WorldWideScience

Sample records for alpha cardiac actin

  1. Polymorphism in the Alpha Cardiac Muscle Actin 1 Gene Is Associated to Susceptibility to Chronic Inflammatory Cardiomyopathy

    Science.gov (United States)

    Frade, Amanda Farage; Teixeira, Priscila Camilo; Ianni, Barbara Maria; Pissetti, Cristina Wide; Saba, Bruno; Wang, Lin Hui Tzu; Kuramoto, Andréia; Nogueira, Luciana Gabriel; Buck, Paula; Dias, Fabrício; Giniaux, Helene; Llored, Agnes; Alves, Sthefanny; Schmidt, Andre; Donadi, Eduardo; Marin-Neto, José Antonio; Hirata, Mario; Sampaio, Marcelo; Fragata, Abílio; Bocchi, Edimar Alcides; Stolf, Antonio Noedir; Fiorelli, Alfredo Inacio; Santos, Ronaldo Honorato Barros; Rodrigues, Virmondes; Pereira, Alexandre Costa; Kalil, Jorge; Cunha-Neto, Edecio; Chevillard, Christophe

    2013-01-01

    Aims Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1) have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. Methods and Results We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP) in the ACTC1 gene identified rs640249 SNP, located at the 5’ region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. Conclusions Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions. PMID:24367596

  2. Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Amanda Farage Frade

    Full Text Available AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC. One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY. A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1 have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. METHODS AND RESULTS: We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP in the ACTC1 gene identified rs640249 SNP, located at the 5' region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. CONCLUSIONS: Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions.

  3. A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects

    Science.gov (United States)

    Augière, Céline; Mégy, Simon; El Malti, Rajae; Boland, Anne; El Zein, Loubna; Verrier, Bernard; Mégarbané, André; Deleuze, Jean-François; Bouvagnet, Patrice

    2015-01-01

    Background A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. Methods and Results A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface. Conclusions Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin. PMID:26061005

  4. A Novel Alpha Cardiac Actin (ACTC1 Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects.

    Directory of Open Access Journals (Sweden)

    Céline Augière

    Full Text Available A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects, conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.A set of 399 poly(AC markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1 among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys and p.(Met125Val which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser,p.(Asp313His and p.(Arg314His which result in diverse cardiomyopathies and are located in a totally different interaction surface.Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.

  5. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  6. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently in cer...... of less prominent focal adhesions as revealed by immunofluorescence staining against vinculin, talin, and beta1-integrin. We propose that an important function of filamentous alpha-sm actin is to immobilize the cells....

  7. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  8. Alpha Smooth Muscle Actin Expression in a Case of Ameloblastic Carcinoma: a Case Report

    Directory of Open Access Journals (Sweden)

    Swati Roy

    2013-02-01

    Full Text Available Background: The aim of the present article is to report a case of ameloblastic carcinoma and use a marker alpha smooth muscle actin as a tool to differentiate cases of ameloblastic carcinoma from that of ameloblastoma. Methods: Case study reporting a case of ameloblastic carcinoma (AC with expression of alpha smooth muscle actin (alpha-SMA as a marker for emergence of stromal myofibroblasts. The expression of myofibroblasts was also compared with that of ameloblastoma. Results: Difference between the two lesions in the pattern of expression of alpha smooth muscle actin was also observed. There was increase in the number of myofibroblasts in the stroma of AC while in ameloblastoma, it was comparatively less. Secondly, few areas of the carcinomatous ameloblastic island also exhibited a mild positivity towards alpha smooth muscle actin. Conclusions: Increase in number of stromal myofibroblast may be taken as a predictor for carcinomatous transformation. Further studies with greater sample size can validate the use of alpha-SMA as a marker to differentiate ameloblastic carcinoma from ameloblastoma.

  9. The alpha-smooth muscle actin-positive cells in healing human myocardial scars

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; de Mey, J. G.; Daemen, M. J.

    1994-01-01

    Interstitial cells in the scars of human myocardial infarctions of different postinfarction times (6 hours to 17 years old) were characterized by antibodies to alpha-smooth muscle actin (ASMA), vimentin, and desmin. Basal lamina deposition was studied with antibodies to the basal lamina protein type

  10. Sound attenuation of polymerizing actin reflects supramolecular structures: viscoelastic properties of actin gels modified by cytochalasin D, profilin and alpha-actinin.

    Science.gov (United States)

    Wagner, O; Schüler, H; Hofmann, P; Langer, D; Dancker, P; Bereiter-Hahn, J

    2001-05-01

    Polymerization and depolymerization of cytoskeletal elements maintaining cytoplasmic stiffness are key factors in the control of cell crawling. Rheometry is a significant tool in determining the mechanical properties of the single elements in vitro. Viscoelasticity of gels formed by these polymers strongly depends on both the length and the associations of the filaments (e.g. entanglements, annealings and side-by-side associations). Ultrasound attenuation is related to viscosity, sound velocity and supramolecular structures in the sample. In combination with a small glass fibre (2 mm x 50 microm), serving as a viscosity sensor, an acoustic microscope was used to measure the elasticity and acoustic attenuation of actin solutions. Changes in acoustic attenuation of polymerizing actin by far exceed the values expected from calculations based on changes in viscosity and sound velocity. During the lag-phase of actin polymerization, attenuation slightly decreases, depending on actin concentration. After the half-maximum viscosity is accomplished and elasticity turns into steady state, attenuation distinctly rises. Changes in ultrasound attenuation depend on actin concentration, and they are modulated by the addition of alpha-actinin, cytochalasin D and profilin. Thus absorption and scattering of sound on the polymerization of actin is related to the packing density of the actin net, entanglements and the length of the actin filaments. Shortening of actin filaments by cytochalasin D was also confirmed by electron micrographs and falling-ball viscosimetry. In addition to viscosity and elasticity, the attenuation of sound proved to be a valuable parameter in characterizing actin polymerization and the supramolecular associations of F-actin.

  11. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    Science.gov (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. alpha-Actin: disposition, quantities, and estimated effects on lung recoil and compliance.

    Science.gov (United States)

    Oldmixon, E H; Carlsson, K; Kuhn, C; Butler, J P; Hoppin, F G

    2001-07-01

    We have investigated the basis and implications of pneumoconstriction by measuring disposition and quantities of alpha-smooth muscle actin in rat and guinea pig lungs and modeling its effects on lung recoil and compliance. A robust marker of contractility, alpha-smooth muscle actin appears in smooth muscle or myofibroblast-like cells in pleura, airways, blood vessels, and alveolar ductal tissues. In each site, we measured its transected area by immunofluorescent staining and frequency-modulated scanning confocal microscopy. We incorporated these data in a model of the parenchyma consisting of an extensive elastic network with embedded contractile structures. We conclude that contraction at any one of these sites alone can decrease parenchymal compliance by 20-30% during tidal breathing. This is due mostly to the stiffness of activated contractile elements undergoing passive cycling; constant muscle tension would have little effect. The magnitude of the effect corresponds with known responses of the lung to hypocapnia, consistent with a homeostatic function in which gas exchange is defended by redistributing ventilation away from overventilated units.

  13. Immunohistochemical expression of alpha-smooth muscle actin and glucocorticoid and calcitonin receptors in central giant-cell lesions.

    Science.gov (United States)

    Maiz, Nancy Noya; de la Rosa-García, Estela; Camacho, María Esther Irigoyen

    2016-04-01

    Central giant-cell lesions (CGCLs) are reactive lesions that consist histologically of spindle-shaped stromal cells, (fibroblasts and myofibroblasts) loosely arranged in a fibrous stroma, multinucleated giant cells and mononuclear cells with haemorrhagic areas. This study identified the immunoexpression of alpha-smooth muscle actin in spindle-shaped stromal cells, and glucocorticoid and calcitonin receptors in multinucleated giant cells and mononuclear cells. Their association with the clinical and radiographic characteristics of these lesions was identified. Thirty-five cases of CGCLs were studied. Expression of alpha-smooth muscle actin, glucocorticoid and calcitonin was evaluated by immunohistochemistry. The labelling index was 100 times the quotient of the number of positive cells divided by the total number of cells of each type. Logistic regression analysis was applied. Alpha-smooth muscle actin was positive (54%) for spindle stromal cells (myofibroblasts). A significant association was observed with root resorption (P = 0.004) and cortical bone destruction (P = 0.024). Glucocorticoid immunoexpression was positive for 99% of the giant cells and 86.7% of the mononuclear cells. Glucocorticoid immunoexpression in the mononuclear cells was associated with root resorption (P = 0.031). A longer evolution time was associated with lower immunoexpression of glucocorticoid (OR 12.4: P = 0.047). Calcitonin immunoexpression was positive in 86% of the giant cells. Immunoexpression of calcitonin was associated with age (P = 0.040). Myofibroblasts are important components of CGCLs, stromal cells and alpha-smooth muscle. Actin immunoexpression was associated with root and cortical bone resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René

    2004-01-01

    contractility (10.0% reduction in gel height) than their true mesenchymal counterparts (53.1% reduction in gel height). To test whether at all force generation could be induced in the nonmesenchymal cells by alpha-sm actin, transductions were performed to obtain a tetracycline-dependent expression. Expression...... compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted....... Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal...

  15. Regional variations in certain cellular characteristics in human lumbar intervertebral discs, including the presence of alpha-smooth muscle actin.

    Science.gov (United States)

    Hastreiter, D; Ozuna, R M; Spector, M

    2001-07-01

    An evaluation of the regional variation of certain cellular features in the human intervertebral disc (IVD) could lead to a better understanding of site-specific properties relative to degradation, response to injury, and healing processes. The objective of this study was to determine how cell density, cell morphology, cell grouping, and expression of a specific actin isoform varied with location and degeneration in the human disc. A total of 41 human L4-L5 and L5-S1 discs removed postmortem from 21 individuals were analyzed. The discs were graded for degeneration based on the Thompson scale and processed for evaluation. Microtomed sections from paraffin-embedded specimens were stained with hematoxylin and eosin or a monoclonal antibody to alpha-smooth muscle actin (alpha-SMA), an actin isoform often associated with contraction. A significant regional dependence was found for most of the measured parameters. A fourfold increase in cell density was found in proceeding from the nucleus pulposus (NP) to the outer annulus (OA) of the IVD. Approximately 30% of the cells in the NP were present in groups. Virtually all of the cells in the NP and 40% of those in the OA were round. Moreover, notable percentages (12-15%) of the cells in the NP and inner annulus (IA) contained alpha-SMA. Only pair density was found to be correlated with Thompson grade, with more degenerated specimens having higher values. A greater effect was also observed on the percentage of cells in groups. These findings provide the basis for future work to investigate the importance of cells in groups, the role of alpha-SMA in the disc, and the changes in these cellular characteristics in pathological disc conditions.

  16. Alpha-smooth muscle actin in pathological human disc nucleus pulposus cells in vivo and in vitro.

    Science.gov (United States)

    Hastreiter, Dawn; Chao, Jeannie; Wang, Qi; Ozuna, Richard M; Spector, Myron

    2004-01-01

    That a contractile actin isoform has been found in cells of other cartilage tissues in healing and disease states prompted this investigation of the presence of alpha-smooth muscle actin (alpha-SMA) in pathological human intervertebral disc tissue. The presence of this isoform has been reported in human intervertebral disc specimens obtained at autopsy from subjects for whom there were no reported symptoms. An objective of this study was to evaluate the cell density and percentage of alpha-SMA-containing cells in pathological nucleus pulposus tissue obtained from lumbar disc surgery from 17 patients. Additionally, explants of nucleus pulposus material were cultured to determine how alpha-SMA expression changed with time in vitro. Seventy-six 5-mm diameter explants (approximately 2 mm thick) pooled from six lumbar surgeries were cultured for 1, 2, 4, or 6 weeks. Microtomed sections of paraffin-embedded specimens were stained with hematoxylin and eosin or a monoclonal antibody to alpha-SMA. Histologically, cells were categorized as to alpha-SMA phenotype (positive or negative), and the areal cell density was determined. The evaluation of the cultured nucleus pulposus explants also included documentation of the percentage of cells that were round or elongated and the percentage of the cells that were part of a group (group: >/= 2 cells). Every nucleus pulposus section exhibited the presence of alpha-SMA-containing cells, which accounted for approximately 24 percent of the cells in vivo. In vivo, the cell density was significantly higher in older individuals (p = 0.02). The average time for cell outgrowth from the explants was 8.6 days. Approximately 10-15 percent of the cells in the explants stained positive for alpha-SMA. The time in culture had no significant effect on any of the outcome measures except the percentage of alpha-SMA-containing cells that were round (p = 0.008), with values decreasing through 4 weeks and then slightly rising at 6 weeks. The role of

  17. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid

    Directory of Open Access Journals (Sweden)

    Li Chun-jun

    2012-06-01

    Full Text Available Abstract Background Alpha-lipoic acid (ALA, a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS, extracellular matrix (ECM remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2 levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA and transforming growth factor–β (TGF-β. Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK, p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated

  18. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Nielsen, M.J.; Nielsen, Signe Holm; Hansen, N.U.B.

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate...

  19. "Induction of Thymic HLA-DR signaling with Alpha-smooth muscle Actin expression during the second and third trimesters of gestation "

    Directory of Open Access Journals (Sweden)

    Tamiolakis D

    2003-06-01

    Full Text Available Less than 5% of prenatal thymoctes express HLA-DR before week 12 of gestation. However, the number of HLA-DR- positive cells increases during the late second and third trimesters of development. To determine the role of alpha-smooth muscle actin in fetal thymic HLA-DR signaling in different stages of development we examined and compared the immunohistochemical expression of alpha-smooth muscle actin in the myoid cells of the thymic medulla stroma in the 2 nd, and 3rd trimesters of gestation respectively, over the equivalent expression of the protein in the 1 st trimester, in relation with the appearance of HLA-DR-positive thymocytes. Our results demonstrated a quantitative difference in the second and third trimesters of development concerning the expression of alpha-smooth muscle actin in the stromal myoid cells of the thymic medulla over the equivalent expression of the protein in the first (P<0.0001, t-test. Similar changes in the above period wee found concerning the expression of HLA-DR over the first (P<0.0001, test, suggesting a direct involvement of alpha-smooth muscel acting in the sustainence of HLA-DR reactivity. Our data provide evidence that a contractile microfilament alpha-smooth muscle actin plays a pivotal role in HLA-DR expression, through interaction between medullary stromal cells and thymoctes.

  20. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth.

    Science.gov (United States)

    Woods, Anita; James, Claudine G; Wang, Guoyan; Dupuis, Holly; Beier, Frank

    2009-09-01

    Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-alpha (Ror-alpha) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-alpha target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-alpha by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1alpha (a regulator of Rora gene expression) and Ror-alpha(+) cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-alpha expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics.

  1. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine...

  2. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  3. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine......) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade...

  4. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  5. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  6. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min, E-mail: chenminyx@gmail.com [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Yunnan Centers for Diseases Prevention and Control, Kunming 650022 (China); Wang, Yanru [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Qu, Aijuan [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  7. Cardiac alpha-crystallin. I. Isolation and identification.

    Science.gov (United States)

    Longoni, S; James, P; Chiesi, M

    1990-12-03

    A water soluble protein, a major component of the cytosolic fraction of rat heart cells, was purified using either reverse phase HPLC or antibodies affinity chromatography procedures and characterized. The protein has an apparent Mr of 24 k, as judged by SDS-gel electrophoresis. Under non-denaturing conditions, however, the protein occurs as a homomultimer (Mr between 400 and 650 k) of the monomeric 24 kDa species and could be selectively enriched by fractionation of the cytosolic fraction on 10 to 40% sucrose gradients. Polyclonal antibodies, raised against the denatured 24 kDa protein, were used to investigate its tissue distribution. Besides the heart, where it is very abundant, the 24 kDa protein is expressed also in other red muscles and in kidneys, but was not detectable in stomach, thymus, liver, and brain. The amino acid composition of the protein and the partial amino acid sequence of various proteolytic fragments was determined. A search for homologies of the primary structure of known proteins has shown that the 24 kDa protein is strikingly similar, if not identical to alpha-B-crystallin. In fact, the two proteins were found to be indistinguishable also by immunological criteria. This study demonstrates that the lens protein alpha B-crystallin is a major cytosolic component of heart cells.

  8. CD34-positive stromal cells and alpha-smooth muscle actin-positive stromal cells in the tumor capsule of skin sweat gland neoplasms.

    Science.gov (United States)

    Nakayama, Hirofumi; Enzan, Hideaki; Miyazaki, Eriko; Moriki, Toshiaki; Toi, Makoto; Zhang, Yanhu

    2002-01-01

    To elucidate the roles of CD34-positive stromal cells and alpha-smooth muscle actin-positive stromal cells at the tumor border of skin sweat gland neoplasms, we examined expression of stromal cell markers in the tumor capsule of 19 skin sweat gland neoplasms (16 mixed tumors of the skin and three nodular hidradenomas) using monoclonal antibodies to CD34, CD31, cytokeratin 14 (CK14), alpha-smooth muscle actin (ASMA) and high molecular weight caldesmon (HCD). We regarded CD34-positive, CD31-, CK14-, ASMA- and HCD-negative stromal cells to be CD34-positive stromal cells, and ASMA-positive, HCD-, CK14-, CD34- and CD31-negative stromal cells to be ASMA-positive stromal cells. CD34-positive stromal cells were detected in the tumor capsule of all 19 of the tumors examined. In nine of the 16 mixed tumors (56%) and all of the three nodular hidradenomas, ASMA-positive stromal cells were detected at the immediate inner side of the CD34-positive stromal cell layers. These results indicate that cellular components in the tumor capsules of mixed tumors of the skin and nodular hidradenomas are CD34-positive stromal cells and ASMA-positive stromal cells, and suggest that stromal cells of these two cell types are associated with tumor capsule formation of skin sweat gland neoplasms.

  9. The influence of ouabain and alpha angelica lactone on calcium metabolism of dog cardiac microsomes

    Science.gov (United States)

    Entman, Mark L.; Cook, Joseph W.; Bressler, Rubin

    1969-01-01

    The influence of ouabain and alpha angelica lactone on 45calcium accumulation in cardiac microsomes was studied. Calcium binding (accumulation in the absence of excess oxalate or phosphate) was augmented by both ouabain and alpha angelica lactone in the presence of adenosine triphosphate (ATP) but unaffected in its absence. Calcium turnover (defined as the change in 45Ca++ bound to the microsomes after the specific activity is changed) was studied to determine if the augmented bound pool was freely exchangeable at equilibrium. Ouabain and alpha angelica lactone augmented calcium turnover in both the presence and absence of ATP. Calcium-stimulated ATPase was increased by both agents. It is proposed that these two unsaturated lactones, with known cardiotonic activity, may exert their effects by providing an increased contraction-dependent calcium pool to be released upon systolic depolarization. PMID:4236805

  10. sGC(alpha)1(beta)1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models.

    Science.gov (United States)

    Buys, Emmanuel S; Cauwels, Anje; Raher, Michael J; Passeri, Jonathan J; Hobai, Ion; Cawley, Sharon M; Rauwerdink, Kristen M; Thibault, Helene; Sips, Patrick Y; Thoonen, Robrecht; Scherrer-Crosbie, Marielle; Ichinose, Fumito; Brouckaert, Peter; Bloch, Kenneth D

    2009-08-01

    Altered cGMP signaling has been implicated in myocardial depression, morbidity, and mortality associated with sepsis. Previous studies, using inhibitors of soluble guanylate cyclase (sGC), suggested that cGMP generated by sGC contributed to the cardiac dysfunction and mortality associated with sepsis. We used sGC(alpha)(1)-deficient (sGC(alpha)(1)(-/-)) mice to unequivocally determine the role of sGC(alpha)(1)beta(1) in the development of cardiac dysfunction and death associated with two models of inflammatory shock: endotoxin- and TNF-induced shock. At baseline, echocardiographic assessment and invasive hemodynamic measurements of left ventricular (LV) dimensions and function did not differ between wild-type (WT) mice and sGC(alpha)(1)(-/-) mice on the C57BL/6 background (sGC(alpha)(1)(-/-B6) mice). At 14 h after endotoxin challenge, cardiac dysfunction was more pronounced in sGC(alpha)(1)(-/-B6) than WT mice, as assessed using echocardiographic and hemodynamic indexes of LV function. Similarly, Ca(2+) handling and cell shortening were impaired to a greater extent in cardiomyocytes isolated from sGC(alpha)(1)(-/-B6) than WT mice after endotoxin challenge. Importantly, morbidity and mortality associated with inflammatory shock induced by endotoxin or TNF were increased in sGC(alpha)(1)(-/-B6) compared with WT mice. Together, these findings suggest that cGMP generated by sGC(alpha)(1)beta(1) protects against cardiac dysfunction and mortality in murine inflammatory shock models.

  11. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition.

    Science.gov (United States)

    Tomasek, James J; Haaksma, Carol J; Schwartz, Robert J; Howard, Eric W

    2013-01-01

    The contractile phenotype and function of myofibroblasts have been proposed to play a critical role in wound closure. It has been hypothesized that smooth muscle α-actin expressed in myofibroblasts is critical for its formation and function. We have used smooth muscle α-actin-null mice to test this hypothesis. Full-thickness excisional wounds closed at a similar rate in smooth muscle α-actin-null and wild-type mice. In addition, fibroblasts in smooth muscle α-actin-null granulation tissue when immunostained with a monoclonal antibody that recognizes all muscle actin isoforms exhibited a myofibroblast-like distribution and a stress fiber-like pattern, showing that these cells acquired the myofibroblast phenotype. Dermal fibroblasts from smooth muscle α-actin-null and wild-type mice formed stress fibers and supermature focal adhesions, and generated similar amounts of contractile force in response to transforming growth factor-β1. Smooth muscle γ-actin and skeletal muscle α-actin were expressed in smooth muscle α-actin-null myofibroblasts, as shown by immunostaining, real-time polymerase chain reaction, and mass spectrometry. These results show that smooth muscle α-actin is not necessary for myofibroblast formation and function and for wound closure, and that smooth muscle γ-actin and skeletal muscle α-actin may be able to functionally compensate for the lack of smooth muscle α-actin in myofibroblasts. © 2012 by the Wound Healing Society.

  12. Release of muscle α-actin into serum after intensive exercise

    Directory of Open Access Journals (Sweden)

    A Martínez-Amat

    2010-12-01

    Full Text Available Purpose: To study the effects of high-level matches on serum alpha actin and other muscle damage markers in teams of rugby and handball players. Methods: Blood samples were drawn from 23 sportsmen: 13 rugby players and 10 handball players. One sample was drawn with the player at rest before the match and one immediately after the match. Immunoassays were used to determine troponin I, troponin T, LDH, and myoglobin concentrations. Western blot and densitometry were used to measure α-actin concentrations. Muscle injury was defined by a total CK value of > 500 IU/L (Rosalki method. Results: Mean pre- and post-match serum alpha-actin values were, respectively, 7.16 and 26.47 μg/ml in the handball group and 1.24 and 20.04 μg/ml in the rugby team. CPK, LDH and myoglobin but not troponin 1 levels also significantly differed between these time points. According to these results, large amounts of α-actin are released into peripheral blood immediately after intense physical effort. Possible cross-interference between skeletal and cardiac muscle damage can be discriminated by the combined use of α-actin and troponin I. Conclusion: The significant increase in alpha-actin after a high-level match may be a reliable marker for the early diagnosis and hence more effective treatment of muscle injury.

  13. Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Moesgaard, S. G.; Rasmussen, C. E.

    2015-01-01

    suggested. In an age-matched population of dogs with non-clinical and clinical MMVD, the objectives were to investigate (1) gene expression of 5-HT2AR and 5-HT2BR, (2) protein expression and spatial relationship of 5-HT2AR, 5-HT2BR and MF in the mitral valve (MV) and the cardiac anterior papillary muscle...... (AP) and (3) serum 5-HT concentrations. Gene expression of 5-HT2BR was significantly higher in MV and AP among dogs with clinical MMVD. This was not found for 5-HT2BR protein expression, though association of 5-HT2BR with myxomatous pathology and co-localization of 5-HT2BR and MF in MV and AP support...

  14. Immunoreactivity for alpha-smooth muscle actin characterizes a potentially aggressive subgroup of little basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    L Pilloni

    2009-06-01

    Full Text Available Basal cell carcinoma (BCC is a very common malignant skin tumor that rarely metastatizes, but is often locally aggressive. Several factors, like large size (more than 3 cm, exposure to ultraviolet rays, histological variants, level of infiltration and perineural or perivascular invasion, are associated with a more aggressive clinical course. These morphological features seem to be more determinant in mideface localized BCC, which frequently show a significantly higher recurrence rate. An immunohistochemical profile, characterized by reactivity of tumor cells for p53, Ki67 and alpha-SMA has been associated with a more aggressive behaviour in large BCCs. The aim of this study was to verify if also little (less than 3 cm basal cell carcinomas can express immunohistochemical markers typical for an aggressive behaviour.

  15. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    Directory of Open Access Journals (Sweden)

    Piechocki Marie P

    2008-04-01

    Full Text Available Abstract Background To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1 maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. Methods We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. Results The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. Conclusion This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving

  16. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    International Nuclear Information System (INIS)

    Piechocki, Marie P

    2008-01-01

    To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA) expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1) maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving strategies that can dually or differentially target the tumor and stromal

  17. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice.

    Science.gov (United States)

    Xu, L; Daly, T; Gao, C; Flotte, T R; Song, S; Byrne, B J; Sands, M S; Parker Ponder, K

    2001-03-20

    Although AAV vectors show promise for hepatic gene therapy, the optimal transcriptional regulatory elements have not yet been identified. In this study, we show that an AAV vector with the CMV enhancer/chicken beta-actin promoter results in 9.5-fold higher expression after portal vein injection than an AAV vector with the EF1 alpha promoter, and 137-fold higher expression than an AAV vector with the CMV promoter/enhancer. Although induction of the acute-phase response with the administration of lipopolysaccharide (LPS) activated the CMV promoter/enhancer from the context of an adenoviral vector in a previous study, LPS resulted in only a modest induction of this promoter from an AAV vector in vivo. An AAV vector with the CMV-beta-actin promoter upstream of the coagulation protein human factor X (hFX) was injected intravenously into neonatal mice. This resulted in expression of hFX at 548 ng/ml (6.8% of normal) for up to 1.2 years, and 0.6 copies of AAV vector per diploid genome in the liver at the time of sacrifice. Neonatal intramuscular injection resulted in expression of hFX at 248 ng/ml (3.1% of normal), which derived from both liver and muscle. We conclude that neonatal gene therapy with an AAV vector with the CMV-beta-actin promoter might correct hemophilia due to hFX deficiency.

  18. Serum cardiac troponin I in acute stroke is related to serum cortisol and TNF-alpha

    DEFF Research Database (Denmark)

    Christensen, Hanne Krarup; Johannesen, Helle Hjorth; Christensen, Anders Fogh

    2004-01-01

    Serum cardiac troponin I (cTnI) is a specific marker of myocardial injury related to in-patient fatality and cardiac injury in acute stroke. We investigated whether cTnI in acute stroke is related to serum cortisol, acute inflammatory response, and insular damage. We also investigated whether c...

  19. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Science.gov (United States)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  20. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors alpha and gamma.

    Science.gov (United States)

    Alibin, Caroline P; Kopilas, Melanie A; Anderson, Hope D I

    2008-04-18

    Conjugated linoleic acid (CLA) refers to a naturally occurring mixture of positional and geometric isomers of linoleic acid. Evidence suggests that CLA is a dietary constituent and nutraceutical with anti-cancer, insulin-sensitizing, immunomodulatory, weight-partitioning, and cardioprotective properties. The aim of this study was to evaluate the effects of intervention with CLA on cardiac hypertrophy. In vitro, CLA prevented indicators of cardiomyocyte hypertrophy elicited by endothelin-1, including cell size augmentation, protein synthesis, and fetal gene activation. Similar anti-hypertrophic effects of CLA were observed in hypertrophy induced by angiotensin II, fibroblast growth factor, and mechanical strain. CLA may inhibit hypertrophy through activation of peroxisome proliferator-activated receptors (PPARs). CLA stimulated PPAR activity in cardiomyocytes, and the anti-hypertrophic effects of CLA were blocked by genetic and pharmacological inhibitors of PPAR isoforms alpha and gamma. CLA may disrupt hypertrophic signaling by stimulating diacylglycerol kinase zeta, which decreases availability of diacylglycerol and thereby inhibits the protein kinase Cepsilon pathway. In vivo, dietary CLA supplementation significantly reduced blood pressure and cardiac hypertrophy in spontaneously hypertensive heart failure rats. These data suggest that dietary supplementation with CLA may be a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure.

  1. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha1-adrenergic system

    International Nuclear Information System (INIS)

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha 1 -adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha 1 -adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha 1 -selective radioligand [ 125 I]-I-2-[β-(4-hydroxphenyl)ethylaminomethyl]tetralone ([ 125 I]-IBE 2254) demonstrated that the alpha 1 -adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha 1 -adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha 1 -adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha 1 -mediated positive chronotropic response in the neonate, whereas in the adult the alpha 1 -mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha 1 -adrenergic receptor to its effector under certain circumstances such as high potassium (K + ) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha 1 -response

  2. Thomsen-Friedenreich (T) antigen as marker of myoepithelial and basal cells in the parotid gland, pleomorphic adenomas and adenoid cystic carcinomas. An immunohistological comparison between T and sialosyl-T antigens, alpha-smooth muscle actin and cytokeratin 14

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Christensen, M

    1995-01-01

    was the only marker of cells in solid undifferentiated areas of adenoid cystic carcinomas. Our study supports the view, that modified "myoepithelial" cells in the tumours consist of a mixture of basal cells and myoepithelial cells. None of the investigated structures was in itself an ideal marker......Controversy centres on the role and identification of myoepithelial (MEC) and basal cells in salivary gland tumours, and recent studies suggest that both basal cells and myoepithelial cells participate in the formation of salivary gland tumours. We have correlated the expression of different well......-known markers of normal MEC/basal cells (i.e. alpha-smooth muscle actin and cytokeratin 14) with T (Thomsen-Friedenreich) antigen and its sialylated derivative: sialosyl-T antigen,) in 17 normal parotid glands and in two tumour types with MEC participation (i.e pleomorphic adenomas (PA) and adenoid cystic...

  3. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence......ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  4. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    Science.gov (United States)

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2017-05-01

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies. © 2016 John Wiley & Sons Ltd.

  5. Partial deficiency of HIF-1 alpha stimulates pathological cardiac changes in streptozotocin-induced diabetic mice

    Czech Academy of Sciences Publication Activity Database

    Bohuslavová, Romana; Kolář, František; Sedmera, David; Škvorová, Lada; Papoušek, František; Neckář, Jan; Pavlínková, Gabriela

    2014-01-01

    Roč. 14, Feb 6 (2014) ISSN 1472-6823 R&D Projects: GA ČR GA301/09/0117; GA MŠk(CZ) ED1.1.00/02.0109 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:68378271 Keywords : Echocardiographic parameters * Hypoxia inducible factor 1 alpha * Diabetic cardiomyopathy Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.710, year: 2014

  6. Treatment of Actinic Purpura

    Science.gov (United States)

    2017-01-01

    Mature skin is prone to bruising, resulting in a condition known as actinic purpura, characterized by unsightly ecchymosis and purple patches. Similar to other skin conditions, the incidence of actinic purpura increases with advancing age and occurs with equal frequency among men and women. The unsightly appearance of actinic purpura may be a source of emotional distress among the elderly. A new product has been formulated specifically for the treatment of actinic purpura. This product contains retinol, α-hydroxy acids, arnica oil, ceramides, niacinamide, and phytonadione, which effectively treat actinic purpura by improving local circulation, thickening the skin, and repairing the skin barrier. The objective of this paper is to review the beneficial properties of these ingredients and their respective roles in the treatment of actinic purpura. PMID:28979656

  7. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    . The increase in calf blood flow was of the same magnitude after combined blockade and after alpha-adrenoceptor blockade alone, and was considerably higher than the fall in systemic vascular resistance. Plasma catecholamine concentrations increased after phentolamine, but the changes were blunted when...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  8. Inhibitory effects of pectenotoxins from marine algae on the polymerization of various actin isoforms.

