry. There are three major programmes who make available external audits, based on mailed TLD (thermoluminescent dosimetry), to local radiotherapy centres on a regular basis. These are the IAEA/WHO TLD postal dose audit service operating worldwide, the European Society for Therapeutic Radiology and Oncology (ESTRO) system, EQUAL, in European Union (EU) and the Radiological Physics Center (RPC) in North America. The IAEA, in collaboration with WHO, was the first organization to initiate TLD audits on an international scale in 1969, using mailed system, and has a well-established programme for providing dose verification in reference conditions. Over 32 years, the IAEA/WHO TLD audit service has checked the calibration of more than 4300 radiotherapy beams in about 1200 hospitals world-wide. Only 74% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limits of ±5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful. EQUAL, an audit programme set up in 1998 by ESTRO, involves the verification of output for high energy photon and electron beams, and the audit of beam parameters in non-reference conditions. More than 300 beams are checked each year, mainly in the countries of EU, covering approximately 500 hospitals. The results show that although 98% of the beam calibrations are within the tolerance level of ±5%, a second check was required in 10% of the participating centres, because a deviation larger than ±5% was observed in at least one of the beam parameters in non-reference conditions. EQUAL has been linked to another European network (EC network) which tested the audit methodology prior to its application. The RPC has been funded continuously since 1968 to monitor radiation therapy dose delivery at

  4. Pitfalls in patient specific dosimetry

    International Nuclear Information System (INIS)

    Introduction: I-131 is used to treat patients with Differentiated Thyroid Cancer after thyroidectomy to eliminate the malignant tissue. The dose was calculated by the MIRD dosimetry. The aim of this paper was to analyze the pitfalls that occurred while calculating the lesion tumoricidal dose with the objective to minimize the damage to normal organs (lung and bone marrow). Radionuclide therapeutic activity was calculated after image quantitative analysis and treatment planning taking into account the radiobiology of the patient. Material and methods: 30 patients with Differentiated Thyroid Cancer were studied determining whole body I-131 retention after 3 mCi administration of this radiotracer with a planar gamma camera during 5 days or until the retained activity was less than 1 %. Images of the target and risk tissues were acquired to procure I-131 uptake and biological half life. Blood concentration of the same isotope (% Dose/liter) was also measured at different times after the isotope ingestion. Additional organ and metastatic tissue kinetic analysis was carried out. Accurate determination of the retained activity in the lesions is not easy to obtain on account of different factors that introduce important errors which have to be corrected: a) tissue Attenuation, b) Scattering, c) Collimator Septal penetration and d) Partial Volume Effect. The quantification of the activity in the lesions was performed by determining the uptake in a region of interest (ROI) corresponding to the tissue to be evaluated and comparing its activity with a known standard. From the isotope ''Residence Time'' in the whole body, the blood kinetic data and the application of the MIRD software, the maximum treatment dose that could be administered to the patient without producing injury to normal tissues, was established. Influence of other factors were also evaluated: a) Instrument dead time contribution on whole body uptake determination, b) Amount of I-131 administered activity to

  5. 12''th International Conference on Solid State Dosimetry Casa del Cordon. Conference Center (Caja de Burgos), July 5''th-10''th, 1998, Burgos Spain: Programme and Abstracts

    International Nuclear Information System (INIS)

    The 12 International Conference on Solid State Dosimetry celebrate in Burgos (Spain) during July on 1998. 1.- Basic Physical Processes 2.- Materials characteristics 3.- Instrumentation 4.- Personal Dosimetry 5.- Clinical Dosimetry 6.- Environmental Dosimetry 7.- Dating retrospective dosimetry 8.- Miscellaneous

  6. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  7. Small and Composite Field Dosimetry: The Problems and Recent Progress

    International Nuclear Information System (INIS)

    The increased use of small fields in intensity modulated and stereotactic treatments has created the demand for more standardization of dosimetry procedures for these non-reference fields. In addition, treatment units such as GammaKnife, CyberKnife and TomoTherapy cannot establish broad beam reference conditions prescribed in conventional dosimetry. For dynamic, modulated deliveries, the step between dosimetry in the conventional static broad beam reference field and the actual treatment delivery is large and it has been suggested that performing reference dosimetry for an intermediate field may substantially reduce the uncertainty. This paper reviews the problems associated with introducing standard dosimetry procedures for these non-standard fields, proposed solution and a status of data and information needed for providing recommendations for reference dosimetry. (author)

  8. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  9. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  10. The alpha channeling effect

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  11. Personal dosimetry for external radiation exposure in Europe

    International Nuclear Information System (INIS)

    This article summarizes a report on harmonisation and dosimetric quality assurance in individual monitoring for external radiation, published by the European Radiation Dosimetry Group (EURADOS). The report comprises three parts: (1) procedures and regulations in countries of the European Union and Switzerland with respect to personal dosimetry; (2) a catalogue with descriptions of dosimetry systems in the fore-mentioned countries; and (3) performance testing of dosimetric services in EU Member States and Switzerland. 17 refs

  12. Four decades of thermoluminescence dosimetry research in India

    International Nuclear Information System (INIS)

    Last four decades have witnessed tremendous progress in the field of thermo-luminescence dosimetry. During this period development of new and sensitive TL phosphors was reported. Application of these phosphors was exploited in different fields, such as personnel and environmental monitoring, accident and retrospective dosimetry, high dose dosimetry, archaeological and geological dating. Commensurate with these developments, progress in TL instrumentation also took place. This paper reviews some of these developments in the last four decades in India. (author)

  13. Precision and accuracy of neutron dosimetry with TEP ionization chamber

    International Nuclear Information System (INIS)

    Precision of neutron dosimetry for medical irradiation could be maintained within a few percent over a year. However, accuracy or absolute dose is not well established yet. The results of neutron dosimetry intercomparison between Japan and USA showed that the agreement in both stated absolute dose was as good as 5 percents. Further studies should be made for the better establishment of neutron dosimetry both experimentally and theoretically. (author)

  14. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  15. US accreditation programmes for personal radiation dosimetry

    International Nuclear Information System (INIS)

    In order to verify an acceptable level of safety in the workplace, it is necessary to measure the quantity of ionising radiation to which radiation workers could be, or actually are, exposed. At present, there are organisations capable of providing measurement results with good accuracy and precision. These organisations may provide personal dosimetry services to their own facilities, or to others on a contractual basis. They generally have high quality equipment and well trained personnel. However, in today's climate, it is important to demonstrate and document that these systems and services to others meet national standards of quality. In order to provide a higher level of confidence in the results generated by organisations that provide personal dosimetry services in the US, two accreditation programmes have been established. They are the Department of Energy Laboratory Accreditation Program (DOELAP) and the National Voluntary Laboratory Accreditation Program (NVLAP). These two programmes will be described and results will be given, along with plans for future development. (author)

  16. Technical basis document for internal dosimetry

    CERN Document Server

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  17. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  18. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    International Nuclear Information System (INIS)

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  19. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Anthony [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Lo, Anthony T., E-mail: tonyho22003@yahoo.com [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Steve G.; Adler, John R. [Department of Neurosurgery, Stanford University, Stanford, CA (United States)

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  20. EURADOS trial performance test for photon dosimetry

    International Nuclear Information System (INIS)

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From 312 single results, 26 fell outside the limits of the trumpet curve and 32 were outside the range 1/1.5. Most outliers resulted from high energy R-F irradiations without electronic equilibrium. These fields are not routinely encountered by many of the participating dosimetry services. If the results for this field are excluded, most participating services satisfied the evaluation criteria. (author)

  1. Biological dosimetry: biochemical and cellular parameters

    International Nuclear Information System (INIS)

    Early after the beginning of radiobiology studies, biochemistry has led to research of a biological dosimeter. From an extensive literature review, methods were selected that might be suitable for dose assessment via biochemical indicators. By now, research both in laboratory animals and in therapeutic or accidental human exposures, do not allow to retain a biochemical parameter alone for the purpose of diagnosis or prognosis. Several enzymatic activities have been precociously studied after irradiation: from these studies, it seems that analysis of four enzymatic activities in serum (serum glutamic oxaloacetic transaminase, amylase, lactic dehydrogenase, alkaline phosphatase) could be the most useful dosimetry system for mass sorting. Detection of DNA damage or methods for measuring somatic mutations are currently advancing and provide important new opportunities for biological dosimetry of low doses

