WorldWideScience

Sample records for alpha cardiac actin

  1. A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects

    Science.gov (United States)

    Augière, Céline; Mégy, Simon; El Malti, Rajae; Boland, Anne; El Zein, Loubna; Verrier, Bernard; Mégarbané, André; Deleuze, Jean-François; Bouvagnet, Patrice

    2015-01-01

    Background A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. Methods and Results A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface. Conclusions Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin. PMID:26061005

  2. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  3. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently...... reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation...... in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic...

  4. Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects.

    Science.gov (United States)

    Costa, Céline F; Rommelaere, Heidi; Waterschoot, Davy; Sethi, Kamaljit K; Nowak, Kristen J; Laing, Nigel G; Ampe, Christophe; Machesky, Laura M

    2004-07-01

    Mutations in the gene encoding alpha-skeletal-muscle actin, ACTA1, cause congenital myopathies of various phenotypes that have been studied since their discovery in 1999. Although much is now known about the clinical aspects of myopathies resulting from over 60 different ACTA1 mutations, we have very little evidence for how mutations alter the behavior of the actin protein and thus lead to disease. We used a combination of biochemical and cell biological analysis to classify 19 myopathy mutants and found a range of defects in the actin. Using in vitro expression systems, we probed actin folding and actin's capacity to interact with actin-binding proteins and polymerization. Only two mutants failed to fold; these represent recessive alleles, causing severe myopathy, indicating that patients produce nonfunctional actin. Four other mutants bound tightly to cyclase-associated protein, indicating a possible instability in the nucleotide-binding pocket, and formed rods and aggregates in cells. Eleven mutants showed defects in the ability to co-polymerize with wild-type actin. Some of these could incorporate into normal actin structures in NIH 3T3 fibroblasts, but two of the three tested also formed aggregates. Four mutants showed no defect in vitro but two of these formed aggregates in cells, indicating functional defects that we have not yet tested for. Overall, we found a range of defects and behaviors of the mutants in vitro and in cultured cells, paralleling the complexity of actin-based muscle myopathy phenotypes.

  5. Phylogeny of the Glomerales and Diversisporales (fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences.

    Science.gov (United States)

    Helgason, Thorunn; Watson, Irene J; Young, J Peter W

    2003-12-01

    The arbuscular mycorrhizal (AM) fungi have been elevated to the phylum Glomeromycota based on a ribosomal gene phylogeny. In order to test this phylogeny, we amplified and sequenced small subunit ribosomal RNA (SSUrRNA), actin and elongation factor 1 (EF1)-alpha gene fragments from single spores of Acaulospora laevis, Glomus caledonium, Gigaspora margarita, and Scutellospora dipurpurescens. Sequence variation within and among spores of an isolate was low except for SSUrRNA in S. dipurpurescens, and the actin amino acid sequence was more conserved than that of EF1-alpha. The AM fungal sequences were more similar to one another than to any other fungal group. Joint phylogenetic analysis of the actin and EF1-alpha sequences suggested that the sister group to the AM fungi was a Zygomycete order, the Mortierellales.

  6. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cesar, Jose Renato O; Yang, Jinzeng

    2007-05-01

    Crustacean muscle growth is discontinuous due to molt cycle. To characterize molt-related gene expression patterns, we studied the mRNA levels of molecular chaperone-ubiquitin and heat shock protein 70 (Hsp 70) in comparison with muscle protein alpha-actin and beta-actin in marine shrimp Litopenaeus vannamei. Total RNA from abdominal muscle was isolated from 3-month-old animals in six different molt stages. The mRNA levels of target genes were detected by reverse-transcriptase-multiplex PCR and expressed as the ratio to elongation factor-1alpha. Ubiquitin mRNA levels were relatively steady over all stages of the molt cycle. Hsp70 levels were not detectable in early postmolt and late premolt stages, but showed a progressive increase from late postmolt to intermolt stages. Expression levels of alpha-actin gene were lower during postmolt, reached a plateau in intermolt and remained relatively high in premolt stage. Levels of beta-actin increased progressively from postmolt to intermolt, reaching a maximum value in premolt. Therefore, the mRNAs encoding for ubiquitin and Hsp 70 in abdominal muscle did not increase significantly in premolt stages, which is typically associated with claw muscle degradation. Muscle structural alpha-actin and cytoskeletal beta-actin were increased during intermolt and premolt stages, suggesting high muscle growth during these stages in the abdominal muscle of the L. vannamei.

  7. Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium.

    Science.gov (United States)

    Janody, Florence; Treisman, Jessica E

    2006-09-01

    Tissue patterning must be translated into morphogenesis through cell shape changes mediated by remodeling of the actin cytoskeleton. We have found that Capping protein alpha (Cpa) and Capping protein beta (Cpb), which prevent extension of the barbed ends of actin filaments, are specifically required in the wing blade primordium of the Drosophila wing disc. cpa or cpb mutant cells in this region, but not in the remainder of the wing disc, are extruded from the epithelium and undergo apoptosis. Excessive actin filament polymerization is not sufficient to explain this phenotype, as loss of Cofilin or Cyclase-associated protein does not cause cell extrusion or death. Misexpression of Vestigial, the transcription factor that specifies the wing blade, both increases cpa transcription and makes cells dependent on cpa for their maintenance in the epithelium. Our results suggest that Vestigial specifies the cytoskeletal changes that lead to morphogenesis of the adult wing.

  8. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections.

    Science.gov (United States)

    Guo, Dong-Chuan; Pannu, Hariyadarshi; Tran-Fadulu, Van; Papke, Christina L; Yu, Robert K; Avidan, Nili; Bourgeois, Scott; Estrera, Anthony L; Safi, Hazim J; Sparks, Elizabeth; Amor, David; Ades, Lesley; McConnell, Vivienne; Willoughby, Colin E; Abuelo, Dianne; Willing, Marcia; Lewis, Richard A; Kim, Dong H; Scherer, Steve; Tung, Poyee P; Ahn, Chul; Buja, L Maximilian; Raman, C S; Shete, Sanjay S; Milewicz, Dianna M

    2007-12-01

    The major function of vascular smooth muscle cells (SMCs) is contraction to regulate blood pressure and flow. SMC contractile force requires cyclic interactions between SMC alpha-actin (encoded by ACTA2) and the beta-myosin heavy chain (encoded by MYH11). Here we show that missense mutations in ACTA2 are responsible for 14% of inherited ascending thoracic aortic aneurysms and dissections (TAAD). Structural analyses and immunofluorescence of actin filaments in SMCs derived from individuals heterozygous for ACTA2 mutations illustrate that these mutations interfere with actin filament assembly and are predicted to decrease SMC contraction. Aortic tissues from affected individuals showed aortic medial degeneration, focal areas of medial SMC hyperplasia and disarray, and stenotic arteries in the vasa vasorum due to medial SMC proliferation. These data, along with the previously reported MYH11 mutations causing familial TAAD, indicate the importance of SMC contraction in maintaining the structural integrity of the ascending aorta.

  9. Binding of the N-terminal fragment C0-C2 of cardiac MyBP-C to cardiac F-actin.

    Science.gov (United States)

    Kensler, Robert W; Shaffer, Justin F; Harris, Samantha P

    2011-04-01

    Cardiac myosin-binding protein C (cMyBP-C), a major accessory protein of cardiac thick filaments, is thought to play a key role in the regulation of myocardial contraction. Although current models for the function of the protein focus on its binding to myosin S2, other evidence suggests that it may also bind to F-actin. We have previously shown that the N-terminal fragment C0-C2 of cardiac myosin-binding protein-C (cMyBP-C) bundles actin, providing evidence for interaction of cMyBP-C and actin. In this paper we directly examined the interaction between C0-C2 and F-actin at physiological ionic strength and pH by negative staining and electron microscopy. We incubated C0-C2 (5-30μM, in a buffer containing in mM: 180 KCl, 1 MgCl(2), 1 EDTA, 1 DTT, 20 imidazole, at pH 7.4) with F-actin (5μM) for 30min and examined negatively-stained samples of the solution by electron microscopy (EM). Examination of EM images revealed that C0-C2 bound to F-actin to form long helically-ordered complexes. Fourier transforms indicated that C0-C2 binds with the helical periodicity of actin with strong 1st and 6th layer lines. The results provide direct evidence that the N-terminus of cMyBP-C can bind to F-actin in a periodic complex. This interaction of cMyBP-C with F-actin supports the possibility that binding of cMyBP-C to F-actin may play a role in the regulation of cardiac contraction.

  10. alpha-Smooth muscle actin-expressing cells and lubricin in periprosthetic tissue.

    Science.gov (United States)

    Funakoshi, Tadanao; Martin, Scott D; Wolf, Bryce T; Schmid, Thomas M; Thornhill, Thomas S; Spector, Myron

    2010-05-01

    The objective of the study was to evaluate the distributions of (1) cells expressing the contractile actin isoform, alpha-smooth muscle actin (alpha-SMA) and (2) a lubricating and antiadhesion glycoprotein, lubricin, in the tissue around loose joint replacement prostheses in human subjects. Periprostehtic tissue resected at revision arthroplasty of noncemented glenoid components of total shoulder arthroplasties was obtained from 10 patients. Samples of periprosthetic tissue were stained with monoclonal antibodies to alpha-SMA and lubricin. alpha-SMA was found in cells, principally of fibroblast morphology, in many of the fields of view (FOVs) in samples from all patients. Moderate correlations were observed between the percentage of FOVs containing alpha-SMA-expressing cells and the percentages of FOVs containing polyethylene (R(2) = 0.79) and metallic (R(2) = 0.75) particles. Lubricin was identified (1) as a discrete layer on the surface, (2) within the extracellular matrix, and (3) intracellularly. These lubricin-positive features were found in samples from all patients. Strong correlations were noted between the percentages of FOVs with matrix and intracellular lubricin staining (R(2) = 0.97) and between the percentages of FOVs with surface and matrix staining for lubricin (R(2) = 0.96). Having established the presence of alpha-SMA and lubricin in periprosthetic tissue, hypotheses regarding their role in the development and persistence of periprosthetic tissue can be synthesized for future study: for example, alpha-SMA-enabled contracture of the fibrous periprosthetic tissue results in its densification, and lubricin-coated surfaces interfere with integrative repair processes necessary for resorption and remodeling.

  11. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    Science.gov (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Chemoprevention of human actinic keratoses by topical DL-alpha-tocopherol.