    Science.gov (United States)

    Butler, Suzanne C; Miles, Christopher O; Karim, Amna; Twiner, Michael J

    2012-04-01

    Pectenotoxins (PTXs) are marine toxins produced by dinoflagellates and which accumulate in shellfish. There are at least 14 different analogs of PTX with slight variations in structure leading to different chemical properties and consequently different toxicities. Since preliminary studies have shown that the parent compound PTX1 targets actin, we investigated the effects of two analogs, PTX2 and PTX2 seco acid, on the polymerization and depolymerization of skeletal muscle actin, smooth muscle actin, cardiac muscle actin, and non-muscle actin. Optimized actin assays using fluorescently labeled skeletal muscle actin and SDS-PAGE were jointly used to determine the relative amounts of filamentous and globular actin formed during polymerization and depolymerization experiments. Our findings suggest that PTX2 causes a dose-dependent decrease in both the rate and yield of skeletal muscle actin polymerization (IC50 values of 44 and 177 nM; respectively), with no significant effects on depolymerization. Moreover, the inhibitory effects of PTX2 are conserved towards other actin isoforms (i.e., smooth muscle, cardiac muscle, and non-muscle), as the inhibitory effects on actin polymerization were also observed with similar IC50 values (range: 19-94 nM). No inhibitory effects on polymerization were observed for PTX2 seco acid, suggesting an intact lactone ring is necessary for bioactivity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Ethanol increases tumor necrosis factor-alpha receptor-1 (TNF-R1) levels in hepatic, intestinal, and cardiac cells.

    Science.gov (United States)

    Rodriguez, Diego A; Moncada, Claudio; Núñez, Marco T; Lavandero, Sergio; Ponnappa, Biddanda C; Israel, Yedy

    2004-05-01

    Chronic ethanol consumption leads to cell injury in virtually every tissue. Tumor necrosis factor-alpha (TNF-alpha) constitutes a major factor in the development of alcohol-induced liver injury. In alcohol-dependent subjects, elevated levels of plasma TNF-alpha are strongly predictive of mortality. Binding of TNF-alpha to TNF-alpha receptor-1 (TNF-R1) activates death domain pathways, leading to necrosis and apoptosis in most tissues, and it also increases the expression of intercellular adhesion molecules (i.e., ICAM-1), which promote inflammation. We determined whether ethanol exposure leads to increases in cellular TNF-R1. We incubated HepG2 human hepatoma cells and H4-II-E-C3 rat hepatoma cells with 25, 50, and 100 mM ethanol for various intervals of time up to 48 h. Human colonic adenocarcinoma cells (Caco-2 cells) and neonatal rat primary cardiomyocytes were also incubated with different concentrations of ethanol. Levels of TNF-R1 were measured either by a sandwich enzyme-linked immunosorbent assay (ELISA) method or by determining the extracellular transmembrane domain of TNF-R1 by an intact-cell ELISA method. Ethanol exposure for 48 h increased TNF-R1 levels in human hepatoma cells in a dose-dependent manner. Levels increased significantly by 164% at 50 mM and by 240% at 100 mM ethanol. Effects were time dependent and did not reach a plateau at 48 h. Similar increases in TNF-R1 were also observed in rat hepatoma cells (90% at 50 mM and 230% at 100 mM ethanol). Under similar conditions, Caco-2 cells showed a significant 80% increase in TNF-R1 levels at 200 mM ethanol, a concentration found in intestine. Neonatal rat primary cardiomyocytes showed TNF-R1 increases of 36% at 50 mM and 44% at 100 mM ethanol. These results indicate that exposure of different cell types to pharmacologic concentrations of ethanol increases TNF-R1 levels and may augment TNF-alpha-mediated cell injury in different tissues.

  10. Tumour necrosis factor-alpha contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia

    Czech Academy of Sciences Publication Activity Database

    Chytilová, Anna; Borchert, Gudrun H.; Mandíková-Alánová, Petra; Hlaváčková, Markéta; Kopkan, L.; Khan, M. A. H.; Imig, J. D.; Kolář, František; Neckář, Jan

    2015-01-01

    Roč. 241, č. 1 (2015), s. 97-108 ISSN 1748-1708 R&D Projects: GA ČR(CZ) GA13-10267S; GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : chronic hypoxia * ischaemia/reperfusion injury * reactive oxygen species * tumor necrosis factor - alpha Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.066, year: 2015

  11. Histones bundle F-actin filaments and affect actin structure.

    Directory of Open Access Journals (Sweden)

    Edna Blotnick

    Full Text Available Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  12. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  13. Quantification of [{sup 11}C]GB67 binding to cardiac {alpha}{sub 1}-adrenoceptors with positron emission tomography: validation in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Park-Holohan, So-Jin; Turton, David R.; Hume, Susan P. [Hammersmith Hospital, Hammersmith Imanet Ltd., GE HealthCare, Cyclotron Building, London (United Kingdom); Asselin, Marie-Claude [Hammersmith Hospital, Hammersmith Imanet Ltd., GE HealthCare, Cyclotron Building, London (United Kingdom); The University of Manchester, Wolfson Molecular Imaging Centre, Manchester (United Kingdom); Williams, Sharron L.; Camici, Paolo G. [Hammersmith Hospital, MRC Clinical Sciences Centre, Cyclotron Building, London (United Kingdom); Rimoldi, Ornella E. [Hammersmith Hospital, MRC Clinical Sciences Centre, Cyclotron Building, London (United Kingdom); New York Medical College, Cardiovascular Research Institute Department of Medicine, Valhalla, NY (United States)

    2008-09-15

    An increase in human cardiac {alpha}{sub 1}-adrenoceptor ({alpha}{sub 1}-AR) density is associated with various diseases such as myocardial ischemia, congestive heart failure, hypertrophic cardiomyopathy and hypertension. Positron emission tomography (PET) with an appropriate radioligand offers the possibility of imaging receptor function in the normal and diseased heart. [{sup 11}C]GB67, an analogue of prazosin, has been shown in rats to have potential as a PET ligand with high selectivity to {alpha}{sub 1}-AR. However, {alpha}{sub 1}-AR density is up to ten times higher in rat heart compared to that in man. The aim of the present preclinical study was to extend the previous evaluation to a large mammal heart, where the {alpha}{sub 1}-AR density is comparable to man, and to validate a method for quantification before PET studies in man. Seven [{sup 11}C]GB67 PET studies, with weight-adjusted target dose of either 5.29 MBq kg{sup -1} (pilot, test-retest and baseline-predose studies) or 8.22 MBq kg{sup -1} (baseline-displacement studies), were performed in four anaesthetised pigs (39.5 {+-} 3.9 kg). Total myocardial volume of distribution (V{sub T}) was estimated under different pharmacological conditions using compartmental analysis with a radiolabelled metabolite-corrected arterial plasma input function. A maximum possible blocking dose of 0.12 {mu}mol kg{sup -1} of unlabeled GB67 was given 20 min before [{sup 11}C]GB67 administration in the predose study and 45 min after administration of [{sup 11}C]GB67 in the displacement study. In addition, [{sup 15}O]CO (3,000 MBq) and [{sup 15}O]H{sub 2}O, with weight adjusted target dose of 10.57 MBq kg{sup -1}, were also administered for estimation of blood volume recovery (RC) of the left ventricular cavity and myocardial perfusion (MBF), respectively. [{sup 11}C]GB67 V{sub T} values (in ml cm{sup -3}) were estimated to be 24.2 {+-} 5.5 (range, 17.3-31.3), 10.1 (predose) and 11.6 (displacement). MBF did not differ within

  14. ACTIN-DIRECTED TOXIN. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization.

    Science.gov (United States)

    Heisler, David B; Kudryashova, Elena; Grinevich, Dmitry O; Suarez, Cristian; Winkelman, Jonathan D; Birukov, Konstantin G; Kotha, Sainath R; Parinandi, Narasimham L; Vavylonis, Dimitrios; Kovar, David R; Kudryashov, Dmitri S

    2015-07-31

    The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses. Copyright © 2015, American Association for the Advancement of Science.

  15. Axonal Actin Transport Driven By Metastable Actin Filaments

    Science.gov (United States)

    Chakrabarty, Nilaj; Ganguly, Archan; Roy, Subhojit; Jung, Peter

    Actin is one of the key constituents of the neuronal cytoskeleton and is responsible for driving important cellular processes like axon elongation. Axonal actin is synthesized in the cell body and transported at rates of 0.25 - 3 mm/day, as shown by in-vivo pulse-chase radiolabelling studies. However, the underlying transport mechanisms are unknown. Recent experiments in cultured neurons have revealed a dynamic network of metastable actin filaments (actin trails). Actin trails seem to originate from focal actin hotspots which colocalize with stationary endosomes. Interestingly, the number of actin trails extending anterogradely is higher than the ones extending retrogradely. We hypothesize that the bulk axonal transport of actin originates from this directional asymmetry of the number of actin trails. To test this, we constructed a computational model of actin trail growth and simulated the pulse-chase experiment. In our model, local, metastable trails, which grow with their barbed ends anchored to the hotspots, drive the bulk anterograde transport. Our results indicate that the observed bias of the nucleation probabilities and the elongation rate of actin trails are sufficient to drive the bulk transport of actin at rates that agree with in-vivo pulse chase experiments.

  16. Acquisition of multiple nuclei and the activity of DNA polymerase alpha and reinitiation of DNA replication in terminally differentiated adult cardiac muscle cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Claycomb, W.C.; Bradshaw, H.D. Jr.

    1983-10-01

    Terminally differentiated ventricular cardiac muscle cells isolated from the adult rat and maintained in cell culture have been observed to acquire multiple nuclei. In one cultured myocyte as many as 10 nuclei have been counted. Apparently, these multiple nuclei are formed by DNA replication followed by karyokinesis; the cells must then fail to complete mitosis and divide. To investigate whether DNA synthesis was occurring, the cells were cultured in the presence of (3H)thymidine and then processed for autoradiography. Mononucleated, binucleated, and multinucleated cells incorporate (3H)thymidine into DNA as evidenced by the high concentration of silver grains over their nuclei. Peak periods of incorporation were observed to occur at 10- to 12-day intervals; at 11, 23, and 33 days after initially placing the cells in culture. When the cells were maintained in the presence of (3H)thymidine continuously from Day 7 to Day 17 of culture, 23% of the cells became labeled. If the cells were cultured continuously for 30 days in the presence of (3H)thymidine, from Day 10 to Day 40, 56% of the cells were labeled. Isopycnic gradient analysis indicates that this thymidine incorporation was into DNA that was being replicated semiconservatively; these experiments did not eliminate the possibility, however, that this incorporation was due to amplification of specific genes, such as those coding for the contractile proteins. The activity of DNA polymerase alpha also returns to these cells. These studies demonstrate that the terminally differentiated mammalian ventricular cardiac muscle cell, previously thought to have permanently lost the capacity to replicate DNA during early development, is able to reinitiate semiconservative DNA replication when grown in culture.

  17. Distinct actin oligomers modulate differently the activity of actin nucleators.

    Science.gov (United States)

    Qu, Zheng; Silvan, Unai; Jockusch, Brigitte M; Aebi, Ueli; Schoenenberger, Cora-Ann; Mannherz, Hans Georg

    2015-10-01

    Polymerization of actin monomers into filaments requires the initial formation of nuclei composed of a few actin subunits; however, their instability has hindered their detailed study. Therefore we used chemically crosslinked actin oligomers to analyse their effect on actin polymerization. Actin dimer (upper dimer, UD), trimer and tetramer intermolecularly crosslinked by phenylene-bismaleimide along the genetic helix (between Lys199 and Cys374) were isolated by gel filtration and found to increasingly stimulate actin polymerization as shown by the pyrene assay and total internal reflection fluorescence microscopy. In contrast, the so-called lower actin dimer (LD) characterized by a Cys374-Cys374 crosslink stimulated actin polymerization only at low but inhibited it at high concentrations. UD and trimer stimulated the repolymerization of actin from complexes with thymosin β4 (Tβ4) or profilin, whereas the LD stimulated repolymerization only from the profilin : actin but not the actin : Tβ4 complex. In vivo, actin polymerization is stimulated by nucleation factors. Therefore the interaction and effects of purified LD, UD and trimer on the actin-nucleating activity of gelsolin, mouse diaphanous related (mDia) formin and the actin-related protein 2/3 (Arp2/3) complex were analysed. Native gel electrophoresis demonstrated binding of LD, UD and trimer to gelsolin and its fragment G1-3, to the FH2 domains of the formins mDia1 and mDia3, and to Arp2/3 complex. UD and trimer increased the nucleating activity of gelsolin and G1-3, but not of the mDia-FH2 domain nor of the Arp2/3 complex. In contrast, LD at equimolar concentration to Arp2/3 complex stimulated its nucleating activity, but inhibited that of mDia-FH2 domains, gelsolin and G1-3, demonstrating differential regulation of their nucleating activity by dimers containing differently oriented actin subunits. © 2015 FEBS.

  18. In vitro actin motility velocity varies linearly with the number of myosin impellers.

    Science.gov (United States)

    Wang, Y; Burghardt, T P

    2017-03-15

    Cardiac myosin is the motor powering the heart. It moves actin with 3 step-size varieties generated by torque from the myosin heavy chain lever-arm rotation under the influence of myosin essential light chain whose N-terminal extension binds actin. Proposed mechanisms adapting myosin mechanochemical characteristics on the fly sometimes involve modulation of step-size selection probability via motor strain sensitivity. Strain following the power stroke, hypothetically imposed by the finite actin detachment rate 1/t on , is shown to have no effect on unloaded velocity when multiple myosins are simultaneously strongly actin bound in an in vitro motility assay. Actin filaments slide ∼2 native step-sizes while more than 1 myosin strongly binds actin probably ruling out an actin detachment limited model for imposing strain. It suggests that single myosin estimates for t on are too large, not applicable to the ensemble situation, or both. Parallel motility data quantitation involving instantaneous particle velocities (frame velocity) and actin filament track averaged velocities (track velocity) give an estimate of the random walk step-size, δ. Comparing δ for slow and fast motility components suggests the higher speed component has cardiac myosin upshifting to longer steps. Variable step-size characteristics imply cardiac myosin maintains a velocity dynamic range not involving strain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cloning of a novel human nonmuscle alpha-actinin gene and characterization of alpha-actinin expression in nemaline rod myopathy (NRM)

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Knoll, J.H.M.; Kunkel, L.M. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    The {alpha}-actinins are a group of actin-binding and crosslinking proteins that are evolutionarily related to the spectrins and dystrophin. Muscle isoforms of {alpha}-actinin are localized at the Z-lines where they anchor actin filaments in a constitutive manner. In contrast, nonmuscle (cytoskeletal) isoforms are found in all tissues at adherens type junctions where they may play a role in organizing the actin cytoskeleton. In addition to the previously identified nonmuscle/smooth muscle ACTN1 gene and the skeletal/cardiac isoforms, ACTN2 and ACTN3, we have identified a fourth gene, ACTN4, which maps to chromosome 19q13.1 and is expressed at similar levels in all tissues tested. Sequence analysis reveals that all four human genes are collinear with about 77% amino acid identity overall. The ACTN4 gene is alternatively spliced at the first EF-hand to generate two alternative isoforms, both of which are predicted to be calcium insensitive. By indirect immunofluorescence, ACTN1 and ACTN4 are both expressed in association with the actin cytoskeleton of cultured fibroblasts. Additionally, both are found in vascular smooth muscle, however, ACTN4, but not ACTN1, was also found in some capillaries in skeletal muscle. ACTN2 was found at Z-lines in all muscle fiber types while ACTN3 expression is limited to Z-lines in a subset of fast (Type II) fibers. Interestingly, both ACTN2 and ACTN3 isoforms were identified in nemaline rods from a patient with NRM, suggesting that the genetic mutation responsible for this disorder may not be in an {alpha}-actinin gene.

  20. Actinic reticuloid. Diagnostics

    Directory of Open Access Journals (Sweden)

    E. V. Sokolovskiy

    2016-01-01

    Full Text Available This article is about the case of actinic reticuloid - the rare dermatosis which clinical presentation is similar to atopic dermatitis, T-cell lymphoma. Good treatment effect was obtained by long cycles (2 cycles for 3 months of hydroxychloroquine and sun protective therapy included sunscreens SPF 50, nicotinic acid, sun-safe clothes which blocked ultraviolet radiation without any glucocorticosteroid drugs and cytostatic treatment.

  1. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  2. Nucleotide effects on the structure and dynamics of actin.

    Science.gov (United States)

    Zheng, Xiange; Diraviyam, Karthikeyan; Sept, David

    2007-08-15

    Adenosine 5'-triphosphate or ATP is the primary energy source within the cell, releasing its energy via hydrolysis into adenosine 5'-diphosphate or ADP. Actin is an important ATPase involved in many aspects of cellular function, and the binding and hydrolysis of ATP regulates its polymerization into actin filaments as well as its interaction with a host of actin-associated proteins. Here we study the dynamics of monomeric actin in ATP, ADP-Pi, and ADP states via molecular dynamics simulations. As observed in some crystal structures we see that the DNase-I loop is an alpha-helix in the ADP state but forms an unstructured coil domain in the ADP-Pi and ATP states. We also find that this secondary structure change is reversible, and by mimicking nucleotide exchange we can observe the transition between the helical and coil states. Apart from the DNase-I loop, we also see several key structural differences in the nucleotide binding cleft as well as in the hydrophobic cleft between subdomains 1 and 3 where WH2-containing proteins have been shown to interact. These differences provide a structural basis for understanding the observed differences between the various nucleotide states of actin and provide some insight into how ATP regulates the interaction of actin with itself and other proteins.

  3. Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Tae

    2017-01-01

    Full Text Available Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest (CA. In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet (CV and Fluore-Jade B (F-J B staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1 (Iba-1, glial fibrillary acidic protein (GFAP, and tumor necrosis factor-alpha (TNF-α immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA (about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA. Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day post-CA, and they were activated (enlarged cell bodies with short and thicken processes in all layers 2 days post-CA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.

  4. Actin acting at the Golgi.

    Science.gov (United States)

    Egea, Gustavo; Serra-Peinado, Carla; Salcedo-Sicilia, Laia; Gutiérrez-Martínez, Enric

    2013-09-01

    The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.

  5. Actin Polymerization and ATP Hydrolysis

    Science.gov (United States)

    Korn, Edward D.; Carlier, Marie-France; Pantaloni, Dominique

    1987-10-01

    F-actin is the major component of muscle thin filaments and, more generally, of the microfilaments of the dynamic, multifunctional cytoskeletal systems of nonmuscle eukaryotic cells. Polymeric F-actin is formed by reversible noncovalent self-association of monomeric G-actin. To understand the dynamics of microfilament systems in cells, the dynamics of polymerization of pure actin must be understood. The following model has emerged from recent work. During the polymerization process, adenosine 5'-triphosphate (ATP) that is bound to G-actin is hydrolyzed to adenosine 5'-diphosphate (ADP) that is bound to F-actin. The hydrolysis reaction occurs on the F-actin subsequent to the polymerization reaction in two steps: cleavage of ATP followed by the slower release of inorganic phosphate (Pi). As a result, at high rates of filament growth a transient cap of ATP-actin subunits exists at the ends of elongating filaments, and at steady state a stabilizing cap of ADP \\cdot Pi-actin subunits exists at the barbed ends of filaments. Cleavage of ATP results in a highly stable filament with bound ADP \\cdot Pi, and release of Pi destabilizes the filament. Thus these two steps of the hydrolytic reaction provide potential mechanisms for regulating the monomer-polymer transition.

  6. Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.

    Science.gov (United States)

    Rould, Mark A; Wan, Qun; Joel, Peteranne B; Lowey, Susan; Trybus, Kathleen M

    2006-10-20

    Actin filament growth and disassembly, as well as affinity for actin-binding proteins, is mediated by the nucleotide-bound state of the component actin monomers. The structural differences between ATP-actin and ADP-actin, however, remain controversial. We expressed a cytoplasmic actin in Sf9 cells, which was rendered non-polymerizable by virtue of two point mutations in subdomain 4 (A204E/P243K). This homogeneous monomer, called AP-actin, was crystallized in the absence of toxins, binding proteins, or chemical modification, with ATP or ADP at the active site. The two surface mutations do not perturb the structure. Significant differences between the two states are confined to the active site region and sensor loop. The active site cleft remains closed in both states. Minor structural shifts propagate from the active site toward subdomain 2, but dissipate before reaching the DNase binding loop (D-loop), which remains disordered in both the ADP and ATP states. This result contrasts with previous structures of actin made monomeric by modification with tetramethylrhodamine, which show formation of an alpha-helix at the distal end of the D-loop in the ADP-bound but not the ATP-bound form (Otterbein, L. R., Graceffa, P., and Dominguez, R. (2001) Science 293, 708-711). Our reanalysis of the TMR-modified actin structures suggests that the nucleotide-dependent formation of the D-loop helix may result from signal propagation through crystal packing interactions. Whereas the observed nucleotide-dependent changes in the structure present significantly different surfaces on the exterior of the actin monomer, current models of the actin filament lack any actin-actin interactions that involve the region of these key structural changes.

  7. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  8. Actin binding proteins and spermiogenesis

    Science.gov (United States)

    Mruk, Dolores D

    2011-01-01

    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also

  9. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  10. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  11. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure.

    Science.gov (United States)

    Prado, Fernanda P; Dos Santos, Daniele O; Blefari, Valdecir; Silva, Carlos A; Machado, Juliano; Kettelhut, Isis do Carmo; Ramos, Simone G; Baruffi, Marcelo Dias; Salgado, Helio C; Prado, Cibele M

    2017-01-01

    Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when pDystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.

  12. The Carboxy-Terminal Third Of Dystrophin Enhances Actin Binding Activity

    Science.gov (United States)

    Henderson, Davin M.; Lin, Ava Yun; Thomas, David D.; Ervasti, James M.

    2012-01-01

    Dystrophin is an actin-binding protein thought to stabilize cardiac and skeletal muscle cell membranes during contraction. Here, we investigated the contributions of each dystrophin domain to actin binding function. Cosedimentation assays and pyrene-actin fluorescence experiments confirmed that a fragment spanning two-thirds of the dystrophin molecule (from N-terminal ABD1 through ABD2) bound actin filaments with high affinity and protected filaments from forced depolymerization, but was less effective in both assays compared to full-length dystrophin. While a construct encoding the C-terminal third of dystrophin displayed no specific actin binding activity or competition with full-length dystrophin, our data show that it confers an unexpected regulation of actin binding by the N-terminal two-thirds of dystrophin when present in cis. Time-resolved phosphorescence anisotropy experiments demonstrated that the presence of the C-terminal third of dystrophin in cis also influences actin interaction in terms of restricting actin’s rotational amplitude. We propose that the C-terminal region of dystrophin allosterically stabilizes an optimal actin binding conformation of dystrophin. PMID:22226838

  13. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  14. Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure

    Directory of Open Access Journals (Sweden)

    Rousseau-Ralliard Delphine

    2009-03-01

    Full Text Available Abstract Background Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA in rats requires a long feeding period (6 months, although a docosahexaenoic (DHA acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL, mitochondrial (MI, nuclear (NU and sarcoplasmic reticulum (SR membrane fractions. Methods Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period, either n-3 PUFA-free diet (CTL, or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC after lipid extraction. Results As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA. N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing. Conclusion With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response.

  15. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  16. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  17. Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism

    NARCIS (Netherlands)

    Gilde, AJ; van der Lee, KAJM; Willemsen, PHM; Chinetti, G; van der Leij, FR; van der Vusse, GJ; Staels, B; van Bilsen, M

    2003-01-01

    Long-chain fatty acids ( FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the

  18. Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction.

    Science.gov (United States)

    Drosatos, Konstantinos; Drosatos-Tampakaki, Zoi; Khan, Raffay; Homma, Shunichi; Schulze, P Christian; Zannis, Vassilis I; Goldberg, Ira J

    2011-10-21

    Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and has also been implicated in impaired fatty acid oxidation in several tissues. Therefore, we tested whether JNK activation inhibits cardiac fatty acid oxidation and whether blocking JNK would restore fatty acid oxidation during LPS treatment. LPS treatment of C57BL/6 mice and adenovirus-mediated activation of the JNK pathway in cardiomyocytes inhibited peroxisome proliferator-activated receptor α expression and fatty acid oxidation. Surprisingly, none of the adaptive responses that have been described in other types of heart failure, such as increased glucose utilization, reduced αMHC:βMHC ratio or induction of certain microRNAs, occurred in LPS-treated mice. Treatment of C57BL/6 mice with a general JNK inhibitor (SP600125) increased fatty acid oxidation in mice and a cardiomyocyte-derived cell line. JNK inhibition also prevented LPS-mediated reduction in fatty acid oxidation and cardiac dysfunction. Inflammation was not alleviated in LPS-treated mice that received the JNK inhibitor. We conclude that activation of JNK signaling reduces fatty acid oxidation and prevents the peroxisome proliferator-activated receptor α down-regulation that occurs with LPS.

  19. Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth.

    Science.gov (United States)

    Zheng, Yiyan; Xie, Yurong; Jiang, Yuxiang; Qu, Xiaolu; Huang, Shanjin

    2013-09-01

    Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana actin-depolymerizing factor7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7-enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes.

  20. Actin microfilament dynamics in locomoting cells

    Science.gov (United States)

    Theriot, Julie A.; Mitchison, Timothy J.

    1991-07-01

    The dynamic behaviour of actin filaments has been directly observed in living, motile cells using fluorescence photoactivation. In goldfish epithelial keratocytes, the actin microfilaments in the lamellipodium remain approximately fixed relative to the substrate as the cell moves over them, regardless of cell speed. The rate of turnover of actin subunits in the lamellipodium is remarkably rapid. Cell movement is directly and tightly coupled to the formation of new actin filaments at the leading edge.

  1. Actin' as a Death Signal

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.

    2012-01-01

    Cell death needs to be detected by immune cells. In this issue of Immunity, Ahrens et al. (2012) and Zhang et al. (2012) show that actin filaments become exposed on necrotic cells and act as ligands for the C-type lectin receptor Clec9a

  2. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  3. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...... dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton....

  4. The Effect of Aerobic Training and Arbotin on Cardiac Nitric Oxide, Tumor Necrosis Factor alpha, and Vascular Endothelial Growth Factor in Male Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rahemeh Jahangiri Jahangiri

    2017-07-01

    Full Text Available Background and Objectives: Diabetes is one of the most important metabolic diseases, which its incidence rate has increased in recent years. In this disease, the insulin function is impaired, leading to several complications. Physical exercise and medicinal plants are considered as a way to control diabetes along with nutrition and medicine. The present study was conducted with the purpose of determining the effect of aerobic training and use of arbutin on cardiac nitric oxide, tumor necrosis factor-α and vessel endothelial growth factor in male diabetic rats. Methods: In this experimental study, 42 male adult Wistar rats (age, 8 weeks; weight, 190-220g, were randomly divided into 6 groups of 7 each (control, arbutin, diabetic, diabetic+training, diabetic+arbutin, and diabetic+training+arbutin. Training programs included 5 days of swimming per week for 6 weeks. Sampling from the heart was performed 72 hours after the last training session and arbutin consumption to analyze NO, TNF-α and VEGF. Data were analyzed using one-way ANOVA at the significance level p≤0.05. Results: Aerobic training along with use of arbutin led to increased levels of NO and VEGF and decreased level of TNF-α in cardiac tissue of diabetic rats (p<0.001. Conclusion: The results indicated that a period of regular aerobic training and use of arbutin can be considered as an appropriate non-medicinal method to control diabetes mellitus type 2 through decrease in inflammatory factors.

  5. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Meera C. Viswanathan

    2017-09-01

    Full Text Available Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.

  6. Cardiac sodium channelopathies.

    Science.gov (United States)

    Amin, Ahmad S; Asghari-Roodsari, Alaleh; Tan, Hanno L

    2010-07-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting alpha-subunit, or in genes that encode the ancillary beta-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.

  7. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  8. Mechanosensitive kinetic preference of actin-binding protein to actin filament.

    Science.gov (United States)

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  9. Actin dynamics in mouse fibroblasts in microgravity

    Science.gov (United States)

    Moes, Maarten J. A.; Bijvelt, Jose J.; Boonstra, Johannes

    2007-09-01

    After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.

  10. Actin organization and dynamics in filamentous fungi.

    Science.gov (United States)

    Berepiki, Adokiye; Lichius, Alexander; Read, Nick D

    2011-11-02

    Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.

  11. [Molecular mechanism of cardiac differentiation in P19 embryonal carcinoma cells regulated by Foxa2].

    Science.gov (United States)

    Zhu, Hong; Zhang, Zhen; Liu, Yi; Chen, Yan; Tan, Yongjun

    2013-04-01

    To investigate the involvement of transcription factor Foxa2 in cardiac differentiation in P19 embryonal carcinoma cells and its molecular mechanism. P19 cells were induced to differentiate into cardiomyocytes by adding dimethyl sulfoxide (DMSO) into the culture medium of their embryoid bodies (EBs). The mRNA levels of pluripotency markers of embryonic pluripotent stem cells, cardiac differentiation related genes, and Foxa2 in the cell samples at different time points of cardiac differentiation were detected by reverse transcription PCR (RT-PCR). Differentiated and mature cardiomyocytes were identified by immunofluorescence. Eukaryotic expression plasmid pCMV-rFoxa2 (rat Foxa2) was transfected into P19 cells, and clonal populations of P19 cells that stably expressed green fluorescence protein (GFP)-rFoxa2 were isolated to enhance the expression levels of Foxa2 in P19 cells. The mRNA and protein levels of pluripotency markers and cardiac differentiation related genes in the above cell samples were detected by RT-PCR and Western blot. The mRNA levels of cardiac differentiation related genes in EBs differentiation system were also examined. P19 cells differentiated into cardiomyocytes in the presence of DMSO, accompanied by stimulated expression of Foxa2. Transfection of pCMV-rFoxa2 plasmids into P19 cells upregulated rFoxa2 expression transiently and activated the transcription of its downstream cardiac inducer Cerberus1 (Cer1). The expression of pluripotency marker Nanog was suppressed and the expression of cardiac inducer Sonic Hedgehog (Shh) was elevated in GFP-rFoxa2 P19 cells. The expression of Cer1 and cardiac muscle marker actin, alpha cardiac muscle 1 (Actc1) was upregulated in EBs of GFP-rFoxa2 P19 cells. Foxa2 participates in cardiac differentiation in P19 embryonal carcinoma cells. Foxa2 may inhibit Nanog expression and stimulate the expression of Cer1 and Shh directly during cardiac differentiation in P19 cells in the presence of DMSO.

  12. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Hartvig, N; Belágyi, J; Somogyi, B

    2000-12-29

    Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys(374) residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys(374) from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys(374) of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.

  13. GPCRs and actin-cytoskeleton dynamics.

    Science.gov (United States)

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Co-transcriptional nuclear actin dynamics.