  2. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    An Intercomparison Programme is being carried out in Argentina for individual monitoring services. The programme was designed to test, on a voluntary basis, the performance of the laboratories that provide individual monitoring services for X and gamma radiation fields in the range from low-level dose up to 100 mSv. Irradiations were performed in full accordance with ISO 4037-3 recommendations by the Regional Reference Centre for Dosimetry (CRRD), belonging to Atomic Energy Commission (CNEA) and the Physical Dosimetry Laboratory of the Nuclear Regulatory Authority (ARN). At the same time, several items have been asked to each participant pertaining to the action range, the detectors' characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosemeter evaluation. In this study the evolution of the laboratories' performance throughout the programme, based on ISO 14146 acceptance criteria, is shown. (authors)

  3. Local overexposure: the role of physical dosimetry

    International Nuclear Information System (INIS)

    The role of physical dosimetry in cases of local overexposure is limited. However, if dosimetry, which is usually of no use for diagnosis, is combined with clinical and biological data, it can be useful for therapy and prognosis. This paper, based on cases treated at the Hopital Curie, proposes a method which may be used. It consists of: determination of isodose curves at the surface (skin) by an experimental reconstruction of the accident or by calculation; comparison of these isodoses with the skin pathology: area of erythema (3-8 Gy), area of dry desquamation (> 5 Gy), area of exudative desquamation (12-20 Gy) and area of necrosis (> 25 Gy); calibration of the depth-dose curves after this comparison and the determination of the dose to essential organs or tissues. Examples illustrating this approach are given for accidents involving X rays and 192Ir and 60Co sources. (author)

  4. Radiation protection dosimetry - From amateur to professional

    International Nuclear Information System (INIS)

    Radiation Protection Dosimetry was founded in 1981 and there has been a close link between the journal and the solid state dosimetry series of conferences from 1983 to the present day. The background to and the creation and development of the journal is described, having started as one volume of four issues per year in 1981 rising to six volumes in 1994. During the period of development there have been considerable advances in all forms of technology, requiring continued attention to the introduction of this new technology. Some of the changes in the world of publishing over the past 25 y are quite dramatic. Whilst simplistic approaches have been adequate within a small publishing house for a considerable time, further progressive technology changes that are required in the future mean that the necessary resources are only realistically available to large publishers. The journal thus moved to Oxford Univ. Press at the beginning of 2004. It will celebrate its 25. year in 2005. (authors)

  5. Eleventh DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ''The 1990 Recommendations of the ICRP and their Biological Background.'' The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers

  6. Local versus nonlocal $\\alpha\\alpha$ interactions in $3\\alpha$ description of $^{12}$C

    CERN Document Server

    Suzuki, Y; Descouvemont, P; Fujiwara, Y; Matsumura, H; Orabi, M; Theeten, M

    2008-01-01

    Local $\\alpha \\alpha$ potentials fail to describe $^{12}$C as a $3\\alpha$ system. Nonlocal $\\alpha \\alpha$ potentials that renormalize the energy-dependent kernel of the resonating group method allow interpreting simultaneously the ground state and $0^+_2$ resonance of $^{12}$C as $3\\alpha$ states. A comparison with fully microscopic calculations provides a measure of the importance of three-cluster exchanges in those states.

  7. DS86: new dosimetry for Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    A summary is given of Volume 1 of the Final Report of the US-Japan Joint Re-assessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki (DS86 Dosimetry System 86) published in 1987 by the Radiation Effects Research Foundation. The nine chapters include topics covering the yield of the bombs, the calculation and verification of source terms, the transport of initial radiations in air over ground, thermoluminescence measurements of gamma-rays, measurements of neutron fluences, radiation doses from residual activity, house and terrain shielding, organ dosimetry and computerized dosimetry system 86. (U.K.)

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  9. Radio-analysis. Applications: biological dosimetry; Radioanalyse. Applications: dosage biologique

    Energy Technology Data Exchange (ETDEWEB)

    Bourrel, F. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Courriere, Ph. [UFR de Pharmacie, 31 - Toulouse (France)

    2003-06-01

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  10. Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, Claus F.; Sibolt, Patrik;

    A comparison of dosimetry methods at different clinics can be used as a means to uncover systematic uncertainties in ra-diotherapy. To assess the current status of reference dosimetry and small-field dosimetry in clinical practice, a collaborative compari-son study involving several dosimetry...... methods was performed by DTU Nutech at six Danish clinics. The first part of the intercompa-rison regarded the consistency of reference dosimetry. Absorbed dose to water under reference conditions was measured using a Farmer ionization chamber, and was found to agree within 1 % with the daily dose checks...... obtained routinely at each clinic. The second part of the study concerned the accuracy of small-field dosimetry and dose calculations. The geometric size of small fields down to 1 cm x 1 cm was measured using radiochromic film. Minor discre-pancies were seen between the nominal field sizes set by the colli...

  11. 3D dosimetry fundamentals: gels and plastics

    Science.gov (United States)

    Lepage, M.; Jordan, K.

    2010-11-01

    Many different materials have been developed for 3D radiation dosimetry since the Fricke gel dosimeter was first proposed in 1984. This paper is intended as an entry point into these materials where we provide an overview of the basic principles for the most explored materials. References to appropriate sources are provided such that the reader interested in more details can quickly find relevant information.

  12. Background dose subtraction in personnel dosimetry

    International Nuclear Information System (INIS)

    In this paper it is proposed to consider the mode of the frequency distribution of the low dose dosemeters from each clinic that uses X rays as the background environmental dose that should be subtracted from the personnel dosimetry to evaluate the doses due to practice. The problems and advantages of this indirect method to estimate the environmental background dose are discussed. The results for 60 towns are presented. (author)

  13. Results of personnel dosimetry and their interpretation

    International Nuclear Information System (INIS)

    The results of the official personnel dose supervision by the authority for evaluation of radiation dosimetry of GSF show radiation protection for personnel in nuclear medicine to be important. The total amount of annual personnel doses (collective dose) is accounted for by medicine only in a portion of 1/4. Excepting the application of radium 226, orthopaedists, radiologists and specialists in internal diseases practising nuclear medicine sustain higher personnel doses than personnel in other fields of nuclear medicine. (DG)

  14. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    International Nuclear Information System (INIS)

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  15. Utilization of photodiodes for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    The behaviour of silicon photodiodes as detector, for gama and x-ray dosimetry is discussed. Measurements were realized with photodiodes operating in the photovoltaic mode, the current produzed was detected in the eletrometer constructed in the DEN/UFPE. The results obtained showed that the photodiode response is linear with the dose and that variation of 40 degrees in the incidence angule of the radiation caused a variation of 5% in the dose determination. (author)

  16. Current status of internal dosimetry in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Griciene, B.; Ladygiene, R.; Morkunas, G.; Pilkyte, L

    2003-07-01

    After Lithuania regained independence, the legal basis for existing radiation protection was modified radically according to the IAEA, ICRP recommendations and the requirements of legislation of the European Community. The legal basis for internal dosimetry and a functioning system of assessment of exposure to intake of radionuclides have been created in the Radiation Protection Centre (regulatory authority in radiation protection). Direct and indirect measurements of concentrations of radionuclides are used for the assessment of internal doses of workers and the public. (author)

  17. Current status of internal dosimetry in Lithuania

    International Nuclear Information System (INIS)

    After Lithuania regained independence, the legal basis for existing radiation protection was modified radically according to the IAEA, ICRP recommendations and the requirements of legislation of the European Community. The legal basis for internal dosimetry and a functioning system of assessment of exposure to intake of radionuclides have been created in the Radiation Protection Centre (regulatory authority in radiation protection). Direct and indirect measurements of concentrations of radionuclides are used for the assessment of internal doses of workers and the public. (author)

  18. a Generalized Program for Internal Radionuclide Dosimetry

    Science.gov (United States)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  19. EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS

    OpenAIRE

    Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L.

    2007-01-01

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed “accident doses”...