    Science.gov (United States)

    Foote, Janet A; Ranger-Moore, James R; Einspahr, Janine G; Saboda, Kathylynn; Kenyon, Jaime; Warneke, James; Miller, Richard C; Goldman, Rayna; Xu, Min-Jian; Roe, Denise J; Alberts, David S

    2009-04-01

    Prior research shows that topical application of free, nonfatty acid-conjugated vitamin E (DL-alpha-tocopherol) prevents skin cancer in mice, as well as immunosuppression induced by UVB radiation. This study investigated the chemopreventive potential of DL-alpha-tocopherol in humans through monitoring surrogate end point biomarkers in sun-damaged skin. Contralateral arms of healthy human volunteers with actinic keratoses (AK) were randomly assigned to receive either 12.5% DL-alpha-tocopherol or placebo in a crème base for 6 months. Changes in number of AKs, levels of p53 protein expression, proliferating cell nuclear antigen, and polyamines were assessed along with skin and systemic vitamin E levels. Following treatment, plasma concentration levels of DL-alpha-tocopherol were unchanged, but skin levels were highly elevated (P cell nuclear antigen did not change significantly, whereas number of AKs declined insignificantly in both placebo and treatment arms. Regression models showed significant decreases in putrescine, spermidine, spermine, and total polyamine concentrations following treatment. Topically applied DL-alpha-tocopherol was substantially absorbed in skin, but the 6-month application did not significantly reduce numbers of preexisting AKs on moderately to severely sun-damaged forearms. Increases in polyamine synthesis are expected during tumor initiation and promotion; conversely, the significant reductions in polyamine levels resulting from the topical DL-alpha-tocopherol application are consistent with reductions in tumorigenesis potential. Topical tocopherol did not normalize established sun-induced lesions, but DL-alpha-tocopherol-induced reductions in polyamine metabolism are consistent with the inhibition of skin squamous cell carcinogenesis as seen in previous human trials and animal models.

  13. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Hung, Shih-Chieh; Kuo, Pei-Yin; Chang, Ching-Fang; Chen, Tain-Hsiung; Ho, Larry Low-Tone

    2006-06-01

    The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.

  14. [Expression of elongation factor-1 alpha-A and beta-actin promoters in embryos of transgenic Medaka (Oryzias latipes)].

    Science.gov (United States)

    Long, Hua

    2003-06-01

    Two expression vectors with the promoter of either Medaka (Oryzias latipes) elongation factor gene or beta-actin gene were constructed based on pBluescript SK+. Both of them are linked with green-fluorescent protein (GFP) gene. And they are named as pB-EF and pB-BA, respectively. The microinjection experiments were conducted with fertilized Medaka eggs at one-cell stage. The expression of two vectors, pB-EF and pB-BA, was observed under stereo-fluorescence microscope. The detection results showed that both EF-1 alpha-A promoter and beta-actin promoter are strong. In the process of embryo development, the activity of beta-actin promoter became stronger while that of EF-1 alpha-A promoter weaker gradually. beta-actin promoter was but EF-1 alpha-A promoter distributed throughout fish body uniformly. The expression rate of two vectors, pB-EF and pB-BA, are 8.23% and 6.10%, respectively.

  15. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid

    Directory of Open Access Journals (Sweden)

    Li Chun-jun

    2012-06-01

    Full Text Available Abstract Background Alpha-lipoic acid (ALA, a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS, extracellular matrix (ECM remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2 levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA and transforming growth factor–β (TGF-β. Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK, p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated

  16. Actin filaments and microtubule dual-granule transport in human adhered platelets: the role of alpha-dystrobrevins.

    Science.gov (United States)

    Cerecedo, Doris; Cisneros, Bulmaro; Mondragón, Ricardo; González, Sirenia; Galván, Iván J

    2010-04-01

    Upon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons. Recently, we characterized the expression of dystrobrevins in platelets; however, their functional diversity within this cellular model had not been elucidated. The present study examined the contribution of actin filaments and microtubules in granule trafficking during the platelet adhesion process using cytoskeleton-disrupting drugs, quantification of soluble P-selectin, fluorescence resonance transfer energy analysis and immunoprecipitation assays. Likewise, we assessed the interaction of alpha-dystrobrevins with the ubiquitous kinesin heavy chain. Our results strongly suggest that microtubules and actin filaments participate in the transport of alpha and dense granules in the platelet adhesion process, during which alpha-dystrobrevins play the role of regulatory and adaptor proteins that govern trafficking events.

  17. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René

    2004-01-01

    compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted....... Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal...

  18. Photodamage induced by Zinc(II)-phthalocyanine to microtubules, actin, alpha-actinin and keratin of HeLa cells.

    Science.gov (United States)

    Juarranz, A; Espada, J; Stockert, J C; Villanueva, A; Polo, S; Domínguez, V; Cañete, M

    2001-03-01

    We have studied the photosensitizing effects of zinc(II)-phthalocyanine (ZnPc) on the cytoskeleton of HeLa cells using sublethal (10(-7) M, followed by 1 or 3 min of red light to induce 20%, LD20, or 60%, LD60, cell death, respectively) or lethal (5 x 10(-6) M and 15 min of irradiation, LD100) experimental conditions. The immunofluorescent analysis of the cytoskeleton showed a variable photodamage to microtubules (MT), actin microfilaments (AF) and intermediate filaments of keratin (KF), as well as on alpha-actinin, which was dependent on treatment conditions. Both sublethal treatments induced deep alterations on interphase and mitotic MT. The mitotic index increased with time with the maximum at 18 h (12%) or 24 h (14%) after LD20 or LD60, respectively. The alterations on AF and alpha-actinin were much more severe than those observed on KF at any evaluated time. With the exception of the KF, which remained partially organized, the MT and AF network was severely damaged by the lethal treatment. Western blot analysis for alpha-tubulin, G-actin and alpha-actinin from soluble and insoluble fractions confirmed the results observed by immunofluorescence, thus indicating that these cytoskeletal components are involved in cell damage and death by ZnPc photosensitization.

  19. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Nielsen, M.J.; Nielsen, Signe Holm; Hansen, N.U.B.

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate...

  20. Rapid progression to cardiac tamponade in Erdheim-Chester disease despite treatment with interferon alpha.

    Science.gov (United States)

    Nakhleh, Afif; Slobodin, Gleb; Elias, Nizar; Bejar, Jacob; Odeh, Majed

    2016-07-01

    Erdheim-Chester disease (ECD) is a rare form of non-Langerhans histiocytosis with heterogeneous clinical manifestations. The most common presentation is bone pains typically involving the long bones. Approximately 75% of the patients develop extraskeletal involvement. Cardiac involvement is seen in up to 45% of the patients, and although, pericardial involvement is the most common cardiac pathology of this rare disease, cardiac tamponade due to ECD has been very rarely reported. We describe a case of a patient found to have ECD with multi-organ involvement and small pericardial effusion, which progressed to cardiac tamponade despite treatment with interferon alpha.

  1. alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes.

    Science.gov (United States)

    Bétuing, S; Daviaud, D; Valet, P; Bouloumié, A; Lafontan, M; Saulnier-Blache, J S

    1996-12-01

    We previously demonstrated that in white fat cell precursors alpha2-adrenoceptor stimulation lead to the phosphorylation of p44 and p42 mitogen-activated protein kinases and an increase in cell number. Regulation of cell adhesion and cell cytoskeleton plays a crucial role in the control of cell growth by various growth factors. Here, we report that in mouse 3T3F442A preadipocytes expressing 2500 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF2 cells), alpha2-adrenergic stimulation rapidly restored the spreading of cells previously retracted by serum withdrawal. This effect was pertussis toxin sensitive and was blocked by pretreatment of the cells with dihydrocytochalasin B (a blocker of actin polymerization), genistein (a tyrosine kinase inhibitor), or agents that increase cell cAMP content. Spreading was accompanied by cell membrane ruffling, formation of lamelipodia and filipodia, appearance of focal adhesion plaques, and induction of actin stress fibers. alpha2-Adrenergic stimulation also lead to a rapid Gi- and actin-dependent tyrosine phosphorylation of the pp125 focal adhesion kinase (FAK) as well as of the p42 and p44 mitogen-activated protein kinases. alpha2-Adrenergic-dependent spreading and FAK and mitogen-activated protein kinase phosphorylation were also observed in 3T3F442A preadipocytes permanently expressing 20 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF3 cells) as well as in BFC-1beta preadipocytes, which constitutively express 25 fmol/mg protein of mouse alpha2A-adrenoceptors. In BFC-1beta preadipocytes, alpha2-adrenergic-dependent spreading and pp125FAK phosphorylation were counteracted by beta-adrenergic stimulation. Our results suggest that alpha2-adrenergic control of actin polymerization and focal adhesion assembly could play a crucial role in the regulation of preadipocyte growth by the sympathetic nervous system.

  2. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  3. Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking smooth muscle alpha-actin.

    Science.gov (United States)

    Haaksma, Carol J; Schwartz, Robert J; Tomasek, James J

    2011-07-01

    Mammary myoepithelial cells are specialized smooth musclelike epithelial cells that express the smooth muscle actin isoform: smooth muscle alpha-actin (ACTA2). These cells contract in response to oxytocin to generate the contractile force required for milk ejection during lactation. It is believed that ACTA2 contributes to myoepithelial contractile force generation; however, this hypothesis has not been directly tested. To evaluate the contribution of ACTA2 to mammary myoepithelial cell contraction, Acta2 null mice were utilized and milk ejection and myoepithelial cell contractile force generation were evaluated. Pups suckling on Acta2 null dams had a significant reduction in weight gain starting immediately postbirth. Cross-fostering demonstrated the lactation defect is with the Acta2 null dams. Carmine alum whole mounts and conventional histology revealed no underlying structural defects in Acta2 null mammary glands that could account for the lactation defect. In addition, myoepithelial cell formation and organization appeared normal in Acta2 null lactating mammary glands as evaluated using an Acta2 promoter-GFP transgene or phalloidin staining to visualize myoepithelial cells. However, mammary myoepithelial cell contraction in response to oxytocin was significantly reduced in isolated Acta2 null lactating mammary glands and in in vivo studies using Acta2 null lactating dams. These results demonstrate that lack of ACTA2 expression impairs mammary myoepithelial cell contraction and milk ejection and suggests that ACTA2 expression in mammary myoepithelial cells has the functional consequence of enhancing contractile force generation required for milk ejection.

  4. Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues.