    Science.gov (United States)

    Percipalle, Piergiorgio

    2013-01-01

    Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified.

  15. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  16. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  17. Pharmacological treatment of actinic keratosis

    Directory of Open Access Journals (Sweden)

    Ewa Zwierzyńska

    2016-09-01

    Full Text Available Actinic keratosis (AK is a disease characterized by hyperkeratotic lesions on skin damaged by ultraviolet. radiation. These lesions may progress to squamous cell or basal cell carcinoma. Currently pharmacotherapy and different surgical procedures are used in AK therapy. The most common treatment options are 5-fluorouracil, imiquimod, diclofenac, ingenol mebutate, and first and third generation retinoids (retinol, adapalene, tazarotene. Furthermore, research is being carried out in order to test new medications including nicotinamide, resiquimod, piroxicam, potassium dobesilate and oleogel based on a triterpene extract (betulin, betulinic acid. Recently, the preventive effect of acetylsalicylic acid and celecoxib has also been investigated.

  18. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  19. Human actin mutations associated with hypertrophic and dilated cardiomyopathies demonstrate distinct thin filament regulatory properties in vitro.

    Science.gov (United States)

    Debold, Edward P; Saber, Walid; Cheema, Yaser; Bookwalter, Carol S; Trybus, Kathleen M; Warshaw, David M; Vanburen, Peter

    2010-02-01

    Two cardiomyopathic mutations were expressed in human cardiac actin, using a Baculovirus/insect cell system; E99K is associated with hypertrophic cardiomyopathy whereas R312H is associated with dilated cardiomyopathy. The hypothesis that the divergent phenotypes of these two cardiomyopathies are associated with fundamental differences in the molecular mechanics and thin filament regulation of the underlying actin mutation was tested using the in vitro motility and laser trap assays. In the presence of troponin (Tn) and tropomyosin (Tm), beta-cardiac myosin moved both E99K and R312H thin filaments at significantly (pATP concentration revealed similar ATP binding rates but slowed ADP release rates for the two actin mutants compared to WT. Single molecule laser trap experiments performed using both unregulated (i.e. actin) and regulated thin filaments in the absence of Ca(++) revealed that neither actin mutation significantly affected the myosin's unitary step size (d) or duration of strong actin binding (t(on)) at 20 microM ATP. However, the frequency of individual strong-binding events in the presence of Tn and Tm, was significantly lower for E99K than WT at comparable myosin surface concentrations. The cooperativity of a second myosin head binding to the thin filament was also impaired by E99K. In conclusion, E99K inhibits the activation of the thin filament by myosin strong-binding whereas R312H demonstrates enhanced calcium activation. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  1. Mechanical hysteresis in actin networks.

    Science.gov (United States)

    Majumdar, Sayantan; Foucard, Louis C; Levine, Alex J; Gardel, Margaret L

    2018-03-14

    Understanding the response of complex materials to external force is central to fields ranging from materials science to biology. Here, we describe a novel type of mechanical adaptation in cross-linked networks of F-actin, a ubiquitous protein found in eukaryotic cells. We show that shear stress changes the network's nonlinear mechanical response even long after that stress is removed. The duration, magnitude and direction of forcing history all change this mechanical response. While the mechanical hysteresis is long-lived, it can be simply erased by force application in the opposite direction. We further show that the observed mechanical adaptation is consistent with stress-dependent changes in the nematic order of the constituent filaments. Thus, this mechanical hysteresis arises from the changes in non-linear response that originates from stress-induced changes to filament orientation. This demonstrates that F-actin networks can exhibit analog read-write mechanical hysteretic properties, which can be used for adaptation to mechanical stimuli.

  2. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice.

    Science.gov (United States)

    Rensen, Sander S; Niessen, Petra M; van Deursen, Jan M; Janssen, Ben J; Heijman, Edwin; Hermeling, Evelien; Meens, Merlijn; Lie, Natascha; Gijbels, Marion J; Strijkers, Gustav J; Doevendans, Pieter A; Hofker, Marten H; De Mey, Jo G R; van Eys, Guillaume J

    2008-08-19

    Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-) mice) previously revealed a critical role for smoothelin-A in intestinal smooth muscle contraction. Here, we report on the generation and cardiovascular phenotype of mice lacking only smoothelin-B (Smtn-B(-/-)). Myograph studies revealed that the contractile capacity of the saphenous and femoral arteries was strongly reduced in Smtn-B(-/-) mice, regardless of the contractile agonist used to trigger contraction. Arteries from Smtn-A/B(-/-) compound mutant mice exhibited a similar contractile deficit. Smtn-B(-/-) arteries had a normal architecture and expressed normal levels of other smooth muscle cell-specific genes, including smooth muscle myosin heavy chain, alpha-smooth muscle actin, and smooth muscle-calponin. Decreased contractility of Smtn-B(-/-) arteries was paradoxically accompanied by increased mean arterial pressure (20 mm Hg) and concomitant cardiac hypertrophy despite normal parasympathetic and sympathetic tone in Smtn-B(-/-) mice. Magnetic resonance imaging experiments revealed that cardiac function was not changed, whereas distension of the proximal aorta during the cardiac cycle was increased in Smtn-B(-/-) mice. However, isobaric pulse wave velocity and pulse pressure measurements indicated normal aortic distensibility. Collectively, our results identify smoothelins as key determinants of arterial smooth muscle contractility and cardiovascular performance. Studies on mutations in the Smtn gene or alterations in smoothelin levels in connection to hypertension in humans are warranted.

  3. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  4. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    Science.gov (United States)

    Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  5. Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing.

    Science.gov (United States)

    Kofron, Matthew; Heasman, Janet; Lang, Stephanie A; Wylie, Christopher C

    2002-08-19

    Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of embryonic architecture. Here, we show that this is due to loss of the cortical actin skeleton after depletion of plakoglobin, whereas the microtubule and cytokeratin skeletons are still present. As a functional assay for the actin skeleton, we show that wound healing, an actin-based behavior in embryos, is also abrogated by plakoglobin depletion. Both wound healing and the amount of cortical actin are enhanced by overexpression of plakoglobin. To begin to identify links between plakoglobin and the cortical actin polymerization machinery, we show here that the Rho family GTPase cdc42, is required for wound healing in the Xenopus blastula. Myc-tagged cdc42 colocalizes with actin in purse-strings surrounding wounds. Overexpression of cdc42 dramatically enhances wound healing, whereas depletion of maternal cdc42 mRNA blocks it. In combinatorial experiments we show that cdc42 cannot rescue the effects of plakoglobin depletion, showing that plakoglobin is required for cdc42-mediated cortical actin assembly during wound healing. However, plakoglobin does rescue the effect of cdc42 depletion, suggesting that cdc42 somehow mediates the distribution or function of plakoglobin. Depletion of alpha-catenin does not remove the cortical actin skeleton, showing that plakoglobin does not mediate its effect by its known linkage through alpha-catenin to the actin skeleton. We conclude that in Xenopus, the actin skeleton is a major determinant of cell shape and overall architecture in the early embryo, and that plakoglobin plays an essential role in the assembly, maintenance, or organization of

  6. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  7. Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors.

    Science.gov (United States)

    Skau, Colleen T; Waterman, Clare M

    2015-01-01

    The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures. In this article, we describe how recent advances in cell biology and biochemistry have begun to elucidate the role of individual actin nucleation factors in generating distinct cellular structures. We also consider how the localization and orientation of actin nucleation factors, in addition to their kinetic properties, are critical to their ability to build a functional actin cytoskeleton.

  8. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    Science.gov (United States)

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  9. Titin Based Viscosity in Ventricular Physiology: An Integrative Investigation of PEVK-Actin Interactions

    Science.gov (United States)

    Chung, Charles S; Methawasin, Methajit; Nelson, O Lynne; Radke, Michael H; Hidalgo, Carlos G; Gotthardt, Michael; Granzier, Henk L

    2011-01-01

    Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In-vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in-vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in-vivo via an integrative physiological study on a unique PEVK-knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30–40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in-vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in-vivo and shows that PEVK-actin interactions are an important physiological source of viscosity. PMID:21708170

  10. Skin Layer at the Actin-Gel Surface: Quenched Protein Membranes with Flat, Crumpled and Tubular Morphologies

    Science.gov (United States)

    Hirst, L. S.

    2004-03-01

    The actin cytoskeleton is a major component of eukaryotic cells involved in key functions including cell shape and mechanical stability. We report on the discovery of a novel hierarchically structured skin-layer formed at the surface of an isotropic gel of filamentous actin bundles at high molar ratios of alpha-actinin, an actin cross-linking protein, to globular actin. Laser scanning confocal microscopy has elucidated the full 3D structure on the micron scale. The protein skin-layer, composed of a directed network of bundles, exhibits flat, crumpled and remarkable, tube-like and pleated multi-tubular morphologies, resulting from stresses due to the underlying gel. These biologically based geometric structures, which may freely detach from the gel, demonstrate potential for the generation of scaffolds with defined shapes for applications in tissue engineering and templating. Supported by NSF DMR-0203755 and CTS 0103516 and NIH GM59288.

  11. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  12. Dynamics of an F-actin aggresome generated by the actin-stabilizing toxin jasplakinolide.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Aguado, Carmen; Mato, Eugenia; Sánchez-Ruíz, Yován; Esteban, Inmaculada; Alberch, Jordi; Knecht, Erwin; Egea, Gustavo

    2008-05-01

    In this study, we report the formation of several cytoplasmic inclusion bodies composed of filamentous actin (F-actin) and generated by experimental treatments using depolymerizing or stabilizing actin toxins in neuronal and non-neuronal mammalian cell lines. The actin-stabilizing toxin jasplakinolide (Jpk) induced, in a microtubule-dependent manner, a single, large F-actin aggregate, which contained beta- and gamma-actin, ADF/cofilin, cortactin, and the actin nucleator Arp2/3. This aggregate was tightly associated with the Golgi complex and mitochondria, and was surrounded by vimentin intermediate filaments, microtubules and MAP4. Therefore, the Jpk-induced single, large F-actin aggregate fits the established criteria for being considered an aggresome. Lysosomes and/or autophagic vacuoles, proteasomes and microtubules were found to directly participate in the dissolution of this F-actin aggresome. Finally, the model reported here is simple, highly reproducible and reversible, and it provides an opportunity to test pharmacological agents that interfere with the formation, maintenance and/or disappearance of F-actin-enriched pathological inclusion bodies.

  13. Nuclear Actin and Myosins in Adenovirus Infection

    Science.gov (United States)

    Fuchsova, Beata; Serebryannyy, Leonid A.; de Lanerolle, Primal

    2015-01-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host’s transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  14. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  15. [Effect of selenium on the protection of myocardial cells from injuries induced by overloaded reactive oxygen species, and on the expression of actin in myocardial cells].

    Science.gov (United States)

    Tang, Jing; Tan, Wuhong; Zhu, Yanhe; Wang, Lixin; Zhai, Lianbang

    2012-01-01

    To investigate the effect of selenium on the protection of myocardial cells from injuries induced by H2O2 and on the expression of alpha-actin and beta-actin in myocardial cells. Myocardial cells of suckling mice in the culture were divided into six groups: Controls group (without H2O2 or Se), H2O2 group, Se 0.05 micromol/ L group, Se 0.5 micromol/L group, Se 1.0 micromol/L group and Se 5.0 micromol/L group. The ultrastructure of myocardial cells was observed by transmission electron microscope (TEM), and the LDH and MDA contents in the culture media were determined by colorimetry. The expression of alpha-actin and beta-actin in myocardial cells was detected by Western blot. The injury of myocardial cells observed under TEM was attenuated in the 0.5 micromol/L Se group. The LDH and MDA contents in the culture media of the Se groups was higher than the control group (P contents in the 0.5 micromol/L Se group were the lowest in all Se groups. The expression level of alpha-actin and beta-actin in the 0.5 micromol/L Se group is higher than that in the H2O2 group, even higher than the control group. The protective effect of Se on myocardial cells damaged by H2O2 was better in the 0.5 micromol/ LSe group, which could maintain the expression of alpha-actin and beta-actin, even induce the remolding of cytoskeleton proteins.

  16. Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments.

    Science.gov (United States)

    Bubb, M R; Spector, I; Bershadsky, A D; Korn, E D

    1995-02-24

    Swinholide A, isolated from the marien sponge Theonella swinhoei, is a 44-carbon ring dimeric dilactone macrolide with a 2-fold axis of symmetry. Recent studies have elucidated its unusual structure and shown that it has potent cytotoxic activity. We now report that swinholide A disrupts the actin cytoskeleton of cells grown in culture, sequesters actin dimers in vitro in both polymerizing and non-polymerizing buffers with a binding stoichiometry of one swinholide A molecule per actin dimer, and rapidly severs F-actin in vitro with high cooperativity. These unique properties are sufficient to explain the cytotoxicity of swinholide A. They also suggest that swinholide A might be a model for studies of the mechanism of action of F-actin severing proteins and be therapeutically useful in conditions where filamentous actin contributes to pathologically high viscosities.

  17. Conformational changes in actin induced by its interaction with gelsolin.

    Science.gov (United States)

    Khaitlina, S; Hinssen, H

    1997-08-01

    Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.

  18. Structural differences explain diverse functions of Plasmodium actins.

    Directory of Open Access Journals (Sweden)

    Juha Vahokoski

    2014-04-01

    Full Text Available Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties.

  19. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  20. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea)

    Science.gov (United States)

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-01-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  1. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea

    Directory of Open Access Journals (Sweden)

    Ligia Cristina Kalb Souza

    2013-08-01

    Full Text Available Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major, insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis and plants (Phytomonas serpens. A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

  2. Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion

    Directory of Open Access Journals (Sweden)

    Jiro Takito

    2017-07-01

    Full Text Available The aim of this study was to elucidate the role of the zipper-like structure (ZLS, a podosome-related structure that transiently appears at the cell contact zone, in osteoclast fusion. Live-cell imaging of osteoclasts derived from RAW264.7 cells transfected with EGFP-actin revealed consistent symmetrical retrograde actin flow in the ZLS, but not in the podosome cluster, the podosome ring or the podosome belt. Confocal imaging showed that the distributions of F-actin, vinculin, paxillin and zyxin in the ZLS were different from those in the podosome belt. Thick actin filament bundles running outside the ZLS appeared to recruit non-muscle myosin IIA. The F-actin-rich domain of the ZLS contained actin-related protein 2/3 complex (Arp2/3. Inhibition of Arp2/3 activity disorganized the ZLS, disrupted actin flow, deteriorated cell-cell adhesion and inhibited osteoclast hypermultinucleation. In contrast, ML-7, an inhibitor of myosin light chain kinase, had little effect on the structure of ZLS and promoted osteoclast hypermultinucleation. These results reveal a link between actin flow in the ZLS and osteoclast fusion. Osteoclast fusion was promoted by branched actin elongation and negatively regulated by actomyosin contraction.

  3. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.

    2017-01-01

    optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse....... This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament...... as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions....

  4. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  5. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  6. Integration of linear and dendritic actin nucleation in Nck-induced actin comets.

    Science.gov (United States)

    Borinskaya, Sofya; Velle, Katrina B; Campellone, Kenneth G; Talman, Arthur; Alvarez, Diego; Agaisse, Hervé; Wu, Yi I; Loew, Leslie M; Mayer, Bruce J

    2016-01-15

    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails--dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens. © 2016 Borinskaya et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  8. Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton.

    Science.gov (United States)

    Marat, Andrea L; Ioannou, Maria S; McPherson, Peter S

    2012-01-01

    The small GTPase Rab35 regulates endosomal membrane trafficking but also recruits effectors that modulate actin assembly and organization. Differentially expressed in normal and neoplastic cells (DENN)-domain proteins are a newly identified class of Rab guanine-nucleotide exchange factors (GEFs) that are grouped into eight families, each activating a common Rab. The members of one family, connecdenn 1-3/DENND1A-C, are all GEFs for Rab35. Why Rab35 requires multiple GEFs is unknown. We demonstrate that connecdenn 3 uses a unique C-terminal motif, a feature not found in connecdenn 1 or 2, to directly bind actin. This interaction couples Rab35 activation to the actin cytoskeleton, resulting in dramatic changes in cell shape, notably the formation of protrusive membrane extensions. These alterations are specific to Rab35 activated by connecdenn 3 and require both the actin-binding motif and N-terminal DENN domain, which harbors the GEF activity. It was previously demonstrated that activated Rab35 recruits the actin-bundling protein fascin to actin, but the relevant GEF for this activity was unknown. We demonstrate that connecdenn 3 and Rab35 colocalize with fascin and actin filaments, suggesting that connecdenn 3 is the relevant GEF. Thus, whereas connecdenn 1 and 2 activate Rab35 for endosomal trafficking, connecdenn 3 uniquely activates Rab35 for its role in actin regulation.

  9. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting

  10. The Cell Surface Structure of Tumor Endothelial Marker 8 (TEM8) is Regulated by the Actin Cytoskeleton

    OpenAIRE

    Yang, Mi Young; Chaudhary, Amit; Seaman, Steven; Dunty, Jill; Stevens, Janine; Elzarrad, Mohammed K.; Frankel, Arthur E.; St. Croix, Brad

    2010-01-01

    Tumor Endothelial Marker 8 (TEM8) is an integrin-like cell surface protein upregulated on tumor blood vessels and a potential vascular target for cancer therapy. Here, we found that the ability of an anti-TEM8 antibody, clone SB5, to recognize the extracellular domain of TEM8 on the cell surface depends on other host-cell factors. By taking advantage of SB5’s ability to distinguish different forms of cell-surface TEM8, we identified alpha-smooth muscle actin and transgelin, an actin binding p...

  11. Green fluorescent protein-mtalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Hussey, P.J.

    2004-01-01

    Expression of green fluorescent protein (GFP) linked to an actin binding domain is a commonly used method for live cell imaging of the actin cytoskeleton. One of these chimeric proteins is GFP-mTalin (GFP fused to the actin binding domain of mouse talin). Although it has been demonstrated that

  12. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  13. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD) toxin.

    Science.gov (United States)

    Kudryashova, Elena; Kalda, Caitlin; Kudryashov, Dmitri S

    2012-01-01

    Actin Crosslinking Domain (ACD) is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5) = 30 µM) reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+)-GTP to support crosslinking, but the kinetic parameters (K(M) = 8 µM and 50 µM for ATP and GTP, respectively) suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  14. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  15. Antibodies to actin in autoimmune haemolytic anaemia

    Directory of Open Access Journals (Sweden)

    Ritzmann Mathias

    2010-03-01

    Full Text Available Abstract Background In autoimmune haemolytic anaemia (AIHA, autoreactive antibodies directed against red blood cells are up-regulated, leading to erythrocyte death. Mycoplasma suis infections in pigs induce AIHA of both the warm and cold types. The aim of this study was to identify the target autoantigens of warm autoreactive IgG antibodies. Sera from experimentally M. suis-infected pigs were screened for autoreactivity. Results Actin-reactive antibodies were found in the sera of 95% of all animals tested. The reactivity was species-specific, i.e. reactivity with porcine actin was significantly higher than with rabbit actin. Sera of animals previously immunised with the M. suis adhesion protein MSG1 showed reactivity with actin prior to infection with M. suis indicating that molecular mimicry is involved in the specific autoreactive mechanism. A potentially cross-reactive epitope was detected. Conclusions This is the first report of autoreactive anti-actin antibodies involved in the pathogenesis of autoimmune haemolytic anaemia.

  16. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  17. Nuclear Actin and Lamins in Viral Infections

    Science.gov (United States)

    Cibulka, Jakub; Fraiberk, Martin; Forstova, Jitka

    2012-01-01

    Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections. PMID:22590674

  18. Buffett's Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting-Against-Beta...... in publicly traded stocks versus wholly-owned private companies, we find that the former performs the best, suggesting that Buffett's returns are more due to stock selection than to his effect on management. These results have broad implications for market efficiency and the implementability of academic...

  19. HIV infection of T cells: actin-in and actin-out.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Shaw, Stephen

    2009-04-14

    Three studies shed light on the decade-old observation that the actin cytoskeleton is hijacked to facilitate entry of HIV into its target cells. Polymerization of actin is required to assemble high concentrations of CD4 and CXCR4 at the plasma membrane, which promote viral binding and entry in both the simple model of infection by free virus and the more physiologically relevant route of infection through the virological synapse. Three types of actin-interacting proteins-filamin, ezrin/radixin/moesin (ERM), and cofilin-are now shown to play critical roles in this process. Filamin binds to both CD4 and CXCR4 in a manner promoted by signaling of the HIV gp120 glycoprotein. ERM proteins attach actin filaments to the membrane and may promote polymerization of actin. Early in the process of viral entry, cofilin is inactivated, which is proposed to facilitate the early assembly of actin filaments, but cofilin is reported to be activated soon thereafter to facilitate postentry events. This complex role of cofilin may help to reconcile the paradox that actin polymerization promotes initial binding and fusion steps but inhibits some subsequent early postentry events.

  20. Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments.

    Science.gov (United States)

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-08-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Non-Straub type actin from molluscan catch muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shelud' ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.; Vyatchin, Ilya G.

    2016-05-27

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.

  2. The role of actin and myosin during spermatogenesis.

    Science.gov (United States)

    Sun, Xiao; Kovacs, Tamas; Hu, Yan-Jun; Yang, Wan-Xi

    2011-08-01

    Spermatogenesis is a transitionary process in which the diploid spermatogonia transform into haploid mature spermatozoa. Actin and myosin have been implicated in various aspects during spermatogenesis. Actin is present in the form of monomer, oligomer and polymer within cells, the latter is called microfilament. There are five actin-containing structures during spermatogenesis, i.e., ectoplasmic specialization, acroplaxome, manchette in mammals, actin cones in Drosophila and acroframosome in Caridean shrimp. They are involved in the shaping and differentiating of spermatids. Along with spermatogenesis, the actin cytoskeletons show active remodeling in this process. Some actin binding or actin regulated proteins have been demonstrated to regulate dynamic changes of the actin-containing structures. Myosin, actin-dependent molecular motor, plays an important role during spermatogenesis, such as involving in acrosome biogenesis, vesicle transport, gene transcription and nuclear shaping. The actin cytoskeleton and actin binding/regulated proteins cooperate to facilitate spermatogenesis. In this review, we summarize the existing knowledge about the cytoskeletal structures consisting of actin, actin binding/regulated proteins and myosin during spermatogenesis.

  3. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin

    OpenAIRE

    Newman, J.; Zaner, K.S.; Schick, K.L.; Gershman, L.C.; Selden, L.A.; Kinosian, H.J.; Travis, J.L.; Estes, J.E.

    1993-01-01

    It has recently been reported that polymer actin made from monomer containing ATP (ATP-actin) differed in EM appearance and rheological characteristics from polymer made from ADP-containing monomers (ADP-actin). Further, it was postulated that the ATP-actin polymer was more rigid due to storage of the energy released by ATP hydrolysis during polymerization (Janmey et al. 1990. Nature 347:95-99). Electron micrographs of our preparations of ADP-actin and ATP-actin polymers show no major differe...

  4. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  5. STRUCTURE AND FUNCTION OF PALLADIN’S ACTIN BINDING DOMAIN

    Science.gov (United States)

    Beck, Moriah R.; Dixon, Richard D.S.; Goicoechea, Silvia M.; Murphy, Grant S.; Brungardt, Joseph G.; Beam, Matthew T.; Srinath, Pavan; Patel, Julie; Mohiuddin, Jahan; Otey, Carol A.; Campbell, Sharon L.

    2013-01-01

    Here we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct F-actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and crosslinking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin crosslinking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo. PMID:23806659

  6. Assessing the influence of actinic keratosis on patients' quality of life - The AKQoL questionnaire

    DEFF Research Database (Denmark)

    Esmann, S; Vinding, G R; Christensen, K B

    2013-01-01

    BACKGROUND: Limited knowledge is available regarding quality of life in patients with actinic keratosis (AK). OBJECTIVES: To develop and validate a disease-specific questionnaire - the Actinic Keratosis Quality of Life questionnaire (AKQoL) - to assess the quality of life of patients with AK...... and to refine the items further. Rasch analyses were performed on the final questionnaire. RESULTS: Initially, 175 items were tested in a mega-questionnaire. The questionnaires were sent out twice and statistical analyses were made, reducing the number of questions to 18 and 10, respectively. Subsequent inter......-item correlations showed that one item had only a weak correlation to the rest of the scale. This was confirmed by the Rasch model and by internal consistency as evaluated by Cronbach's coefficient alpha. Only one item was found to provide a small sex difference. A Bland-Altman plot showed excellent reliability...

  7. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  8. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  9. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    Science.gov (United States)

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling. PMID:24284900

  10. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    Science.gov (United States)

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  11. Altered Actin Dynamics and Functions of Osteoblast-Like Cells in Parabolic Flight may Involve ERK1/2

    Science.gov (United States)

    Dai, Zhongquan; Tan, Yingjun; Yang, Fen; Qu, Lina; Zhang, Hongyu; Wan, Yumin; Li, Yinghui

    2011-01-01

    Osteoblasts are sensitive to mechanical stressors such as gravity and alter their cytoskeletons and functions to adapt; however, the contribution of gravity to this phenomenon is not well understood. In this study, we investigated the effects of acute gravitational changes on the structure and function of osteoblast ROS17/2.8 as generated by parabolic flight. The changes in microfilament cytoskeleton was observed by immunofluorescence stain of Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I for F-actin and G-actin, respectively. To examine osteoblast function, ALP (alkaline phosphatase) activity, osteocalcin secretions and the expression of ALP, COL1A1 (collagen type I alpha 1 chain) and osteocalcin were detected by modified Gomori methods, radioimmunity and RT-PCR, respectively. Double fluorescence staining of phosphorylated p44/42 and F-actin were performed to observe their colocalization relationship. The established semi-quantitative analysis method of fluorescence intensity of EGFP was used to detect the activity changes of COL1A1 promoter in EGFP-ROS cells with MAPK inhibitor PD98059 or F-actin inhibitor cytochalasin B. Results indicate that the altered gravity induced the reorganization of microfilament cytoskeletons of osteoblasts. After 3 h parabolic flight, F-actin of osteoblast cytoskeleton became thicker and directivity, whereas G-actin shrunk and became more concentrated at the edge of nucleus. The excretion of osteocalcin, the activity of ALP and the expression of mRNA decreased. Colocalization analysis indicated that phosphorylated p44/42 MAPK was coupled with F-actin. Inhibitor PD98059 and cytochalasin B decreased the fluorescence intensity of EGFP-ROS cells. Above results suggest that short time gravity variations induce the adjustment of osteoblast structure and functional and ERK1/2 signaling maybe involve these responses. We believe that it is an adaptive method of the osteoblasts to gravity alteration that structure

  12. ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling.

    Science.gov (United States)

    Xiang, Yun; Huang, Xi; Wang, Ting; Zhang, Yan; Liu, Qinwen; Hussey, Patrick J; Ren, Haiyun

    2007-06-01

    Villin/gelsolin/fragmin superfamily proteins have been shown to function in tip-growing plant cells. However, genes encoding gelsolin/fragmin do not exist in the Arabidopsis thaliana and rice (Oryza sativa) databases, and it is possible that these proteins are encoded by villin mRNA splicing variants. We cloned a 1006-bp full-length cDNA from Lilium longiflorum that encodes a 263-amino acid predicted protein sharing 100% identity with the N terminus of 135-ABP (Lilium villin) except for six C-terminal amino acids. The deduced 29-kD protein, Lilium ACTIN BINDING PROTEIN29 (ABP29), contains only the G1 and G2 domains and is the smallest identified member of the villin/gelsolin/fragmin superfamily. The purified recombinant ABP29 accelerates actin nucleation, blocks barbed ends, and severs actin filaments in a Ca(2+)- and/or phosphatidylinositol 4,5-bisphosphate-regulated manner in vitro. Microinjection of the protein into stamen hair cells disrupted transvacuolar strands whose backbone is mainly actin filament bundles. Transient expression of ABP29 by microprojectile bombardment of lily pollen resulted in actin filament fragmentation and inhibited pollen germination and tube growth. Our results suggest that ABP29 is a splicing variant of Lilium villin and a member of the villin/gelsolin/fragmin superfamily, which plays important roles in rearrangement of the actin cytoskeleton during pollen germination and tube growth.

  13. Actin, actin-related proteins and profilin in diatoms: a comparative genomic analysis.

    Science.gov (United States)

    Aumeier, Charlotte; Polinski, Ellen; Menzel, Diedrik

    2015-10-01

    Diatoms are heterokont unicellular algae with a widespread distribution throughout all aquatic habitats. Research on diatoms has advanced significantly over the last decade due to available genetic transformation methods and publicly available genome databases. Yet up to now, proteins involved in the regulation of the cytoskeleton in diatoms are largely unknown. Consequently, this work focuses on actin and actin-related proteins (ARPs) encoded in the diatom genomes of Thalassiosira pseudonana, Thalassiosira oceanica, Phaeodactylum tricornutum, Fragilariopsis cylindrus and Pseudo-nitzschia multiseries. Our comparative genomic study revealed that most diatoms possess only a single conventional actin and a small set of ARPs. Among these are the highly conserved cytoplasmic Arp1 protein and the nuclear Arp4 as well as Arp6. Diatom genomes contain genes coding for two structurally different homologues of Arp4 that might serve specific functions. All diatom species examined here lack ARP2 and ARP3 proteins, suggesting that diatoms are not capable of forming the Arp2/3 complex, which is essential in most eukaryotes for actin filament branching and plus-end dynamics. Interestingly, none of the sequenced representatives of the Bacillariophyta phylum code for profilin. Profilin is an essential actin-binding protein regulating the monomer actin pool and is involved in filament plus-end dynamics. This is the first report of organisms not containing profilin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  15. The origin and evolution of green algal and plant actins.

    Science.gov (United States)

    An, S S; Möpps, B; Weber, K; Bhattacharya, D

    1999-02-01

    The Viridiplantae are subdivided into two groups: the Chlorophyta, which includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinophyceae; and the Streptophyta, which includes the Charophyceae and all land plants. Within the Streptophyta, the actin genes of the angiosperms diverge nearly simultaneously from each other before the separation of monocots and dicots. Previous evolutionary analyses have provided limited insights into the gene duplications that have produced these complex gene families. We address the origin and diversification of land plant actin genes by studying the phylogeny of actins within the green algae, ferns, and fern allies. Partial genomic sequences or cDNAs encoding actin were characterized from Cosmarium botrytis (Zygnematales), Selaginella apoda (Selaginellales), Anemia phyllitidis (Polypodiales), and Psilotum triquetrum (Psilotales). Selaginella contains at least two actin genes. One sequence (Ac2) diverges within a group of fern sequences that also includes the Psilotum Ac1 actin gene and one gymnosperm sequence (Cycas revoluta Cyc3). This clade is positioned outside of the angiosperm actin gene radiation. The second Selaginella sequence (Ac1) is the sister to all remaining land plant actin sequences, although the internal branches in this portion of the tree are very short. Use of complete actin-coding regions in phylogenetic analyses provides support for the separation of angiosperm actins into two classes. N-terminal "signature" sequence analyses support these groupings. One class (VEG) includes actin genes that are often expressed in vegetative structures. The second class (REP) includes actin genes that trace their ancestry within the vegetative actins and contains members that are largely expressed in reproductive structures. Analysis of intron positions within actin genes shows that sequences from both Selaginella and Cosmarium contain the conserved 20-3, 152-1, and 356-3 introns found in many members of the

  16. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    Science.gov (United States)

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  17. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics

    DEFF Research Database (Denmark)

    Li, M.-M.; Shi, Y.; Niu, Y.