  20. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    In the frame of current revision of human dosimetry of 14C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  1. Calliope. A pedagogic tool for internal dosimetry

    International Nuclear Information System (INIS)

    The Calliope CD-Rom brings together all principal data published in the documents of the international commission of radiation protection (ICRP) since 1990. Calliope is a support devoted to the training of professionals and future actors of radioprotection (doctors, biologists, radiation protection services, teachers etc..). It provides some useful help for the enforcement and the respect of new dosimetry standards as defined in the European directive 96/29. (J.S.)

  2. Applications of alanine-based dosimetry

    International Nuclear Information System (INIS)

    Alanine-based radiation dosimetry and related dosimeters developed at the Istituto Superiore di Sanita, Rome, Italy, and capable of providing high accuracy absorbed dose determination by ESR are presented. Overall uncertainty is shown to be +-3.9% in the 10 Gy to 3 kGy range. Possible applications to radiotherapy and industry are discussed. Percentage depth dose values and dose profiles measured with alanine dosimeters in phantom are presented. (author)

  3. A low cost active personal dosimetry system

    International Nuclear Information System (INIS)

    A reliable, low cost and compact active personal dosimeter with an on-line alarm facility has been a long-felt need of the nuclear industry. A low cost active personal dosimetry system based on a commercially available p-n junction Si diode detector with a preset dose alarm feature is proposed. A prototype of the compact badge with the alarm facility has been developed and the design features are presented. (author)

  4. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  5. Radiotherapy Based On α Emitting Radionuclides: Geant4 For Dosimetry And Micro-/Nano-Dosimetry

    International Nuclear Information System (INIS)

    Possible physics approaches to evaluate the efficacy of TAT are dosimetry, microdosimetry and nanodosimetry. Dosimetry is adequate when mean absorbed dose to a macroscopic target volume is important to understand the biological effect of radiation. General purpose Monte Carlo (MC) codes, based on condensed history approach, are a very useful, cost effective tool to solve dosimetric problems. The condensed history approach is based on the use of multiple scattering theories to calculate the energy losses and angular changes in the direction of the particle. The short α particle range and high LET make the microdosimetric approach more suitable than dosimetry to study TAT from first physics principles, as this approach takes into account the stochastic nature of energy deposition at cellular level

  6. Small Field Dosimetry Using Optical-Fiber Radioluminescence and Radpos Dosimetry Systems

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.;

    2012-01-01

    Inc, USA). The RL signal generated in the crystal by ionizing radiation can be read remotely via thin optical fiber cables. The system was originally developed for in vivo dose verification during external beam radiotherapy and brachytherapy (Radiother Oncol, 100 (3), 45662, 2011). However, due to...... the small dimensions of the Al2O3 crystal, the system may have applications in small field dosimetry. The second system is the RADPOS system (Med Phys, 36, 167279, 2009), a novel 4D dosimetry system available from BEST Medical Canada. RADPOS probe consists of 2 sensors: a small antenna as an...... well within the measurement uncertainty for each detector. Conclusions: Our study suggests that the μMOSFET/RADPOS and fiber coupled RL dosimetry systems are well suited for Cyberknife cone ROF measurements, provided that appropriate correction factors are applied for cone sizes 5 and 7.5 mm....

  7. Cooled optical luminescence dosimetry in plastic matrices

    International Nuclear Information System (INIS)

    Large-scale dosimetry services such as Landauer, Inc., require cost-effective, easy-to-manufacture dosemeters that are available in high volume with good precision and uniformity between batches. The ability to re-analyse a dosemeter and to perform necessary exposure diagnostics familiar to film dosimetrists are also desirable qualities of a dosimetric system. Battelle has developed a cooled optical luminescence dosimetry (COLD) system that allows all these features to be combined into one practical dosimetry system. COLD technology uses an extremely sensitive phototransfer mechanism manifested in certain solid state materials. Modest cooling below room temperature is required during the readout of the COLD detectors. Excitation with a laser or other light source is required to initiate the phototransfer process. Warming to near room temperature liberates the luminescence that is proportional to the radiation exposure. Due to the low readout temperatures, COLD phosphor materials can be packaged in polymers without fear of melting the polymer matrix, as would occur using a thermoluminescent process. Besides extreme sensitivity (minimum detectable exposure levels of 0.1 μSv are possible), the detectors can be reanalysed with minimal loss of signal. An imaging film is created by the mixture of small grains of COLD phosphor in the polymer matrix. A sensitive CCD or microchannel PMT device acquires a two-dimensional image of the dosemeter luminescence. The resulting digital image can then be mathematically interrogated to determine exposure diagnostics in the same way that film is currently used. (author)

  8. Current work on dosimetry standards in Japan

    International Nuclear Information System (INIS)

    Basic concepts on standardization of radiation dosimetry are reviewed. The present situation regarding primary standards in the Electrotechnical Laboratory, the primary standard dosimetry laboratory in Japan, is presented, considering the following; (i) Established dosimetric standards of exposure for soft and medium-energy X-rays and gamma rays. This section includes methods of their standardization, and discusses accuracies of instruments operating as environmental-level, protection-level, inspection-level, therapy-level, and processing-level measuring systems. The results of international comparisons between ETL and other, foreign primary standard dosimetry laboratories are presented; (ii) Other established radiation standards related to derivation of radiation absorbed dose. These primary standards include those for the neutron emission rates, thermal and fast neutron flux densities, energy fluences for high-energy photons and electrons, and activities of several kinds of radioactive material. The accuracies and results of international comparisons relating to them are also presented; (iii) Research being carried out at ETL. The current status of the dissemination of radiation standards is presented considering in particular: (i) The calibration services available at ETL, the categories of these services, energy and dose rate ranges, methods, accuracies, etc.; (ii) The calibration services available in certain other organizations considered as SSDLs in Japan, the categories of such work, methods, accuracies etc.; (iii) Present endeavours towards establishing a systematic and effective dissemination system (a so-called Traceability System) in Japan

  9. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors)

  10. ESR dosimetry using quartz grains in bricks

    International Nuclear Information System (INIS)

    Present studies indicate that ESR dosimetry of A-bomb can be done using the signal at g=2.0008 for quartz grains in bricks collected at distances of about less than 1 - 2 km from the epicenter of Hiroshima and Nagasaki. One can estimate that ESR dating of archaeological samples of a few thousands years before present is also possible using quartz grains of ancient ceramics. As the sensitivity of ESR spectrometer is improved, the minimum number of the detectable spins will be further reduced. The minimum detectable dose of 1.6 ± 0.6 Gy and the detectable age of a few thousand years would be reduced by one or two orders of the magnitude. This indicates that ESR dosimetry can replace TLD because of the advantage of repeated measurements of a sample. If a few dose can be measured, ESR dating based on dosimetry will go into the field from geology to archaeology and probably into history and forensic science. (author)

  11. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  12. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  13. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  14. Laser-heated thermoluminescence neutron dosimetry

    International Nuclear Information System (INIS)

    Since we first discussed laser-heated TLD at this workshop in 1982, a family of instruments has been developed that is based on efficient, fast and reproducible heating of special thin-layer dosimeter configurations with microprocessor-controlled laser beams of uniform intensity profile. Applications include personnel dosimetry in mixed beta, photon and neutron fields, two-dimensional dose mapping, and remote fiber-optic dosimetry. The development effort was driven by the possibility of very rapid energy transfer from a laser beam to a small, thin dosimeter element and the associated dramatic increase in the signal-to-noise ratio. Potential improvements in the dosimetry of non-penetrating radiation and fast neutrons were immediately obvious as a result of this capability. Significant advances in the development of low cost lasers, beam shaping optics, and control techniques were required for laser TLD to become practical. Completely new dosimeter elements and fabrication technology had to be developed as none of the dosimeters available from any manufacturer are suitable for this heating method

  15. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  16. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  17. Reassessment of Atomic Bomb radiation dosimetry

    International Nuclear Information System (INIS)