    Science.gov (United States)

    Benzonana, G; Skalli, O; Gabbiani, G

    1988-01-01

    The distribution of smooth muscle (SM) and non muscle myosins was compared with that of alpha-SM actin in various normal and pathological tissues and in cultured cells by means of indirect immunofluorescence using a monoclonal antibody specific for alpha-SM actin [anti-alpha sm-1, Skalli et al., 1986b] and two polyclonal antibodies raised against bovine aortic myosin (ABAM) and human platelet myosin (AHPM), respectively. In normal tissues ABAM stained vascular and parenchymal smooth muscle cells (SMC), myoepithelial cells and myoid cells of the testis in a pattern similar to that reported by other authors with antisera raised against non vascular SM myosin. Cells stained with ABAM were always positive for anti-alpha sm-1. In human and experimental atheromatous plaques, most cells were positive for AHPM; a variable proportion was also stained for ABAM plus anti-alpha sm-1. Myofibroblasts from rat granulation tissue, Dupuytren's nodule and stroma from breast carcinoma were constantly positive for AHPM and negative for ABAM; however, myofibroblasts from Dupuytren's nodule and breast carcinoma were anti-alpha sm-1 positive. Early primary cultures of rat aortic SMC were positive for ABAM and anti-alpha sm-1 and became negative for ABAM and positive for AHPM after a few days in culture. They remained positive for AHPM and anti-alpha sm-1 after passages; the staining of AHPM and anti-alpha sm-1 appeared to be colocalized along the same stress fibers. These results may be relevant for the understanding of SMC function and adaptation, and show that in non malignant SMC proliferation, alpha-SM actin represents a more general marker of SM origin than SM myosin.

  5. Intrahepatic gene expression profiles and alpha-smooth muscle actin patterns in hepatitis C virus induced fibrosis.

    Science.gov (United States)

    Lau, Daryl T-Y; Luxon, Bruce A; Xiao, Shu-Yuan; Beard, Michael R; Lemon, Stanley M

    2005-08-01

    To gain insight into pathogenic mechanisms underlying fibrosis in hepatitis C virus (HCV)-mediated liver injury, we compared intrahepatic gene expression profiles in HCV-infected patients at different stages of fibrosis and alpha-smooth muscle actin (alpha-SMA) staining patterns. We studied 21 liver biopsy specimens: 5 had no fibrosis (Ludwig-Batts stage 0); 10 had early portal or periportal fibrosis (stages 1 and 2); and 6, advanced fibrosis (stages 3 and 4). None of the patients had hepatocellular carcinoma. Transcriptional profiles were determined by high-density oligonucleotide microarrays. ANOVA identified 157 genes for which transcript abundance was associated with fibrosis stage. These defined three distinct hierarchical clusters of patients. Patients with predominantly stage 0 fibrosis had increased abundance of mRNAs linked to glycolipid metabolism. PDGF, a potent stellate cell mitogen, was also increased. Transcripts with increased abundance in stages 1 and 2 fibrosis were associated with oxidative stress, apoptosis, inflammation, proliferation, and matrix degradation, whereas transcripts increased in stages 3 and 4 were associated with fibrogenesis and cellular proliferation. Cells staining for alpha-SMA were detectable at all stages but infrequent in advanced fibrosis without active inflammation. A high frequency of such cells was associated with mRNAs linked to glycolipid metabolism. In conclusion, the presence of alpha-SMA-positive HSCs and expression of PDGF in stage 0 fibrosis suggests that stellate cells are activated early in HCV-mediated injury, possibly in response to oxidative stress resulting from inflammation and lipid metabolism. Increased abundance of transcripts linked to cellular proliferation in advanced fibrosis is consistent with a predisposition to cancer. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index/html).

  6. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min, E-mail: chenminyx@gmail.com [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Yunnan Centers for Diseases Prevention and Control, Kunming 650022 (China); Wang, Yanru [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Qu, Aijuan [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  7. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    Science.gov (United States)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  8. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis.

    Science.gov (United States)

    Lehman, John J; Boudina, Sihem; Banke, Natasha Hausler; Sambandam, Nandakumar; Han, Xianlin; Young, Deanna M; Leone, Teresa C; Gross, Richard W; Lewandowski, E Douglas; Abel, E Dale; Kelly, Daniel P

    2008-07-01

    High-capacity mitochondrial ATP production is essential for normal function of the adult heart, and evidence is emerging that mitochondrial derangements occur in common myocardial diseases. Previous overexpression studies have shown that the inducible transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha is capable of activating postnatal cardiac myocyte mitochondrial biogenesis. Recently, we generated mice deficient in PGC-1alpha (PGC-1alpha(-/-) mice), which survive with modestly blunted postnatal cardiac growth. To determine if PGC-1alpha is essential for normal cardiac energy metabolic capacity, mitochondrial function experiments were performed on saponin-permeabilized myocardial fibers from PGC-1alpha(-/-) mice. These experiments demonstrated reduced maximal (state 3) palmitoyl-l-carnitine respiration and increased maximal (state 3) pyruvate respiration in PGC-1alpha(-/-) mice compared with PGC-1alpha(+/+) controls. ATP synthesis rates obtained during maximal (state 3) respiration in permeabilized myocardial fibers were reduced for PGC-1alpha(-/-) mice, whereas ATP produced per oxygen consumed (ATP/O), a measure of metabolic efficiency, was decreased by 58% for PGC-1alpha(-/-) fibers. Ex vivo isolated working heart experiments demonstrated that PGC-1alpha(-/-) mice exhibited lower cardiac power, reduced palmitate oxidation, and increased reliance on glucose oxidation, with the latter likely a compensatory response. (13)C NMR revealed that hearts from PGC-1alpha(-/-) mice exhibited a limited capacity to recruit triglyceride as a source for lipid oxidation during beta-adrenergic challenge. Consistent with reduced mitochondrial fatty acid oxidative enzyme gene expression, the total triglyceride content was greater in hearts of PGC-1alpha(-/-) mice relative to PGC-1alpha(+/+) following a fast. Overall, these results demonstrate that PGC-1alpha is essential for the maintenance of maximal, efficient cardiac

  9. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  10. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  11. Alpha-lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Lee Jung Eun

    2012-09-01

    Full Text Available Abstract Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1 and connective tissue growth factor (CTGF were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.

  12. Thomsen-Friedenreich (T) antigen as marker of myoepithelial and basal cells in the parotid gland, pleomorphic adenomas and adenoid cystic carcinomas. An immunohistological comparison between T and sialosyl-T antigens, alpha-smooth muscle actin and cytokeratin 14

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Christensen, M;

    1995-01-01

    -known markers of normal MEC/basal cells (i.e. alpha-smooth muscle actin and cytokeratin 14) with T (Thomsen-Friedenreich) antigen and its sialylated derivative: sialosyl-T antigen,) in 17 normal parotid glands and in two tumour types with MEC participation (i.e pleomorphic adenomas (PA) and adenoid cystic...... carcinomas (ACC)) using immunohistology with well-defined monoclonal antibodies (MAbs). Paraffin-embedded/fresh frozen tissue sections were studied from 33/17 patients with PA and 15/7 patients with ACC. In normal parotid tissue coexpression of alpha-smooth muscle actin, cytokeratin 14, T and sialosyl...

  13. Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia.

    Science.gov (United States)

    Siragy, Helmy M; Xue, Chun; Webb, Randy L

    2006-05-01

    The aim of this study was to determine if myocardial inflammation is increased after myocardial ischemia and whether angiotensin-converting enzyme inhibitors, calcium channel blockers, or diuretics decrease mediators of inflammation in rats with induced myocardial ischemia. Changes in cardiac interstitial fluid (CIF) levels of nitric oxide metabolites (NOX), cyclic guanosine 3',5'-monophosphate (cGMP), angiotensin II (Ang II), and tumor necrosis factor-alpha (TNF-alpha) were monitored with/without oral administration of benazepril, amlodipine, combined benazepril-amlodipine, or hydrochlorothiazide. Using a microdialysis technique, levels of several mediators of inflammation were measured after sham operation or 30-minute occlusion of the left anterior descending coronary artery. Compared with sham animals, levels of CIF NOX and cGMP were decreased in animals with ischemia (P Benazepril or amlodipine significantly increased NOX levels (P benazepril significantly increased cGMP (P benazepril-amlodipine further increased CIF NOX and cGMP (P Amlodipine alone, benazepril alone, or combined benazepril-amlodipine significantly reduced TNF-alpha (P benazepril-amlodipine may be beneficial for managing cardiac ischemia.

  14. Alpha-actinin structure and regulation.

    Science.gov (United States)

    Sjöblom, B; Salmazo, A; Djinović-Carugo, K

    2008-09-01

    Alpha-actinin is a cytoskeletal actin-binding protein and a member of the spectrin superfamily, which comprises spectrin, dystrophin and their homologues and isoforms. It forms an anti-parallel rod-shaped dimer with one actin-binding domain at each end of the rod and bundles actin filaments in multiple cell-type and cytoskeleton frameworks. In non-muscle cells, alpha-actinin is found along the actin filaments and in adhesion sites. In striated, cardiac and smooth muscle cells, it is localized at the Z-disk and analogous dense bodies, where it forms a lattice-like structure and stabilizes the muscle contractile apparatus. Besides binding to actin filaments alpha-actinin associates with a number of cytoskeletal and signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, rendering it important structural and regulatory roles in cytoskeleton organization and muscle contraction. This review reports on the current knowledge on structure and regulation of alpha-actinin.

  15. Immunoreactivity for alpha-smooth muscle actin characterizes a potentially aggressive subgroup of little basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    L Pilloni

    2009-06-01

    Full Text Available Basal cell carcinoma (BCC is a very common malignant skin tumor that rarely metastatizes, but is often locally aggressive. Several factors, like large size (more than 3 cm, exposure to ultraviolet rays, histological variants, level of infiltration and perineural or perivascular invasion, are associated with a more aggressive clinical course. These morphological features seem to be more determinant in mideface localized BCC, which frequently show a significantly higher recurrence rate. An immunohistochemical profile, characterized by reactivity of tumor cells for p53, Ki67 and alpha-SMA has been associated with a more aggressive behaviour in large BCCs. The aim of this study was to verify if also little (less than 3 cm basal cell carcinomas can express immunohistochemical markers typical for an aggressive behaviour.

  16. Retinoid X receptor alpha represses GATA-4-mediated transcription via a retinoid-dependent interaction with the cardiac-enriched repressor FOG-2.