    2013-01-01

    -type but not catalytically inactive ALKBH4. Similar to actin and myosin knock-out mice, homozygous Alkbh4 mutant mice display early embryonic lethality. These findings imply that ALKBH4-dependent actin demethylation regulates actomyosin function by promoting actin-non-muscle myosin II interaction.......-dependent processes such as cytokinesis and cell migration. ALKBH4-deficient cells display elevated K84me1 levels. Non-muscle myosin II only interacts with unmethylated actin and its proper recruitment to and interaction with actin depend on ALKBH4. ALKBH4 co-localizes with the actomyosin-based contractile ring...

  18. Interaction Between Troponin and Myosin Enhances Contractile Activity of Myosin in Cardiac Muscle

    OpenAIRE

    Schoffstall, Brenda; LaBarbera, Vincent A.; Brunet, Nicolas M.; Gavino, Belinda J.; Herring, Lauren; Heshmati, Sara; Kraft, Brittany H.; Inchausti, Vanessa; Meyer, Nancy L.; Moonoo, Danamarie; Takeda, Aya K.; Chase, Prescott Bryant

    2011-01-01

    Ca2+ signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility a...

  19. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  20. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    Science.gov (United States)

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  1. Cardiac Rehabilitation

    Science.gov (United States)

    ... may also do muscle-strengthening exercises, such as lifting weights or other resistance training exercises, two or three ... health concerns. Education about nutrition, lifestyle and healthy weight ... the most benefits from cardiac rehabilitation, make sure your exercise and ...

  2. Cardiac MRI

    Science.gov (United States)

    ... such as coronary heart disease, heart valve problems, pericarditis, cardiac tumors, or damage from a heart attack. ... Palpitations Heart Valve Disease Implantable Cardioverter Defibrillators Pacemakers Pericarditis Stress Testing RELATED NEWS April 26, 2013 | News ...

  3. Profilin connects actin assembly with microtubule dynamics

    Czech Academy of Sciences Publication Activity Database

    Nejedla, M.; Sadi, S.; Sulimenko, Vadym; de Almeida, F.N.; Blom, H.; Dráber, Pavel; Aspenstrom, P.; Karlsson, R.

    2016-01-01

    Roč. 27, č. 15 (2016), s. 2381-2393 ISSN 1059-1524 R&D Projects: GA ČR GA16-25159S Institutional support: RVO:68378050 Keywords : cross-linked profilin * arp2/3 complex * f-actin * microfilament system * migrating cell s * focal adhesions * cultured- cell s * messenger-rna * living cell s * protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.685, year: 2016

  4. Late complications of rxtherapy: actinic sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Buffat, J.D.

    1975-09-09

    Relation of two cases of benign tumors: a vertebral osteoblastoma and a cerebellar medulloblastoma which, after operation, have had radiotherapy. 20 years later for one case and 14 years for the other one actinic sarcomas will appear, and, in spite of usual therapy, the death is coming rapidly. We are certainly in presence of two exceptional cases, but each physician must be conscious, before to attempt a treatment, that very distant complication can eventually occur.

  5. Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

    Science.gov (United States)

    Shmist, Yelena A; Goncharov, Igor; Eichler, Maor; Shneyvays, Vladimir; Isaac, Ahuva; Vogel, Zvi; Shainberg, Asher

    2006-02-01

    Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions, but the defence mechanism is still unclear. The present study was designed to investigate the central (CB1) and the peripheral (CB2) cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia. Pre-treatment of cardiomyocytes that were grown in vitro with 0.1 - 10 microM THC for 24 h prevented hypoxia-induced lactate dehydrogenase (LDH) leakage and preserved the morphological distribution of alpha-sarcomeric actin. The antagonist for the CB2 (10 microM), but not CB1 receptor antagonist (10 microM) abolished the protective effect of THC. In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors. Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors. L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC. Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production. An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.

  6. Cardiac Angiosarcoma

    Directory of Open Access Journals (Sweden)

    Monique Esteves Cardoso

    2011-01-01

    Full Text Available Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  7. Cardiac Angiosarcoma

    OpenAIRE

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  8. Cardiac Angiosarcoma

    Science.gov (United States)

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis. PMID:24826214

  9. Cardiac troponin: an emerging cardiac biomarker in animal health

    Directory of Open Access Journals (Sweden)

    Vishal V. Undhad

    Full Text Available Analysis of cardiac troponin I (cTn I and T (cTnT are considered the “gold standard” for the non-invasive diagnosis of myocardial injury in human and animals. It has replaced traditionally used cardiac biomarkers such as myoglobin, lactate dehydrogenase (LDH, creatine kinase (CK and CK-MB due to its high sensitivity and specificity for the detection of myocardial injury. Cardiac troponins are proteins that control the calcium-mediated interaction between actin and myosin, allowing contraction at the sarcomere level. Concentration of the cTn can be correlated microscopic lesion and loss of immunolabeling in myocardium damage. Troponin concentration remains elevated in blood for 1-2wks so that wide window is available for diagnosis of myocardial damage. The cTn test has >95% specificity and sensitivity and test is less time consuming (10 to 15 minutes and less costly (INR 200 to INR 500. [Vet. World 2012; 5(8.000: 508-511

  10. Capping protein binding to S100B: implications for the tentacle model for capping the actin filament barbed end.

    Science.gov (United States)

    Wear, Martin A; Cooper, John A

    2004-04-02

    S100B binds tightly to a 12-amino acid peptide derived from heterodimeric capping protein. In native intact capping protein, this sequence is in the C terminus of the alpha-subunit, which is important for capping the actin filament. This C-terminal region is proposed to act as a flexible "tentacle," extending away from the body of capping protein in order to bind actin. To this hypothesis, we analyzed the interaction between S100B and capping protein in solution. The C-terminal 28 amino acids of the alpha-subunit, the proposed tentacle, bound to S100B as a free synthetic peptide or a glutathione S-transferase fusion (K(d) approximately 0.4-1 microm). In contrast, S100B did not bind to whole native capping protein or functionally affect its capping activity. S100B does not bind, with any significant affinity, to the proposed alpha-tentacle sequence of whole native capping protein in solution. In the NMR structure of S100B complexed with the alpha-subunit-derived 12-amino acid peptide, the hydrophobic side of a short alpha-helix in the peptide, containing an important tryptophan residue, contacts S100B. In the x-ray structure of native capping protein, the corresponding sequence of the alpha-subunit C terminus, including Trp(271), interacts closely with the body of the protein. Therefore, our results suggest the alpha-subunit C terminus is not mobile as predicted by the tentacle model. Addition of non-ionic detergent allowed whole capping protein to bind weakly to S100B, indicating that the alpha-subunit C terminus can be mobilized from the surface of the capping protein molecule, presumably by weakening the hydrophobic binding at the contact site.

  11. Localizations of γ-Actins in Skin, Hair, Vibrissa, Arrector Pili Muscle and Other Hair Appendages of Developing Rats

    International Nuclear Information System (INIS)

    Morioka, Kiyokazu; Takano-Ohmuro, Hiromi

    2016-01-01

    Six isoforms of actins encoded by different genes have been identified in mammals including α-cardiac, α-skeletal, α-smooth muscle (α-SMA), β-cytoplasmic, γ-smooth muscle (γ-SMA), and γ-cytoplasmic actins (γ-CYA). In a previous study we showed the localization of α-SMA and other cytoskeletal proteins in the hairs and their appendages of developing rats (Morioka K., et al. (2011) Acta Histochem. Cytochem. 44, 141–153), and herein we determined the localization of γ type actins in the same tissues and organs by immunohistochemical staining. Our results indicate that the expression of γ-SMA and γ-CYA is suggested to be poor in actively proliferating tissues such as the basal layer of the epidermis and the hair matrix in the hair bulb, and as well as in highly keratinized tissues such as the hair cortex and hair cuticle. In contrast, the expression of γ-actins were high in the spinous layer, granular layer, hair shaft, and inner root sheath, during their active differentiations. In particular, the localization of γ-SMA was very similar to that of α-SMA. It was located not only in the arrector pili muscles and muscles in the dermis, but also in the dermal sheath and in a limited area of the outer root sheath in both the hair and vibrissal follicles. The γ-CYA was suggested to be co-localized with γ-SMA in the dermal sheath, outer root sheath, and arrector pili muscles. Sparsely distributed dermal cells expressed both types of γ-actin. The expression of γ-actins is suggested to undergo dynamic changes according to the proliferation and differentiation of the skin and hair-related cells

  12. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. © 2015. Published by The Company of Biologists Ltd.

  13. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    International Nuclear Information System (INIS)

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J.

    1990-01-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  14. Stress generation by myosin minifilaments in actin bundles.

    Science.gov (United States)

    Dasanayake, Nilushi L; Carlsson, Anders E

    2013-06-01

    Forces and stresses generated by the action of myosin minifilaments are analyzed in idealized computer-generated actin bundles, and compared to results for isotropic actin networks. The bundles are generated as random collections of actin filaments in two dimensions with constrained orientations, crosslinked and attached to two fixed walls. Myosin minifilaments are placed on actin filament pairs and allowed to move and deform the network so that it exerts forces on the walls. The vast majority of simulation runs end with contractile minifilament stress, because minifilaments rotate into energetically stable contractile configurations. This process is aided by the bending and stretching of actin filaments, which accomodate minifilament rotation. Stresses for bundles are greater than those for isotropic networks, and antiparallel filaments generate more tension than parallel filaments. The forces transmitted by the actin network to the walls of the simulation cell often exceed the tension in the minifilament itself.

  15. Covalent interactions of acetaldehyde with the actin/microfilament system.

    Science.gov (United States)

    Xu, D S; Jennett, R B; Smith, S L; Sorrell, M F; Tuma, D J

    1989-01-01

    The covalent binding of [14C]acetaldehyde to purified rabbit skeletal muscle actin was characterized. As we have found for other cytoskeletal proteins, actin formed stable covalent adducts under reductive and non-reductive conditions. Under non-reductive conditions, individual and competition binding studies versus albumin both showed that the G-form of actin is more reactive toward acetaldehyde than the F-form. When proteins were compared on an 'equi-lysine' basis under non-reducing conditions, G-actin was found to preferentially compete with albumin for binding to acetaldehyde. Time-course dialysis studies indicated that acetaldehyde-actin adducts become more stable with prolonged incubation at 37 degrees C. These data raise the possibility that actin could be a preferential target for adduct formation in cellular systems and will serve as the basis for ongoing studies aimed at defining the role of acetaldehyde-protein adducts in ethanol-induced cell injury.

  16. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

    Science.gov (United States)

    Takeda, Shuichi; Minakata, Shiho; Koike, Ryotaro; Kawahata, Ichiro; Narita, Akihiro; Kitazawa, Masashi; Ota, Motonori; Yamakuni, Tohru; Maéda, Yuichiro; Nitanai, Yasushi

    2010-07-06

    The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the

  17. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  18. Ca2+ bound to the high affinity divalent cation-binding site of actin enhances actophorin-induced depolymerization of muscle F-actin but inhibits actophorin-induced depolymerization of Acanthamoeba F-actin.

    Science.gov (United States)

    Mossakowska, M; Korn, E D

    1996-08-01

    The cation tightly bound to actin, Mg2+ or Ca2+, affects the ability of actophorin to accelerate depolymerization of filaments and bind to monomers of actin prepared from rabbit skeletal muscle and Acanthamoeba castellanii. Actophorin interacted similarly with muscle and Acanthamoeba Mg2(+)-F-actin but depolymerized muscle Mg2(+)-F-actin more efficiently. Muscle Ca2(+)-F-actin depolymerized about 5 times more rapidly than Mg2(+)-F-actin in the presence of actophorin but Acanthamoeba Ca2(+)-F-actin was highly resistant to actophorin. Muscle actin subunits dissociated more rapidly than Acanthamoeba actin subunits from copolymers of muscle and Acanthamoeba Ca2(+)-actin upon addition of actophorin although Acanthamoeba actin dissociated much more rapidly from copolymers than from its homopolymer. The Kd of the 1:1 complex between actophorin and monomeric actin was somewhat lower for muscle Mg2(+)-ATP-G-actin than for both Acanthamoeba Mg2(+)-ATP-G-actin and muscle Ca2(+)-ATP-G-actin. The data for the interactions of actophorin with Acanthamoeba Ca2(+)-ATP-G-actin or muscle and amoeba Mg2(+)- and Ca2(+)-ADP-G-actin were incompatible with the formation of 1:1 actin: actophorin complexes and, thus, Kd values could not be calculated. While it may not be surprising that actophorin would interact differently with Mg2(+)- and Ca2(+)-actin, it is unexpected that the nature of the tightly bound cation would have such dramatically opposite effects on the ability of actophorin to depolymerize muscle and Acanthamoeba F-actin. Differential severing by actophorin, with Acanthamoeba Ca2(+)-actin being almost totally resistant, is sufficient to explain the results but other possibilities cannot be ruled out.

  19. [Cardiac amyloidosis].

    Science.gov (United States)

    Boussabah, Elhem; Zakhama, Lilia; Ksontini, Iméne; Ibn Elhadj, Zied; Boukhris, Besma; Naffeti, Sana; Thameur, Moez; Ben Youssef, Soraya

    2008-09-01

    PREREQUIS: Amyloidosis is a rare infiltrative disease characterized by multiple clinical features. Various organs are involved and the cardiovascular system is a common target of amyloidosis. Cardiac involvement may occur with or without clinical manifestations and is considered as a major prognostic factor. To analyze the clinical features of cardiac involvement, to review actual knowledgement concerning echocardiographic diagnostic and to evaluate recent advances in treatment of the disease. An electronic search of the relevant literature was carried out using Medline and Pubmed. Keys words used for the final search were amyloidosis, cardiopathy and echocardiography. We considered for analysis reviews, studies and articles between 1990 and 2007. Amyloidosis represents 5 to 10% of non ischemic cardiomyoparhies. Cardiac involvement is the first cause of restrictive cardiomyopathy witch must be evoked in front of every inexplained cardiopathy after the age of forty. The amyloid nature of cardiopathy is suggered if some manifestations were associated as a peripheric neuropathy, a carpal tunnel sydrome and proteinuria > 3g/day. Echocardiography shows dilated atria, a granular sparkling appearance of myocardium, diastolic dysfunction and thickened left ventricle contrasting with a low electric voltage. The proof of amyloidosis is brought by an extra-cardiac biopsy, the indications of endomyocardial biopsy are very limited. The identification of the amyloid nature of cardiopathy has an direct therapeutic implication: it indicates the use of digitalis, calcium channel blockers and beta-blockers. Today the treatment of amyloidosis remains very unsatisfactory especially in the cardiac involvement. An early diagnosis before the cardiac damage may facilitate therapy and improve prognosis.

  20. A Robust Actin Filaments Image Analysis Framework.

    Directory of Open Access Journals (Sweden)

    Mitchel Alioscha-Perez

    2016-08-01

    Full Text Available The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale. Based on this observation, we propose a three-steps actin filaments extraction methodology: (i first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in

  1. Myosin Vs organize actin cables in fission yeast.

    Science.gov (United States)

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G

    2012-12-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.

  2. Probing actin polymerization by intermolecular cross-linking

    OpenAIRE

    1988-01-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an app...

  3. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii

    Science.gov (United States)

    1991-01-01

    Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate. PMID:1757465

  4. Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*

    Science.gov (United States)

    Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland

    2013-01-01

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468

  5. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  6. Daylight photodynamic therapy for actinic keratosis

    DEFF Research Database (Denmark)

    Wiegell, Stine; Wulf, H C; Szeimies, R-M

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently long...... clinic visits and discomfort during therapy. In this article, we critically review daylight-mediated PDT, which is a simpler and more tolerable treatment procedure for PDT. We review the effective light dose, efficacy and safety, the need for prior application of sunscreen, and potential clinical scope...

  7. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...

  8. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  9. Intrahepatic expression of interferon alpha & interferon alpha ...

    African Journals Online (AJOL)

    kemrilib

    Alpha m-RNA while 30% only expressed Interferon Alpha Receptor m-RNA. Responders and non-responders to Interferon therapy ... expression of IFN Alpha Receptor mRNA. Regardless of the response to interferon, histological .... generation reverse hybridisation, line probe assay. (Inno-LiPA HCV II; Innogenetics, Ghent,.

  10. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  11. Plasmin enzymatic activity in the presence of actin

    Directory of Open Access Journals (Sweden)

    Yusova E. I.

    2015-10-01

    Full Text Available Aim. To study the changes in the plasmin activity towards substrates with high and low molecular mass in the presence of actin. Methods. The proteins used for this investigation were obtained by affinity chromatography and gel-filtration. The plasmin enzymatic activity was determined by a turbidimetric assay and a chromogenic substrate-based assay. The enzyme linked immunosorbent assay and biotin-avidin-phosphatase system were used to study the interaction of plasminogen and its fragments with actin. Results. It was shown that G-actin causes 1.5-fold decrease in the rate of polymeric fibrin hydrolysis by plasmin and Glu-plasminogen activated by the tissue plasminogen activator. However, actin did not impede plasmin autolysis and had no influence on its amidase activity. We have studied an interaction of biotinylated Glu-plasminogen and its fragments (kringle 1-3, kringle 4 and mini-plasminogen with immobilized G-actin. Glu-plasminogen and kringle 4 had a high affinity towards actin (C50 is 113 and 117 nM correspondingly. Mini-plasminogen and kringe 4 did not bind to actin. A similar affinity of Glu-plasminogen and kringle 1-3 towards actin proves the involvement of the kringle 1-3 lysine-binding sites of the native plasminogen form in the actin interaction. Conclusions. Actin can modulate plasmin specificity towards high molecular mass substrates through its interaction with lysine-binding sites of the enzyme kringle domains. Actin inhibition of the fibrinolytic activity of plasmin is due to its competition with fibrin for thelysine binding sites of plasminogen/plasmin.

  12. Force Transmission in the Actin Cytoskeleton

    Science.gov (United States)

    Gardel, Margaret

    2012-02-01

    The ability of cells to sense and generate mechanical forces is essential to numerous aspects of their physiology, including adhesion, migration, division and differentiation. To a large degree, cellular tension is regulated by the transmission of myosin II-generated forces through the filamentous actin (F-actin) cytoskeleton. While transmission of myosin-generated stresses from the molecular to cellular length scale is well understood in the context of highly organized sarcomeres found in striated muscle, non-muscle and smooth muscle cells contain a wide variety of bundles and networks lacking sarcomeric organization. I will describe the in vitro and in vivo approaches we use to study force transmission in such disordered actomyosin assemblies. Our in vivo results are showing that highly organized stress fibers contribute surprisingly little to the overall extent of cellular tension as compared to disordered actomyosin meshworks. Our in vitro results are demonstrating the mechanisms of symmetry breaking in disordered actomyosin bundles that facilitate the formation of contractile bundles with well-defined ``contractile elements.'' These results provide insight into the self-organization of actomyosin cytoskeleton in non-muscle cells that regulate and maintain cellular tension.

  13. Actin binding proteins, spermatid transport and spermiation*

    Science.gov (United States)

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  14. Cx43, ZO-1, alpha-catenin and beta-catenin in cataractous lens ...

    Indian Academy of Sciences (India)

    2012-10-17

    Oct 17, 2012 ... The strengthening of intercellular cadherin bonds in a mechanism independent of the actin cytoskeleton is facilitated by recruitment of alpha-catenin to cadherin com- plexes (Bajpai et al. 2008). Catenins are expressed through- out the lens. During early stages of fibre cell differentiation, the Wnt/β-catenin ...

  15. Evidence for an uncommon alpha-actinin protein in Trichomonas vaginalis.

    Science.gov (United States)

    Bricheux, G; Coffe, G; Pradel, N; Brugerolle, G

    1998-09-15

    As part of our ongoing project of identification of actin-binding proteins implicated in the cell transition (flagellate to amoeboid/adherent) of Trichomonas vaginalis, we have characterized an alpha-actinin-related protein in this parasite. The protein (P100) has a molecular mass of 100 kDa and an isoelectric point of 5.5. A monoclonal antibody raised against this protein co-localizes with the actin network. P100 gene transcripts are co-expressed with actin throughout the cell cycle. Analysis of the deduced protein sequence reveals three domains: an N-terminal actin-binding region; a central region rich in alpha-helix; and a C-terminal domain with Ca(2+)-binding capacity. Whereas the N- and C-terminal regions are well-conserved as compared to other alpha-actinins, we observe in the central region an atypical distribution of residues in five repeats. The sequence of the repeats does not show any homology with the rod domain of the other alpha-actinins, except for the first repeat which shows some similarity. The four other repeats of T. vaginalis P100 appear to result from a duplication event which is not detectable in the other sequences.

  16. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  17. Tropomyosin isoforms bias actin track selection by vertebrate myosin Va

    Science.gov (United States)

    Sckolnick, Maria; Krementsova, Elena B.; Warshaw, David M.; Trybus, Kathleen M.

    2016-01-01

    Tropomyosin (Tpm) isoforms decorate actin with distinct spatial and temporal localization patterns in cells and thus may function to sort actomyosin processes by modifying the actin track affinity for specific myosin isoforms. We examined the effect of three Tpm isoforms on the ability of myosin Va (myoVa) to engage with actin in vitro in the absence or presence of the cargo adapter melanophilin (Mlph), which links myoVa to Rab27a-melanosomes for in vivo transport. We show that both the myosin motor domain and the cargo adapter Mlph, which has an actin-binding domain that acts as a tether, are sensitive to the Tpm isoform. Actin–Tpm3.1 and actin–Tpm1.8 were equal or better tracks compared to bare actin for myoVa-HMM based on event frequency, run length, and speed. The full-length myoVa-Mlph complex showed high-frequency engagement with actin-Tpm3.1 but not with actin-Tpm1.8. Actin–Tpm4.2 excluded both myoVa-HMM and full-length myoVa-Mlph from productive interactions. Of importance, Tpm3.1 is enriched in the dendritic protrusions and cortical actin of melanocytes, where myoVa-Mlph engages in melanosome transport. These results support the hypothesis that Tpm isoforms constitute an “actin–Tpm code” that allows for spatial and temporal sorting of actomyosin function in the cell. PMID:27535431

  18. Deafness and espin-actin self-organization in stereocilia

    Science.gov (United States)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  19. Actin-mediated cytoplasmic organization of plant cells

    NARCIS (Netherlands)

    Honing, van der H.S.

    2011-01-01

    In this thesis, I present results that give insight in the role of the actin cytoskeleton in the production of an organized cytoplasm in plant cells, which is, for instance, required for proper cell morphogenesis.

    Chapter 1 is a review in which we discuss the possible role of actin-based

  20. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Directory of Open Access Journals (Sweden)

    Ojaimi Caroline

    2010-08-01

    Full Text Available Abstract Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM have not been defined completely. We have shown in conscious dogs with DM that: 1 baseline coronary blood flow (CBF was significantly decreased, 2 endothelium-dependent (ACh coronary vasodilation was impaired, and 3 reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4. Results The array data revealed that 797 genes were differentially expressed (P 2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase, structural proteins (actin alpha. Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase, which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.

  1. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  2. Actin dynamics, architecture, and mechanics in cell motility.

    Science.gov (United States)

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  3. Structural modeling and molecular dynamics simulation of the actin filament.

    Science.gov (United States)

    Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C

    2011-07-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.

  4. Actin polymerization contributes to neutrophil chemotactic dysfunction following thermal injury.

    Science.gov (United States)

    Hasslen, S R; Ahrenholz, D H; Solem, L D; Nelson, R D

    1992-11-01

    The agent(s) and mechanism(s) responsible for suppression of neutrophil chemotaxis in association with major thermal injury have not been identified. We have proposed that the reduced random motility characterizing patients' cells may contribute to their generalized chemotactic dysfunction. Here we report that actin polymerization may be responsible for the loss of neutrophil motility associated with major thermal injury. Using a fluorescent ligand specific for polymerized or filamentous actin (NBD-phallacidin) in conjunction with flow cytometry, we have discovered that peripheral blood and exudate neutrophils from patients with major thermal injury contain increased levels of actin in a stably polymerized form. Because cyclic polymerization and depolymerization of actin is essential to cell motility, we suggest that actin polymerization may contribute in a major way to the attenuation of neutrophil random and chemotactic functions induced by major thermal injury.

  5. Measuring Actin Flow in 3D Cell Protrusions

    Science.gov (United States)

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of

  6. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Benjamin B. A. Raymond

    2018-02-01

    Full Text Available Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15 using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM, and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.

  7. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Raymond, Benjamin B A; Madhkoor, Ranya; Schleicher, Ina; Uphoff, Cord C; Turnbull, Lynne; Whitchurch, Cynthia B; Rohde, Manfred; Padula, Matthew P; Djordjevic, Steven P

    2018-01-01

    Mycoplasma hyopneumoniae , an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.

  8. Cyclic hardening in bundled actin networks.

    Science.gov (United States)

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  9. Ultrastructural localization of actin and actin-binding proteins in the nucleus

    Czech Academy of Sciences Publication Activity Database

    Dingová, Hana; Fukalová, Jana; Maninová, Miloslava; Philimonenko, Vlada; Hozák, Pavel

    2009-01-01

    Roč. 131, č. 3 (2009), s. 425-434 ISSN 0948-6143 R&D Projects: GA MŠk LC545 Grant - others:MŠk(CZ) LC06063 Program:LC Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear actin * ultrastructure * actin–binding proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.021, year: 2009

  10. Molecular investigations into the mechanics of actin in different nucleotide states.

    Science.gov (United States)

    Lee, Ji Y; Iverson, Tyler M; Dima, Ruxandra I

    2011-01-13

    Actin plays crucial roles in the mechanical response of cells to applied forces. For example, during cell adhesion, under the action of forces transmitted through integrins, actin filaments (F-actin) induce intracellular mechanical movements leading to changes in the cell shape. Muscle contraction results from the interaction of F-actin with the molecular motor myosin. Thus, understanding the origin of actin's mechanical flexibility is required to understand the basis of fundamental cellular processes. F-actin results from the polymerization of globular actin (G-actin), which contains one tightly bound nucleotide (ATP or ADP). Experiments revealed that G-actin is more flexible than F-actin, but no molecular-level understanding of this differential behavior exists. To probe the basis of the mechanical behavior of actin, we study the force response of G-actin bound with ATP (G-ATP) or ADP (G-ADP). We investigate the global unfolding of G-actin under forces applied at its ends and its mechanical resistance along the actin-actin and actin-myosin bonds in F-actin. Our study reveals that the nucleotide plays an important role in the global unfolding of actin, leading to multiple unfolding scenarios which emphasize the differences between the G-ATP and G-ADP states. Furthermore, our simulations show that G-ATP is more flexible than G-ADP and that the actin-myosin interaction surface responds faster to force than the actin-actin interaction surface. The deformation of G-actin under tension revealed in our simulations correlates very well with experimental data on G-actin domain flexibility.

  11. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization.

    Science.gov (United States)

    Ueno, Tasuku; Falkenburger, Björn H; Pohlmeyer, Christopher; Inoue, Takanari

    2011-12-13

    A limited set of phosphoinositide membrane lipids regulate diverse cellular functions including proliferation, differentiation, and migration. We developed two techniques based on rapamycin-induced protein dimerization to rapidly change the concentration of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. First, using a membrane-recruitable form of PI(4)P 5-kinase, we increased PI(4,5)P(2) synthesis from phosphatidylinositol 4-phosphate [PI(4)P] and found that COS-7, HeLa, and human embryonic kidney 293 cells formed bundles of motile actin filaments known as actin comets. In contrast, a second technique that increased the concentration of PI(4,5)P(2) without consuming PI(4)P induced membrane ruffles. These distinct phenotypes were mediated by dynamin-mediated vesicular trafficking and mutually inhibitory crosstalk between the small guanosine triphosphatases Rac and RhoA. Our results indicate that the effect of PI(4,5)P(2) on actin reorganization depends on the abundance of other phosphoinositides, such as PI(4)P. Thus, combinatorial regulation of phosphoinositide concentrations may contribute to the diversity of phosphoinositide functions.

  12. Crosstalk between Rac1-mediated actin regulation and ROS production.

    Science.gov (United States)

    Acevedo, Alejandro; González-Billault, Christian

    2018-02-20

    The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    Science.gov (United States)

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  14. Treadmilling of actin filaments via Brownian dynamics simulations

    DEFF Research Database (Denmark)

    Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard

    2010-01-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP / Pi, and ADP....... These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution...

  15. Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes

    Science.gov (United States)

    Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.

    2012-01-01

    Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609

  16. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  17. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals to the ... contract. The main components of the cardiac conduction system are the SA node, AV node, bundle of ...

  18. Electrostatic interactions between the Bni1p Formin FH2 domain and actin influence actin filament nucleation.

    Science.gov (United States)

    Baker, Joseph L; Courtemanche, Naomi; Parton, Daniel L; McCullagh, Martin; Pollard, Thomas D; Voth, Gregory A

    2015-01-06

    Formins catalyze nucleation and growth of actin filaments. Here, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interaction energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    Science.gov (United States)

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  20. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein.

    Science.gov (United States)

    Westphal, M; Jungbluth, A; Heidecker, M; Mühlbauer, B; Heizer, C; Schwartz, J M; Marriott, G; Gerisch, G

    1997-03-01

    The microfilament system in the cortex of highly motile cells, such as neutrophils and cells of the eukaryotic microorganism Dictyostelium discoideum, is subject to rapid re-organization, both spontaneously and in response to external signals. In particular, actin polymerization induced by a gradient of chemoattractant leads to local accumulation of filamentous actin and protrusion of a 'leading edge' of the cell in the direction of the gradient. In order to study the dynamics of actin in these processes, actin was tagged at its amino terminus with green fluorescent protein (GFP) and observed with fluorescence microscopy in living cells of D. discoideum. Purified GFP-actin was capable of copolymerizing with actin. In the transfected cells of D. discoideum studied, GFP-actin made up 10-20% of the total actin. Microfilaments containing GFP-actin were capable of generating force with myosin in an in vitro assay. Observations of single living cells using fluorescence microscopy showed that the fusion protein was enriched in cell projections, including filopodia and leading edges, and that the fusion protein reflected the dynamics of the microfilament system in cells that were freely moving, being chemotactically stimulated, or aggregated. When confocal sections of fixed cells containing GFP-actin were labeled with fluorescent phalloidin, which binds only to filamentous actin, there was a correlation between the areas of GFP-actin and phalloidin fluorescence, but there were distinct sites in which GFP-actin was more prominent. Double labeling with GFP-actin and other probes provides an indication of the various states of actin in motile cells. A major portion of the actin assemblies visualized using GFP-actin are networks or bundles of filamentous actin. Other clusters of GFP-actin might represent stores of monomeric actin in the form of complexes with actin-sequestering proteins.

  1. Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT.

    Science.gov (United States)

    Baxley, Tamatha; Johnson, Dylan; Pinto, Jose R; Chalovich, Joseph M

    2017-06-13

    Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca 2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca 2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca 2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca 2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca 2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca 2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca 2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca 2+ . Because Ca 2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.

  2. Thymosin beta4 sequesters actin in cystic fibrosis sputum and decreases sputum cohesivity in vitro

    NARCIS (Netherlands)

    Rubin, Bruce K.; Kater, Arnon P.; Goldstein, Allan L.