    Extensive work has been conducted over the past several years to reassess all aspects of the radiation dosimetry for the A-bombs in Hiroshima and Nagasaki. This work has included reviews of the bomb yields, source terms, air transport of neutrons and gamma rays, neutron-induced radioactivity and thermoluminescence produced by gamma rays in exposed materials, shielding of individuals by buildings, and calculations of organ doses. The results of these theoretical and experimental activities have led to the development of a new dosimetry system which is designated as the Dosimetry System 1986 (DS86). To be useful in radiation risk assessment, DS86 must be individualized or applied to the assertions of particular individuals as to their whereabouts at the time of the bombing. New DS86 estimates, in terms of tissue kerma in air and absorbed dose to fifteen organs, are available for 106,001 of the 141,635 individuals in current follow-up study populations. For the other individuals, it has been impossible to make DS86 estimates for 9,026 exposed individuals, and there are 26,608 unexposed individuals who were not in either city at the time of bombing. The DS86 estimates are discussed and compared with early dose estimates which were designated as Tentative 1965 Doses (T65D) and were used as a basis for radiation risk assessment throughout the 1970's

  18. Radiation dosimetry and spectrometry with superheated emulsions

    International Nuclear Information System (INIS)

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as 'superheated drop detectors' or 'bubble (damage) detectors', have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry

  19. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  20. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  1. Synthesis of luminescent materials: thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    One of the important subjects of investigation in the field of luminescence is the thermoluminescence dosimetry (TLD). A number of scientists all over the world have paid special attention to the development of TL dosimeter materials. They have suggested and standardized many materials. In view of this, the systematic TLD works on inorganic materials have been undertaken in our laboratory. Attempts have been made to investigate the possibility for the use of inorganic materials other than well-known CaSO4: Dy and LiF TLD 100, in estimation of radiation dose. In recent years, several phosphors have been reported, which possess properties useful for thermoluminescence dosimetry of ionizing radiations. Some new phosphors K2Ca2(SO4)3: Eu; K3Na(SO4)2: Eu; CaSO4: P, Dy; LiF: Mg,Ti; MgB4O7 : Dy; Li2B4O7 : Cu; KMgF3 : Eu; Li3PO4 : Cu, Mg; Sr5(PO4)3Cl: Eu; Sr2B5O9Cl: Eu and Li2SO4 : P, Dy are prepared easily with appreciable TL efficiency as compared to the conventional CaSO4 : Dy and LiF- TLD 100 (low Z) phosphors used in the thermoluminescence dosimetry of ionizing radiations. Characterization of above mentioned phosphors using X-ray diffraction, photoluminescence, and thermoluminescence technique is described. The important events of high sensitive phosphors obtained are presented. (author)

  2. Quality assurance in radiotherapy dosimetry in China

    International Nuclear Information System (INIS)

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  3. Methodological aspects of EPR dosimetry with teeth

    International Nuclear Information System (INIS)

    EPR dosimetry with tooth enamel is known today as one of the most reliable and accurate methods of retrospective dosimetry. In the present study a comprehensive analysis of influence of the major confounding factors (solar UV exposure and dental X-ray diagnostic procedures) on the accuracy of accidental dose reconstruction is given. In this analysis, the facts known from literature as well as own authors' results were considered. Among the latter it is worth to mention study of doses in enamel caused by X-ray diagnostic procedures as well as investigation of dose profiles in front teeth, which are most affected to solar radiation. As a main result, the variant of dosimetric technique is proposed. It comprises the optimal combination of strongest sides of existing techniques which allows to conduct routine reconstruction of accidental doses as low as few tens of mGy with errors of the same order of magnitude. The proposed technique is primarily destined for dosimetry of Chernobyl liquidators, but could be used for reconstruction of doses of other over-exposed categories. (orig.)

  4. Thermoluminescent dosimetry in total body irradiation

    International Nuclear Information System (INIS)

    The aim of this paper was to develop a thermoluminescent dosimetry method for the absorbed dose determination of 6 MeV high-energy electron beams by thermoluminescent dosimetry. Total body irradiation (TBI) was performed using four dual fields angled at 252° and 285° in high-dose rate (HDR) mode. TBI measurements were investigated to estimate the absorbed dose in different anatomical parts of the patient. Experimental results were obtained using thermoluminescent detectors and solid water phantoms. The TL response of the dosimeters, as a function of the high-energy electron beam (HEEB) absorbed dose, was linear, from 0.1 to 500 cGy. The entrance skin dose (ESD) and isodose distribution on the surface of the treatment were investigated graphically. - Highlights: ► The total patient skin electron dose was determined. ► The patient skin dose distribution was measured by TL. ► TBID in treatment planning and QA for radiation therapy are suggested. ► TLD system is a good candidate for TBI dosimetry.

  5. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  6. Technical basis document for internal dosimetry

    International Nuclear Information System (INIS)

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosimetry program in accordance with expected Department of Energy Laboratory Accreditation Program (DOELAP) requirements for the selected radionuclides provided in this document, including uranium mill tailing mixtures. Additions and modifications to this document and procedures derived FR-om this document are expected in the future according to changes in standards and changes in programmatic mission

  7. Bremsstrahlung in $\\alpha$ Decay

    CERN Document Server

    Takigawa, N; Hagino, K; Ono, A; Brink, D M

    1999-01-01

    A quantum mechanical analysis of the bremsstrahlung in $\\alpha$ decay of $^{210}$Po is performed in close reference to a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions and from the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.

  8. Unified model for alpha-decay and alpha-capture

    International Nuclear Information System (INIS)

    A unified model for alpha-decay and alpha-capture is discussed. Simultaneously the half-lives for alpha-transition between ground states as well as ground and excited states and alpha-capture cross-sections by spherical magic or near-magic nuclei are well described in the framework of this model. Using these data the alpha-nucleus potential is obtained. The simple empirical relations for handy evaluation of the half-lives for alpha-transition, which take into account both the angular momentum and parity of alpha-transition, are presented

  9. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  10. Alpha Particle Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  11. The IAEA/WHO thermoluminescent dosimetry intercomparison used for the improvement of clinical dosimetry

    International Nuclear Information System (INIS)

    Results of thermoluminescent dosimetry collected over 5 years in the Eastern Mediterranean region of WHO were analyzed in an attempt to improve clinical dosimetry. Data for 16 radiotherapy departments showed considerable inconsistencies. It was found that the clinical dosemeters used by 3 of the departments were not working properly. The remainder of the departments had one or more dosemeters in perfect working order but the procedure for measuring machine output was inadequate or the correction factors (pressure, temperature) were wrongly applied due to lack of reliable instruments for such measurements. Problems encountered in the sending and returning of TLD dosemeters for assessment are discussed

  12. From imaging to dosimetry: GEANT4-based study on the application of Medipix to neutron dosimetry

    International Nuclear Information System (INIS)

    An application of Medipix2 using a newly developed segmented multiple thickness polyethylene (PE) converter for fast neutron detection is presented. The system has the ability to provide an energy independent response for the dose equivalent for fast neutrons. The application of weighting factors to each defined thickness of PE allows for a flattening of the response of the detector system for dosimetry applications. Six PE converter segments were applied, and their thicknesses and weighting factors were optimised to obtain the required energy independent detector response. The study performed by means of GEANT4. Its suitability for neutron dosimetry was studied with respect to a previously published work.

  13. From imaging to dosimetry: GEANT4-based study on the application of Medipix to neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M.A.R. [Centre for Medical Radiation Physics, University of Wollongong, Northfield Ave, Wollongong 2522, N.S.W. (Australia); Marinaro, D.G. [Defence Science and Technology Organisation, 506 Lorimer St, Fishermans Bend, VIC 3207 (Australia); Petasecca, M.; Guatelli, S.; Cutajar, D.L.; Lerch, M.L.F. [Centre for Medical Radiation Physics, University of Wollongong, Northfield Ave, Wollongong 2522, N.S.W. (Australia); Prokopovich, D.A.; Reinhard, M.I. [Centre for Medical Radiation Physics, University of Wollongong, Northfield Ave, Wollongong 2522, N.S.W. (Australia); ANSTO, New Illawarra Road, Lucas Heights, NSW (Australia); Uher, J. [CSIRO Process Science and Engineering, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Jakubek, J.; Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic); Rosenfeld, A.B., E-mail: anatoly@uow.edu.a [Centre for Medical Radiation Physics, University of Wollongong, Northfield Ave, Wollongong 2522, N.S.W. (Australia)

    2010-12-15

    An application of Medipix2 using a newly developed segmented multiple thickness polyethylene (PE) converter for fast neutron detection is presented. The system has the ability to provide an energy independent response for the dose equivalent for fast neutrons. The application of weighting factors to each defined thickness of PE allows for a flattening of the response of the detector system for dosimetry applications. Six PE converter segments were applied, and their thicknesses and weighting factors were optimised to obtain the required energy independent detector response. The study performed by means of GEANT4. Its suitability for neutron dosimetry was studied with respect to a previously published work.