    Science.gov (United States)

    Clabby, Martha L; Robison, Trevor A; Quigley, Heather F; Wilson, David B; Kelly, Daniel P

    2003-02-21

    Dietary vitamin A and its derivatives, retinoids, regulate cardiac growth and development. To delineate mechanisms involved in retinoid-mediated control of cardiac gene expression, the regulatory effects of the retinoid X receptor alpha (RXR alpha) on atrial naturietic factor (ANF) gene transcription was investigated. The transcriptional activity of an ANF promoter-reporter in rat neonatal ventricular myocytes was repressed by RXR alpha in the presence of 9-cis-RA and by the constitutively active mutant RXR alpha F318A indicating that liganded RXR confers the regulatory effect. The RXR alpha-mediated repression mapped to the proximal 147 bp of the rat ANF promoter, a region lacking a consensus retinoid response element but containing several known cardiogenic cis elements including a well characterized GATA response element. Glutathione S-transferase "pull-down" assays revealed that RXR alpha interacts directly with GATA-4, in a ligand-independent manner, via the DNA binding domain of RXR alpha and the second zinc finger of GATA-4. Liganded RXR alpha repressed the activity of a heterologous promoter-reporter construct containing GATA-response element recognition sites in cardiac myocytes but not in several other cell types, suggesting that additional cardiac-enriched factors participate in the repression complex. Co-transfection of liganded RXR alpha and the known cardiac-enriched GATA-4 repressor, FOG-2, resulted in additive repression of GATA-4 activity in ventricular myocytes. In addition, RXR alpha was found to bind FOG-2, in a 9-cis-RA-dependent manner. These data reveal a novel mechanism by which retinoids regulate cardiogenic gene expression through direct interaction with GATA-4 and its co-repressor, FOG-2.

  17. Serum cardiac troponin I in acute stroke is related to serum cortisol and TNF-alpha

    DEFF Research Database (Denmark)

    Christensen, Hanne Krarup; Johannesen, Helle Hjorth; Christensen, Anders Fogh

    2004-01-01

    Serum cardiac troponin I (cTnI) is a specific marker of myocardial injury related to in-patient fatality and cardiac injury in acute stroke. We investigated whether cTnI in acute stroke is related to serum cortisol, acute inflammatory response, and insular damage. We also investigated whether c...

  18. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    Science.gov (United States)

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2016-12-12

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies.

  19. Actinic reticuloid

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  20. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  1. Contribution of IL-6 to the Hsp72, Hsp25, and alphaB-crystallin [corrected] responses to inflammation and exercise training in mouse skeletal and cardiac muscle.

    Science.gov (United States)

    Huey, Kimberly A; Meador, Benjamin M

    2008-12-01

    The heat shock proteins (Hsps) Hsp72, Hsp25, and alphaB-crystallin (alphaB C) [corrected]may protect tissues during exercise and/or inflammatory insults; however, no studies have investigated whether exercise training increases both basal and inflammation-induced expression of these Hsps in skeletal or cardiac muscle. IL-6 is produced by muscle during both exercise and inflammation and has been shown to modulate Hsp expression. These studies tested the hypothesis that voluntary wheel running (RW) increases basal and inflammation-induced Hsp72, Hsp25, and alphaB C [corrected] protein through an IL-6-dependent mechanism. We compared Hsp72, Hsp25, alphaB C, [corrected] and IL-6 protein levels 4 h after systemic inflammation induced by lipopolysaccharide (LPS) in skeletal and cardiac muscles of wild-type (IL-6(+/+)) and IL-6 deficient (IL-6(-/-)) mice after 2 wk of RW or normal cage activity (Sed). LPS significantly increased skeletal Hsp72 and Hsp25 relative to saline in Sed IL-6(+/+), but not IL-6(-/-) mice. LPS increased Hsp72 relative to saline in Sed IL-6(+/+) cardiac muscle. RW increased basal Hsp72, Hsp25, and alphaB C [corrected] in skeletal muscle in IL-6(+/+) and IL-6(-/-) mice. However, LPS was not associated with increases in any Hsp in RW IL-6(+/+) or IL-6(-/-) mice. LPS increased IL-6 protein in skeletal muscle and plasma in Sed and RW groups, with a significantly greater response in RW. The major results provide the first in vivo evidence that the absence of IL-6 is associated with reduced skeletal muscle Hsp72 and Hsp25 responses to LPS, but that IL-6 is not required for exercise-induced Hsp upregulation in skeletal or cardiac muscle.

  2. Targeting of nebulin fragments to the cardiac sarcomere.

    Science.gov (United States)

    Panaviene, Zivile; Deng, Xiaodi A; Esham, Michael; Moncman, Carole L

    2007-03-10

    Nebulin, a vertebrate skeletal muscle actin binding protein, plays an important role in thin filament architecture. Recently, a number of reports have indicated evidence for nebulin expression in vertebrate hearts. To investigate the ability of nebulin to interact with cardiac myofilaments, we have expressed nebulin cDNA fragments tagged with green fluorescent protein (GFP) in chicken cardiomyocytes and PtK2 cells. Nebulin fragments from both the superrepeats and single repeats were expressed minus and plus the nebulin linker. Nebulin fragment incorporation was monitored by fluorescent microscopy and compared with the distribution of actin, alpha-actinin and titin. Expression of nebulin N-terminal superrepeats displayed a punctate cytoplasmic distribution in PtK2 cells and cardiomyocytes. Addition of the nebulin linker to the superrepeats resulted in association of the punctate staining with the myofibrils. Nebulin C-terminal superrepeats plus and minus the linker localized with stress fibers of PtK2 cells and associated with the cardiac myofilaments at the level of the Z-line. Expression of the single repeats plus and minus the nebulin linker region resulted in both a Z-line distribution and an A-band distribution. These data suggest that N-terminal superrepeat nebulin modules are incapable of supporting interactions with the cardiac myofilaments; whereas the C-terminal nebulin modules can. The expression of the N-terminal or C-terminal superrepeats did not alter the distribution of actin, alpha-actinin or titin in either atrial or ventricular cultures.

  3. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    Science.gov (United States)

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  4. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization.

    Science.gov (United States)

    Tsukada, T; Tippens, D; Gordon, D; Ross, R; Gown, A M

    1987-01-01

    A monoclonal antibody to muscle cell actin isotypes was produced and characterized. Immunocytochemical analysis of methanol-Carnoy's-fixed, paraffin-embedded human tissue revealed that this antibody, termed HHF35, reacts with skeletal muscle cells, cardiac muscle cells, smooth muscle cells, pericytes, and myoepithelial cells, but is nonreactive with endothelial, epithelial, neural, or connective tissue cells. When assayed by indirect immunofluorescence, HHF35 reacts with microfilament bundles from various cultured mammalian smooth muscle cells, but does not react with cultured human dermal fibroblasts or various epithelial tumor cell lines. In one-dimensional gel electrophoresis immunoblot experiments this antibody detects a 42-kd polypeptide from tissue extracts of uterus, ileum, aorta, diaphragm, and heart and extract from smooth muscle cells. The antibody also reacts with a comigrating 42-kd band of highly purified rabbit skeletal muscle actin. HHF35 is nonreactive on immunoblots of extracts from all tested nonmuscle cell extracts. Immunoelectrophoresis followed by immunoblotting performed in the presence of urea and reducing agents reveals recognition of the alpha isoelectrophoretic variant of actin from skeletal, cardiac, and smooth muscle sources and of the gamma variant from smooth muscle sources. Because HHF35 reacts with virtually all muscle cells, it will be useful as a marker for muscle and muscle-derived cells.

  5. Mutations in Smooth Muscle Alpha-Actin (ACTA2) Cause Coronary Artery Disease, Stroke, and Moyamoya Disease, Along with Thoracic Aortic Disease

    Science.gov (United States)

    Guo, Dong-Chuan; Papke, Christina L.; Tran-Fadulu, Van; Regalado, Ellen S.; Avidan, Nili; Johnson, Ralph Jay; Kim, Dong H.; Pannu, Hariyadarshi; Willing, Marcia C.; Sparks, Elizabeth; Pyeritz, Reed E.; Singh, Michael N.; Dalman, Ronald L.; Grotta, James C.; Marian, Ali J.; Boerwinkle, Eric A.; Frazier, Lorraine Q.; LeMaire, Scott A.; Coselli, Joseph S.; Estrera, Anthony L.; Safi, Hazim J.; Veeraraghavan, Sudha; Muzny, Donna M.; Wheeler, David A.; Willerson, James T.; Yu, Robert K.; Shete, Sanjay S.; Scherer, Steven E.; Raman, C.S.; Buja, L. Maximilian; Milewicz, Dianna M.

    2009-01-01

    The vascular smooth muscle cell (SMC)-specific isoform of α-actin (ACTA2) is a major component of the contractile apparatus in SMCs located throughout the arterial system. Heterozygous ACTA2 mutations cause familial thoracic aortic aneurysms and dissections (TAAD), but only half of mutation carriers have aortic disease. Linkage analysis and association studies of individuals in 20 families with ACTA2 mutations indicate that mutation carriers can have a diversity of vascular diseases, including premature onset of coronary artery disease (CAD) and premature ischemic strokes (including Moyamoya disease [MMD]), as well as previously defined TAAD. Sequencing of DNA from patients with nonfamilial TAAD and from premature-onset CAD patients independently identified ACTA2 mutations in these patients and premature onset strokes in family members with ACTA2 mutations. Vascular pathology and analysis of explanted SMCs and myofibroblasts from patients harboring ACTA2 suggested that increased proliferation of SMCs contributed to occlusive diseases. These results indicate that heterozygous ACTA2 mutations predispose patients to a variety of diffuse and diverse vascular diseases, including TAAD, premature CAD, ischemic strokes, and MMD. These data demonstrate that diffuse vascular diseases resulting from either occluded or enlarged arteries can be caused by mutations in a single gene and have direct implications for clinical management and research on familial vascular diseases. PMID:19409525

  6. Molecular Modeling of Cardiac Troponin

    Science.gov (United States)

    Manning, Edward P.