    2006-01-01

    Filamentous actin (F-actin) forms polymers that contribute to the abnormal biophysical properties of sputum. Thymosin beta4 (Tbeta4) is the major monomeric actin-sequestering peptide in cells and can depolymerize F-actin. Tbeta4 could potentially decrease sputum viscoelasticity and adhesivity and

  3. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  4. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  5. The role of antihistamines in chronic actinic dermatitis treatment

    Directory of Open Access Journals (Sweden)

    E. V. Orlov

    2016-01-01

    Full Text Available Inveterate actinic dermatitis is an immunologically mediated photodermatosis characterized by itchy eczematous dermhelminthiasis exposed to sunlight. The disease proceeds in the same way as the atopic eczema or atopic dermatitis. The treatment of patients with inveterate actinic dermatitis is similar to the treatment of patients with atopic dermatitis and eczema. Administration of the modern antihistaminic preparation desloratadine (Aerius in the treatment has a positive effect on the skin process relief and on some cellular and humoral immunity factors.

  6. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  7. Amphidinolide H, a novel type of actin-stabilizing agent isolated from dinoflagellate

    International Nuclear Information System (INIS)

    Saito, Shin-ya; Feng Jue; Kira, Atsushi; Kobayashi, Jun'ichi; Ohizumi, Yasushi

    2004-01-01

    The effect of novel cytotoxic marine macrolide, amphidinolide H (Amp-H), on actin dynamics was investigated in vitro. Amp-H attenuated actin depolymerization induced by diluting F-actin. This effect remained after washing out of unbound Amp-H by filtration. In the presence of either Amp-H or phalloidin, lag phase, which is the rate-limiting step of actin polymerization, was shortened. Phalloidin decreased the polymerization-rate whereas Amp-H did not. Meanwhile, the effects of both compounds were the same when barbed end of actin was capped by cytochalasin D. Quartz crystal microbalance system revealed interaction of Amp-H with G-actin and F-actin. Amp-H also enhanced the binding of phalloidin to F-actin. We concluded that Amp-H stabilizes actin in a different manner from that of phalloidin and serves as a novel pharmacological tool for analyzing actin-mediated cell function

  8. Immunohistochemistry with keratin and smooth muscle actin monoclonal antibodies in canine digestive tract and extramural glands.

    Science.gov (United States)

    Vos, J H; van den Ingh, T S; de Neijs, M; van Mil, F N; Ivanyi, D; Ramaekers, F C

    1992-05-01

    The canine digestive system and its extramural glands (parotid gland, liver, pancreas) were immunohistochemically studied using a panel of twelve monoclonal antibodies (MoAbs) specific for human keratin proteins and for alpha-smooth muscle actin. Various epithelial tissues and cells were characterized by different keratin staining patterns. So, the epithelial lining of the upper alimentary tract was characterized by staining with the MoAb 6B10, specific for keratin-type (K) 4, and the absence of staining with the MoAbs directed against K 8 and 18 (CAM 5.2 and RGE 53, DE-K18 respectively), whereas the lower alimentary tract epithelium was not labeled by 6B10, but stained by the latter MoAbs. In the salivary glands the luminal and basal cells of the adenomeres as well as the different ductal structures could be immunohistochemically differentiated. The duct epithelium in liver and pancreas showed next to keratin staining characteristics in common with hepatocytes and exocrine pancreatic cells, additional staining by several keratin MoAbs. The keratin staining patterns in the canine tissues showed, in addition to similarities also distinct discrepancies when compared to the staining patterns in corresponding human tissues. Myoepithelial cells in salivary and oesophageal glands could be differentiated from other basally located epithelial cells by their exclusive immunoreactivity for alpha-smooth muscle actin. Canine pancreatic endocrine cells were not labeled by any of the keratin MoAbs. It is concluded that immunohistochemistry with polypeptide specific MoAbs specific for human keratin-types can be used to differentiate between different types of canine epithelial tissues and epithelial cells in the digestive tract. As a result such reagents may find their application in developmental biology and pathology of this species.

  9. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    Science.gov (United States)

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  10. Rheology of Membrane-Attached Minimal Actin Cortices.

    Science.gov (United States)

    Noeding, Helen; Schoen, Markus; Kramer, Corinna; Doerrer, Nils; Kuerschner, Aileen; Geil, Burkhard; Mey, Ingo P; Heussinger, Claus; Janshoff, Andreas; Steinem, Claudia

    2018-03-28

    The actin cortex is a thin cross-linked network attached to the plasma membrane, being responsible for the cell's shape during migration, division and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P2) to which a constitutively active mutant of ezrin, being a direct membrane-cytoskeleton linker, is bound. The formation of the MAC on the supported lipid bilayer is analyzed as a function of increasing PtdIns(4,5)P2/ezrin pinning points revealing an increase in the intersections between actin filaments, i.e., the node density of the MAC. Bead tracking microrheology on the membrane attached actin network provides information about its viscoelastic properties. The results show that ezrin serves as a dynamic cross-linker for the actin cortex attached to the lipid bilayer and that the stiffness of the network is influenced by the pinning point density, relating the plateau storage modulus G0 to the node density of the MAC.

  11. Liquid droplets of cross-linked actin filaments

    Science.gov (United States)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  12. Functional characterisation of filamentous actin probe expression in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Shrujna Patel

    Full Text Available Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.

  13. Cardiac pacemaker

    International Nuclear Information System (INIS)

    Kolenik, S.A.

    1976-01-01

    The construction of a cardiac pacemaker is described which is characterized by particularly small dimensions, small weight and long life duration. The weight is under 100g, the specific weight under 1.7. Mass inertia forces which occur through acceleration and retardation processes, thus remain below the threshold values, above which one would have to reckon with considerable damaging of the surrounding body tissue. The maintaining of small size and slight weight is achieved by using an oscillator on COSMOS basis, where by considerably lower energy consumption, amongst others the lifetimes of the batteries used - a lithium anode with thionyl chloride electrolyte - is extended to over 5 years. The reliability can be increased by the use of 2 or more batteries. The designed dimension are 20x60x60 mm 3 . (ORU/LH) [de

  14. Relaxin stimulates MMP-2 and alpha-smooth muscle actin expression by human periodontal ligament cells.

    NARCIS (Netherlands)

    Henneman, S.; Bildt, M.M.; Degroot, J.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2008-01-01

    The main cells in the periodontal ligament (PDL) are the fibroblasts, which play an important role in periodontal remodelling. Matrix metalloproteinases (MMPs) are largely responsible for the degradation of extracellular matrix proteins in the PDL. Previous studies have indicated that MMP production

  15. Alpha-smooth muscle actin within epithelial islands is predictive of ameloblastic carcinoma.

    NARCIS (Netherlands)

    Bello, I.O.; Alanen, K.; Slootweg, P.J.; Salo, T.

    2009-01-01

    Ameloblastoma is the most common clinically significant odontogenic tumor. It is considered benign but locally invasive and associated with variable clinico-pathological behavior. Ameloblastic carcinoma is a malignant tumor having features of ameloblastoma in addition to cytologic atypia with or

  16. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-06-01

    Full Text Available Higher vertebrates (mammals and birds express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli  et al., 1986 . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  17. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block

    Czech Academy of Sciences Publication Activity Database

    Kalendová, Alžběta; Kalasová, Ilona; Yamazaki, S.; Uličná, Lívia; Harata, M.; Hozák, Pavel

    2014-01-01

    Roč. 142, č. 2 (2014), s. 139-152 ISSN 0948-6143 R&D Projects: GA ČR GAP305/11/2232; GA MŠk LD12063; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : nuclear actin * transcription * mitosis * actin-related protein 3 * cofilin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  18. Effects of AL 107, a novel semisynthetic cardiac glycoside, on the cardiovascular system in anaesthetized beagle dogs with pentobarbital-induced cardiac insufficiency

    NARCIS (Netherlands)

    Kogel, B; Schneider, J; Gleitz, J; Wilffert, B; Peters, Thies

    The inotropic efficacy, arrhythmogenicity and cardiohaemodynamic properties of AL 107 (3-alpha-methyl-digitoxigenin glucoside. CAS 62190-59-4), a novel cardiac glycoside, were studied in anaesthetized dogs with pentobarbital-induced acute cardiac insufficiency. Three groups of dogs received AL 107,

  19. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  20. ACTIN BINDING PROTEIN29 from Lilium Pollen Plays an Important Role in Dynamic Actin Remodeling[W][OA

    Science.gov (United States)

    Xiang, Yun; Huang, Xi; Wang, Ting; Zhang, Yan; Liu, Qinwen; Hussey, Patrick J.; Ren, Haiyun

    2007-01-01

    Villin/gelsolin/fragmin superfamily proteins have been shown to function in tip-growing plant cells. However, genes encoding gelsolin/fragmin do not exist in the Arabidopsis thaliana and rice (Oryza sativa) databases, and it is possible that these proteins are encoded by villin mRNA splicing variants. We cloned a 1006-bp full-length cDNA from Lilium longiflorum that encodes a 263–amino acid predicted protein sharing 100% identity with the N terminus of 135-ABP (Lilium villin) except for six C-terminal amino acids. The deduced 29-kD protein, Lilium ACTIN BINDING PROTEIN29 (ABP29), contains only the G1 and G2 domains and is the smallest identified member of the villin/gelsolin/fragmin superfamily. The purified recombinant ABP29 accelerates actin nucleation, blocks barbed ends, and severs actin filaments in a Ca2+- and/or phosphatidylinositol 4,5-bisphosphate–regulated manner in vitro. Microinjection of the protein into stamen hair cells disrupted transvacuolar strands whose backbone is mainly actin filament bundles. Transient expression of ABP29 by microprojectile bombardment of lily pollen resulted in actin filament fragmentation and inhibited pollen germination and tube growth. Our results suggest that ABP29 is a splicing variant of Lilium villin and a member of the villin/gelsolin/fragmin superfamily, which plays important roles in rearrangement of the actin cytoskeleton during pollen germination and tube growth. PMID:17586658

  1. The determination of $\\alpha_s$ by the ALPHA collaboration

    CERN Document Server

    Bruno, Mattia

    2016-01-01

    We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $\\alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $\\Lambda_\\overline{MS}^{(3)}=332(14)$~MeV is translated to $\\alpha_\\overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark "thresholds". The error of this perturbative step is discussed and estimated as $0.0002$.

  2. Participation of actin on Giardia lamblia growth and encystation.

    Directory of Open Access Journals (Sweden)

    Araceli Castillo-Romero

    Full Text Available BACKGROUND: Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. METHODOLOGY AND PRINCIPAL FINDINGS: By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45% and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of fluorescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%. CONCLUSIONS AND SIGNIFICANCE: All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.

  3. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    Science.gov (United States)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  4. Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Fu

    2008-07-01

    Full Text Available Progesterone plays a role in breast cancer development and progression but the effects on breast cancer cell movement or invasion have not been fully explored. In this study, we investigate the actions of natural progesterone and of the synthetic progestin medroxyprogesterone acetate (MPA on actin cytoskeleton remodeling and on breast cancer cell movement and invasion. In particular, we characterize the nongenomic signaling cascades implicated in these actions. T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices in the presence of both progestins. Exposure to the hormones triggers a rapid remodeling of the actin cytoskeleton and the formation of membrane ruffles required for cell movement, which are dependent on the rapid phosphorylation of the actin-regulatory protein moesin. The extra-cellular small GTPase RhoA/Rho-associated kinase (ROCK-2 cascade plays central role in progesterone- and MPA-induced moesin activation, cell migration and invasion. In the presence of progesterone, progesterone receptor A (PRA interacts with the G protein G alpha(13, while MPA drives PR to interact with tyrosine kinase c-Src and to activate phosphatidylinositol-3 kinase, leading to the activation of RhoA/ROCK-2. In conclusion, our findings manifest that progesterone and MPA promote breast cancer cell movement via rapid actin cytoskeleton remodeling, which are mediated by moesin activation. These events are triggered by RhoA/ROCK-2 cascade through partially differing pathways by the two compounds. These results provide original mechanistic explanations for the effects of progestins on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.

  5. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  6. Atypical Distribution of Late Gadolinium Enhancement of the Left Ventricle on Cardiac Magnetic Resonance in Classical Anderson-Fabry Disease

    OpenAIRE

    Kasuya, Shusuke; Suzuki, Masayo; Inaoka, Tsutomu; Odashima, Masayuki; Nakatsuka, Tomoya; Ishikawa, Rumiko; Tokuyama, Wataru; Terada, Hitoshi

    2016-01-01

    Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder caused by a deficiency of alpha-galactosidase A. Approximately 50% of patients with AFD may have cardiac involvement. Gadolinium-enhanced cardiac magnetic resonance (CMR) is useful for the diagnosis of cardiac involvement of AFD by recognizing typical late gadolinium enhancement (LGE) patterns. We report a 48-year-old man with cardiac involvement in classical AFD, showing atypical distribution of the LGE at the mid-lateral...

  7. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  8. Oral acetylsalicylic acid and prevalence of actinic keratosis

    Directory of Open Access Journals (Sweden)

    Juliano Schmitt

    2014-01-01

    Full Text Available Objective: To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. Methods: A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cancer, and sunscreen and sun exposure habits. Actinic keratoses were counted in the medial region of the face and upper limbs. Counts were adjusted by co-variables based on a generalized linear model. Results: A total of 74 cases and 216 controls were assessed. The median time of acetylsalicylic acid use was 36 months. Cases differed from controls as to the highest age, highest prevalence of use of angiotensin-converting enzyme inhibitors and fewer keratosis on the face and on the upper limbs (p<0.05. The multivariate model showed that the use of acetylsalicylic acid was associated to lower counts of face actinic keratosis and upper-limb erythematous actinic keratosis (p<0.05, regardless of other risk factors. Conclusion: The regular use of oral acetylsalicylic acid for more than six months was associated to a lower prevalence of actinic keratosis, especially facial and erythematous ones.

  9. Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation

    Science.gov (United States)

    Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar

    Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).

  10. All-Round Manipulation of the Actin Cytoskeleton by HIV.

    Science.gov (United States)

    Ospina Stella, Alberto; Turville, Stuart

    2018-02-05

    While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.

  11. Incorporation of β-actin loading control into zymography.

    Science.gov (United States)

    Govindasamy, Natasha; Yan, MengJie; Jurasz, Paul

    2016-11-01

    Gelatin zymography and immunoblot are widely used gel electrophoresis techniques to study matrix metalloproteinases-2 and -9. Each method has its advantages and disadvantages. Zymography is exquisitely sensitive but offers no loading control to ensure equal sample loading. Immunoblot is a 100-1000-fold less sensitive, but allows for the probing of a sample loading control such as β-actin to ensure accurate protein loading. In this report, we describe two simple protocols that combine gelatin zymography to study MMP-2 and -9 levels with an in-gel β-actin immunoblot loading control, thus combining sensitivity and accuracy in a single assay. The protocols incorporate the loading of molecular weight markers to demarcate MMP-2/-9 from the β-actin. The first protocol utilizes the overlay of a 10% zymography gel over a 5% Tris-Glycine separating gel from which the β-actin is transferred. The second protocol involves the direct transfer of the β-actin from a single 10% zymography gel.

  12. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  13. Localization of actin in pollen tubes of Ornithogalum virens L.

    Directory of Open Access Journals (Sweden)

    Małgorzata Stępka

    2014-01-01

    Full Text Available The germinating pollen grain (in vivo on the stigma or in vitro in germination medium forms a pollen tube which transports the vegetative nucleus and generative cell/two sperm cells participating in the process of double fertilization. The growth of the tube and the transport of organelles and the cells occur due to two major motor systems existing in the pollen tubes of higher plants: the tubuline-dynein/kinesin and the actin-myosin system. In pollen tubes of Ornithogalum virens the actin filaments were labelled with TRITC-phalloidin (2 µg/ml in the PIPES buffer and the 10% sucrose, without the fixative and DMSO. Omission of the fixative and permeabilizing agent (DMSO allowed better preservation of the structure, and the "fluorescence" of actin was observed in living pollen tubes. Observations in CLSM (confocal laser scanning microscope showed that actin is distributed in the vicinity of the cell membrane. This could support the view that actin filaments and the plasmalemma form the pollen tube cortex along which the cytoplasmic movement of organelles, and cell transport occurs.

  14. Novel Actin-like Filament Structure from Clostridium tetani*

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Tanaka, Toshitsugu; Robinson, Robert C.

    2012-01-01

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  15. Novel actin-like filament structure from Clostridium tetani.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  16. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  17. Oral acetylsalicylic acid and prevalence of actinic keratosis.

    Science.gov (United States)

    Schmitt, Juliano; Miot, Hélio

    2014-01-01

    To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cancer, and sunscreen and sun exposure habits. Actinic keratoses were counted in the medial region of the face and upper limbs. Counts were adjusted by co-variables based on a generalized linear model. A total of 74 cases and 216 controls were assessed. The median time of acetylsalicylic acid use was 36 months. Cases differed from controls as to the highest age, highest prevalence of use of angiotensin-converting enzyme inhibitors and fewer keratosis on the face and on the upper limbs (pacetylsalicylic acid was associated to lower counts of face actinic keratosis and upper-limb erythematous actinic keratosis (pacetylsalicylic acid for more than six months was associated to a lower prevalence of actinic keratosis, especially facial and erythematous ones.

  18. Multiple roles for the actin cytoskeleton during regulated exocytosis

    Science.gov (United States)

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507

  19. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Full, Stephen J; Deinzer, Max L; Ho, P Shing; Greenwood, Jeffrey A

    2007-12-01

    alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.

  20. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  1. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  2. Cardiac surgery in the parturient.

    Science.gov (United States)

    Chandrasekhar, Shobana; Cook, Christopher R; Collard, Charles D

    2009-03-01

    Heart disease is the primary cause of nonobstetric mortality in pregnancy, occurring in 1%-3% of pregnancies and accounting for 10%-15% of maternal deaths. Congenital heart disease has become more prevalent in women of childbearing age, representing an increasing percentage (up to 75%) of heart disease in pregnancy. Untreated maternal heart disease also places the fetus at risk. Independent predictors of neonatal complications include a maternal New York Heart Association heart failure classification >2, anticoagulation use during pregnancy, smoking, multiple gestation, and left heart obstruction. Because cardiac surgical morbidity and mortality in the parturient is higher than nonpregnant patients, most parturients with cardiac disease are first managed medically, with cardiac surgery being reserved when medical management fails. Risk factors for maternal mortality during cardiac surgery include the use of vasoactive drugs, age, type of surgery, reoperation, and maternal functional class. Risk factors for fetal mortality include maternal age >35 yr, functional class, reoperation, emergency surgery, type of myocardial protection, and anoxic time. Nonetheless, acceptable maternal and fetal perioperative mortality rates may be achieved through such measures as early preoperative detection of maternal cardiovascular decompensation, use of fetal monitoring, delivery of a viable fetus before the operation and scheduling surgery on an elective basis during the second trimester. Additionally, fetal morbidity may be reduced during cardiopulmonary bypass by optimizing maternal oxygen-carrying capacity and uterine blood flow. Current maternal bypass recommendations include: 1) maintaining the pump flow rate >2.5 L x min(-1) x m(-2) and perfusion pressure >70 mm Hg; 2) maintaining the hematocrit > 28%; 3) using normothermic perfusion when feasible; 4) using pulsatile flow; and 5) using alpha-stat pH management.

  3. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  4. Spatially restricted actin-regulatory signaling contributes to synapse morphology

    Science.gov (United States)

    Nicholson, Daniel A.; Cahill, Michael E.; Tulisiak, Christopher T.; Geinisman, Yuri; Penzes, Peter

    2012-01-01

    The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of postsynaptic density (PSD) area and spine volume. Using serial section electron microscopy (EM), we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size. PMID:22458534

  5. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, A.; Aranson, I. S.; Kruse, K.

    2014-05-01

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos.

  6. Condensation of F-Actin by Dimensional Reduction

    Science.gov (United States)

    Bruinsma, Robijn; Christian, Cyron; Mueller, Kei; Bausch, Andreas; Wall, Wolfgang

    2012-02-01

    We present a Brownian Dynamics simulation of the equilibrium condensation of F-actin in the presence of linker molecules. The filaments are modeled as worm-like chains, using finite element analysis. At low linker concentrations, the systems forms a gel whose physical properties do not depend on the linker molecules. If the linker concentration is increased then for isotropic linkers only a single mode of condensation is encountered: bundle formation. If the linker molecules impose a preferential angle between F-actin filaments, then condensation takes place either into a either a hexatic or squaratic two-dimensional liquid crystal phase or into a heterogeneous cluster. Condensation is driven by competition between linker and filament entropy, which imposes dimensional reduction on the F-actin aggregate.

  7. Formation of actin networks in microfluidic concentration gradients

    Directory of Open Access Journals (Sweden)

    Natalja eStrelnikova

    2016-05-01

    Full Text Available The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  8. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  9. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    Directory of Open Access Journals (Sweden)

    Christopher Arnette

    Full Text Available The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  10. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  11. Alpha blockers: A relook at phenoxybenzamine

    Directory of Open Access Journals (Sweden)

    Sambhunath Das

    2017-01-01

    Full Text Available Phenoxybenzamine (PBZ is an alpha adrenergic antagonist, used for the management of hypertension. PBZ acts by blocking alpha-adrenergic receptors, leading to vasodilatation and low systemic vascular resistance. This helps in control of blood pressure in pheochromocytoma, improvement of systemic oxygen delivery, and optimization of the Qp/Qs in pediatric cardiac surgery such as hypoplastic left heart syndrome and improving perfusion parameters during open heart surgery. The uses have further extended to causalgia, Raynaud's phenomenon, autonomic hyperreflexia, and even for patency of radial artery conduit in coronary artery bypass grafting surgery. However, its prolonged hypotensive effect limits the regular use. In this review, we discussed the mechanism of action, pharmaco-physiology of PBZ, perioperative uses in different clinical setting and controversies for its uses; publications in different scientific journals from the previous years.

  12. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  13. Health related quality of life in patients with actinic keratosis

    DEFF Research Database (Denmark)

    Tennvall, Gunnel Ragnarson; Norlin, J M; Malmberg, I

    2015-01-01

    BACKGROUND: Actinic keratosis (AK) is a common skin condition that may progress to non-melanoma skin cancer (NMSC). The disease may influence Health Related Quality of Life (HRQoL), but studies of HRQoL in patients with AK are limited. The purpose of the study was to analyze HRQoL in patients......-center setting. Dermatologists assessed AK severity and patients completed: Actinic Keratosis Quality of Life Questionnaire (AKQoL), Dermatology Life Quality Index (DLQI), and EQ-5D-5 L including EQ-VAS. Differences between categorical subgroups were tested with Wilcoxon rank-sum test. The relationship between...

  14. Actin and Arp2/3 localize at the centrosome of interphase cells

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  15. Actin in Mung Bean Mitochondria and Implications for Its Function[W][OA

    Science.gov (United States)

    Lo, Yih-Shan; Cheng, Ning; Hsiao, Lin-June; Annamalai, Arunachalam; Jauh, Guang-Yuh; Wen, Tuan-Nan; Dai, Hwa; Chiang, Kwen-Sheng

    2011-01-01

    Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin–green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography–tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed. PMID:21984697

  16. Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim.

    Science.gov (United States)

    Shao, Xiaowei; Li, Qingsen; Mogilner, Alex; Bershadsky, Alexander D; Shivashankar, G V

    2015-05-19

    Cells constantly sense and respond to mechanical signals by reorganizing their actin cytoskeleton. Although a number of studies have explored the effects of mechanical stimuli on actin dynamics, the immediate response of actin after force application has not been studied. We designed a method to monitor the spatiotemporal reorganization of actin after cell stimulation by local force application. We found that force could induce transient actin accumulation in the perinuclear region within ∼ 2 min. This actin reorganization was triggered by an intracellular Ca(2+) burst induced by force application. Treatment with the calcium ionophore A23187 recapitulated the force-induced perinuclear actin remodeling. Blocking of actin polymerization abolished this process. Overexpression of Klarsicht, ANC-1, Syne Homology (KASH) domain to displace nesprins from the nuclear envelope did not abolish Ca(2+)-dependent perinuclear actin assembly. However, the endoplasmic reticulum- and nuclear membrane-associated inverted formin-2 (INF2), a potent actin polymerization activator (mutations of which are associated with several genetic diseases), was found to be important for perinuclear actin assembly. The perinuclear actin rim structure colocalized with INF2 on stimulation, and INF2 depletion resulted in attenuation of the rim formation. Our study suggests that cells can respond rapidly to external force by remodeling perinuclear actin in a unique Ca(2+)- and INF2-dependent manner.

  17. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    Directory of Open Access Journals (Sweden)

    Eric A. Vitriol

    2015-04-01

    Full Text Available Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin regulated by the ordered assembly from and disassembly into actin monomers (G-actin. Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer-binding protein thymosin β4 (Tβ4 for optimal leading-edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it does not interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions.

  18. The Alpha-1A Adrenergic Receptor in the Rabbit Heart.

    Directory of Open Access Journals (Sweden)

    R Croft Thomas

    Full Text Available The alpha-1A-adrenergic receptor (AR subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse.

  19. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    The Alpha One International Registry (AIR), a multinational research program focused on alpha1-antitrypsin (AAT) deficiency, was formed in response to a World Health Organization recommendation. Each of the nearly 20 participating countries maintains a national registry of patients with AAT defic...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  20. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  1. The actin cytoskeleton in root hairs: all is fine at the tip

    NARCIS (Netherlands)

    Ketelaar, T.

    2013-01-01

    Filamentous actin forms characteristic bundles in plant cells that facilitate cytoplasmic streaming. In contrast, networks of actin exhibiting fast turnover are found especially near sites of rapid cell expansion. These networks may serve various functions including delivering and retaining vesicles

  2. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

    Directory of Open Access Journals (Sweden)

    Almudena García-Ortiz

    2017-04-01

    Full Text Available The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS; however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO generated by endothelial nitric oxide synthase (eNOS controls the coalescence of protein kinase C-θ (PKC-θ at the central supramolecular activation cluster (c-SMAC of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1, as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO. The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S and PFN1 (H119E, respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.

  3. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L.

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  4. Actin Isoform-specific Conformational Differences Observed with Hydrogen/Deuterium Exchange and Mass Spectrometry*

    Science.gov (United States)

    Stokasimov, Ema; Rubenstein, Peter A.

    2009-01-01

    Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts. PMID:19605362

  5. The role of mechanics in actin stress fiber kinetics.

    Science.gov (United States)

    Elson, E L; Genin, G M

    2013-10-01

    The dynamic responses of actin stress fibers within a cell's cytoskeleton are central to the development and maintenance of healthy tissues and organs. Disturbances to these underlie a broad range of pathologies. Because of the importance of these responses, extensive experiments have been conducted in vitro to characterize actin cytoskeleton dynamics of cells cultured upon two-dimensional substrata, and the first experiments have been conducted for cells within three-dimensional tissue models. Three mathematical models exist for predicting the dynamic behaviors observed. Surprisingly, despite differing viewpoints on how actin stress fibers are stabilized or destabilized, all of these models are predictive of a broad range of available experimental data. Coarsely, the models of Kaunas and co-workers adopt a strategy whereby mechanical stretch can hasten the depolymerization actin stress fibers that turn over constantly, while the models of Desphande and co-workers adopt a strategy whereby mechanical stress is required to activate the formation of stress fibers and subsequently stabilize them. In three-dimensional culture, elements of both approaches appear necessary to predict observed phenomena, as embodied by the model of Lee et al. After providing a critical review of existing models, we propose lines of experimentation that might be able to test the different principles underlying their kinetic laws. © 2013 Elsevier Inc. All rights reserved.

  6. Fragmentation of Human Erythrocyte Actin following Exposure to Hypoxia

    Czech Academy of Sciences Publication Activity Database

    Risso, A.; Santamaria, B.; Pistarino, E.; Cosulich, M. E.; Pompach, Petr; Bezouška, Karel; Antonutto, G.

    2010-01-01

    Roč. 123, č. 1 (2010), s. 6-13 ISSN 0001-5792 Institutional research plan: CEZ:AV0Z50200510 Keywords : beta-Actin * Erythrocytes * Hypoxia Subject RIV: EE - Microbiology, Virology Impact factor: 1.316, year: 2010

  7. T cell antigen receptor activation and actin cytoskeleton remodeling

    Science.gov (United States)

    Kumari, Sudha; Curado, Silvia; Mayya, Viveka

    2013-01-01

    T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to formation of an “immunological synapse” [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2, 3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. PMID:23680625

  8. Interconnection between actin cytoskeleton and plant defense signaling

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Matoušková, J.; Burketová, Lenka; Valentová, O.

    2014-01-01

    Roč. 9, č. 11 (2014) ISSN 1559-2316 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin * Cytoskeleton * Pathogen Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482795

  9. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the

  10. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  11. Force Exertion and Transmission in Cross-Linked Actin Networks

    Science.gov (United States)

    Stam, Samantha

    Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.

  12. Onchocercal DNA amplification using beta actin gene primers ...

    African Journals Online (AJOL)

    Onchocercal DNA amplification using beta actin gene primers compared with first internal transcribed spacer sequences for monitoring onchocerciasis eradication strategy. ... Out of the 12 amplicons in agarose gel, there were 6 sharp and 6 faint bands of 100bp molecular weight as documented. The sharp bands included 3 ...

  13. The roles of the actin cytoskeleton in fear memory formation

    Directory of Open Access Journals (Sweden)

    Raphael eLamprecht

    2011-07-01

    Full Text Available The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.

  14. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  15. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  16. Real-world approach to actinic keratosis management

    DEFF Research Database (Denmark)

    Dirschka, Thomas; Gupta, Girish; Micali, Giuseppe

    2017-01-01

    Actinic keratosis (AK) is a chronic skin disease in which multiple clinical and subclinical lesions co-exist across large areas of sun-exposed skin, resulting in field cancerisation. Lesions require treatment because of their potential to transform into invasive squamous cell carcinoma. This arti...

  17. Decidable and undecidable arithmetic functions in actin filament networks

    Science.gov (United States)

    Schumann, Andrew

    2018-01-01

    The plasmodium of Physarum polycephalum is very sensitive to its environment, and reacts to stimuli with appropriate motions. Both the sensory and motor stages of these reactions are explained by hydrodynamic processes, based on fluid dynamics, with the participation of actin filament networks. This paper is devoted to actin filament networks as a computational medium. The point is that actin filaments, with contributions from many other proteins like myosin, are sensitive to extracellular stimuli (attractants as well as repellents), and appear and disappear at different places in the cell to change aspects of the cell structure—e.g. its shape. By assembling and disassembling actin filaments, some unicellular organisms, like Amoeba proteus, can move in response to various stimuli. As a result, these organisms can be considered a simple reversible logic gate—extracellular signals being its inputs and motions its outputs. In this way, we can implement various logic gates on amoeboid behaviours. These networks can embody arithmetic functions within p-adic valued logic. Furthermore, within these networks we can define the so-called diagonalization for deducing undecidable arithmetic functions.

  18. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Alpha thalassemia Alpha thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alpha thalassemia is a blood disorder that reduces the production ...

  19. Roles of cortical actin microfilament patterning in division plane orientation in plants.

    Science.gov (United States)

    Kojo, Kei H; Higaki, Takumi; Kutsuna, Natsumaro; Yoshida, Yuya; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2013-09-01

    In land plant cells, division planes are precisely predicted by the microtubule preprophase band and cortical actin microfilament pattern called the actin-depleted zone or actin microfilament twin peaks. However, the function of cortical actin microfilament patterning is not clear. In this study, we report that treatment with the inhibitor 2,3,5-triiodobenzonic acid (TIBA) or jasplakinolide increased the amount of thick actin microfilaments in tobacco BY-2 cells at interphase. However, during the division of BY-2 cells, these inhibitors did not induce visible alteration of actin microfilament thickness but altered cortical actin microfilament patterning without significant disorganization of the microtubule preprophase band. TIBA treatment induced a single intensity peak of actin microfilament distribution around the cell center, whereas jasplakinolide caused the appearance of triple peaks relative to the distribution of actin microfilament around the cell center, in approximately one-third of the cells at metaphase. Dual observations of microtubules and actin microfilaments revealed that abnormal cortical actin microfilament patterning with single or triple peaks is correlated with oblique mitotic spindles in BY-2 cells. In addition, oblique cell plates were frequently observed in BY-2 cells and Arabidopsis thaliana root cells treated with TIBA or jasplakinolide. These results provide evidence for the critical roles of cortical actin microfilament patterning in spindle and cell plate orientation.