  14. Argentine republic intercomparation programme for personal dosimetry

    International Nuclear Information System (INIS)

    During the years 1997, 1998 and 1999 it was hold in Argentina, sponsored by Autoridad Regulatoria Nuclear (ARN) the first part of the intercomparison programme for personal dosimetry laboratories. The first aim of this programme was to know the true state of personal dosimetry laboratories in the country, and then to introduce the personal dose equivalent, Hp(10) into the dose measurements and to analyse the angular response of the different measuring systems. The personal dosimetry laboratories are 20, 12 of them belong to the government and the rest are private, they are distributed over all the country. The dosimetric detection systems are based, at a similar proportion, on TLD and films. The Physical Dosimetry Laboratory of ARN takes part in the programme as a verification laboratory. The dosimeters were irradiated in the Regional Reference Centre for Dosimetry of the Comision Nacional de Energia Atomica and in the ARN in radiation X beams, ISO WIDE SERIES W60, W110, W200 and Cs-137 and Co-60 sources. The dosimeters irradiations were performed kerma free in air and in phantom in order to study the availability of the service to evaluate the behaviour as a function of kerma free in air or the personal dose equivalent, Hp(10). The beam incidence was normal and also 20deg and 60deg. In order to know the operational conditions in each service for the dose assessment in normal and accidental situations high and low doses have been given to the dosimeters. At the same time several items have been asked to each participant referring to the action range, the detector characteristics, the availability of laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance programme. In this work the results of each laboratory and its performance based on the ICRP 60 and ICRP 35 acceptance criteria are shown. Also, the laboratory evolution and inquiry analyses have been included. At the same time

  15. TRS 398 dosimetry protocol for radiotherapy

    International Nuclear Information System (INIS)

    Full text: In recent years, international codes of practice based on absorbed dose to water standards have been published for the clinical reference dosimetry of external beams. It has become widely accepted that dosimetry of radiotherapeutic beams should be based on these standards. These codes of practice are a major improvement over earlier ones that used air kerma calibration factors as they are based on a calibration directly in a phantom in terms of the quantity of interest. The previous codes begin with calibration in air in terms of air kerma, then use theoretical and generic conversion factors to obtain dose to water that do not take account of chamber-to-chamber variation. Other good reasons for implementing the new codes are that they are conceptually simpler, include improved physical data and improve the consistency for various ionisation chamber types as well as between different beam types. TRS-3982,3 is a new Code of Practice (CoP) for reference dosimetry of external radiotherapy beams based on absorbed dose to, water calibrations and was published by the IAEA in a joint effort with the WHO, PAHO and ESTRO. It is the first CoP of its kind comprehensively covering all external radiotherapy beams except neutrons. The Radiotherapy Interest Group (RJG) of the ACPSEM has recommended that radiotherapy centres in Australia and New Zealand implement this CoP by the end of 2004. In this workshop, the general philosophy of the CoP will be outlined which will provide a framework for each of the individual subcodes. Although it represents just one of the potential implementations of the CoP, this workshop will deal only with dosimetry based on a cylindrical ionisation chamber with an absorbed dose calibration factor in 60Co from the standards laboratory. With the framework of the code in mind, it is straightforward to identify the basic steps that are required for measuring absorbed dose under reference conditions in a high-energy photon beam. The same is true

  16. Resting alpha activity predicts learning ability in alpha neurofeedback

    OpenAIRE

    Wenya eNan; Feng eWan; Mang I eVai; Agostinho eRosa

    2014-01-01

    Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the tr...

  17. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  18. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  19. Results of Czech Participants at Criticality Dosimetry Intercorparision 2002

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Trousil, J.

    Delft : TUDelft, 2003. s. 87. [Symposium on Neutron Dosimetry/9./ Advances in Nuclear Particle Dosimetry for Radiation Protection and Medicine . 28.09.2003-03.10.2003, Delft] Institutional research plan: CEZ:AV0Z1048901 Keywords : individual dosemeters * track etch detectors * photon dosemeters Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders

  20. Present status and expected progress in radiation processing dosimetry

    DEFF Research Database (Denmark)

    Kovács, A.; Miller, A.

    2004-01-01

    The paper describes the present status of radiation processing dosimetry including the methods used most widely in gamma- and electron processing as well as the new methods under development or introduction. The recent trends with respect to calibrationof routine dosimetry systems as well as stan...

  1. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  2. Comparison of uncertainty metrics for calculated dosimetry activities

    International Nuclear Information System (INIS)

    Various metrics are formulated for the uncertainty of calculated neutron activities for dosimetry reactions. The correlations between the uncertainty metrics are examined. The uncertainty data are presented for the dosimetry reactions and can be used to guide the selection of sensors used in spectrum determinations

  3. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René;

    2013-01-01

    , however, not clear yet how dosimetry will be conducted as standard methods and might not be easily transferred to systems with clinical magnetic fields. For dosimetry in MRI accelerators, we have tested plastic scintillation detectors (PSD) coupled to optical fibers. They are suitable for real-time and in...

  4. Dosimetry computer module of the gamma irradiator of ININ

    International Nuclear Information System (INIS)

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  5. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs

  6. Research and development activities in electron paramagnetic resonance dosimetry

    International Nuclear Information System (INIS)

    This work describes ongoing activities in Electron Paramagnetic Resonance (EPR) dosimetry at the National Institute of Standards and Technology. Progress in the commercialization of the alanine-EPR system will be discussed along with basic research in high-dose dosimetry, including EPR imaging. (author)

  7. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolisis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (author)

  8. Recent developments in the dosimetry of superficial tissues

    International Nuclear Information System (INIS)

    The biological basis of current dosimetry techniques for superficial tissues is presented and the areas of biological uncertainty which need to be clarified are identified. Examples are provided of practical situations in which potential skin exposure is of concern and recent developments of dosimetry techniques for superficial exposures are reviewed with particular reference to Beta particles and low energy x-rays. (author)

  9. Methods and procedures for internal radiation dosimetry at ORNL

    International Nuclear Information System (INIS)

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, internal radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability

  10. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  11. Retrospective dosimetry (or self dosimetry): Application to French Nuclear Power Plants

    International Nuclear Information System (INIS)

    In this text we give the dosimetry principle on irradiated materials such baffle screw, pressure vessel and control element cans. This measure, made by gammametry, is based on the steel activation and comparison with calculated measures by Actige code. 4 figs., 6 refs

  12. Design and characteristic studies on new personal Radon dosimetry bu using polycarbonate detectors

    International Nuclear Information System (INIS)

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods, are often applied in environmental monitoring for a long period of time. At this research, we have developed a new method for personal radon dosimetry, with high efficiency that is based upon detection of alpha particles from 218Po and 214Po collected on the fiber glass filter, which affect the polycarbonate detector surface. The radon daughter were collected on the filter surface by passing a fixed air flow through and the polycarbonate detector is exposed by their alpha particles simultaneously. After exposure, the latent tracks on the detector will be appeared by means of electrochemical etching process which is proportional to radon dose. The air flow rate and distance between the detector and the filter are the major factors that can effect the performance of the dosimeter. The relevant experimental investigations have shown that 4cm distance between the detector and the filter and 4 lit/min air flow rate through the filter are the best conditions for design of high efficient personal radon dosimeter. The most important advantages of this method are exact, fast and convenient in application and individual dose assessment. In this paper, the optimized parameters of design are presented and discussed

  13. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  14. Performing personnel dosimetry investigations and records quality assurance

    International Nuclear Information System (INIS)