    The cardiac thin filament regulates interactions of actin and myosin, the force-generating elements of muscular contraction. Over the past several decades many details have been discovered regarding the structure and function of the cardiac thin filament and its components, including cardiac troponin (cTn). My hypothesis is that signal propagation occurs between distant ends of the cardiac troponin complex through calcium-dependent alterations in the dynamics of cTn and tropomyosin (Tm). I propose a model of the thin filament that encompasses known structures of cTn, Tm and actin to gain insight into cardiac troponin's allosteric regulation of thin filament dynamics. By performing molecular dynamics simulations of cTn in conjunction with overlapping Tm in two conditions, with and without calcium bound to site II of cardiac troponin C (cTnC), I found a combination of calcium-dependent changes in secondary structure and dynamics throughout the cTn-Tm complex. I then applied this model to investigate familial hypertrophic cardiomyopathy (FHC), a disease of the sarcomere that is one of the most commonly occurring genetic causes of heart disease. Approximately 15% of known FHC-related mutations are found in cardiac troponin T (cTnT), most of which are in or flank the alpha-helical N-tail domain TNT1. TNT1 directly interacts with overlapping Tm coiled coils. Using this model I identified effects of TNT1 mutations that propagate to the cTn core where site II of cTnC, the regulatory site of calcium binding in the thin filament, is located. Specifically, I found that mutations in TNT1 alter the flexibility of TNT1 and that the flexibility of TNT1 is inversely proportional to the cooperativity of calcium activation of the thin filament. Further, I identified a pathway of propagation of structural and dynamic changes linking TNT1 to site II of cTnC. Mutation-induced changes at site II cTnC alter calcium coordination which corresponds to biophysical measurements of calcium

  7. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Wang, Tao; Jiang, Xue-Jun; Tang, Qi-Zhu; Li, Xiao-Yan; Lin, Tao; Wu, De-Qun; Zhang, Xian-Zheng; Okello, Emmy

    2009-10-01

    Cellular transplantation represents a promising therapy for myocardial infarction (MI). However, it is limited by low transplanted cell retention and survival within the ischemic tissue. This study was designed to investigate whether injectable alpha-cyclodextrin/poly(ethylene glycol)-b-polycaprolactone-(dodecanedioic acid)-polycaprolactone-poly(ethylene glycol) (MPEG-PCL-MPEG) hydrogel could improve cell transplant retention and survival, reduce infarct expansion and inhibit left ventricle (LV) remodeling. Bone marrow-derived stem cells (BMSCs) were encapsulated in alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel and maintained their morphologies during the cell culturing. MTT assays were used for in vitro cell viability studies of the hydrogel and were shown to be non-cytotoxic. Seven days after MI, 100 microl of alpha-cyclodextrin solution containing 2 x 10(7) BMSCs and 100mul of MPEG-PCL-MPEG solution were injected into the infarcted myocardium simultaneously and the solutions solidified immediately. Injection of culture medium or cell alone served as controls. Four weeks after treatment, histological analysis indicated that the hydrogel was absorbed, and the injection of BMSCs with hydrogel had increased cell retention and vessel density around the infarct, and subsequently prevented scar expansion compared with BMSCs injection alone. Echocardiography studies showed that injection of BMSCs with hydrogel increased the LV ejection function and attenuated left ventricular dilatation. This study indicated that the injection of BMSCs with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel was an effective strategy which could enhance the effect of cellular transplantation therapy for myocardial infarction.

  8. Actin Rings of Power.

    Science.gov (United States)

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.

  9. Quantification of [{sup 11}C]GB67 binding to cardiac {alpha}{sub 1}-adrenoceptors with positron emission tomography: validation in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Park-Holohan, So-Jin; Turton, David R.; Hume, Susan P. [Hammersmith Hospital, Hammersmith Imanet Ltd., GE HealthCare, Cyclotron Building, London (United Kingdom); Asselin, Marie-Claude [Hammersmith Hospital, Hammersmith Imanet Ltd., GE HealthCare, Cyclotron Building, London (United Kingdom); The University of Manchester, Wolfson Molecular Imaging Centre, Manchester (United Kingdom); Williams, Sharron L.; Camici, Paolo G. [Hammersmith Hospital, MRC Clinical Sciences Centre, Cyclotron Building, London (United Kingdom); Rimoldi, Ornella E. [Hammersmith Hospital, MRC Clinical Sciences Centre, Cyclotron Building, London (United Kingdom); New York Medical College, Cardiovascular Research Institute Department of Medicine, Valhalla, NY (United States)

    2008-09-15

    An increase in human cardiac {alpha}{sub 1}-adrenoceptor ({alpha}{sub 1}-AR) density is associated with various diseases such as myocardial ischemia, congestive heart failure, hypertrophic cardiomyopathy and hypertension. Positron emission tomography (PET) with an appropriate radioligand offers the possibility of imaging receptor function in the normal and diseased heart. [{sup 11}C]GB67, an analogue of prazosin, has been shown in rats to have potential as a PET ligand with high selectivity to {alpha}{sub 1}-AR. However, {alpha}{sub 1}-AR density is up to ten times higher in rat heart compared to that in man. The aim of the present preclinical study was to extend the previous evaluation to a large mammal heart, where the {alpha}{sub 1}-AR density is comparable to man, and to validate a method for quantification before PET studies in man. Seven [{sup 11}C]GB67 PET studies, with weight-adjusted target dose of either 5.29 MBq kg{sup -1} (pilot, test-retest and baseline-predose studies) or 8.22 MBq kg{sup -1} (baseline-displacement studies), were performed in four anaesthetised pigs (39.5 {+-} 3.9 kg). Total myocardial volume of distribution (V{sub T}) was estimated under different pharmacological conditions using compartmental analysis with a radiolabelled metabolite-corrected arterial plasma input function. A maximum possible blocking dose of 0.12 {mu}mol kg{sup -1} of unlabeled GB67 was given 20 min before [{sup 11}C]GB67 administration in the predose study and 45 min after administration of [{sup 11}C]GB67 in the displacement study. In addition, [{sup 15}O]CO (3,000 MBq) and [{sup 15}O]H{sub 2}O, with weight adjusted target dose of 10.57 MBq kg{sup -1}, were also administered for estimation of blood volume recovery (RC) of the left ventricular cavity and myocardial perfusion (MBF), respectively. [{sup 11}C]GB67 V{sub T} values (in ml cm{sup -3}) were estimated to be 24.2 {+-} 5.5 (range, 17.3-31.3), 10.1 (predose) and 11.6 (displacement). MBF did not differ within

  10. Expression of nebulette during early cardiac development.

    Science.gov (United States)

    Esham, Michael; Bryan, Kourtney; Milnes, Jennifer; Holmes, William B; Moncman, Carole L

    2007-04-01

    Nebulette, a cardiac homologue of nebulin, colocalizes with alpha-actinin in the pre-myofibrils of spreading cardiomyocytes and has been hypothesized to play a critical role in the formation of the thin-filament-Z-line complex early during myofibrillogenesis. Data from mesodermal explants or whole tissue mounts of developing hearts suggest that the pattern of myofibrillogenesis in situ may differ from observations of spreading cardiomyocytes. To evaluate the role of nebulette in myofibrillogenesis, we have analyzed the expression of nebulette in chicken heart rudiments by immunoblots and immunofluorescence. We detect the 110 kDa nebulette in heart rudiments derived from stage 9-10 using the anti-nebulin mAb, N114, or polyclonal anti-nebulette Abs by immunoblotting. Immunofluorescence analysis of explants stained with anti-nebulette and anti-alpha-actinin Abs demonstrates that both proteins localize along actin filaments in punctate to continuous manner at early stages of cardiac development and later give rise to striations. In both cases, the punctate staining had a periodicity of approximately 1.0 microm indicating a pre-myofibrils distribution at the earliest time points examined. We demonstrate that nebulette is indeed associated with premyofibrils in very early stages of myofibrillogenesis and suggest that nebulette may play an important role in the formation of these structures.

  11. Actinic lichen nitidus

    Directory of Open Access Journals (Sweden)

    Loretta Davis

    2010-01-01

    Full Text Available We present the case of a 29-year-old black female with an initial clinical and histopathologic diagnosis of actinic lichen nitidus. Three years later, she presented with scattered hyperpigmented macules with oval pink/viol­aceous plaques bilaterally on her forearms and on her neck, clinically consistent with actinic lichen planus. She was treated with topical steroids at each visit, with subsequent resolution of her lesions. In this report, we discuss the spectrum of actinic lichenoid dermatoses and of disease that presents even in the same patient.

  12. Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology

    OpenAIRE

    Gokhin, David S.; Fowler, Velia M.

    2011-01-01

    Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by ...

  13. Cytochemical evidence for the presence of actin in the nucleus of the voodoo lily appendix.

    Science.gov (United States)

    Skubatz, H; Orellana, M V; Yablonka-Reuveni, Z

    2000-08-01

    Immunoflorescence microscopy of sections of the voodoo lily Sauromatum guttatum appendix stained with monoclonal antibodies against alpha-smooth muscle actin and cytoplasmic actin revealed different staining intensity of different parts of the cell. The anti-cytoplasmic-actin recognized antigens present mainly in the cytoplasm, and the anti-alpha-smooth muscle-actin recognized more intensively antigens present in the nuclei. A positive staining of the nucleus was also obtained with FITC-phalloidin confirming the presence of actin in its filamenous form in the nucleus. The presence of a nuclear alpha-smooth muscle-actin-like protein was further confirmed by confocal laser microscopy. On Western blots, the two anti-actins labelled a protein band that comigrated with standard actin at the approximate molecular weight of 43 kDa. Several other proteins interacted with the two antibodies to a different degree. The monoclonal antibodies against beta-tubulin subunit stained only the periphery of the cytoplasm and anti-pan cytoplasmic myosin stained the cytoplasm weakly. On a Western blot, anti-beta-tubulin subunit primarily recognized a protein band at the appropriate molecular weight of 50 kDa. This is the first cytochemical evidence for the presence of alpha-smooth muscle-actin-like protein in the plant nucleus.

  14. Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea-pig is inhibited by alpha(1)-adrenoreceptor activation via protein kinase A and protein kinase C-dependent pathways.

    Science.gov (United States)

    Wang, Sen; Xu, Dong-Jie; Cai, Jing-Bo; Huang, Yuan-Zhu; Zou, Jian-Gang; Cao, Ke-Jiang

    2009-04-17

    Ventricular tachyarrhythmias are often precipitated by physical or emotional stress, indicating a link between increased adrenergic stimulation and cardiac ion channel activity. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of delayed rectifier potassium current, I(kr), a crucial component for action potential repolarization. To evaluate the correlation between increased alpha(1)-adrenergic activity and the rapid component of cardiac I(kr), whole-cell patch-clamp recording was performed in isolated guinea-pig ventricular myocytes. Stimulation of alpha(1)-adrenoceptors using phenylephrine (0.1 nM-100 microM) reduced I(kr) current in a dose-dependent manner at 37 degrees C. Phenylephrine (0.1 microM) reduced I(kr) current to 66.83+/-3.16%. Chelerythrine (1 microM), a specific inhibitor of protein kinase C (PKC) completely inhibited the changes in I(kr) trigged by 0.1 microM phenylephrine. KT5720 (2.5 microM), a specific inhibitor of protein kinase A (PKA) partially inhibited the current decrease induced by 0.1 microM phenylephrine. Both chelerythrine and KT5720 drastically reduced the phenylephrine-induced effects, indicating possible involvement of PKC and PKA in the alpha(1)-adrenergic inhibition of I(kr). Our data suggest a link between I(kr) and the alpha(1)-adrenoceptor, involving activation of PKC and PKA in arrhythmogenesis.

  15. Directed actin assembly and motility.

    Science.gov (United States)

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  16. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  17. The actin-interacting protein AIP1 is essential for actin organization and plant development

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Voigt, B.; Menzel, D.; Hussey, P.J.