  20. DeActs : genetically encoded tools for perturbing the actin cytoskeleton in single cells

    NARCIS (Netherlands)

    Harterink, Martin; Santos Esteves da Silva, Marta; Will, Lena; Turan, Julia; Ibrahim, Adiljan; Lang, Alexander E; Van Battum, Eljo Y; Pasterkamp, R Jeroen; Kapitein, Lukas C; Kudryashov, Dmitri; Barres, Ben A; Hoogenraad, Casper C; Zuchero, J Bradley

    2017-01-01

    The actin cytoskeleton is essential for many fundamental biological processes, but tools for directly manipulating actin dynamics are limited to cell-permeable drugs that preclude single-cell perturbations. Here we describe DeActs, genetically encoded actin-modifying polypeptides, which effectively

  1. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This

  2. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    NARCIS (Netherlands)

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be

  3. Dystrophin genotype-cardiac phenotype correlations in Duchenne and Becker muscular dystrophies using cardiac magnetic resonance imaging.

    Science.gov (United States)

    Tandon, Animesh; Jefferies, John L; Villa, Chet R; Hor, Kan N; Wong, Brenda L; Ware, Stephanie M; Gao, Zhiqian; Towbin, Jeffrey A; Mazur, Wojciech; Fleck, Robert J; Sticka, Joshua J; Benson, D Woodrow; Taylor, Michael D

    2015-04-01

    Duchenne and Becker muscular dystrophies are caused by mutations in dystrophin. Cardiac manifestations vary broadly, making prognosis difficult. Current dystrophin genotype-cardiac phenotype correlations are limited. For skeletal muscle, the reading-frame rule suggests in-frame mutations tend to yield milder phenotypes. We performed dystrophin genotype-cardiac phenotype correlations using a protein-effect model and cardiac magnetic resonance imaging. A translational model was applied to patient-specific deletion, indel, and nonsense mutations to predict exons and protein domains present within truncated dystrophin protein. Patients were dichotomized into predicted present and predicted absent groups for exons and protein domains of interest. Development of myocardial fibrosis (represented by late gadolinium enhancement [LGE]) and depressed left ventricular ejection fraction (LVEF) were compared. Patients (n = 274) with predicted present cysteine-rich domain (CRD), C-terminal domain (CTD), and both the N-terminal actin-binding and cysteine-rich domains (ABD1 + CRD) had a decreased risk of LGE and trended toward greater freedom from LGE. Patients with predicted present CTD (exactly the same as those with in-frame mutations) and ABD1 + CRD trended toward decreased risk of and greater freedom from depressed LVEF. In conclusion, genotypes previously implicated in altering the dystrophinopathic cardiac phenotype were not significantly related to LGE and depressed LVEF. Patients with predicted present CRD, CTD/in-frame mutations, and ABD1 + CRD trended toward milder cardiac phenotypes, suggesting that the reading-frame rule may be applicable to the cardiac phenotype. Genotype-phenotype correlations may help predict the cardiac phenotype for dystrophinopathic patients and guide future therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Analysis of actin FLAP dynamics in the leading lamella.

    Directory of Open Access Journals (Sweden)

    Igor R Kuznetsov

    2010-04-01

    Full Text Available The transport of labeled G-actin from the mid-lamella region to the leading edge in a highly motile malignant rat fibroblast line has been studied using fluorescence localization after photobleaching or FLAP, and the transit times recorded in these experiments were so fast that simple diffusion was deemed an insufficient explanation (see Zicha et al., Science, v. 300, pp. 142-145 [1].We re-examine the Zicha FLAP experiments using a two-phase reactive interpenetrating flow formalism to model the cytoplasm and the transport dynamics of bleached and unbleached actin. By allowing an improved treatment of effects related to the retrograde flow of the cytoskeleton and of the geometry and finite thickness of the lamella, this new analysis reveals a mechanism that can realistically explain the timing and the amplitude of all the FLAP signals observed in [1] without invoking special transport modalities.We conclude that simple diffusion is sufficient to explain the observed transport rates, and that variations in the transport of labeled actin through the lamella are minor and not likely to be the cause of the observed physiological variations among different segments of the leading edge. We find that such variations in labeling can easily arise from differences and changes in the microscopic actin dynamics inside the edge compartment, and that the key dynamical parameter in this regard is the so-called "dilatation rate" (the velocity of cytoskeletal retrograde flow divided by a characteristic dimension of the edge compartment where rapid polymerization occurs. If our dilatation hypothesis is correct, the transient kinetics of bleached actin relocalization constitute a novel and very sensitive method for probing the cytoskeletal dynamics in leading edge micro-environments which are otherwise very difficult to directly interrogate.

  5. Analysis of actin FLAP dynamics in the leading lamella.

    Science.gov (United States)

    Kuznetsov, Igor R; Herant, Marc; Dembo, Micah

    2010-04-15

    The transport of labeled G-actin from the mid-lamella region to the leading edge in a highly motile malignant rat fibroblast line has been studied using fluorescence localization after photobleaching or FLAP, and the transit times recorded in these experiments were so fast that simple diffusion was deemed an insufficient explanation (see Zicha et al., Science, v. 300, pp. 142-145 [1]). We re-examine the Zicha FLAP experiments using a two-phase reactive interpenetrating flow formalism to model the cytoplasm and the transport dynamics of bleached and unbleached actin. By allowing an improved treatment of effects related to the retrograde flow of the cytoskeleton and of the geometry and finite thickness of the lamella, this new analysis reveals a mechanism that can realistically explain the timing and the amplitude of all the FLAP signals observed in [1] without invoking special transport modalities. We conclude that simple diffusion is sufficient to explain the observed transport rates, and that variations in the transport of labeled actin through the lamella are minor and not likely to be the cause of the observed physiological variations among different segments of the leading edge. We find that such variations in labeling can easily arise from differences and changes in the microscopic actin dynamics inside the edge compartment, and that the key dynamical parameter in this regard is the so-called "dilatation rate" (the velocity of cytoskeletal retrograde flow divided by a characteristic dimension of the edge compartment where rapid polymerization occurs). If our dilatation hypothesis is correct, the transient kinetics of bleached actin relocalization constitute a novel and very sensitive method for probing the cytoskeletal dynamics in leading edge micro-environments which are otherwise very difficult to directly interrogate.

  6. Differential sensitivity to detergents of actin cytoskeleton from nerve endings.

    Science.gov (United States)

    Cubí, Roger; Matas, Lluís A; Pou, Marta; Aguilera, José; Gil, Carles

    2013-11-01

    Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied. © 2013.

  7. Cardiac gated ventilation

    Science.gov (United States)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  8. Roles of the actin cytoskeleton and an actin-binding protein in wheat resistance against Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Song, Xiaohe; Ma, Qing; Hao, Xinyuan; Li, Hongli

    2012-01-01

    Elucidating resistance mechanisms of plant cells against pathogens is essential to develop novel strategies of disease control. The actin cytoskeleton was found intimately involved in plant defense. In order to reveal how actin would be involved in the interaction between wheat and the stripe rust Puccinia striiformis f. sp. tritici, prior to fungal inoculation, wheat leaves were treated with cytochalasin A, an inhibitor of actin polymerization. Our results showed reduced incidence of hypersensitive cell death and delayed accumulation of H(2)O(2) in wheat leaves treated with cytochalasin A compared to the control. We also found that the TaPRO profilin gene exhibited significantly different expression levels in host leaves when comparing compatible and incompatible interactions. Real-time PCR analysis revealed that the expression transcript of TaPRO was lower at each time point in incompatible interactions when compared to compatible ones, and the largest difference between the two interactions occurred at 12 h post-inoculation. Both pharmacological and gene expression results collectively support the notion that the compromise of the actin microfilament is linked to the compatible interaction between the stripe rust fungus and the leaves of its wheat host.

  9. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    2009-05-01

    Full Text Available Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments.In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore.Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  10. Alpha Thalassemia (For Parents)

    Science.gov (United States)

    ... the body has a problem producing alpha globin Beta thalassemia : when the body has a problem producing beta ... Transfusion Blood Test: Hemoglobin Electrophoresis Sickle Cell Disease Beta Thalassemia Blood All About Genetics Prenatal Genetic Counseling Genetic ...

  11. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    Science.gov (United States)

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  12. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Jepsen, Pia Lørup; Boysen, Anders

    2017-01-01

    to actin. This interaction is present in regenerating myofibers of patients with Duchenne muscular dystrophy, polymyositis, and compartment syndrome. Analysis of the α-, β-, and γ-actin isoforms in SPARC knockout myoblasts reveals a changed expression pattern with dominance of γ-actin. In SPARC knockout...... stimulation protocol, we find a defective force recovery. Therefore, SPARC appears to be an important modulator of the actin cytoskeleton, implicating maintenance of muscular function. This direct interaction with actin suggests a new role of SPARC during tissue remodeling....

  13. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  14. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Georges Hajje

    Full Text Available The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10 group and a group treated with 6-propyl-2-thiouracil (PTU (n = 20 to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL6 and pro-fibrotic transforming growth factor beta 1 (TGF-β1, were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP and cardiac troponin T (cTnT were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  15. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Science.gov (United States)

    Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  16. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  17. Expression of triplicated and quadruplicated alpha globin genes in sheep.

    Science.gov (United States)

    Vestri, R; Pieragostini, E; Yang, F; di Gregorio, P; Rando, A; Masina, P

    1991-01-01

    In the sheep alpha alpha alpha globin gene haplotype, the three genes display from the 5' to the 3' end the percentage efficiencies of about 30:14:6, as indicated by the amounts of the three types of alpha chain produced in the alpha alpha alpha/alpha alpha alpha homozygotes. The 3' gene in the alpha alpha alpha alpha haplotype appears to have an efficiency around 1%, as suggested by analysis of one quadruple alpha homozygote. Moreover, the total outputs of the alpha alpha alpha as well as of the alpha alpha alpha alpha haplotypes do not substantially differ from that of the common alpha alpha haplotype.

  18. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  19. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  20. Cross-reacting material 197 (CRM197) affects actin cytoskeleton of endothelial cells.

    Science.gov (United States)

    Özerman Edis, Bilge; Varol, Başak; Hacıosmanoğlu, Ebru; Ünlü, Ayhan; Bektaş, Muhammet

    2017-10-01

    CRM197, cross-reacting material 197, is a mutant of diphtheria toxin (DTx). CRM197 is used in pharmacology as a carrier protein. It has been recently shown that CRM197 causes breakdown in actin filaments. In order to show intracellular localization of CRM197 and visualize cell structure via actin cytoskeleton, endothelial cells were cultured and subjected to CRM197 in vitro. To address the interaction between CRM197 and actin both experimental and theoretical studies were carried out. Colocalization of CRM197 with actin filaments was determined by immunofluorescence microscopy. Following 24-hour incubation, the loss of cell-cell contact between cells was prominent. CRM197 was shown to bind to G-actin by gel filtration chromatography, and this binding was confirmed by Western blot analysis of eluted samples obtained following chromatography. Based on crystal structure, docked model of CRM197-actin complex was generated. Molecular dynamics simulation revealed that Lys42, Cys218, Cys233 of CRM197 interacts with Gly197, Arg62 and Ser60 of G-actin, respectively. CRM197 binding to G-actin, colocalization of CRM197 with actin filament, and actin cytoskeleton rearrangement resulting in the loss of cell-cell contact show that actin comes into sight as target molecule for CRM197.

  1. Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

    Science.gov (United States)

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E

    2013-10-15

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Colonna, Cecilia; Cortegano, Miguel; Calvo, María; Martínez, Susana E; Egea, Gustavo

    2007-08-07

    Efficient post-Golgi trafficking depends on microtubules, but actin filaments and actin-associated proteins are also postulated. Here we examined, by inverse fluorescence recovery after photobleaching, the role of actin dynamics in the exit from the TGN of fluorescent-tagged apical or basolateral and raft or non-raft-associated cargoes. Either the actin-stabilizing jasplakinolide or the actin-depolymerising latrunculin B variably but significantly inhibited post-Golgi traffic of non-raft associated apical p75NTR and basolateral VSV-G cargoes. The TGN-exit of the apical-destined VSV-G mutant was impaired only by latrunculin B. Strikingly, the raft-associated GPI-anchor protein was not affected by either actin toxin. Results indicate that actin dynamics participates in the TGN egress of both apical- and basolateral-targeted proteins but is not needed for apical raft-associated cargo.

  3. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain.

    Science.gov (United States)

    Flynn, Kevin C; Hellal, Farida; Neukirchen, Dorothee; Jacob, Sonja; Tahirovic, Sabina; Dupraz, Sebastian; Stern, Sina; Garvalov, Boyan K; Gurniak, Christine; Shaw, Alisa E; Meyn, Liane; Wedlich-Söldner, Roland; Bamburg, James R; Small, J Victor; Witke, Walter; Bradke, Frank

    2012-12-20

    Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation.

    Science.gov (United States)

    Zemans, Rachel L; Arndt, Patrick G

    2009-01-01

    The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH(2) terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta expression are dependent on Tec kinase activity.

  5. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants.

    Science.gov (United States)

    Thyssen, Gregory N; Fang, David D; Turley, Rickie B; Florane, Christopher B; Li, Ping; Mattison, Christopher P; Naoumkina, Marina

    2017-04-01

    Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single-celled trichomes that comprise cotton lint fibers. Using mapping-by-sequencing, virus-induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li 1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F-actin in Li 1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F-actin did not uniformly decorate the nuclear envelope. While wild-type lint fiber trichome cells contained long longitudinal actin cables, the short Li 1 fiber cells accumulated disoriented transverse cables. The polymerization-defective Gly65Val allele in Li 1 plants likely disrupts processive elongation of F-actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li 1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Actin microfilaments in presumptive statocytes of root caps and coleoptiles

    Science.gov (United States)

    White, R. G.; Sack, F. D.

    1990-01-01

    Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.

  7. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Hu, Huimin; Qiu, Weimin

    2018-01-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined...... differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte...... differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating h...

  8. Osmosensation in vasopressin neurons: changing actin density to optimize function.

    Science.gov (United States)

    Prager-Khoutorsky, Masha; Bourque, Charles W

    2010-02-01

    The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Hyperplastic Cardiac Sarcoma Recurrence

    Directory of Open Access Journals (Sweden)

    Masood A. Shariff

    2015-01-01

    Full Text Available Primary cardiac sarcomas are rare tumors with a median survival of 6–12 months. Data suggest that an aggressive multidisciplinary approach may improve patient outcome. We present the case of a male who underwent resection of cardiac sarcoma three times from the age of 32 to 34. This report discusses the malignant nature of cardiac sarcoma and the importance of postoperative multidisciplinary care.

  10. Lamin A/C and polymeric actin in genome organization

    Czech Academy of Sciences Publication Activity Database

    Ondřej, V.; Lukášová, Emilie; Kroupová, Jana; Matula, P.; Kozubek, Stanislav

    2008-01-01

    Roč. 26, č. 4 (2008), s. 356-361 ISSN 1016-8478 R&D Projects: GA AV ČR(CZ) 1QS500040508; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : lamin A/C * polymeric actin * chromosome territories Subject RIV: BO - Biophysics Impact factor: 2.023, year: 2008

  11. Dynamics and Morphology of Microvilli Driven by Actin Polymerization

    Science.gov (United States)

    Gov, Nir S.

    2006-07-01

    Many different cell types have dynamic protrusions, called microvilli, on their surface. We model these structures as arising from the balance between the force of actin polymerization and the restoring force of the membrane. From this simple model we calculate the distribution function of microvilli heights for several cells. We further describe the phase diagram and the resulting morphology of the microvilli aggregates on the cell surface.

  12. Actinic inspection of multilayer defects on EUV masks

    International Nuclear Information System (INIS)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-01-01

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects

  13. Mutual regulation of plant phospholipase D and the actin cytoskeleton

    Czech Academy of Sciences Publication Activity Database

    Pleskot, Roman; Potocký, Martin; Pejchar, Přemysl; Linek, J.; Bezvoda, R.; Martinec, Jan; Valentová, O.; Novotná, Z.; Žárský, Viktor

    2010-01-01

    Roč. 62, č. 3 (2010), s. 494-507 ISSN 0960-7412 R&D Projects: GA AV ČR IAA601110916; GA MŠk(CZ) LC06034; GA ČR GA522/05/0340 Institutional research plan: CEZ:AV0Z50380511 Keywords : phospholipase D * actin * signaling Subject RIV: ED - Physiology Impact factor: 6.948, year: 2010

  14. Giant cardiac myxoma.

    Science.gov (United States)

    Barlis, Peter; Lim, Eu Jin; Gow, Paul J; Seevanayagam, Siven; Calafiore, Paul; Chan, Robert K

    2007-10-01

    Although cardiac myxomas remain an uncommon group of malignancies, they are the most common form of primary cardiac tumour. Clinical presentations can be varied with local cardiac haemodynamic consequences, valvular insufficiency or even embolic phenomena. We present a case of a 46-year-old man with chronic abdominal pain and discuss a number of diagnostic challenges that were confronted up until a definitive diagnosis of cardiac myxoma was made. The resultant outcome was excellent with the patient achieving complete recovery from long term disabling symptoms.

  15. Cardiac event monitors

    Science.gov (United States)

    ... ECG) - ambulatory; Continuous electrocardiograms (EKGs); Holter monitors; Transtelephonic event monitors ... attached. You can carry or wear a cardiac event monitor up to 30 days. You carry the ...

  16. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  17. Memory Dynamics in Cross-linked Actin Networks

    Science.gov (United States)

    Scheff, Danielle; Majumdar, Sayantan; Gardel, Margaret

    Cells demonstrate the remarkable ability to adapt to mechanical stimuli through rearrangement of the actin cytoskeleton, a cross-linked network of actin filaments. In addition to its importance in cell biology, understanding this mechanical response provides strategies for creation of novel materials. A recent study has demonstrated that applied stress can encode mechanical memory in these networks through changes in network geometry, which gives rise to anisotropic shear response. Under later shear, the network is stiffer in the direction of the previously applied stress. However, the dynamics behind the encoding of this memory are unknown. To address this question, we explore the effect of varying either the rigidity of the cross-linkers or the length of actin filament on the time scales required for both memory encoding and over which it later decays. While previous experiments saw only a long-lived memory, initial results suggest another mechanism where memories relax relatively quickly. Overall, our study is crucial for understanding the process by which an external stress can impact network arrangement and thus the dynamics of memory formation.

  18. Treadmilling of actin filaments via Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2010-10-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

  19. How cellular membrane properties are affected by the actin cytoskeleton.

    Science.gov (United States)

    Lemière, J; Valentino, F; Campillo, C; Sykes, C

    2016-11-01

    Lipid membranes define the boundaries of living cells and intracellular compartments. The dynamic remodelling of these membranes by the cytoskeleton, a very dynamic structure made of active biopolymers, is crucial in many biological processes such as motility or division. In this review, we present some aspects of cellular membranes and how they are affected by the presence of the actin cytoskeleton. We show that, in parallel with the direct study of membranes and cytoskeleton in vivo, biomimetic in vitro systems allow reconstitution of biological processes in a controlled environment. In particular, we show that liposomes, or giant unilamellar vesicles, encapsulating a reconstituted actin network polymerizing at their membrane are suitable models of living cells and can be used to decipher the relative contributions of membrane and actin on the mechanical properties of the cellular interface. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. The Evolution of the Actin Binding NET Superfamily

    Directory of Open Access Journals (Sweden)

    Tim eHawkins

    2014-06-01

    Full Text Available The arabidopsis Networked protein superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in arabidopsis which group into 4 distinct clades or subfamilies. NET homologues are absent from the genomes of metazoa and fungi, furthermore in Plantae NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single subfamily of the NET proteins are found encoded in the club moss genome; an extant species of the earliest vascular plants. Gymnosperms have examples from subfamilies 4 and 3 with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 subfamilies, the NET1 and pollen-expressed NET2 subfamilies are only found as independent sequences in angiosperms. This is consistent with the divergence of reproductive actin. The four subfamilies are conserved across monocots and eudicots with the numbers of members of each clade expanding at this point due in part to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants they have continued to develop and diversify in a manner which has mirrored the divergence and complexity of plant species through evolution in the ‘March of Progress’.

  1. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  2. Antibodies to filamentous actin (F-actin) in type 1 autoimmune hepatitis.

    Science.gov (United States)

    Granito, A; Muratori, L; Muratori, P; Pappas, G; Guidi, M; Cassani, F; Volta, U; Ferri, A; Lenzi, M; Bianchi, F B

    2006-03-01

    To evaluate the diagnostic significance of anti-filamentous actin antibodies (A-FAA) assessed with a commercial ELISA in comparison with immunofluorescence reactivity and patterns of anti-smooth muscle antibodies (SMA); and to correlate A-FAA positivity with clinical, immunogenetic, laboratory, and histological features in patients with autoimmune hepatitis type 1 (AIH-1). We studied 78 consecutive untreated AIH-1 patients and 160 controls: 22 with autoimmune hepatitis type 2 (AIH-2), 51 with hepatitis C, 17 with coeliac disease (CD), 20 with primary biliary cirrhosis (PBC) and 50 blood donors. SMA was evaluated by indirect immunofluorescence (IIF) on frozen sections of rat tissues, and A-FAA with a modified commercial ELISA. SMA was detected by IIF in 61 (78%) of 78 AIH-1 patients, of whom 47 (60%) had the SMA-T/G and 14 (18%) the SMA-V pattern. Of the pathological controls, 32 (20%) had the SMA-V pattern (25 with hepatitis C, 2 with AIH-2, 2 with PBC, 3 with CD). A-FAA were present in 55 AIH-1 patients (70.5%; 46 with SMA-T/G, 7 with SMA-V, and 2 SMA-negative), and in 10 controls (6%), of whom five had hepatitis C, two AIH-2, two PBC and one CD. The association between A-FAA and the SMA-T/G pattern was statistically significant (p<0.0001). A-FAA levels were higher in SMA-T/G positive than SMA-V positive AIH-1 patients and controls (p<0.0001). A-FAA positivity was significantly associated with higher gamma-globulin and IgG levels, but did not correlate with other considered parameters. The modified A-FAA ELISA strictly correlates with the SMA-T/G pattern and is a reliable and operator independent assay for AIH-1. Detection of A-FAA, even if devoid of prognostic relevance, may be useful when interpretative doubts of standard IIF arise.

  3. Antibodies to filamentous actin (F‐actin) in type 1 autoimmune hepatitis

    Science.gov (United States)

    Granito, A; Muratori, L; Muratori, P; Pappas, G; Guidi, M; Cassani, F; Volta, U; Ferri, A; Lenzi, M; Bianchi, F B

    2006-01-01

    Aims To evaluate the diagnostic significance of anti‐filamentous actin antibodies (A‐FAA) assessed with a commercial ELISA in comparison with immunofluorescence reactivity and patterns of anti‐smooth muscle antibodies (SMA); and to correlate A‐FAA positivity with clinical, immunogenetic, laboratory, and histological features in patients with autoimmune hepatitis type 1 (AIH‐1). Methods We studied 78 consecutive untreated AIH‐1 patients and 160 controls: 22 with autoimmune hepatitis type 2 (AIH‐2), 51 with hepatitis C, 17 with coeliac disease (CD), 20 with primary biliary cirrhosis (PBC) and 50 blood donors. SMA was evaluated by indirect immunofluorescence (IIF) on frozen sections of rat tissues, and A‐FAA with a modified commercial ELISA. Results SMA was detected by IIF in 61 (78%) of 78 AIH‐1 patients, of whom 47 (60%) had the SMA‐T/G and 14 (18%) the SMA‐V pattern. Of the pathological controls, 32 (20%) had the SMA‐V pattern (25 with hepatitis C, 2 with AIH‐2, 2 with PBC, 3 with CD). A‐FAA were present in 55 AIH‐1 patients (70.5%; 46 with SMA‐T/G, 7 with SMA‐V, and 2 SMA‐negative), and in 10 controls (6%), of whom five had hepatitis C, two AIH‐2, two PBC and one CD. The association between A‐FAA and the SMA‐T/G pattern was statistically significant (p<0.0001). A‐FAA levels were higher in SMA‐T/G positive than SMA‐V positive AIH‐1 patients and controls (p<0.0001). A‐FAA positivity was significantly associated with higher γ‐globulin and IgG levels, but did not correlate with other considered parameters. Conclusion The modified A‐FAA ELISA strictly correlates with the SMA‐T/G pattern and is a reliable and operator independent assay for AIH‐1. Detection of A‐FAA, even if devoid of prognostic relevance, may be useful when interpretative doubts of standard IIF arise. PMID:16505279

  4. Post-cardiorespiratory arrest beta-alpha coma: an unusual electroencephalographic phenomenon.

    Science.gov (United States)

    Sarma, G R K; Kumar, A; Roy, A K; Pinheiro, L

    2003-06-01

    The presence of frontally-dominant alpha pattern in the EEG is common in patients with coma due to trauma, toxic-metabolic causes and following cardiorespiratory arrest. Diffuse beta activity following resuscitation after a cardiac arrest is not well recognized. We report a case of coma in a 3-year-old girl who had a cardiac arrest from which she was revived. Initial EEG showed diffuse beta activity, which later evolved to predominantly alpha activity. The possible mechanisms involved in the generation of such rhythms are discussed. Transition of EEG activity from faster to slower frequencies is suggested as an adverse prognostic factor in post-cardiorespiratory arrest coma.

  5. The role of actin in root hair morphogenesis : studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug

    NARCIS (Netherlands)

    Miller, D.D.; Ruijter, de N.C.A.; Bisseling, T.; Emons, A.M.C.

    1999-01-01

    Root hairs develop from bulges on root epidermal cells and elongate by tip growth, in which Golgi vesicles are targeted, released and inserted into the plasma membrane on one side of the cell. We studied the role of actin in vesicle delivery and retention by comparing the actin filament

  6. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression.

    Directory of Open Access Journals (Sweden)

    Gianina Ravenscroft

    Full Text Available Mutations in the skeletal muscle α-actin gene (ACTA1 cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G of ACTA1 (identified in a severe nemaline myopathy patient fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.

  7. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  8. Actin cytoskeleton and small heat shock proteins: how do they interact?

    Science.gov (United States)

    Mounier, Nicole; Arrigo, André-Patrick

    2002-01-01

    Actin and small heat shock proteins (sHsps) are ubiquitous and multifaceted proteins that exist in 2 reversible forms, monomers and multimers, ie, the microfilament of the cytoskeleton and oligomers of the sHsps, generally, supposed to be in a spherical and hollow form. Two situations are described in the literature, where the properties of actin are modulated by sHsps; the actin polymerization is inhibited in vitro by some sHsps acting as capping proteins, and the actin cytoskeleton is protected by some sHsps against the disruption induced by various stressful conditions. We propose that a direct actin-sHsp interaction occurs to inhibit actin polymerization and to participate in the in vivo regulation of actin filament dynamics. Protection of the actin cytoskeleton would result from an F-actin–sHsp interaction in which microfilaments would be coated by small oligomers of phosphorylated sHsps. Both proteins share common structural motives suggesting direct binding sites, but they remain to be demonstrated. Some sHsps would behave with the actin cytoskeleton as actin-binding proteins capable of either capping a microfilament when present as a nonphosphorylated monomer or stabilizing and protecting the microfilament when organized in small, phosphorylated oligomers. PMID:12380684

  9. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  10. FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe.

    Science.gov (United States)

    Su, Hui; Zhu, Jinsheng; Cai, Chao; Pei, Weike; Wang, Jiaojiao; Dong, Huaijian; Ren, Haiyun

    2012-11-01

    An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.

  11. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    Science.gov (United States)

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  12. Binding and assembly of actin filaments by plasma membranes from dictyostelium discoideum

    International Nuclear Information System (INIS)

    Schwartz, M.A.; Luna, E.J.

    1986-01-01

    The binding of native, 125 I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. This membrane-bound actin stained with rhodamine-phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. The authors conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins

  13. Altered cell mechanics from the inside: dispersed single wall carbon nanotubes integrate with and restructure actin.

    Science.gov (United States)

    Holt, Brian D; Shams, Hengameh; Horst, Travis A; Basu, Saurav; Rape, Andrew D; Wang, Yu-Li; Rohde, Gustavo K; Mofrad, Mohammad R K; Islam, Mohammad F; Dahl, Kris Noel

    2012-05-23

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  14. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  15. The 5’cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Tilsner, Jens; Bell, Karen

    to the motile cortical actin/ER network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5’ methylguanosine TMV cap was shown to be required for vRNA anchoring to the ER. TMV vRNA lacking the 5’cap failed to form granules...... the fluorescent vRNA pool nor co-injected GFP left the injected trichome, indicating that the synthesis of unlabelled progeny viral (v)RNA is required to initiate cell-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored...... on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome....

  16. Monte Carlo alpha deposition

    International Nuclear Information System (INIS)

    Talley, T.L.; Evans, F.

    1988-01-01

    Prior work demonstrated the importance of nuclear scattering to fusion product energy deposition in hot plasmas. This suggests careful examination of nuclear physics details in burning plasma simulations. An existing Monte Carlo fast ion transport code is being expanded to be a test bed for this examination. An initial extension, the energy deposition of fast alpha particles in a hot deuterium plasma, is reported. The deposition times and deposition ranges are modified by allowing nuclear scattering. Up to 10% of the initial alpha particle energy is carried to greater ranges and times by the more mobile recoil deuterons. 4 refs., 5 figs., 2 tabs

  17. Buffett’s Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting......-Against-Beta and Quality-Minus-Junk factors. Further, we estimate that Buffett’s leverage is about 1.6-to-1 on average. Buffett’s returns appear to be neither luck nor magic, but, rather, reward for the use of leverage combined with a focus on cheap, safe, quality stocks. Decomposing Berkshires’ portfolio into ownership...

  18. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  19. Safety in cardiac surgery

    NARCIS (Netherlands)

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for

  20. [Advances in cardiac pacing].

    Science.gov (United States)

    de Carranza, María-José Sancho-Tello; Fidalgo-Andrés, María Luisa; Ferrer, José Martínez; Mateas, Francisco Ruiz

    2012-01-01

    This article contains a review of the current status of remote monitoring and follow-up involving cardiac pacing devices and of the latest developments in cardiac resynchronization therapy. In addition, the most important articles published in the last year are discussed. Copyright © 2012 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  1. Acebutolol in Cardiac Arrhythmias

    African Journals Online (AJOL)

    1974-04-20

    Apr 20, 1974 ... the cardiac output at rest and on exercise is not altered by the administration of acebutolol, and in patients with coronary artery disease, intravenous acebutolol produces a small fall in cardiac index, stroke index and in the parameters which are used to measure left ventricular. contractilityYo. We have used ...

  2. Cardiac Catheterization (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Educators Search English Español Cardiac Catheterization KidsHealth / For Kids / Cardiac Catheterization What's in this article? What Is ...