    Radiation Safety Officers (RSOs) sometimes face situations in which personnel dosimetry estimates are required after dosimeters issued to radiation workers (film or TLD badges, extremity dosimeters, etc.) are lost or damaged before processing. This article was prepared to help those involved with personnel dosimetry investigations became aquatinted with this process. A factor that contributes to the anxiety of those unfamiliar with dosimetry investigations is the lack of published guidance available in this subject. More printed resources are needed to help radiation safety professionals familiarize themselves and understand personnel dosimetry investigations. Topics discussed in this presentation include the justification of performing dosimetry investigations, recommendations on how to perform them and the advantages of performing such investigations

  15. Hot-particle dosimetry recommendations and associated problems

    International Nuclear Information System (INIS)

    Hot-particle issues have been in current focus since the Three Mile Island Unit 2 (TMI-2) accident dosimetry highlighted the basic problems. The 1979 Report to the President's Commission on the Accident at TMI discussed beta dosimetry problems in the health physics sections. Both the U.S. Nuclear Regulatory Commission's (NRC's) Rogovin Report on TMI as well as the health physics blue ribbon committee report discussed beta dosimetry problems. Participants in a U.S. Department of Energy/Environmental Measurements Laboratory (DOE-EML) Beta Dosimetry Workshop recommended an International Beta Dosimetry Symposium, which was held in 1983, sponsored by DOE, NRC, and the Health Physics Society. The conclusions drawn from this symposium are discussed. History and present status of related regulations are presented

  16. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  17. Dosimetry on the radiological risks prevention in radiotherapy

    International Nuclear Information System (INIS)

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  18. Neutron dosimetry characteristics of PADC manufactured by Instrument Plastics Ltd

    International Nuclear Information System (INIS)

    PADC from a UK manufacturer with no history of producing dosimetry grade material has been obtained with a view to assessing the potential for this new material being used in the HPA neutron personal dosimetry service. The HPA is always looking for alternative suppliers, both to seek out better dosimetry grade PADC, but also to secure long-term supplies for the dosimetry service. This new material has been tested in terms of its mean background, background variability and response to ascertain its dosimetric potential. The stopping of high-energy α-particles has also been studied in a stack of dosemeters to compare the LET threshold of the new material with that currently used in the personal neutron dosimetry service.

  19. Neutron dosimetry in low-earth orbit using passive detectors

    Science.gov (United States)

    Benton, E. R.; Benton, E. V.; Frank, A. L.

    2001-01-01

    This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.

  20. Automated personal dosimetry monitoring system for NPP

    Energy Technology Data Exchange (ETDEWEB)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D. [Design Bureau ' Promengineering' , Moscow (Russian Federation)

    2006-07-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using

  1. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  2. Optimisation of an EPR dosimetry system for robust and high precision dosimetry

    International Nuclear Information System (INIS)

    Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements. - Highlights: • A lithium formate dosimetry system was optimized for accurate dose determinations. • Smaller-sized dosimeters for measurements in dose gradient regions was developed. • Individual sensitivity calibration was introduced for EPR dosimetry. • Measurement precision versus measurement time was evaluated

  3. ALPHA MIS: Reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  4. Improving neutron dosimetry using bubble detector technology

    International Nuclear Information System (INIS)

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research

  5. Verification of IMRT fields by film dosimetry

    International Nuclear Information System (INIS)

    In intensity modulated radiation therapy (IMRT) the aim of an accurate conformal dose distribution is obtained through a complex process. This ranges from the calculation of the optimal distribution of fluence by the treatment planning system (TPS), to the dose delivery through a multilamellar collimator (MLC), with several segments per beam in the step and shoot approach. The above-mentioned consideration makes mandatory an accurate dosimetric verification of the IM beams. A high resolution and integrating dosimeter, like the radiographic film, permits one to simultaneously measure the dose in a matrix of points, providing a good means of obtaining dose distributions. The intrinsic limitation of film dosimetry is the sensitivity dependence on the field size and on the measurement depth. However, the introduction of a scattered radiation filter permits the use of a single calibration curve for all field sizes and measurement depths. In this paper the quality control procedure developed for dosimetric verification of IMRT technique is reported. In particular a system of film dosimetry for the verification of a 6 MV photon beam has been implemented, with the introduction of the scattered radiation filter in the clinical practice that permits one to achieve an absolute dose determination with a global uncertainty within 3.4% (1 s.d.). The film has been calibrated to be used both in perpendicular and parallel configurations. The work also includes the characterization of the Elekta MLC. Ionimetric independent detectors have been used to check single point doses. The film dosimetry procedure has been applied to compare the measured absolute dose distributions with the ones calculated by the TPS, both for test and clinical plans. The agreement, quantified by the gamma index that seldom reaches the 1.5 value, is satisfying considering that the comparison is performed between absolute doses

  6. Dosimetry of hands and human factor

    International Nuclear Information System (INIS)

    The human factor in facilities where open radioactive sources are managed it can be controlled through the use of the ring dosimetry, however, that these devices only provide qualitative information that is not extrapolated to legislative limits. lt is present the case analysis of hands dosimetry of female person with responsibility for professional standards and a very high profile with ratings that allow her to have a high level of knowledge of the basic standards, and because with an attitude and a culture rooted of radiation protection, among other qualities. Their records reveal a trend in which monthly doses are below the 7 mSv, and only occasionally are between 7 and 12 mSv per month and hand. The other case correspond to a technician, trained in radiological techniques, also with a high profile, with two courses for occupationally exposed personnel more than 10 annual retraining, and work experience of over 10 years as occupationally exposed personnel, in which knowledge of standards and because of the entrenched culture of radiation protection and their interest degree in the care of their exposure is still in a phase half, in this case also shows a trend in the monthly dose where found registers between 7 and 11 mSv per month and hand. The third case is of a second technician with less experience and most basic knowledge, his dose register not show a real trend, sometimes be found reads of irregular values as if the dosimeter is not used and some other times as if misused by exposing to purpose (was observed at least one reading above the monthly 30 mSv). By way of conclusion, it is noted that the hands dosimetry is a useful tool to monitor transactions through the data compilation susceptible to analysis with variations which can be placed in the context of the human factor. (Author)

  7. Dosimetry and process control for food irradiation

    International Nuclear Information System (INIS)

    Whatever a radiation process is designed to achieve, dosimetry is fundamental to it, either as a necessary control, or to establish the process, or for research and development studies. Dosimetry provides the quantitative baseline against which the biological or chemical changes induced by radiation can be measured. In the case of irradiation of food, a minimum dose will be required to achieve the technological objective. A maximum dose will be defined by the onset of the loss of acceptable quality of the food, but upper dose limits will usually be prescribed by regulatory bodies. There is no accurate way of assessing the dose once the food has left the irradiation plant. Therefore the dose must be properly applied and verified during processing. The dose is measured using dosimeters. There are many different types of dosimeters for different applications, dose ranges and conditions of use. All dosimeters must be calibrated, with a measurement traceability chain to a national or international primary standard. This paper describes the classification of dosimeters and gives examples and their applications. Calibration and use of a typical dosimetry system used for food irradiation is then discussed, including the effects of environmental influence factors such as dose rate and temperature, and how measurement traceability can be established. Before routine processing of a product can occur, process qualification must be carried out to ensure the irradiation process produces acceptable results. An example of a dose mapping study is given, followed by discussion of some practical considerations of process control, including measurement uncertainty and how this relates to the setting of process limits

  8. Chemical dosimetry of Gammacell with ferrous sulfate

    International Nuclear Information System (INIS)

    The influence of Compton scatter radiation from a Gammacell-220 on the ferric-ion yield [G(Fe+3)] was determined for the Fricke dosimetry. Monte Carlo simulations were performed using the PENELOPE code to obtain the photon spectrum of a 60Co Nordion teletherapy unit at a depth of 2 cm in a 50x50x50 cm3 cubic water tank. Published values of G(Fe+3) were fitted by a third order polynomial and the resulting equation was used to determine a mean chemical yield of such unit. The same procedure was performed over the spectrum of a Gammacell-220 published by the ASTM. The mass-energy absorption coefficient for the Fricke solution was weighted over the Gammacell-220 spectrum and compared against the Nordion spectrum. The ratio between the mean chemical yields was used to determine the influence of the Compton scatter radiation on the value of G(Fe+3). The ratio of the mass-energy absorption coefficient of water to Fricke solution was used to convert the absorbed dose in the Fricke solution to absorbed dose to water. From the results obtained it was concluded that the dosimetry of a Gammacell-220 with the Fricke dosimeter may overestimate the measured absorbed dose to water by a factor of 1.01 due to changes in the G(Fe+3) value. Differences in the mean energy of the spectra can lead to large errors in the isodoses curves of samples irradiated with both equipment. To establish evidence that the radiation process will provide the desired results, the knowledge of the radiation spectrum is needed. Alternatively, whenever it is possible, the dosimetry should be performed by positioning the capsule with the Fricke solution inside of dummy samples (author)

  9. Eurados trial performance test for photon dosimetry

    DEFF Research Database (Denmark)

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.;

    2001-01-01

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This...... paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...