    2004-01-01

    Cell division, growth, and cytoplasmic organization require a dynamic actin cytoskeleton. The filamentous actin (F-actin) network is regulated by actin binding proteins that modulate actin dynamics. These actin binding proteins often have cooperative interactions [1 and 2]. In particular, actin inte

  18. Actinic cheilitis: A review

    Directory of Open Access Journals (Sweden)

    Elangovan Somasundaram

    2015-01-01

    Full Text Available Actinic cheilitis (AC is a chronic inflammatory disorder of the lips that is caused by prolonged exposure to sunlight in susceptible individuals. It affects the vermilion region of the lower lip almost exclusively. UV-B rays with a wavelength of 290-320 nm are held responsible for the sunlight-induced damage. The exact mechanism of the development of AC is unclear. It is considered to be potentially malignant.

  19. Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure

    Directory of Open Access Journals (Sweden)

    Rousseau-Ralliard Delphine

    2009-03-01

    Full Text Available Abstract Background Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA in rats requires a long feeding period (6 months, although a docosahexaenoic (DHA acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL, mitochondrial (MI, nuclear (NU and sarcoplasmic reticulum (SR membrane fractions. Methods Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period, either n-3 PUFA-free diet (CTL, or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC after lipid extraction. Results As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA. N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing. Conclusion With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response.

  20. Ring closure in actin polymers

    Science.gov (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  1. Isolation and characterization of cDNA encoding the alpha subunit of Cap Z(36/32), an actin-capping protein from the Z line of skeletal muscle.

    OpenAIRE

    Casella, J F; Casella, S J; Hollands, J. A.; Caldwell, J E; Cooper, J A

    1989-01-01

    cDNA encoding the alpha chain of Cap Z has been isolated by screening a lambda gt11 library with affinity-purified antibodies. A single cDNA insert (designated CE2) of 2153 base pairs (bp) contains an open reading frame of 836 bp, which is incomplete at its 5' end. The technique of "rapid amplification of cDNA ends" has been used to extend the 5' end of this open reading frame to a potential transcription initiation site that is preceded by 320 bp of an apparently untranslated region. The pro...

  2. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  3. Cardiomyocyte differentiation induced in cardiac progenitor cells by cardiac fibroblast-conditioned medium.

    Science.gov (United States)

    Zhang, Xi; Shen, Man-Ru; Xu, Zhen-Dong; Hu, Zhe; Chen, Chao; Chi, Ya-Li; Kong, Zhen-Dong; Li, Zi-Fu; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Zhang, Chuan-Sen

    2014-05-01

    Our previous study showed that after being treated with 5-azacytidine, Nkx2.5(+) human cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiomyocytes. Although 5-azacytidine is a classical agent that induces myogenic differentiation in various types of cells, the drug is toxic and unspecific for myogenic differentiation. To investigate the possibility of inducing CPCs to differentiate into cardiomyocytes by a specific and non-toxic method, CPCs of passage 15 and mesenchymal stem cells (MSCs) were treated with cardiac ventricular fibroblast-conditioned medium (CVF-conditioned medium). Following this treatment, the Nkx2.5(+) CPCs underwent cardiomyogenic differentiation. Phase-contrast microscopy showed that the morphology of the treated CPCs gradually changed. Ultrastructural observation confirmed that the cells contained typical sarcomeres. The expression of cardiomyocyte-associated genes, such as alpha-cardiac actin, cardiac troponin T, and beta-myosin heavy chain (MHC), was increased in the CPCs that had undergone cardiomyogenic differentiation compared with untreated cells. In contrast, the MSCs did not exhibit changes in morphology or molecular expression after being treated with CVF-conditioned medium. The results indicated that Nkx2.5(+) CPCs treated with CVF-conditioned medium were capable of differentiating into a cardiac phenotype, whereas treated MSCs did not appear to undergo cardiomyogenic differentiation. Subsequently, following the addition of Dkk1 and the blocking of Wnt signaling pathway, CVF-conditioned medium-induced morphological changes and expression of cardiomyocyte-associated genes of Nkx2.5(+) CPCs were inhibited, which indicates that CVF-conditioned medium-induced cardiomyogenic differentiation of Nkx2.5(+) CPCs is associated with Wnt signaling pathway. In addition, we also found that the activation of Wnt signaling pathway was accompanied by higher expression of GATA-4 and the blocking of the

  4. Actin cytoskeleton: putting a CAP on actin polymerization.

    Science.gov (United States)

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  5. [Photodynamic therapy for actinic cheilitis].

    Science.gov (United States)

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  6. Progresses in studies of nuclear actin

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  7. The role of CHAP in muscle development, heart disease and actin signaling

    NARCIS (Netherlands)

    Eldik, Willemijn Lisette van

    2013-01-01

    In this thesis we investigated a novel Z-disc protein, cytoskeletal heart-enriched actin-associated protein (CHAP). Two isoforms of CHAP exist, encoded by one gene. The longer isoform CHAPa is predominately expressed in adult tissues, whereas CHAPb is expressed during cardiac and skeletal developmen

  8. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  9. Nucleus-associated actin in Amoeba proteus.

    Science.gov (United States)

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  10. Construction of lentivector containing alpha-smooth muscle actin promoter by multisite Gateway technology%利用多位点Gateway技术构建小鼠平滑肌肌动蛋白α基因启动子慢病毒载体

    Institute of Scientific and Technical Information of China (English)

    袁晓峰; 项鹏; 李伟强; 胡晓俊; 彭朝权

    2012-01-01

    背景:平滑肌肌动蛋白α基因是相对局限于在血管平滑肌细胞中表达的少数几个基因之一,公认是血管平滑肌细胞表型转化的标志.目的:利用多位点Gateway技术构建慢病毒载体pLVpuro/平滑肌肌动蛋白α控制绿色荧光蛋白基因的表达.方法:设计合成含有attB位点的小鼠平滑肌肌动蛋白α基因启动子引物,构建pUp-平滑肌肌动蛋白α;通过LR反应将pUp-平滑肌肌动蛋白α和pDown-绿色荧光蛋白(含att位点的绿色荧光蛋白入门克隆)连接到目的载体pDEST-puromycin,得到pLVpuro/平滑肌肌动蛋白α-绿色荧光蛋白表达载体;经PCR和测序鉴定,将载体质粒瞬时转染C2C12细胞系,并且用免疫荧光染色检测基因的表达.结果与结论:成功构建pLVpuro/平滑肌肌动蛋白α-绿色荧光蛋白报告基因载体,测序结果表明启动子序列正确;细胞转染实验以及免疫荧光检测证实构建的报告基因载体可以反映平滑肌肌动蛋白α基因的表达情况.%BACKGROUND: Alpha-smooth muscle actin gene is one of several genes expressed in smooth muscle cells and has been recognized as the marker for smooth muscle cell phenotype transformation. OBJECTIVE: To construct a recombinant pLVpuro/aSMA-hrGFP lentiviral vector by multisite Gateway technology. METHODS: Primers containing attB sites were designed and used to amplify the alpha-smooth muscle actin (aSMA) promoter fragment by PCR from the plasmid containing the mouse aSMA promoter sequence (SMP8-Cre). By the BP recombination reaction, the attB flanked PCR product containing aSMA promoter sequence was cloned to an attP-containing pDONR P4P1r donor vector to create an entry clone, pUp-aSMA. Finally, pUp-aSMA and pDown-hrGFP were shuttled into the destination vector pDEST-puromycin by LR recombination reaction to generate pLVpuro/aSMA-hrGFP. The expression vector was confirmed by PCR and gene sequencing. Then this expression vector was transferred into the C2C12 cell

  11. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  12. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    Science.gov (United States)

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  13. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Science.gov (United States)

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  14. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  15. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  16. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    Science.gov (United States)

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  17. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  18. Functional characterization of skeletal F-actin labeled on the NH2-terminal segment of residues 1-28.

    Science.gov (United States)

    Bertrand, R; Chaussepied, P; Audemard, E; Kassab, R

    1989-05-15

    Rabbit skeletal alpha-actin was covalently labeled in the filamentous state by the fluorescent nucleophile, N-(5-sulfo-1-naphthyl)ethylenediamine (EDANS) in the presence of the carboxyl group activator 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide (EDC). The coupling reaction was continued until the incorporation of nearly 1 mol EDANS/mol actin. After limited proteolytic digestion of the labeled protein and chromatographic identification of the EDANS-peptides, about 80% of the attached fluorophore was found on the actin segment of residues 1-28, most probably within the N-terminal acidic region of residues 1-7. A minor labeling site was located on the segment that consists of residues 40-113. No label was incorporated into the COOH-terminal moiety consisting of residues 113-375. The isolated EDANS-G-actin undergoes polymerization in the presence of salts but at a rate significantly greater than unlabeled actin. The EDANS-F-actin could be complexed to skeletal chymotryptic myosin subfragment 1 (S-1) and to tropomyosin. The complex formed between EDANS-F-actin and S-1 could not be further crosslinked by EDC but the two proteins were readily joined by glutaraldehyde as observed for native actin-S-1, suggesting that the EDANS-substituted carboxyl site is also involved in the EDC crosslinking of native actin to S-1. Moreover, the EDANS labeling of F-actin resulted in a 20-fold increase in the Km of the actin-activated Mg2+.ATPase of S-1. Thus, this labeling, while it did not much affect the rigor actin-S-1 interaction, changes the actin binding to the S-1-nucleotide complexes significantly. The selective introduction of a variety of spectral probes, like EDANS, or other classes of fluorophores, on the N-terminal region of actin, through the reported carbodiimide coupling reaction, would provide several different derivatives valuable for assessing the functional role of the negatively charged N-terminus of actin during its interaction with myosin and other actin

  19. ROLE OF ALPHA-ADRENERGIC BLOCKING AGENT IN HYPERTROPHY OF CARDIAC MYOCYTE CARDIAC MYOCYTE%α受体阻滞剂对心肌细胞肥大的作用

    Institute of Scientific and Technical Information of China (English)

    谢协驹; 吉丽敏; 符史干

    2001-01-01

    objective:The present study was to investigate the role of alphal-adrenergic receptor blocking agent(phentolamine) in the hypertrophy of cardiaomyocyte induced by adrenaline.Methods:The measurement of cell surface area and[3H]-Leucine incorporation judged the hypertrophy of cardiaomyocyte in cultured neonatal rat myocardal cells,Results:The results showed that adrenaline could significantly increase cell.surface area promote[3H]-Leucine incorporation.Alphal-adrenergic blocking agent could markedly block effects of adrenaline increasing cell surface area and promoting [3H]-Leucine incorporation, Conclusions:These results suggest that alpha-adrenergic blocking agent can prevent the hypertrophy of cardiomyocytes induced by adrenaline in cultured neontal rat myocardal cells.%目的:观察α受体阻滞剂酚妥拉明对肾上腺素诱导的心肌细胞肥大的作用。方法:在培养新生大鼠心肌细胞上。通过测量心肌细胞表面积和[3H]-Leu的掺入量来判断心肌细胞肥大。结果:肾上腺素要明显增加心肌细胞表面和[3H]-亮氨酸([3H-Leu]的掺入量,α受体阻滞剂酚妥拉明能阻断肾上腺素增加心肌细胞表面积和[3H]-Leu掺入量的作用。结论:α受体阻滞有减轻肾上腺素诱导心肌细胞肥大的作用。

  20. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    Science.gov (United States)

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  1. Actinic cheilitis in dental practice.