  3. Perspectives on the value of biomarkers in acute cardiac care and implications for strategic management.

    Science.gov (United States)

    Kossaify, Antoine; Garcia, Annie; Succar, Sami; Ibrahim, Antoine; Moussallem, Nicolas; Kossaify, Mikhael; Grollier, Gilles

    2013-01-01

    Biomarkers in acute cardiac care are gaining increasing interest given their clinical benefits. This study is a review of the major conditions in acute cardiac care, with a focus on biomarkers for diagnostic and prognostic assessment. Through a PubMed search, 110 relevant articles were selected. The most commonly used cardiac biomarkers (cardiac troponin, natriuretic peptides, and C-reactive protein) are presented first, followed by a description of variable acute cardiac conditions with their relevant biomarkers. In addition to the conventional use of natriuretic peptides, cardiac troponin, and C-reactive protein, other biomarkers are outlined in variable critical conditions that may be related to acute cardiac illness. These include ST2 and chromogranin A in acute dyspnea and acute heart failure, matrix metalloproteinase in acute chest pain, heart-type fatty acid binding protein in acute coronary syndrome, CD40 ligand and interleukin-6 in acute myocardial infarction, blood ammonia and lactate in cardiac arrest, as well as tumor necrosis factor-alpha in atrial fibrillation. Endothelial dysfunction, oxidative stress and inflammation are involved in the physiopathology of most cardiac diseases, whether acute or chronic. In summary, natriuretic peptides, cardiac troponin, C-reactive protein are currently the most relevant biomarkers in acute cardiac care. Point-of-care testing and multi-markers use are essential for prompt diagnostic approach and tailored strategic management.

  4. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  5. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  6. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  7. Case Study - Alpha

    Directory of Open Access Journals (Sweden)

    Stephen Leybourne

    2016-11-01

    Full Text Available This case study was developed from an actual scenario by Dr. Steve Leybourne of Boston University.  The case documents the historical evolution of an organization, and has been used successfully in courses dealing with organizational and cultural change, and the utilization of ‘soft skills’ in project-based management. This is a short case, ideal for classroom use and discussion.  The issues are easily accessible to students, and there is a single wide ranging question that allows for the inclusion of many issues surrounding strategic decision-making, and behavioural and cultural change. Alpha was one of the earlier companies in the USA to invest in large, edge-of-town superstores, with plentiful free vehicle parking, selling food and related household products. Alpha was created in the 1950s as a subsidiary of a major publicly quoted retail group.  It started business by opening a string of very large discount stores in converted industrial and warehouse premises in the south of the United States. In the early days shoppers were offered a limited range of very competitively priced products. When Alpha went public in 1981 it was the fourth largest food retailer in the US, selling an ever-widening range of food and non-food products.  Its success continued to be based on high volume, low margins and good value for money, under the slogan of ‘Alpha Price.’

  8. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line; Stensland, Hilde Monica Frostad Riise; Olsen, Klaus Juul

    2015-01-01

    of the three subgroups of genotype/subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed...

  9. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components

    Science.gov (United States)

    Jelenska, Joanna; Kang, Yongsung; Greenberg, Jean T

    2014-01-01

    Cells of infected organisms transport disease defense-related molecules along actin filaments to deliver them to their sites of action to combat the pathogen. To accommodate higher demand for intracellular traffic, plant F-actin density increases transiently during infection or treatment of Arabidopsis with pathogen-associated molecules. Many animal and plant pathogens interfere with actin polymerization and depolymerization to avoid immune responses. Pseudomonas syringae, a plant extracellular pathogen, injects HopW1 effector into host cells to disrupt the actin cytoskeleton and reduce vesicle movement in order to elude defense responses. In some Arabidopsis accessions, however, HopW1 is recognized and causes resistance via an actin-independent mechanism. HopW1 targets isoform 7 of vegetative actin (ACT7) that is regulated by phytohormones and environmental factors. We hypothesize that dynamic changes of ACT7 filaments are involved in plant immunity. PMID:25551177

  10. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    Science.gov (United States)

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  11. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  12. Lithium preserves F-actin from the disarrangement induced by either DNase I or cytochalasin D.

    Science.gov (United States)

    DalleDonne, I; Milzani, A; Fascio, U; Ratti, A; Colombo, R

    1993-01-01

    Light scattering at 546 nm, which is mainly related to the presence of rodlike particles longer than 50 nm, showed that Li+ accelerates the formation of actin filaments. Intermolecular cross-linking with N,N'-1,4-phenylene-bismaleimide proved that the observed enhancement in the light-scattering intensity is caused by the increase in the concentration of actin oligomers, which gradually elongate to form longer filaments. DNase-I-related F-actin disassembly was reduced in the presence of lithium ions, as demonstrated by fluorimetric and viscometric experiments. Li(+)-F-actin showed an apparently similar behaviour when exposed to cytochalasin D. We confirm that Li+ acts on actin polymerization by stabilizing actin nuclei and polymers. The stabilization of cytoskeletal polymers really appears as one of the mechanisms by which lithium ions influence some of the cell activities.

  13. The interaction between the adaptor protein APS and Enigma is involved in actin organisation

    DEFF Research Database (Denmark)

    Barres, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick

    2005-01-01

    and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin...... cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest...... that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation....

  14. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  15. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    Science.gov (United States)

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  16. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Iman Jalilian

    Full Text Available The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm, in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  17. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  18. Actin expression is induced and three isoforms are differentially expressed during germination in Zea mays.

    Science.gov (United States)

    Díaz-Camino, Claudia; Conde, Renaud; Ovsenek, Nick; Villanueva, Marco A

    2005-02-01

    Previous analysis of actin in a dicotyledonous plant, Phaseolus vulgaris (or common bean), showed very low actin levels in cotyledons but they were concentrated in the embryo axis. Upon imbibition, actin expression increased 5-fold and a maximum of four actin isoforms were observed, two of them transient and two major ones were steadily expressed. In this work, analysis of the actin expression in a monocotyledonous plant, Zea mays (or maize), and over a longer period of germination/growth, showed that striking similarities exist. Actin is present in all the seed components, but it is mainly concentrated in the embryo axis. The expression of maize actin was induced during post-imbibition at both the protein and mRNA levels. Sharp increases in actin appeared from 24-48 h and again from 72-96 h. A more modest and steady actin mRNA increase in expression was observed; however, it did not appear as dramatic as in the case of common bean due to the presence of readily detectable amounts of message in the dry maize seed. The isoform distribution in the dry seed showed a pattern of at least three isovariants of pIs approximately 5.0, 5.1, and 5.2, which were differentially expressed at the various post-imbibition times analysed. Two of the actin isoforms at 48 h post-imbibition cross-reacted with a phosphotyrosine-specific antibody and they are the product of three expressed genes as shown by in vitro translation assays. These data indicate that maize actin protein and mRNA expression is induced upon the trigger of germination, and the isoform expression kinetics and patterns resemble those from bean, suggesting that, in both species, actin expression at these early germination/growth stages is a highly regulated event.

  19. Imaging for cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Benoit Desjardins

    2016-11-01

    Full Text Available Clinical cardiac electrophysiology is the study of the origin and treatment of arrhythmia. There has been considerable recent development in this field, where imaging has had a transformational impact. In this invited review, we offer a global overview of the most important developments in the use of imaging in cardiac electrophysiology. We first describe the radiological imaging modalities involved in cardiac electrophysiology, to assess cardiac anatomy, function and scar. We then introduce an imaging modality with which readers are probably unfamiliar (electroanatomical mapping [EAM], but which is routinely used by electrophysiologists to plan and guide cardiac mapping and cardiac ablation therapy by catheter, a therapy which can reduce or even cure arrhythmia. We identify the limitations of EAM and describe how radiological imaging modalities can complement this technique. We then describe and illustrate how imaging has helped the diagnosis of arrhythmogenic conditions, and how imaging is used to plan and guide clinical cardiac electrophysiologic procedures and assess their results and complications. We focus on the two most common arrhythmias for which imaging has the greatest impact: atrial fibrillation and ventricular tachycardia.

  20. Cardiac tumors: echo assessment

    Directory of Open Access Journals (Sweden)

    Rekha Mankad MD

    2016-12-01

    Full Text Available Cardiac tumors are exceedingly rare (0.001–0.03% in most autopsy series. They can be present anywhere within the heart and can be attached to any surface or be embedded in the myocardium or pericardial space. Signs and symptoms are nonspecific and highly variable related to the localization, size and composition of the cardiac mass. Echocardiography, typically performed for another indication, may be the first imaging modality alerting the clinician to the presence of a cardiac mass. Although echocardiography cannot give the histopathology, certain imaging features and adjunctive tools such as contrast imaging may aid in the differential diagnosis as do the adjunctive clinical data and the following principles: (1 thrombus or vegetations are the most likely etiology, (2 cardiac tumors are mostly secondary and (3 primary cardiac tumors are mostly benign. Although the finding of a cardiac mass on echocardiography may generate confusion, a stepwise approach may serve well practically. Herein, we will review such an approach and the role of echocardiography in the assessment of cardiac masses.

  1. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    Science.gov (United States)

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  2. A mathematical model of actin filament turnover for fitting FRAP data.

    Science.gov (United States)

    Halavatyi, Aliaksandr A; Nazarov, Petr V; Al Tanoury, Ziad; Apanasovich, Vladimir V; Yatskou, Mikalai; Friederich, Evelyne

    2010-03-01

    A novel mathematical model of the actin dynamics in living cells under steady-state conditions has been developed for fluorescence recovery after photobleaching (FRAP) experiments. As opposed to other FRAP fitting models, which use the average lifetime of actins in filaments and the actin turnover rate as fitting parameters, our model operates with unbiased actin association/dissociation rate constants and accounts for the filament length. The mathematical formalism is based on a system of stochastic differential equations. The derived equations were validated on synthetic theoretical data generated by a stochastic simulation algorithm adapted for the simulation of FRAP experiments. Consistent with experimental findings, the results of this work showed that (1) fluorescence recovery is a function of the average filament length, (2) the F-actin turnover and the FRAP are accelerated in the presence of actin nucleating proteins, (3) the FRAP curves may exhibit both a linear and non-linear behaviour depending on the parameters of actin polymerisation, and (4) our model resulted in more accurate parameter estimations of actin dynamics as compared with other FRAP fitting models. Additionally, we provide a computational tool that integrates the model and that can be used for interpretation of FRAP data on actin cytoskeleton.

  3. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  4. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens.

    Science.gov (United States)

    Herrera-Martínez, M; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Chávez-Munguía, B; Talamás-Rohana, P

    2013-01-01

    In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  5. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wakai

    Full Text Available The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect.

  6. A new model for the interaction of dystrophin with F-actin

    OpenAIRE

    1996-01-01

    The F-actin binding and cross-linking properties of skeletal muscle dystrophin-glycoprotein complex were examined using high and low speed cosedimentation assays, microcapillary falling ball viscometry, and electron microscopy. Dystrophin-glycoprotein complex binding to F-actin saturated near 0.042 +/- 0.005 mol/ mol, which corresponds to one dystrophin per 24 actin monomers. Dystrophin-glycoprotein complex bound to F-actin with an average apparent Kd for dystrophin of 0.5 microM. These resul...

  7. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Daisuke Nobezawa

    2017-01-01

    Full Text Available The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis. However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-D-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium.

  8. A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton.

    Science.gov (United States)

    Stachowiak, Matthew R; Smith, Mark A; Blankman, Elizabeth; Chapin, Laura M; Balcioglu, Hayri E; Wang, Shuyuan; Beckerle, Mary C; O'Shaughnessy, Ben

    2014-12-09

    Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress fibers. When fibers spontaneously fractured, they recoiled and disassembled actin synchronously. The disassembly rate was accelerated more than twofold above the resting value, but only when contraction increased the actin density to a threshold value following a time delay. A mathematical model explained this as originating in the increased overlap of actin filaments produced by myosin II-driven contraction. Above a threshold overlap, this mechanical signal is transduced into accelerated disassembly by a mechanism that may sense overlap directly or through associated elastic stresses. This biochemical response lowers the actin density, overlap, and stresses. The model showed that this feedback mechanism, together with rapid stress transmission along the actin bundle, spatiotemporally synchronizes actin disassembly and fiber contraction. Similar actin remodeling kinetics occurred in expanding or contracting intact stress fibers but over much longer timescales. The model accurately described these kinetics, with an almost identical value of the threshold overlap that accelerates disassembly. Finally, we measured resting stress fibers, for which the model predicts constant actin overlap that balances disassembly and assembly. The overlap was indeed regulated, with a value close to that predicted. Our results suggest that coordinated mechanical and biochemical signaling enables extended actomyosin assemblies to adapt dynamically to the mechanical stresses they convey and direct their own remodeling.

  9. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    Science.gov (United States)

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    Science.gov (United States)

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  12. Demystifying AlphaGo Zero as AlphaGo GAN

    OpenAIRE

    Dong, Xiao; Wu, Jiasong; Zhou, Ling

    2017-01-01

    The astonishing success of AlphaGo Zero\\cite{Silver_AlphaGo} invokes a worldwide discussion of the future of our human society with a mixed mood of hope, anxiousness, excitement and fear. We try to dymystify AlphaGo Zero by a qualitative analysis to indicate that AlphaGo Zero can be understood as a specially structured GAN system which is expected to possess an inherent good convergence property. Thus we deduct the success of AlphaGo Zero may not be a sign of a new generation of AI.

  13. $\\alpha$-Representation for QCD

    OpenAIRE

    Tuan, Richard Hong

    1998-01-01

    An $\\alpha$-parameter representation is derived for gauge field theories.It involves, relative to a scalar field theory, only constants and derivatives with respect to the $\\alpha$-parameters. Simple rules are given to obtain the $\\alpha$-representation for a Feynman graph with an arbitrary number of loops in gauge theories in the Feynman gauge.

  14. Alpha Theta Meditation: Phenomenological, neurophysiologic ...

    African Journals Online (AJOL)

    Alpha Theta Meditation: Phenomenological, neurophysiologic, mindfulness, mood, health and sport implications. ... the single alpha theta meditation was associated with elevated alpha and theta activity, as well as decrease in negative mood perceptions, especially with regard to anxiety, sadness and confusion scores.

  15. Endotoxemia Engages the RhoA Kinase Pathway to Impair Cardiac Function By Altering Cytoskeleton, Mitochondrial Fission, and Autophagy.

    Science.gov (United States)

    Preau, Sebastien; Delguste, Florian; Yu, Yichi; Remy-Jouet, Isabelle; Richard, Vincent; Saulnier, Fabienne; Boulanger, Eric; Neviere, Remi

    2016-04-01

    The RhoA/ROCK pathway controls crucial biological processes involved in cardiovascular pathophysiology, such as cytoskeleton dynamics, vascular smooth muscle contraction, and inflammation. In this work, we tested whether Rho kinase inhibition would beneficially impact cardiac cytoskeleton organization, bioenergetics, and autophagy in experimental endotoxemia induced by lipopolysaccharides (LPSs) in mice. Fasudil, a potent ROCK inhibitor, prevented LPS-induced cardiac inflammation, oxidative stress, cytoskeleton disarray, and mitochondrial injury. ROCK inhibition prevented phosphorylation of cofilin and dynamin-related protein-1, which promotes stabilization-polymerization of F-actin and mediates mitochondrial fission, respectively. Pyr1, which exclusively alters actin dynamics, prevented LPS-induced myocardial dysfunction, suggesting that beneficial impact of ROCK inhibition was not mainly related to pleiotropic effects of fasudil on cardiac inflammation and oxidative stress. Fasudil reduced mitochondrial fragmentation, stimulated initiation of autophagy, and elicited cardioprotection in LPS heart. Mdivi-1, a potent mitochondria fission inhibitor, converted cardioprotective autophagy to an inefficient form due to cargo loading failure in which autophagic vacuoles fail to trap cytosolic cargo, despite their formation at enhanced rates and lysosomal elimination. In experimental endotoxemia, cardioprotection by RhoA/ROCK inhibition may be related to changes in actin cytoskeleton reorganization and mitochondrial homeostasis. Improvement of LPS-induced mitochondrial dysfunction by fasudil was attributed to inhibition of ROCK-dependent Drp1 phosphorylation and activation of autophagic processes that can limit mitochondrial fragmentation and enhance degradation of damaged mitochondria, respectively. Fasudil prevented LPS-induced heart oxidative stress, abnormal F-actin distribution, and oxidative phosphorylation, which concur to improve cardiac contractile and

  16. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  17. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  18. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt

    2012-01-01

    cardiac rehabilitation programme. Methods: From 1 September 2002 to 31 December 2005, 388 first-incidence MI patients ≤75 years were hospitalised. Register check for newly hospitalised MI patients, screening interview, and systematic referral were conducted by a project nurse. Patients were referred...... to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  19. Cardiac Procedures and Surgeries

    Science.gov (United States)

    ... the Procedure Does A stent is a wire mesh tube used to prop open an artery during ... a Heart Attack • Heart Attack Tools & Resources • Support Network Heart Attack Tools & Resources My Cardiac Coach What ...

  20. Defining the Cardiac Fibroblast

    Science.gov (United States)

    Ivey, Malina J.; Tallquist, Michelle D.

    2017-01-01

    Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury multiple cell types have been implicated as the source for extracellular matrix producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. PMID:27746422

  1. Cardiac Catheterization (For Parents)

    Science.gov (United States)

    ... cases, the doctor might call for a cardiac magnetic resonance imaging (MRI) scan or a CAT scan . ... first couple of days. This means no heavy lifting (more than 10 pounds) and no sports. After ...

  2. Cardiac Catheterization (For Teens)

    Science.gov (United States)

    ... doctor may also call for a cardiac MRI (magnetic resonance imaging) scan or a CT (computerized tomography) ... first couple of days. This means no heavy lifting (nothing over 10 pounds) and no sports. After ...

  3. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  4. Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.

    Science.gov (United States)

    Sato, Osamu; Komatsu, Satoshi; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Tanaka, Ryosuke; Mizutani, Takeomi; Watanabe, Tomonobu M; Ikebe, Reiko; Ikebe, Mitsuo

    2017-06-30

    Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s -1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s -1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. F-actin cytoskeleton reorganization is associated with hepatic stellate cell activation

    Science.gov (United States)

    CUI, XIAODONG; ZHANG, XIAOYUN; YIN, QINGLING; MENG, AIXIA; SU, SHAOJUAN; JING, XU; LI, HONG; GUAN, XIUMEI; LI, XIN; LIU, SHUNMEI; CHENG, MIN

    2014-01-01

    The activation of hepatic stellate cells (HSCs) is involved in the development of hepatic fibrosis. Previous studies have indicated that the acquisition of certain properties by activated HSCs is highly dependent on the reorganization of the actin cytoskeleton. However, direct evidence showing that the reorganization of the actin cytoskeleton is responsible for HSC activation is lacking. The aim of the present study was to investigate the role of cytoskeletal reorganization during HSC activation and to clarify the underlying mechanism. HSC-T6 cells were treated either with the F-actin stabilizer jasplakinolide (Jas) or the depolymerizer cytochalasin D (Cyto D). The actin cytoskeleton was evaluated via assessment of stress fiber formation. Furthermore, the activation properties of HSCs, including proliferation, adhesion, migration and the expression of α-smooth muscle actin (α-SMA) and collagen 1, were investigated in vitro. The results showed that Jas and Cyto D affected the actin distribution in HSC-T6 cells. Treatment with Jas resulted in thick actin bundles and a patchy appearance in the cytoplasm in HSC-T6 cells. In parallel, polymerization of actin microfilaments induced by Jas upregulated the expression of α-SMA and collagen 1, and also enhanced the migration and adhesion properties of HSC-T6 cells. Furthermore, the activation of HSC-T6 cells induced by the reorganization of the actin cytoskeleton was associated with the p38 mitogen-activated protein kinase (p38 MAPK) pathway. In conclusion, the present study suggests that the reorganization of the F-actin cytoskeleton is associated with HSC activation and that the p38 MAPK pathway is involved in this process. The inhibition of F-actin reorganization may thus be a potential key factor or molecular target for the control of liver fibrosis or cirrhosis. PMID:24626324

  6. F‑actin cytoskeleton reorganization is associated with hepatic stellate cell activation.

    Science.gov (United States)

    Cui, Xiaodong; Zhang, Xiaoyun; Yin, Qingling; Meng, Aixia; Su, Shaojuan; Jing, Xu; Li, Hong; Guan, Xiumei; Li, Xin; Liu, Shunmei; Cheng, Min

    2014-05-01

    The activation of hepatic stellate cells (HSCs) is involved in the development of hepatic fibrosis. Previous studies have indicated that the acquisition of certain properties by activated HSCs is highly dependent on the reorganization of the actin cytoskeleton. However, direct evidence showing that the reorganization of the actin cytoskeleton is responsible for HSC activation is lacking. The aim of the present study was to investigate the role of cytoskeletal reorganization during HSC activation and to clarify the underlying mechanism. HSC-T6 cells were treated either with the F-actin stabilizer jasplakinolide (Jas) or the depolymerizer cytochalasin D (Cyto D). The actin cytoskeleton was evaluated via assessment of stress fiber formation. Furthermore, the activation properties of HSCs, including proliferation, adhesion, migration and the expression of α-smooth muscle actin (α-SMA) and collagen 1, were investigated in vitro. The results showed that Jas and Cyto D affected the actin distribution in HSC-T6 cells. Treatment with Jas resulted in thick actin bundles and a patchy appearance in the cytoplasm in HSC-T6 cells. In parallel, polymerization of actin microfilaments induced by Jas upregulated the expression of α-SMA and collagen 1, and also enhanced the migration and adhesion properties of HSC-T6 cells. Furthermore, the activation of HSC-T6 cells induced by the reorganization of the actin cytoskeleton was associated with the p38 mitogen-activated protein kinase (p38 MAPK) pathway. In conclusion, the present study suggests that the reorganization of the F-actin cytoskeleton is associated with HSC activation and that the p38 MAPK pathway is involved in this process. The inhibition of F-actin reorganization may thus be a potential key factor or molecular target for the control of liver fibrosis or cirrhosis.

  7. Low-dimensional manifold of actin polymerization dynamics

    Science.gov (United States)

    Floyd, Carlos; Jarzynski, Christopher; Papoian, Garegin

    2017-12-01

    Actin filaments are critical components of the eukaryotic cytoskeleton, playing important roles in a number of cellular functions, such as cell migration, organelle transport, and mechanosensation. They are helical polymers with a well-defined polarity, composed of globular subunits that bind nucleotides in one of three hydrolysis states (ATP, ADP-Pi, or ADP). Mean-field models of the dynamics of actin polymerization have succeeded in, among other things, determining the nucleotide profile of an average filament and resolving the mechanisms of accessory proteins. However, these models require numerical solution of a high-dimensional system of nonlinear ordinary differential equations. By truncating a set of recursion equations, the Brooks-Carlsson (BC) model reduces dimensionality to 11, but it still remains nonlinear and does not admit an analytical solution, hence, significantly hindering understanding of its resulting dynamics. In this work, by taking advantage of the fast timescales of the hydrolysis states of the filament tips, we propose two model reduction schemes: the quasi steady-state approximation model is five-dimensional and nonlinear, whereas the constant tip (CT) model is five-dimensional and linear, resulting from the approximation that the tip states are not dynamic variables. We provide an exact solution of the CT model and use it to shed light on the dynamical behaviors of the full BC model, highlighting the relative ordering of the timescales of various collective processes, and explaining some unusual dependence of the steady-state behavior on initial conditions.

  8. Encoding mechano-memories in filamentous-actin networks

    Science.gov (United States)

    Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.

    History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.

  9. Photodynamic therapy for actinic keratosis in organ transplant patients

    DEFF Research Database (Denmark)

    Basset-Seguin, N; Baumann Conzett, K; Gerritsen, M J P

    2013-01-01

    Background The incidence of actinic keratoses (AK) and non-melanoma skin cancer (NMSC) in organ transplant recipients (OTRs) is significantly higher than in immunocompetent patients. Rates of progression and recurrence following treatment are higher too, in part due to the effects of the immunosu......Background The incidence of actinic keratoses (AK) and non-melanoma skin cancer (NMSC) in organ transplant recipients (OTRs) is significantly higher than in immunocompetent patients. Rates of progression and recurrence following treatment are higher too, in part due to the effects...... for treating this patient population that take into account the need for more frequent treatment and the increased pain associated with treating larger areas. Objectives Recently, a pan-European group of dermatologists with expertise in this area met to share current best practice in PDT for the treatment...... of AK in OTRs. Methods The group identified areas where PDT currently is not meeting the needs of these patients and discussed how these gaps might be addressed. Results/Conclusions This position article summarizes those discussions and makes recommendations concerning a standardized protocol...

  10. Actin in dividing cells: contractile ring filaments bind heavy meromyosin.

    Science.gov (United States)

    Schroeder, T E

    1973-06-01

    Many microfilaments and microtubules are well preserved after glycerol-extraction of HeLa cells at room temperature (22 degrees ). Incubation in heavy meromyosin from rabbit skeletal muscle results in conspicuous and characteristic "decoration" of microfilaments of the contractile ring. Decoration is completely prevented by 10 mM ATP or 2 mM pyrophosphate, and fails to occur if heavy meromyosin is either omitted or replaced by egg albumin, a nonspecific protein. Decorated microfilaments have a substructure consisting of polarized, repeating arrowheads 27-35 nm apart. The specificity of these results strongly suggests that microfilaments of the contractile ring in HeLa cells are closely related to muscle actin. Very thin undecorated strands among the microfilaments of the contractile ring possibly represent a myosin component. These findings are discussed in terms of: the actomyosin-like properties of the contractile ring as a mechanochemical organelle that causes cell cleavage; the probable universal occurrence of actin-like protein in all dividing animal cells; and the contractile ring's combined sensitivity to cytochalasin B and its affinity for heavy meromyosin, a combination unique among microfilamentous organelles.

  11. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    Science.gov (United States)

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chronic actinic dermatitis - A study of clinical features

    Directory of Open Access Journals (Sweden)

    Somani Vijay

    2005-01-01

    Full Text Available Background: Chronic actinic dermatitis (CAD, one of the immune mediated photo-dermatoses, comprises a spectrum of conditions including persistent light reactivity, photosensitive eczema and actinic reticuloid. Diagnostic criteria were laid down about 20 years back, but clinical features are the mainstay in diagnosis. In addition to extreme sensitivity to UVB, UVA and/or visible light, about three quarters of patients exhibit contact sensitivity to several allergens, which may contribute to the etiopathogenesis of CAD. This study was undertaken to examine the clinical features of CAD in India and to evaluate the relevance of patch testing and photo-aggravation testing in the diagnosis of CAD. Methods: The clinical data of nine patients with CAD were analyzed. Histopathology, patch testing and photo-aggravation testing were also performed. Results: All the patients were males. The average age of onset was 57 years. The first episode was usually noticed in the beginning of summer. Later the disease gradually tended to be perennial, without any seasonal variations. The areas affected were mainly the photo-exposed areas in all patients, and the back in three patients. Erythroderma was the presenting feature in two patients. The palms and soles were involved in five patients. Patch testing was positive in seven of nine patients. Conclusions: The diagnosis of CAD mainly depended upon the history and clinical features. The incidence of erythroderma and palmoplantar eczema was high in our series. Occupation seems to play a role in the etiopathogenesis of CAD.

  13. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  14. Enhanced inotropic responsiveness to alpha 1-adrenoceptor stimulation in isolated working hearts from diabetic rats

    NARCIS (Netherlands)

    Heijnis, J. B.; van Zwieten, P. A.

    1992-01-01

    We compared the inotropic responsiveness to the alpha 1-adrenoceptor agonist cirazoline and the calcium entry promoter Bay K 8644 in isolated working hearts from streptozotocin (STZ) diabetic rats and age-matched controls. The maximal rate of contraction and cardiac output (CO) were unaffected by

  15. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  16. Cardiac imaging in adults

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority

  17. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  18. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  19. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin.

    Directory of Open Access Journals (Sweden)

    Alexander Belyy

    Full Text Available Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.

  20. Quantitative kinetic study of the actin-bundling protein L-plastin and of its impact on actin turn-over.

    Directory of Open Access Journals (Sweden)

    Ziad Al Tanoury

    Full Text Available BACKGROUND: Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. METHODOLOGY/PRINCIPAL FINDINGS: To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E or actin and analyzed by fluorescence recovery after photobleaching (FRAP. FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-delta isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. CONCLUSIONS/SIGNIFICANCE: Altogether these findings

  1. Quantitative Kinetic Study of the Actin-Bundling Protein L-Plastin and of Its Impact on Actin Turn-Over

    Science.gov (United States)

    Al Tanoury, Ziad; Schaffner-Reckinger, Elisabeth; Halavatyi, Aliaksandr; Hoffmann, Céline; Moes, Michèle; Hadzic, Ermin; Catillon, Marie; Yatskou, Mikalai; Friederich, Evelyne

    2010-01-01

    Background Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. Methodology/Principal Findings To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. Conclusions/Significance Altogether these findings quantitatively

  2. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Mills, J W; Falsig Pedersen, S; Walmod, P S

    2000-01-01

    that, in intact cells, different cytochalasins can have varying effects on cell morphology and F-actin content and organization. To examine this problem in more detail, we analyzed the effects of cytochalasins on the cell morphology of and F-actin content and organization in Ehrlich ascites tumor (EAT...

  3. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  5. An antifungal protein from Ginkgo biloba binds actin and can trigger cell death.

    Science.gov (United States)

    Gao, Ningning; Wadhwani, Parvesh; Mühlhäuser, Philipp; Liu, Qiong; Riemann, Michael; Ulrich, Anne S; Nick, Peter

    2016-07-01

    Ginkbilobin is a short antifungal protein that had been purified and cloned from the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be detected in all seed plants and the heterosporic fern Selaginella and are conserved with respect to domain structures, peptide motifs, and specific cysteine signatures. To get insight into the cellular functions of these conserved motifs, we expressed green fluorescent protein fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We show that the signal peptide confers efficient secretion of ginkbilobin. When this signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the actin cytoskeleton. This actin-binding activity of ginkbilobin is mediated by a specific subdomain just downstream of the signal peptide, and this subdomain can also coassemble with actin in vitro. Upon stable overexpression of this domain, we observe a specific delay in premitotic nuclear positioning indicative of a reduced dynamicity of actin. To elucidate the cellular response to the binding of this subdomain to actin, we use chemical engineering based on synthetic peptides comprising different parts of the actin-binding subdomain conjugated with the cell-penetrating peptide BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic construct to actin efficiently induces programmed cell death. We discuss these findings in terms of a working model, where ginkbilobin can activate actin-dependent cell death.

  6. Plastins regulate ectoplasmic specialization via its actin bundling activity on microfilaments in the rat testis

    Directory of Open Access Journals (Sweden)

    Nan Li

    2016-01-01

    Full Text Available Plastins are a family of actin binding proteins (ABPs known to cross-link actin microfilaments in mammalian cells, creating actin microfilament bundles necessary to confer cell polarity and cell shape. Plastins also support cell movement in response to changes in environment, involved in cell/tissue growth and development. They also confer plasticity to cells and tissues in response to infection or other pathological conditions (e.g., inflammation. In the testis, the cell-cell anchoring junction unique to the testis that is found at the Sertoli cell-cell interface at the blood-testis barrier (BTB and at the Sertoli-spermatid (e.g., 8-19 spermatids in the rat testis is the basal and the apical ectoplasmic specialization (ES, respectively. The ES is an F-actin-rich anchoring junction constituted most notably by actin microfilament bundles. A recent report using RNAi that specifically knocks down plastin 3 has yielded some insightful information regarding the mechanism by which plastin 3 regulates the status of actin microfilament bundles at the ES via its intrinsic actin filament bundling activity. Herein, we provide a brief review on the role of plastins in the testis in light of this report, which together with recent findings in the field, we propose a likely model by which plastins regulate ES function during the epithelial cycle of spermatogenesis via their intrinsic activity on actin microfilament organization in the rat testis.