  10. The next decade in external dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  11. Definition study of the project Dosimetry Brachytherapy

    International Nuclear Information System (INIS)

    The purpose of the research project Dosimetry Brachytherapy is the standardization of calibration methods and quality control procedures used for Brachytherapy sources. Proposals to develop measurement standards and methods for calibrating these sources are presented. Brachytherapy sources will be calibrated in terms of reference airkerma rate or in terms of absorbed dose in water. Therefore, in this project, special attention will be given to the in-phantom measurement method described by Meertens and the use of re-entrant ionisation chambers as transfer standards. In this report, a workplan and time schedule is included. (author). 19 refs.; 1 fig

  12. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO4:Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  13. Characterization of brazilian wollastonite for radiation dosimetry

    International Nuclear Information System (INIS)

    In these work preliminary results of the characterization analyses of Brazilian Wollastonite for radiation dosimetry are presented. Wollastonite is a silicate of calcium, Ca(SiO3), and it was acquired in the form of rude mineral with Andradite inclusions. The sample was cleaned and prepared for obtained selected grains of Wollastonite. The analyses of chemical and mineralogical compositions were obtained using the neutron activation and X-ray powder diffraction techniques. The thermoluminescent (TL) glow curve of the material shows a prominent peak at about 200 C. TL emission spectra, and photoinduced emission spectra were also obtained. (Author)

  14. Dosimetry and quality control in radiodiagnosis

    International Nuclear Information System (INIS)

    This work deals with physics of radiodiagnosis. In a first part a study of the characteristics of different kinds of radiological equipments and a quality assurance of some of them (standard radiography, coronarography and computed tomography) have been performed. The second part deals with patient irradiation. After a bibliographic study of radiodiagnosis dosimetry, two kinds of dosimetric measures have been made: ''in vitro'' measures, using a phantom, that had allowed to calibrate the equipment and to improve the individual irradiation card, and ''in vivo'' measures. For the first types of measures ionization chambers, have been used for the second thermoluminescent dosimeters

  15. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  16. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  17. Neutron spectrometry and dosimetry with ANNs

    International Nuclear Information System (INIS)

    Artificial neural networks technology has been applied to unfold the neutron spectra and to calculate the effective dose, the ambient equivalent dose, and the personal dose equivalent for 252Cf and 241AmBe neutron sources. A Bonner sphere spectrometry with a 6LiI(Eu) scintillator was utilized to measure the count rates of the spheres that were utilized as input in two artificial neural networks, one for spectrometry and another for dosimetry. Spectra and the ambient dose equivalent were also obtained with BUNKIUT code and the UTA4 response matrix. With both procedures spectra and ambient dose equivalent agrees in less than 10%. (author)

  18. Personal dosimetry service in the Slovak Republic

    International Nuclear Information System (INIS)

    From first January 1996 in Slovak Republic (SR) was started a new independent national personal dosimetry service on external ionizing radiation provided by the Personal Dosimetry Laboratory in the Slovak Institute of Metrology in Bratislava. At first July 1998 was this laboratory delimited from Slovak Institute of Metrology to legal metrology services of SR. This dosimetry services is based fully on the Automated Thermoluminescent Dosimeter Card Reader System made in U.S.A. by Harshaw-Bicron NE, which was given to the Nuclear Regulatory Authority of SR and Slovak Institute of Metrology in Bratislava on an International Technical co-operation project piloted and financed by International Atomic Energy Agency. In this time we have complete TLD Readers Harshaw 6600 and we calibrate and evaluate TLDs of three different type of all body personal dosimeters: (1) beta-gamma TLDs type 0110 with 2 element TL chip type 100 (LiF:Mg,Ti 3.2 x 3.2 x 0.38 mm) fixed in two teflon windows in a aluminium card in a plastic holder with 1000 mg/cm2 Ptfe hemisphere thickens (o 10 mm) to measure the individual dose equivalent penetrating at a the depth 10 mm (Hp(10)) and individual dose equivalent superficial Hs(0.07) at recommended depth of 0.07 mm (type of this holder is 8814); (2) beta-gamma TLDs type 1111 in holders type 8805 with 4 elements of TL chips type 100 to measure both Hp(10) and Hs(0.07) plus lens of eye dose (Hle(3); (3) for measurement of doses in mixed neutron-beta-gamma fields we have more neutron beta gamma dosimeters type 7776 in holders type 8805 with 4 elements of TL chips: three TLD 700 and one TLD 600 LiF chip. The periods of the dosimeters evaluation are 3 months or 1 month for the basic (the all body) beta-gamma dosimeter with 2 element of TL-100 material and 1 month for all other type of dosimeters. Now we monitors about 6000 persons by all body TL dosimeters and about 720 persons by additive finger of wrist strap dosimeters. These are about 5000 measurements

  19. The UK radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    Full text: Radiotherapy dosimetry intercomparison in the UK has been carried out in limited studies since the 1960s. However the first national dosimetry intercomparison involving all radiotherapy centres was conducted in the late 1980s. This was based on visits to each centre, using ionisation chamber dosimetry. It audited megavoltage photon beam calibration and other single field parameters. It also measured doses in a three-field 'treatment' in a trapezoidal phantom constructed from epoxy-resin water-equivalent material and compared these to locally planned doses. This included off-axis points, oblique incidence, inhomogeneities, etc. The study found mean measured beam calibration doses close to stated values (ratio 1.003), with a standard deviation (sd) of the distribution of 1.5% and 97% of doses within the pro-set 3% tolerance. For the planned multi-field irradiations, mean dose ratios (measured/stated) were 1.01 (sd 3%, 90% of results within 5%). A number of discrepancies were identified, leading to improved practice. A follow up study (mid-1990s) for electron beam audit also repeated the megavoltage photon calibration audit. For photons, an improvement was noted (mean ratio 1.003, sd 1.0%, 100% within 3%), whilst for electron beams, the mean ratio of measured/stated dose was 0.994 (sd 1.8%, 94% within 3%, 99% within 5%). In parallel with - and growing out of - this, a national audit network began to develop in 1991/2. It utilised similar methodology to the intercomparison and a network approach to allow parallel developments of the scope of the system. The network has eight regional groups, each with up to 10 radiotherapy centres, serving average populations of 7-8 million. Each group organises audits of its own centres and has developed at its own pace. Most have piloted methodology, phantoms, etc. for new audits which can then be used by other groups. All 65 UK centres are included. The network is co-ordinated by an IPEM Steering Committee (current chair

  20. The next decade in external dosimetry

    International Nuclear Information System (INIS)

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs

  1. Monte Carlo simulations for heavy ion dosimetry

    OpenAIRE

    Geithner, Oksana

    2006-01-01

    Water-to-air stopping power ratio ( ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variabl...

  2. High sensitivity MOSFET-based neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Fragopoulou, M.; Konstantakos, V. [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Zamani, M., E-mail: zamani@physics.auth.g [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Siskos, S.; Laopoulos, T. [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Sarrabayrouse, G. [CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse (France)

    2010-09-21

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  3. Micro dosimetry model. An extended version

    International Nuclear Information System (INIS)

    In an earlier study a relative simple mathematical model has been constructed to simulate the energy transfer on a cellular scale and thus gain insight in the fundamental processes of BNCT. Based on this work, a more realistic micro dosimetry model is developed. The new facets of the model are: the treatment of proton recoil, the calculation of the distribution of energy depositions, and the determination of the number of particles crossing the target nucleus subdivided in place of origin. Besides these extensions, new stopping power tables for the emitted particles are generated and biased Monte Carlo techniques are used to reduce computer time. (orig.)