    Science.gov (United States)

    Savage, N W; McKay, C; Faulkner, C

    2010-06-01

    Actinic cheilitis is a potentially premalignant condition involving predominantly the vermilion of the lower lip. The aim of the current paper was to review the clinical presentation of actinic cheilitis and demonstrate the development of management plans using a series of cases. These are designed to provide immediate treatment where required but also to address the medium and long-term requirements of the patient. The authors suggest that the clinical examination of lips and the assessment of actinic cheilitis and other lip pathology become a regular part of the routine soft tissue examination undertaken as a part of the periodic examination of dental patients. Early recognition of actinic cheilitis can allow the development of strategies for individual patients that prevent progression. These are based on past sun exposure, future lifestyle changes and the daily use of emollient sunscreens, broad-brimmed hats and avoidance of sun exposure during the middle of the day. This is a service that is not undertaken as a matter of routine in general medical practice as patients are not seen with the regularity of dental patients and generally not under the ideal examination conditions available in the dental surgery.

  2. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  3. Humoral immune response against contractile proteins (actin and myosin) during cardiovascular disease.

    Science.gov (United States)

    De Scheerder, I K; De Buyzere, M; Delanghe, J; Maas, A; Clement, D L; Wieme, R

    1991-08-01

    Sensitive and highly specific ELISA assays were developed to determine humoral immune response against actin and myosin in 122 patients suffering from various cardiovascular diseases: acute viral myocarditis (n = 10, MYO), acute myocardial infarction (n = 28, AMI), valve surgery (n = 35, VALVE), coronary bypass surgery (n = 35, CABG), and peripheral vascular surgery (n = 14, VASC). Anti-actin and anti-myosin antibodies were determined on admission and serially during a period of 90 days. Anti-actin and anti-myosin immune response (IgG, IgM) was expressed comparing absorbance of the patients' serum with a reference serum. In the different patient groups significantly (P less than 0.01) higher anti-actin and anti-myosin antibody concentrations were found on admission compared with age-matched control groups. During follow-up, all patient groups except the vascular surgery group showed a significant immune response against actin and myosin, with an immune response ratio (peak/admission) for AMA IgG and IgM respectively of 2.12 and 2.40 in the VALVE group, 1.30 and 1.99 in the CABG group, 1.42 and 1.48 in the AMI group and 1.66 and 1.25 in the MYO group; and for AAA IgG and IgM respectively of 1.57 and 3.00 in the VALVE group, 1.54 and 1.64 in the CABG group, 1.25 and 1.07 in the AMI group, and 1.42 and 1.42 in the MYO group. A significant correlation between pre-cardiac injury and peak post-cardiac injury anti-myosin and anti-actin autoantibody levels could be demonstrated suggesting that pre-injury sensitization to these antigens plays an important role in evoking post-cardiac injury immune response.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    Science.gov (United States)

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  5. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    OpenAIRE

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of gi...

  6. Alpha Thalassemia

    Science.gov (United States)

    Alpha Thalassemia Physicians often mistake alpha thalassemia trait for iron deficiency anemia and incorrectly prescribe iron supplements that have no effect 1 on the anemia. αα αα Normal alpha ...

  7. Nuclear Actin in Development and Transcriptional Reprogramming.

    Science.gov (United States)

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  8. Molecular characterization and evolution of alpha-actinin : from protozoa to vertebrates

    OpenAIRE

    Virel, Ana

    2006-01-01

    alpha-actinin is a ubiquitous protein found in most eukaryotic organisms. The ability to form dimers allows alpha-actinin to cross-link actin in different structures. In muscle cells alpha-actinin is found at the Z-disk of sarcomeres. In non-muscle cells alpha-actinin is found in zonula adherens or focal adhesion sites where it can bind actin to the plasma membrane. alpha-actinin is the shortest member of the spectrin superfamily of proteins which also includes spectrin, dystrophin and utroph...

  9. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  10. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  11. Cardiac Sarcoidosis.

    Science.gov (United States)

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  12. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila

    OpenAIRE

    1996-01-01

    Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and pre...

  13. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  14. The design of MACs (minimal actin cortices).

    Science.gov (United States)

    Vogel, Sven K; Heinemann, Fabian; Chwastek, Grzegorz; Schwille, Petra

    2013-11-01

    The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes.

  15. From pollen actin to crop male sterility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  16. Cardiac Medications

    Science.gov (United States)

    ... for Medication For the treatment of heart failure Beta Blockers (Also known as Beta-Adrenergic Blocking Agents) Commonly ... have had a heart attack. Combined alpha and beta-blockers Combined alpha and beta-blockers are used as ...

  17. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  18. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  19. Regulation of Actin Dynamics in Pollen Tubes: Control of Actin Polymer Level

    Institute of Scientific and Technical Information of China (English)

    Naizhi Chen; Xiaolu Qu; Youjun Wu; Shanjin Huang

    2009-01-01

    Actin cytoskeleton undergoes rapid reorganization In response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions inplant cell biology. The pollen tube is a well characterized actin-based call morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and un-expected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.

  20. 基质细胞衍生因子1α培养心肌细胞和成纤维细胞的增殖与迁移*%Proliferation and migration of cardiomyocytes and cardiac fibroblasts cultured with stromal cell-derived factor-1 alpha

    Institute of Scientific and Technical Information of China (English)

    侯传举; 齐岩梅; 张端珍; 王琦光; 崔春生; 匡丽; 陈兵

    2013-01-01

    BACKGROUND: New wound in the border of defected hearts can promote self-healing, and stromal cel -derived factor-1 alpha can promote angiogenesis and cardiac function. OBJECTIVE: To investigate the effects of mechanical injury and stromal cel -derived factor-1 alpha on the proliferation of cardiomyocytes and the effects of cardiomyocytes on chemotactic migration of cardiac fibroblasts. METHODS: Rat cardiomyocytes and cardiac fibroblasts were cultured primarily. Rat cardiomyocytes were injured mechanical y by scratching, and treated with 10-160 μg/L stromal cel -derived factor-1 alpha. The Cel Counting Kit-8 assay was employed to evaluate the proliferation of cardiomyocytes and the Transwel migration assay was used to detect the chemotaxis and migration capability of cardiac fibroblasts. RESULTS AND CONCLUSION: Under mechanical injury condition, stromal cel -derived factor-1 alpha significantly promoted the growth of cardiomyocytes with the maximum effect occurring at 80 μg/L. In addition, mechanical y injured and stromal cel -derived factor-1 alpha cultured cardiomyocytes remarkably promoted the migration of cardiac fibroblasts in a time-dependent fashion. These findings indicate that stromal cel -derived factor-1 alpha could promote the growth of cardiomyocytes under mechanical injury condition; otherwise, mechanical y injured and stromal cel -derived factor-1 alpha cultured cardiomyocytes could promote the migration of cardiac fibroblasts.%  背景:在心脏缺损边缘造成新创面能够促进缺损自愈,基质细胞衍生因子1α能够促进血管生成以及心脏功能。目的:探讨物理损伤及基质细胞衍生因子1α对心肌细胞增殖的影响及心肌细胞对心脏成纤维细胞迁移的趋化作用。方法:原代分离培养大鼠心肌细胞和心脏成纤维细胞,采用刮伤法建立物理损伤模型,并应用10-160μg/L 的基质细胞衍生因子1α进行干预;CCK-8法检测心

  1. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  2. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  3. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    Science.gov (United States)

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  4. Extracellular matrix sub-types and mechanical stretch impact human cardiac fibroblast responses to transforming growth factor beta.

    Science.gov (United States)

    Watson, Chris J; Phelan, Dermot; Collier, Patrick; Horgan, Stephen; Glezeva, Nadia; Cooke, Gordon; Xu, Maojia; Ledwidge, Mark; McDonald, Kenneth; Baugh, John A

    2014-06-01

    Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

  5. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  6. Packaging of actin into Ebola virus VLPs

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  7. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  8. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  9. Lamin A/C and emerin regulate MKL1/SRF activity by modulating actin dynamics

    Science.gov (United States)

    Ho, Chin Yee; Jaalouk, Diana E.; Vartiainen, Maria K.; Lammerding, Jan

    2013-01-01

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome (HGPS).1 The majority of LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and disturbed interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes.1 We report here that lamin A/C-deficient (Lmna−/−) and Lmna N195K mutant cells have impaired nuclear translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function.2 Disturbed nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna−/− and N195K mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease etiology for the cardiac phenotype in many laminopathies, whereby lamins A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  10. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.

    Science.gov (United States)

    Ho, Chin Yee; Jaalouk, Diana E; Vartiainen, Maria K; Lammerding, Jan

    2013-05-23

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.

  11. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  12. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    Science.gov (United States)

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  13. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  14. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    Science.gov (United States)

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  15. A method for rapidly screening functionality of actin mutants and tagged actins

    Directory of Open Access Journals (Sweden)

    Rommelaere Heidi

    2004-01-01

    Full Text Available Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three &bgr;-actin mutants that have been associated with diseases.

  16. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  17. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  18. Cardiac cameras.

    Science.gov (United States)

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  19. Actin dynamics shape microglia effector functions.

    Science.gov (United States)

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  20. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  1. FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2

    OpenAIRE

    Okamoto, Ryuji; Li, Yuxin; Noma, Kensuke; Hiroi, Yukio; Liu, Ping-Yen; Taniguchi, Masaya; Ito, Masaaki; Liao, James K.

    2013-01-01

    The Rho-associated coiled-coil containing kinases, ROCK1 and ROCK2, are important regulators of cell shape, migration, and proliferation through effects on the actin cytoskeleton. However, it is not known whether ROCK2 plays an important role in the development of cardiac hypertrophy. To determine whether the loss of ROCK2 could prevent cardiac hypertrophy, cardiomyocyte-specific ROCK2-null (c-ROCK2−/−) were generated using conditional ROCK2flox/flox mice and α-myosin heavy-chain promoter-dri...