  7. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted...

  8. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  9. Differential mapping of the free barbed and pointed ends of actin filaments in cells.

    Science.gov (United States)

    Ofer, Noa; Abu Shah, Enas; Keren, Kinneret

    2014-06-01

    The actin cytoskeleton plays a pivotal role in many cellular processes. Detailed analysis of the architecture of cellular actin networks provides valuable insight into the dynamic self-organization underlying these processes. In particular, since most of the actin turnover occurs at the tips of actin filaments, it is insightful to map the distribution of filament ends. Here we report a method for differentially labeling the pointed and the barbed ends of actin filaments in cellular networks by permeabilizing cells, following a brief fixation, and introducing labeled actin monomers in the presence or absence of capping protein, respectively. This method quantitatively maps the distributions of free barbed ends and free pointed ends in adherent cells, providing information on the polarity of cytoskeletal structures and mapping active sites available for actin assembly or disassembly. We demonstrate the use of this method by mapping the distribution of actin filament ends in motile fish epithelial keratocytes and in several mammalian cell lines, and show that free barbed ends are enriched near the tip of protruding lamellipodia while free pointed ends concentrate toward the rear. © 2014 Wiley Periodicals, Inc.

  10. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules

    Czech Academy of Sciences Publication Activity Database

    Pleskot, Roman; Pejchar, Přemysl; Staiger, Ch. J.; Potocký, Martin

    2014-01-01

    Roč. 5, JAN 2014 (2014) ISSN 1664-462X R&D Projects: GA ČR GA13-19073S Institutional support: RVO:61389030 Keywords : actin * actin-binding proteins * capping protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.948, year: 2014

  11. Aspects of plant cell growth and the actin cytoskeleton : lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes.

  12. Actin based processes that could determine the cytoplasmic architecture of plant cells

    NARCIS (Netherlands)

    Honing, van der H.S.; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells

  13. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  14. Actin filaments as the fast pathways for calcium ions involved in ...

    Indian Academy of Sciences (India)

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions.

  15. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Science.gov (United States)

    Henmi, Yuji; Tanabe, Kenji; Takei, Kohji

    2011-01-01

    A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  16. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  18. Rapid and dynamic arginylation of the leading edge β-actin is required for cell migration.

    Science.gov (United States)

    Pavlyk, Iuliia; Leu, Nicolae A; Vedula, Pavan; Kurosaka, Satoshi; Kashina, Anna

    2018-04-01

    β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration. We found that arginylated β-actin is concentrated at the leading edge of lamellipodia and that this enrichment is abolished after serum starvation as well as in contact-inhibited cells in confluent cultures, suggesting that arginylated β-actin at the cell leading edge is coupled to active migration. Arginylated actin levels exhibit dynamic changes in response to cell stimuli, lowered after serum starvation and dramatically elevating within minutes after cell stimulation by readdition of serum or lysophosphatidic acid. These dynamic changes require active translation and are not seen in confluent contact-inhibited cell cultures. Microinjection of arginylated actin antibodies into cells severely and specifically inhibits their migration rates. Together, these data strongly suggest that arginylation of β-actin is a tightly regulated dynamic process that occurs at the leading edge of locomoting cells in response to stimuli and is integral to the signaling network that regulates cell migration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  20. Sites of actin filament initiation and reorganization in cold-treated tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Pokorná, J.; Schwarzerová, K.; Zelenková, S.; Petrášek, Jan; Janotová, I.; Čapková, Věra; Opatrný, Z.

    2004-01-01

    Roč. 27, č. 5 (2004), s. 641-653 ISSN 0140-7791 R&D Projects: GA AV ČR IAA5038207 Institutional research plan: CEZ:AV0Z5038910 Keywords : Nicotiana tabacum * actin * actin filaments Subject RIV: EF - Botanics Impact factor: 3.634, year: 2004

  1. Total Synthesis of (-)-Doliculide, Structure-Activity Relationship Studies and Its Binding to F-Actin

    NARCIS (Netherlands)

    Matcha, Kiran; Madduri, Ashoka V. R.; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K. H.; Minnaard, Adriaan J.

    2012-01-01

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have

  2. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Directory of Open Access Journals (Sweden)

    Kathleen A Estes

    2011-09-01

    Full Text Available The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  3. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability.

    Science.gov (United States)

    Sun, Licui; Zheng, Junfang; Wang, Qiqi; Song, Ran; Liu, Hua; Meng, Ran; Tao, Tao; Si, Yang; Jiang, Wenguo; He, Junqi

    2016-02-01

    The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1. © FASEB.

  4. Clearance of a Hirano body-like F-actin aggresome generated by jasplakinolide.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Knecht, Erwin; Egea, Gustavo

    2008-07-01

    We have reported in a variety of mammalian cells the reversible formation of a filamentous actin (F-actin)-enriched aggresome generated by the actin toxin jasplakinolide (Lázaro-Diéguez et al., J Cell Sci 2008; 121:1415-25). Notably, this F-actin aggresome (FAG) resembles in many aspects the pathological Hirano body, which frequently appears in some diseases such as Alzheimer's and alcoholism. Using selective inhibitors, we examined the molecular and subcellular mechanisms that participate in the clearance of the FAG. Chaperones, microtubules, proteasomes and autophagosomes all actively participate to eliminate the FAG. Here we compile and compare these results and discuss the involvement of each process. Because of its simplicity and high reproducibility, our cellular model could help to test pharmacological agents designed to interfere with the mechanisms involved in the clearance of intracellular bodies and, in particular, of those enriched in F-actin.

  5. G-Protein Gα13Functions with Abl Kinase to Regulate Actin Cytoskeletal Reorganization.

    Science.gov (United States)

    Wang, Limin; Wang, Dawei; Xing, Bowen; Tan, Ying-Cai; Huang, Jianyun; Liu, Bingqian; Syrovatkina, Viktoriya; Espenel, Cedric; Kreitzer, Geri; Guo, Lin; Zhang, J Jillian; Huang, Xin-Yun

    2017-12-08

    Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα 13 , is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα 13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα 13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα 13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα 13 -induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα 13 controls actin cytoskeletal reorganization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jinsoo; Schmidt, Jacob; Chien Aichi; Montemagno, Carlo D [Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600 (United States)], E-mail: montemcd@ucmail.uc.edu

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  7. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament.

    Science.gov (United States)

    Genjo, Takuya; Sotoma, Shingo; Tanabe, Ryotaro; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-01-01

    Recently, the importance of conformational changes in actin filaments induced by mechanical stimulation of a cell has been increasingly recognized, especially in terms of mechanobiology. Despite its fundamental importance, however, long-term observation of a single actin filament by fluorescent microscopy has been difficult because of the low photostability of traditional fluorescent molecules. This paper reports a novel molecular labeling system for actin filaments using fluorescent nanodiamond (ND) particles harboring nitrogen-vacancy centers; ND has flexible chemical modifiability, extremely high photostability and biocompatibility, and provides a variety of physical information quantitatively via optically detected magnetic resonance (ODMR) measurements. We performed the chemical surface modification of an ND with the actin filament-specific binding peptide Lifeact and observed colocalization of pure Lifeact-modified ND and actin filaments by the ODMR selective imaging protocol, suggesting the capability of long-term observation and quantitative analysis of a single molecule by using an ND particle.

  8. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    Science.gov (United States)

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-06-18

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  9. Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization.

    Science.gov (United States)

    Beperet, Inés; Irons, Sarah L; Simón, Oihane; King, Linda A; Williams, Trevor; Possee, Robert D; López-Ferber, Miguel; Caballero, Primitivo

    2014-03-01

    Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses--AcMNPV and SfMNPV--but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses. Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period

  10. Treatment of alpha bearing wastes

    International Nuclear Information System (INIS)

    1988-01-01

    This report deals with the current state of the art of alpha waste treatment, which is an integral part of the overall nuclear waste management system. The International Atomic Energy Agency (IAEA) defines alpha bearing waste as 'waste containing one or more alpha emitting radionuclides, usually actinides, in quantities above acceptable limits'. The limits are established by national regulatory bodies. The limits above which wastes are considered as alpha contaminated refer to the concentrations of alpha emitters that need special consideration for occupational exposures and/or potential safety, health, or environmental impact during one or more steps from generation through disposal. Owing to the widespread use of waste segregation by source - that is, based upon the 'suspect origin' of the material - significant volumes of waste are being handled as alpha contaminated which, in fact, do not require such consideration by reason of risk or environmental concern. The quantification of de minimis concepts by national regulatory bodies could largely contribute to the safe reduction of waste volumes and associated costs. Other factors which could significantly contribute to the reduction of alpha waste arisings are an increased application of assaying and sorting, instrumentation and the use of feedback mechanisms to control or modify the processes which generate these wastes. Alpha bearing wastes are generated during fabrication and reprocessing of nuclear fuels, decommissioning of alpha contaminated facilities, and other activities. Most alpha wastes are contact handled, but a small portion may require shielding or remote handling because of high levels of neutron (n), beta (β), or gamma (γ) emissions associated with the waste material. This report describes the sources and characteristics of alpha wastes and strategies for alpha waste management. General descriptions of treatment processes for solid and liquid alpha wastes are included. 71 refs, 14 figs, 9 tabs

  11. The alpha effect

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Much of the recent interest in RAM system reliability stems from concern over alpha particle soft error rates reported for the initial 64 k RAMs. With increasing memory density likely in the next few years the problem of soft errors is rearing its head again. A few years ago ITT carried out experiments on 16k RAMs and found no significant problems. However, recent tests have shown a raise in the number of soft errors with 64k RAMs, and the launch of 256k and 512k memories is likely to make the problem acute

  12. Alpha-mannosidosis

    Directory of Open Access Journals (Sweden)

    Nilssen Øivind

    2008-07-01

    Full Text Available Abstract Alpha-mannosidosis is an inherited lysosomal storage disorder characterized by immune deficiency, facial and skeletal abnormalities, hearing impairment, and intellectual disability. It occurs in approximately 1 of 500,000 live births. The children are often born apparently normal, and their condition worsens progressively. Some children are born with ankle equinus or develop hydrocephalus in the first year of life. Main features are immune deficiency (manifested by recurrent infections, especially in the first decade of life, skeletal abnormalities (mild-to-moderate dysostosis multiplex, scoliosis and deformation of the sternum, hearing impairment (moderate-to-severe sensorineural hearing loss, gradual impairment of mental functions and speech, and often, periods of psychosis. Associated motor function disturbances include muscular weakness, joint abnormalities and ataxia. The facial trait include large head with prominent forehead, rounded eyebrows, flattened nasal bridge, macroglossia, widely spaced teeth, and prognathism. Slight strabismus is common. The clinical variability is significant, representing a continuum in severity. The disorder is caused by lysosomal alpha-mannosidase deficiency. Alpha-mannosidosis is inherited in an autosomal recessive fashion and is caused by mutations in the MAN2B1 gene located on chromosome 19 (19 p13.2-q12. Diagnosis is made by measuring acid alpha-mannosidase activity in leukocytes or other nucleated cells and can be confirmed by genetic testing. Elevated urinary secretion of mannose-rich oligosaccharides is suggestive, but not diagnostic. Differential diagnoses are mainly the other lysosomal storage diseases like the mucopolysaccharidoses. Genetic counseling should be given to explain the nature of the disease and to detect carriers. Antenatal diagnosis is possible, based on both biochemical and genetic methods. The management should be pro-active, preventing complications and treating

  13. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  14. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    Science.gov (United States)

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  15. Impacts of dystrophin and utrophin domains on actin structural dynamics: implications for therapeutic design

    Science.gov (United States)

    Lin, Ava Yun; Prochniewicz, Ewa; Henderson, Davin M.; Li, Bin; Ervasti, James M.; Thomas, David D.

    2012-01-01

    We have used time-resolved phosphorescence anisotropy (TPA) of actin to evaluate domains of dystrophin and utrophin, with implications for gene therapy in muscular dystrophy. Dystrophin and its homolog utrophin bind to cytoskeletal actin to form mechanical linkages that prevent muscular damage. Because these proteins are too large for most gene therapy vectors, much effort is currently devoted to smaller constructs. We previously used TPA to show that dystrophin and utrophin both have a paradoxical effect on actin rotational dynamics -- restricting amplitude while increasing rate, thus increasing resilience, with utrophin more effective than dystrophin. Here we have evaluated individual domains of these proteins. We found that a “mini-dystrophin,” lacking one of the two actin-binding domains, is less effective than dystrophin in regulating actin dynamics, correlating with its moderate effectiveness in rescuing the dystrophic phenotype in mice. In contrast, we found that a “micro-utrophin,” with more extensive internal deletions, is as effective as full-length dystrophin in the regulation of actin dynamics. Each of utrophin’s actin-binding domains promotes resilience in actin, while dystrophin constructs require the presence of both actin-binding domains and the CT domain for full function. This work supports the use of a utrophin template for gene or protein therapy designs. Resilience of the actin-protein complex, measured by TPA, correlates remarkably well with previous reports of functional rescue by dystrophin and utrophin constructs in mdx mice. We propose the use of TPA as an in vitro method to aid in the design and testing of emerging gene therapy constructs. PMID:22504225

  16. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning

    OpenAIRE

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-01-01

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle ...

  17. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  18. Adenosine A1 receptors promote vasa vasorum endothelial cell barrier integrity via Gi and Akt-dependent actin cytoskeleton remodeling.

    Directory of Open Access Journals (Sweden)

    Siddaramappa Nagavedi Umapathy

    Full Text Available In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co or chronically hypoxic (VVEC-Hyp neonatal calves.We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3, with the highest expression level of A1 receptors (A1Rs. However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF

  19. Adenosine A1 Receptors Promote Vasa Vasorum Endothelial Cell Barrier Integrity via Gi and Akt-Dependent Actin Cytoskeleton Remodeling

    Science.gov (United States)

    Siddaramappa Umapathy, Nagavedi; Kaczmarek, Elzbieta; Fatteh, Nooreen; Burns, Nana; Lucas, Rudolf; Stenmark, Kurt R.; Verin, Alexander D.; Gerasimovskaya, Evgenia V.

    2013-01-01

    Background In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC) may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co) or chronically hypoxic (VVEC-Hyp) neonatal calves. Principal Findings We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3), with the highest expression level of A1 receptors (A1Rs). However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF

  20. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Goyal

    Full Text Available BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs, and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1 to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a leading to G(1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear

  1. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  2. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... was ATP dependent, and depolymerization of ParM filaments required nucleotide hydrolysis. Our in vivo and in vitro results indicate that ParM polymerization generates the force required for directional movement of plasmids to opposite cell poles and that the ParR-parC complex functions as a nucleation...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  3. Alpha activity measurement with lsc

    International Nuclear Information System (INIS)

    Dobrin, R. I.; Dulama, C. N.; Ciocirlan, C. N.; Toma, A.; Stoica, S. M.; Valeca, M.

    2013-01-01

    Recently, we showed that the alpha activity in liquid samples can be measured using a liquid scintillation analyzer without alpha/beta discrimination capability. The purpose of this work was to evaluate the performances of the method and to optimize the procedure of the sample preparation. A series of tests was performed to validate the procedure of alpha emitting radionuclides extraction in aqueous samples with Actinide Resin, especially regarding to the contact time required to extract all alpha nuclides. The main conclusions were that a minimum 18 hours stirring time is needed to achieve a percent recovery of the alpha nuclides grater than 90% and that the counting efficiency of alphas measurements with LSC is nearly 100%. (authors)

  4. Calcium and actin in the saga of awakening oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Luigia, E-mail: santella@szn.it; Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  5. Extending the molecular clutch beyond actin-based cell motility

    International Nuclear Information System (INIS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. (paper)

  6. Extending the molecular clutch beyond actin-based cell motility.

    Science.gov (United States)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the "molecular clutch" description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  7. Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy

    DEFF Research Database (Denmark)

    Clausen, M. P.; Colin-York, H.; Schneider, Falk

    2017-01-01

    and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between...

  8. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    International Nuclear Information System (INIS)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan; Kreuger, Johan; Aspenström, Pontus

    2017-01-01

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  9. Mechanical Properties of Re-constituted Actin Networks at an Oil/Water Interface Determined by Microrheology

    NARCIS (Netherlands)

    Ershov, D.S.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    There have been various attempts to investigate the mechanical properties of the actin cortex in cells, but the factors that control them remain poorly understood. To make progress, we develop a reconstituted model of the actin cortex that mimics its structure. We attach actin filaments to lipids

  10. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Magdalena; Reis, Katarina [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Heldin, Johan [Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala SE-751 22 Uppsala (Sweden); Kreuger, Johan [Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden); Aspenström, Pontus, E-mail: pontus.aspenstrom@ki.se [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2017-03-15

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  11. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    OpenAIRE

    Dolansky, Mary A.; Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2011-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity wal...

  12. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  13. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... for the situation at hand. Due to challenging circumstances, the cost assessment turned out to be ex-post and top-down. RESULTS: Cost per treatment sequence is estimated to be approximately euro 976, whereas the incremental cost (compared with usual care) is approximately euro 682. The cost estimate is uncertain...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  14. A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding

    NARCIS (Netherlands)

    van de Meerakker, Judith B. A.; Christiaans, Imke; Barnett, Phil; Lekanne Deprez, Ronald H.; Ilgun, Aho; Mook, Olaf R. F.; Mannens, Marcel M. A. M.; Lam, Jan; Wilde, Arthur A. M.; Moorman, Antoon F. M.; Postma, Alex V.

    2013-01-01

    Dilated cardiomyopathy (DCM) is characterized by idiopathic dilatation and systolic contractile dysfunction of the ventricle(s) leading to an impaired systolic function. The origin of DCM is heterogeneous, but genetic transmission of the disease accounts for up to 50% of the cases. Mutations in

  15. Granulation tissue exhibits differences in alpha-smooth muscle actin expression after laser-assisted skin closure (LASC)

    Science.gov (United States)

    Mordon, Serge R.; Capon, Alexandre; Fleurisse, Laurence; Creusy, Collette

    2001-05-01

    Laser assisted skin closure (LASC) has been shown to accelerate wound healing and to reduce scarring. However, the mechanisms involved during the cutaneous wound repair after LASC remain unclear. This study aimed to evaluate the inflammation process and the wound repair fibroplasia, particularly the involvement of granulation tissue fibroblasts (myofibroblasts).

  16. The histological quantification of alpha-smooth muscle actin predicts future graft fibrosis in pediatric liver transplant recipients.

    Science.gov (United States)

    Varma, Sharat; Stéphenne, Xavier; Komuta, Mina; Bouzin, Caroline; Ambroise, Jerome; Smets, Françoise; Reding, Raymond; Sokal, Etienne M

    2017-02-01

    Activated hepatic stellate cells express cytoplasmic ASMA prior to secreting collagen and consequent liver fibrosis. We hypothesized that quantifying ASMA could predict severity of future fibrosis after LT. For this, 32 pairs of protocol biopsies, that is, "baseline" and "follow-up" biopsies taken at 1- to 2-year intervals from 18 stable pediatric LT recipients, transplanted between 2006 and 2012 were selected. Morphometric quantification of "ASMA-positive area percentage" was performed on the baseline biopsy. Histological and fibrosis assessment using Metavir and LAFSc was performed on all biopsies. The difference of fibrosis severity between the "baseline" and "follow-up" was termed "prospective change in fibrosis." Significant association was seen between extent of ASMA positivity on baseline biopsy and "prospective change in fibrosis" using Metavir (P=.02), cumulative LAFSc (P=.02), and portal LAFSc (P=.01) values. ASMA-positive area percentage >1.05 predicted increased fibrosis on next biopsy with 90.0% specificity. Additionally, an association was observed between extent of ASMA positivity and concomitant ductular reaction (P=.06), but not with histological inflammation in the portal tract or lobular area. Hence, ASMA quantification can predict the future course of fibrosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Cardiac optogenetics : using light to monitor cardiac physiology

    NARCIS (Netherlands)

    Koopman, Charlotte D.|info:eu-repo/dai/nl/41375491X; Zimmermann, Wolfram-Hubertus; Knöpfel, Thomas; de Boer, Teun P.|info:eu-repo/dai/nl/30481878X

    2017-01-01

    Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac

  18. Cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Andreja Möller Petrun

    2014-02-01

    Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.

  19. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  20. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  1. A dynamic ratio of the alpha+ and alpha- isoforms of the tight junction protein ZO-1 is characteristic of Caco-2 cells and correlates with their degree of differentiation.

    Science.gov (United States)

    Ciana, Annarita; Meier, Katharina; Daum, Nicole; Gerbes, Stefan; Veith, Michael; Lehr, Claus-Michael; Minetti, Giampaolo

    2010-05-07

    ZO-1 is a peripheral protein that plays a central role in the macromolecular assembly of tight junctions by interacting with integral proteins (occludin, claudins, JAMs) of the membrane of adjoining cells, with the actin cytoskeleton, and with nuclear factors. Human ZO-1 is expressed in all epithelia and some specialized endothelia as variable amounts of two related isoforms, which originate from the alternatively spliced mRNA transcripts alpha(+) and alpha(-) and whose specific differential role is still unknown. Moreover, little is known about the timing of expression of ZO-1 isoforms at the protein and mRNA level. This study shows that during growth of freshly plated Caco-2 cells, the alpha(+)/alpha(-) ratio increased as a result of simultaneous increase of alpha(+) and decrease of alpha(-). Differences in the isoform ratio also correlated with differences in epithelium differentiation. This was determined by aminopeptidase N measurements of cells grown on conventional substrates and on modified, micro/nano-patterned surfaces. A comparable shift of ZO-1 isoforms was not observed in other tumour cell lines of non-intestinal origin (A549, Calu-3). Pancreatic stem cells, propagated without exogenous differentiation stimuli, displayed a slight, stable prevalence of the alpha(-) isoform. Of the intestinal cell lines examined (Caco-2 and T84), only Caco-2 cells displayed a dramatic shift in isoform expression. This suggests that this tumour cell line retains to a higher degree a developmental programme related to the dynamic of enterocytic differentiation in vivo.

  2. Molecular characterization of alpha 1- and alpha 2-adrenoceptors.

    Science.gov (United States)

    Harrison, J K; Pearson, W R; Lynch, K R

    1991-02-01

    Three 'alpha 1-adrenoceptors' and three 'alpha 2-adrenoceptors' have now been cloned. How closely do these receptors match the native receptors that have been identified pharmacologically? What are the properties of these receptors, and how do they relate to other members of the cationic amine receptor family? Kevin Lynch and his colleagues discuss these questions in this review.

  3. During capacitation in bull spermatozoa, actin and PLC-ζ undergo dynamic interactions.

    Science.gov (United States)

    Mejía-Flores, Itzayana; Chiquete-Félix, Natalia; Palma-Lara, Icela; Uribe-Carvajal, Salvador; de Lourdes Juárez-Mosqueda, María

    2017-10-01

    The migration pattern of sperm-specific phospholipase C-ζ (PLC-ζ) was followed and the role of this migration in actin cytoskeleton dynamics was determined. We investigated whether PLC-ζ exits sperm, opening the possibility that PLC-ζ is the 'spermatozoidal activator factor' (SOAF). As capacitation progresses, the highly dynamic actin cytoskeleton bound different proteins to regulate their location and activity. PLC-ζ participation at the start of fertilization was established. In non-capacitated spermatozoa, PLC-ζ is in the perinuclear theca (PT) and in the flagellum, therefore it was decided to determine whether bovine sperm actin interacts with PLC-ζ to direct its relocation as it progresses from non-capacitated (NC) to capacitated (C) and to acrosome-reacted (AR) spermatozoa. PLC-ζ interacted with actin in NC spermatozoa (100%), PLC-ζ levels decreased in C spermatozoa to 32% and in AR spermatozoa to 57% (P < 0.001). The level of actin/PLC-ζ interaction was twice as high in G-actin (P < 0.001) that reflected an increase in affinity. Upon reaching the AR spermatozoa, PLC-ζ was partially released from the cell. It was concluded that actin cytoskeleton dynamics control the migration of PLC-ζ during capacitation and leads to its partial release at AR spermatozoa. It is suggested that liberated PLC-ζ could reach the egg and favour fertilization.

  4. Effects of the F-actin inhibitor latrunculin A on the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kopecká, Marie; Yamaguchi, Masashi; Kawamoto, Susumu

    2015-07-01

    Our basic cell biology research was aimed at investigating the effect on eukaryotic cells of the sudden loss of the F-actin cytoskeleton. Cells treated with latrunculin A (LA) in yeast extract peptone dextrose (YEPD) medium were examined using phase-contrast and fluorescent microscopy, freeze-substitution, transmission and scanning electron microscopy, counted using a Bürker chamber and their absorbance measured. The cells responded to the presence of LA, an F-actin inhibitor, with the disappearance of actin patches, actin cables and actin rings. This resulted in the formation of larger spherical cells with irregular morphology in the cell walls and ultrastructural disorder of the cell organelles and secretory vesicles. Instead of buds, LA-inhibited cells formed only 'table-mountain-like' wide flattened swellings without apical growth with a thinner glucan cell-wall layer containing β-1,3-glucan microfibrils. The LA-inhibited cells lysed. Actin cables and patches were required for bud formation and bud growth. In addition, actin patches were required for the formation of β-1,3-glucan microfibrils in the bud cell wall. LA has fungistatic, fungicidal and fungilytic effects on the budding yeast Saccharomyces cerevisiae.

  5. The actin cytoskeleton organization and disorganization properties of the photosynthetic dinoflagellate Symbiodinium kawagutii in culture.

    Science.gov (United States)

    Villanueva, Marco A; Arzápalo-Castañeda, Georgina; Castillo-Medina, Raúl Eduardo

    2014-11-01

    The actin cytoskeleton organization in symbiotic marine dinoflagellates is largely undescribed; most likely, due to their intense pigment autofluorescence and cell walls that block fluorescent probe access. Using a freeze-fracture and fixation procedure, we observed the actin cytoskeleton of Symbiodinium kawagutii cultured in vitro with fluorescently labeled phalloidin and by indirect immunofluorescence with monoclonal antibodies specific for actin. The cytoskeleton appeared as an organized network with interconnected cortical and cytoplasmic thick filaments, along with some intertwined fine filaments. It showed a grid-type, reticular pattern organized in a lattice-like structure within the cell and throughout the cytoplasm. This organization was similar when the observations were done with either fluorescein isothiocyanate (FITC)-phalloidin or anti-actin, although the latter showed a more evenly distributed fluorescence characteristic of nonpolymerized actin. The network organization collapsed upon treatment with latrunculin, resulting in bright foci and diffuse fluorescence. A similar effect was obtained upon butanedione monoxime treatment, except that no bright foci were observed. We have been able to successfully visualize the actin cytoskeleton of S. kawagutii cells using fluorescence-based procedures. This is the first report on the visualization of the organization of the actin cytoskeleton under various conditions in these walled, highly autofluorescent cells.

  6. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  7. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes.

    Science.gov (United States)

    Dhonukshe, Pankaj; Grigoriev, Ilya; Fischer, Rainer; Tominaga, Motoki; Robinson, David G; Hasek, Jirí; Paciorek, Tomasz; Petrásek, Jan; Seifertová, Daniela; Tejos, Ricardo; Meisel, Lee A; Zazímalová, Eva; Gadella, Theodorus W J; Stierhof, York-Dieter; Ueda, Takashi; Oiwa, Kazuhiro; Akhmanova, Anna; Brock, Roland; Spang, Anne; Friml, Jirí

    2008-03-18

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.

  8. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Science.gov (United States)

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  9. Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae.

    Science.gov (United States)

    Motizuki, M; Yokota, S; Tsurugi, K

    2008-02-01

    Cell growth in the yeast Saccharomyces cerevisiae depends on polarization of the actin cytoskeleton. In this study, we investigated how the cell regulates the distribution of actin in response to low pH conditions, focusing on the role of mitogen-activated protein kinases, Hog1 and Slt2. Changing the extracellular pH from 6.0 to 3.0 caused a transient depolarization of the actin cytoskeleton. Actin cables were no longer visible, and actin patches appeared randomly distributed after 30 min at pH 3.0. The deletion strain hog1Delta did not show this low-pH phenotype, suggesting that Hog1 is involved in depolarization of the actin cytoskeleton in response to low-pH stress. Yeast cells incubated at pH 3.0 also showed markedly increased endocytosis compared with the control at neutral pH, as indicated by the uptake of Lucifer Yellow (LY). Both the hog1Delta and slt2Delta mutants took up LY into the vacuole to a similar extent as the wild-type strain. In addition, cells grown at pH 3.0 showed a 2-fold increase in phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) levels, as did the hog1Delta or slt2Delta cells. Efficient uptake of LY and actin repolarization at pH 3.0 might therefore require activation of PI(4,5)P2 synthesis.

  10. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis.

    Science.gov (United States)

    Junemann, Alexander; Filić, Vedrana; Winterhoff, Moritz; Nordholz, Benjamin; Litschko, Christof; Schwellenbach, Helena; Stephan, Till; Weber, Igor; Faix, Jan

    2016-11-22

    Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.

  11. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Actin-based gravity-sensing mechanisms in unicellular plant model systems

    Science.gov (United States)

    Braun, Markus; Limbach, Christoph

    2005-08-01

    Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.

  13. A Secreted Ankyrin-Repeat Protein from Clinical Stenotrophomonas maltophilia Isolates Disrupts Actin Cytoskeletal Structure.

    Science.gov (United States)

    MacDonald, Logan C; O'Keefe, Sean; Parnes, Mei-Fan; MacDonald, Hanlon; Stretz, Lindsey; Templer, Suzanne J; Wong, Emily L; Berger, Bryan W

    2016-01-08

    Stenotrophomonas maltophilia is an emerging, multidrug-resistant pathogen of increasing importance for the immunocompromised, including cystic fibrosis patients. Despite its significance as an emerging pathogen, relatively little is known regarding the specific factors and mechanisms that contribute to its pathogenicity. We identify and characterize a putative ankyrin-repeat protein (Smlt3054) unique to clinical S. maltophilia isolates that binds F-actin in vitro and co-localizes with actin in transfected HEK293a cells. Smlt3054 is endogenously expressed and secreted from clinical S. maltophilia isolates, but not an environmental isolate (R551-3). The in vitro binding of Smlt3054 to F-actin resulted in a thickening of the filaments as observed by TEM. Ectopic expression of Smlt3054-GFP exhibits strong co-localization with F-actin, with distinct, retrograde F-actin waves specifically associated with Smlt3054 in individual cells as well as formation of dense, internal inclusions at the expense of retrograde F-actin waves. Collectively, our results point to an interaction between Smlt3054 and F-actin. Furthermore, as a potentially secreted protein unique to clinical S. maltophilia isolates, Smlt3054 may serve as a starting point for understanding the mechanisms by which S. maltophilia has become an emergent pathogen.

  14. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    Science.gov (United States)

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  15. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  16. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  17. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts

    Directory of Open Access Journals (Sweden)

    McLarty JL

    2013-08-01

    Full Text Available Jennifer L McLarty,1 Jianping Li,2 Scott P Levick,3 Joseph S Janicki2 1Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA; 3Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Background: Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods: Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%, macrophages (about 12%, and mast cells (about 12%, was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α -neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibroblast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results: Inflammatory cells from the

  18. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Kenneth H; Qin, Sanbo; Zhou, Huan-Xiang

    2012-01-01

    Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a) = k(a0) e(-ΔG(el*)/k(B)T), where k(a0) is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a) variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  19. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    Science.gov (United States)

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that indu