  4. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium Contaminated Sites

    International Nuclear Information System (INIS)

    The objective of this research is to evaluate distributions of possible alpha radiation doses to the lung, bone, and liver, and associated health-risk distributions for plutonium (Pu) inhalation exposure scenarios relevant to environmental management of PuO2-contaminated sites. Currently available dosimetry/risk models do not apply to exposure scenarios where relatively small numbers of highly radioactive PuO2 particles are presented for inhalation (stochastic exposure [SE] paradigm). For the SE paradigm, distributions of possible risks are more relevant than point estimates of risk. The main goal of the project is to deliver a computer program that will allow evaluation of the indicated risk distributions for the SE paradigm. However, some of our work also relates to the deterministic exposure [DE] paradigm where large numbers of airborne particles (resuspended dust containing PuO2) are presented for inhalation to members of the public residing or working at a remediated Department of Energy (DOE) site

  5. Ultra-trace analytical techniques for internal dosimetry of actinides: an appraisal

    International Nuclear Information System (INIS)

    This paper briefly reviews and summarises the currently available analytical techniques employed in internal dosimetry for the determination of important actinides 232Th, 238U and 239,240Pu in bio-assay samples. The techniques covered are neutron activation analysis (NAA), delayed neutron activation analysis (DNAA), alpha spectrometry, spectrophotometry, fluorimetry, kinetic phosphorescence, solid state nuclear track detector (SSNTD), fission track analysis (FTA), inductively coupled plasma-mass spectrometry (ICP-MS) and anodic/adsorptive striping voltametry (ASV). A comparison is made for the detection limits of various techniques for individual actinides in terms of the fraction/multiple of the derived urinary excretion levels such as DRL and DIL. Advantages and limitations of each technique have been discussed and conclusions regarding the most suitable technique for each actinide are reported. (author). 20 refs., 3 tabs

  6. Alpha and evangelical conversion

    OpenAIRE

    Stout, A.; Dein, S.

    2013-01-01

    A semi-structured interview study was conducted among 11 ‘Born Again’ Christians eliciting their conversion narratives. Informants emphasised the importance of embodying the Holy Spirit and developing a personal relationship with Christ in the process of conversion. The Alpha Course played an important role in this process.

  7. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line; Stensland, Hilde Monica Frostad Riise; Olsen, Klaus Juul;

    2015-01-01

    the three subgroups of genotype/subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed to...

  8. The $\\alpha_S$ Dependence of Parton Distributions

    OpenAIRE

    Martin, A. D.; Stirling, W. J.; Roberts, R G

    1995-01-01

    We perform next-to-leading order global analyses of deep inelastic and related data for different fixed values of $\\alpha_S (M_Z^2)$. We present sets of parton distributions for six values of $\\alpha_S$ in the range 0.105 to 0.130. We display the $(x, Q^2)$ domains with the largest parton uncertainty and we discuss how forthcoming data may be able to improve the determination of the parton densities.

  9. Study and development of radiothermoluminescent dosimetry

    International Nuclear Information System (INIS)

    After briefly reviewing bibliography concerning the mechanism of radiothermoluminescence and its use in dosimetry, we have concentrated on studies of three thermoluminescent products: magnesium activated lithium fluoride, alumina and calcium sulfate activated with either dysprosium or thulium. In particular, the preparation and singular properties of a new type of lithium fluoride stabilised with sodium, created especially for dosimetric purposes, is described. The physical characteristics of these three products, their emission spectra and their trap parameters, have been studied and we have analysed, both theoretically and experimentally, their dosimetric properties, paying particular attention to their relative chromatic sensitivity to photons and neutrons. It is shown that alumina exhibits an exceptional neutron thermoluminescent yield which points to a potential interest in this material which is little used to date. The deep trapping levels of these products have been studied and some levels found appearing at temperatures above 6000C: these can be used for radiation dosimetry in enclosures at temperatures between 400 and 4500C. Finally, a brief outline of radiothermoluminescent applications of these products in the radioprotection, medical, biological, archeological and industrial fields is presented

  10. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  11. Accidental neutron dosimetry with human hair

    International Nuclear Information System (INIS)

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials. - Highlights: • Human hair contains sulfur. • Reaction 32S(n,p)32P can be used for dosimetry of fast neutrons. • Relation between 32P activity and neutron dose can be derived for a specific neutron spectrum

  12. Radiotherapy dosimetry using a commercial OSL system

    International Nuclear Information System (INIS)

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures

  13. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  14. Dosimetry of inhaled radon and thoron progeny

    International Nuclear Information System (INIS)

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP's new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential α energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP's recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ''Normalization'' of the calculated effective dose is therefore needed, at least for α dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk

  15. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T.M.; Prud' homme-Lalonde, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E. [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S.; Mullins, D. [JERA Consulting (Canada); Qutob, S. [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D.

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  16. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  17. Air density correction in ionization dosimetry

    International Nuclear Information System (INIS)

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described

  18. Dosimetry considerations in patients with renal pathology

    International Nuclear Information System (INIS)

    Adult dosimetry is generally performed for normal individuals and these are the absorbed dose calculations sent to FDA and listed on package inserts. However, in a variety of circumstances pathophysiologic state may significantly alter the biodistribution and kinetics of a radiopharmaceutical, and radiation doses calculated for normal individuals may not be appropriate approximations for these patients. In addition, the presence of certain pathophysiologic states often guarantees that the patient will have multiple studies over a period of days, weeks, months, or years. In order to have a true appreciation for the radiation dose commitment to such patients, it is important to examine dose totals from multiple nuclear medicine studies. Dosimetry calculations will be presented for I-123, I-124, I-125, and I-131 labeled hippuran in moderate and severe ATN, acute and chronic near-total obstruction, and renal transplants. In addition, a nuclear medicine examination profile will be presented for patients receiving renal transplants. This profile was constructed by retrospectively examining the records of 20 randomly-chosen transplant patients and recording all nuclear medicine procedures performed up to July, 1985. A total of 172 studies was performed, of which 69 were Tc-99m-DTPA flows, 62 were hippurans, and 22 were indium-111-oxine-platelets. The dosimetric contribution of all studies was assessed. The importance of the hippuran component will be discussed. 8 references, 8 tables

  19. Improving TL dosimetry for external radiotherapy

    International Nuclear Information System (INIS)

    Full text: In vivo thermoluminescence dosimetry (TLD) has always been one of the most accurate dosimetry method for external radiotherapy control, but the delay in the response is a well know drawback when it is applied. In this work we show some improvements and demonstrate that keeping the precision and accuracy of this technique, it is possible to obtain a response in few hours. Harshaw 4000 TL reader and LiF TLD-100 dosimeters, chips (3,1 x 3,1 x 0,9 mm3) and rods (1 x 1 x 6 mm3) have been used. The thermal treatment necessary to reuse the TLD is only 1h at 400 degree C, by using a glow curve analyser developed at the Ciemat (Spain), that allows a complete, prompt and precise identification of the individuals peaks. The dosimeters are periodically and individually calibrated. We also have study the factors contributing to the relation TL-dose like linearity, energy correction, directional response and fading. All those results are included into an Excel worksheet which automatically give us the dose resulting from the TL reading (peaks areas 4 and 5). The obtained uncertainty is better than 5%. The TLD already irradiated in radiotherapy institutions distant 30-40 Km from our centre can be read and analysed in about 3-4 hours. These facts render our methods rapid and allow a better control of radiotherapy treatment even if it is bi-fractionated. (author)

  20. Monte Carlo simulations for heavy ion dosimetry

    International Nuclear Information System (INIS)

    Water-to-air stopping power ratio (sw,air) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, sw,air, the influence of fragments and I-values on sw,air for carbon ion beams was investigated. The value of sw,air deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)