  2. Treatment of ras-induced cancers by the F-actin-bundling drug MKT-077.

    Science.gov (United States)

    Tikoo, A; Shakri, R; Connolly, L; Hirokawa, Y; Shishido, T; Bowers, B; Ye, L H; Kohama, K; Simpson, R J; Maruta, H

    2000-01-01

    A rhodacyanine dye called MKT-077 has shown a highly selective toxicity toward several distinct human malignant cell lines, including bladder carcinoma EJ, and has been subjected to clinical trials for cancer therapy. In the pancreatic carcinoma cell line CRL-1420, but not in normal African green monkey kidney cell line CV-1, it is selectively accumulated in mitochondria. However, both the specific oncogenes responsible for its selective toxicity toward cancer cells, and its target proteins in these cancer cells, still remain to be determined. This study was conducted using normal and ras-transformed NIH 3T3 fibroblasts to determine whether oncogenic ras mutants such as v-Ha-ras are responsible for the selective toxicity of MKT-077 and also to identify its targets, using its derivative called "compound 1" as a specific ligand. We have found that v-Ha-ras is responsible for the selective toxicity of MKT-077 in both in vitro and in vivo. Furthermore, we have identified and affinity purified at least two distinct proteins of 45 kD (p45) and 75 kD (p75), which bind MKT-077 in v-Ha-ras-transformed cells but not in parental normal cells. Microsequencing analysis has revealed that the p45 is a mixture of beta- and gamma-actin, whereas the p75 is HSC70, a constitutive member of the Hsp70 heat shock adenosine triphosphatase family, which inactivates the tumor suppressor p53. MKT-077 binds actin directly, bundles actin filaments by cross-linking, and blocks membrane ruffling. Like a few F-actin-bundling proteins such as HS1, alpha-actinin, and vinculin as well as F-actin cappers such as tensin and chaetoglobosin K (CK), the F-actin-bundling drug MKT-077 suppresses ras transformation by blocking membrane ruffling. These findings suggest that other selective F-actin-bundling/capping compounds are also potentially useful for the chemotherapy of ras-associated cancers.

  3. GROWTH AND MORPHOLOGY OF POLYMER-ACTIN COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Hyuck Joon Kwon; Kazuhiro Shikinaka; Akira Kakugo; Hidemitsu Furukawa; Yoshihito Osada; Jian Ping Gong

    2007-01-01

    F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolyte system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth of actin architectures in cell.

  4. Erbium laser resurfacing for actinic cheilitis.

    Science.gov (United States)

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  5. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  6. Actin as a potential target for decavanadate.

    Science.gov (United States)

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  7. Platelets and cardiac arrhythmia

    Directory of Open Access Journals (Sweden)

    Jonas S De Jong

    2010-12-01

    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  8. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  9. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  10. Cardiac troponin: an emerging cardiac biomarker in animal health

    Directory of Open Access Journals (Sweden)

    Vishal V. Undhad

    Full Text Available Analysis of cardiac troponin I (cTn I and T (cTnT are considered the “gold standard” for the non-invasive diagnosis of myocardial injury in human and animals. It has replaced traditionally used cardiac biomarkers such as myoglobin, lactate dehydrogenase (LDH, creatine kinase (CK and CK-MB due to its high sensitivity and specificity for the detection of myocardial injury. Cardiac troponins are proteins that control the calcium-mediated interaction between actin and myosin, allowing contraction at the sarcomere level. Concentration of the cTn can be correlated microscopic lesion and loss of immunolabeling in myocardium damage. Troponin concentration remains elevated in blood for 1-2wks so that wide window is available for diagnosis of myocardial damage. The cTn test has >95% specificity and sensitivity and test is less time consuming (10 to 15 minutes and less costly (INR 200 to INR 500. [Vet. World 2012; 5(8.000: 508-511

  11. ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Karina Jin Yoon

    Full Text Available The actin cytoskeleton is a primary determinant of tumor cell motility and metastatic potential. Motility and metastasis are thought to be regulated, in large part, by the interaction of membrane proteins with cytoplasmic linker proteins and of these linker proteins, in turn, with actin. However, complete membrane-to-actin linkages have been difficult to identify. We used co-immunoprecipitation and competitive peptide assays to show that intercellular adhesion molecule-2 (ICAM-2/alpha-actinin/actin may comprise such a linkage in neuroblastoma cells. ICAM-2 expression limited the motility of these cells and redistributed actin fibers in vitro, and suppressed development of disseminated tumors in an in vivo model of metastatic neuroblastoma. Consistent with these observations, immunohistochemical analysis demonstrated ICAM-2 expression in primary neuroblastoma tumors exhibiting features that are associated with limited metastatic disease and more favorable clinical outcome. In neuroblastoma cell lines, ICAM-2 expression did not affect AKT activation, tumorigenic potential or chemosensitivity, as has been reported for some types of transfected cells. The observed ICAM-2-mediated suppression of metastatic phenotype is a novel function for this protein, and the interaction of ICAM-2/alpha-actinin/actin represents the first complete membrane-linker protein-actin linkage to impact tumor cell motility in vitro and metastatic potential in an in vivo model. Current work focuses on identifying specific protein domains critical to the regulation of neuroblastoma cell motility and metastasis and on determining if these domains represent exploitable therapeutic targets.

  12. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  13. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    Science.gov (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  14. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...... a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft....

  15. Actin: its cumbersome pilgrimage through cellular compartments.

    Science.gov (United States)

    Schleicher, Michael; Jockusch, Brigitte M

    2008-06-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days' knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.

  16. [When and why treat actinic keratoses?].

    Science.gov (United States)

    Wulf, Hans Christian

    2014-02-03

    Actinic keratoses (AK) are small, inflamed, hyperkeratotic, sunprovoked lesions which may progress to squamous cell carcinoma (SCC). There are two main reasons for treating AK: one is as prophylaxis against SCC, the other is because of cosmetic discomfort, with clothes getting caught in the hyperkeratotic AK. Visible AK and neighbouring invisible AK should be treated. As AK are provoked by UV radiation, protection against UV is essential. This paper comments on a Cochrane review: "Interventions for actinic keratosis" and treatments avaliable in Denmark.

  17. Cardiac Rehabilitation

    Science.gov (United States)

    ... your risk of future heart problems, and to improve your health and quality of life. Cardiac rehabilitation programs increase ... exercise routine at home or at a local gym. You may also continue to ... health concerns. Education about nutrition, lifestyle and weight loss ...

  18. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  19. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  20. Implications of oxidovanadium(IV) binding to actin.

    Science.gov (United States)

    Ramos, Susana; Almeida, Rui M; Moura, José J G; Aureliano, Manuel

    2011-06-01

    Oxidovanadium(IV), a cationic species (VO(2+)) of vanadium(IV), binds to several proteins, including actin. Upon titration with oxidovanadium(IV), approximately 100% quenching of the intrinsic fluorescence of monomeric actin purified from rabbit skeletal muscle (G-actin) was observed, with a V(50) of 131 μM, whereas for the polymerized form of actin (F-actin) 75% of quenching was obtained and a V(50) value of 320 μM. Stern-Volmer plots were used to estimate an oxidovanadium(IV)-actin dissociation constant, with K(d) of 8.2 μM and 64.1 μM VOSO(4), for G-actin and F-actin, respectively. These studies reveal the presence of a high affinity binding site for oxidovanadium(IV) in actin, producing local conformational changes near the tryptophans most accessible to water in the three-dimensional structure of actin. The actin conformational changes, also confirmed by (1)H NMR, are accompanied by changes in G-actin hydrophobic surface, but not in F-actin. The (1)H NMR spectra of G-actin treated with oxidovanadium(IV) clearly indicates changes in the resonances ascribed to methyl group and aliphatic regions as well as to aromatics and peptide-bond amide region. In parallel, it was verified that oxidovanadium(IV) prevents the G-actin polymerization into F-actin. In the 0-200 μM range, VOSO(4) inhibits 40% of the extent of polymerization with an IC(50) of 15.1 μM, whereas 500 μM VOSO(4) totally suppresses actin polymerization. The data strongly suggest that oxidovanadium(IV) binds to actin at specific binding sites preventing actin polymerization. By affecting actin structure and function, oxidovanadium(IV) might be responsible for many cellular effects described for vanadium.

  1. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  2. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  3. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    Science.gov (United States)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  4. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  5. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle alpha-actinin-1

    OpenAIRE

    Sara Drmota Prebil; Urška Slapšak; Miha Pavšič; Gregor Ilc; Vid Puž; Euripedes De Almeida Ribeiro; Dorothea Anrather; Markus Hartl; Lars Backman; Janez Plavec; Brigita Lenarčič; Kristina Djinović-Carugo

    2016-01-01

    The activity of several cytosolic proteins critically depends on the concentration of calcium ions. One important intracellular calcium-sensing protein is alpha-actinin-1, the major actin crosslinking protein in focal adhesions and stress fibers. The actin crosslinking activity of alpha-actinin-1 has been proposed to be negatively regulated by calcium, but the underlying molecular mechanisms are poorly understood. To address this, we determined the first high-resolution NMR structure of its f...

  6. Morphological Modifications in Myofibrils by Suppressing Tropomyosin 4α in Chicken Cardiac Myocytes.

    Science.gov (United States)

    Toyota, Naoji; Fujitsuka, Chiaki; Ishibashi, Goushi; S Yoshida, Lucia; Takano-Ohmuro, Hiromi

    2016-01-01

    Tropomyosin (TPM) localizes along F-actin and, together with troponin T (TnT) and other components, controls calcium-sensitive muscle contraction. The role of the TPM isoform (TPM4α) that is expressed in embryonic and adult cardiac muscle cells in chicken is poorly understood. To analyze the function of TPM4α in myofibrils, the effects of TPM4α-suppression were examined in embryonic cardiomyocytes by small interference RNA transfection. Localization of myofibril proteins such as TPM, actin, TnT, α-actinin, myosin and connectin was examined by immunofluorescence microscopy on day 5 when almost complete TPM4α-suppression occurred in culture. A unique large structure was detected, consisting of an actin aggregate bulging from the actin bundle, and many curved filaments projecting from the aggregate. TPM, TnT and actin were detected on the large structure, but myosin, connectin, α-actinin and obvious myofibril striations were undetectable. It is possible that TPM4α-suppressed actin filaments are sorted and excluded at the place of the large structure. This suggests that TPM4α-suppression significantly affects actin filament, and that TPM4α plays an important role in constructing and maintaining sarcomeres and myofibrils in cardiac muscle.

  7. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

    Science.gov (United States)

    Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activat...

  8. Neurophysiological assessment of alpha pattern coma.

    OpenAIRE

    1980-01-01

    Somatosensory evoked potentials, blink reflexes, and H wave reflexes, were recorded on several days from three patients with alpha pattern coma. Coma was secondary to cardiac arrest in two cases and to brainstem infarction in one. Results are compatible with damage to the brainstem reticular formation with sparing of thalamo-cortical circuits as the main physiopathological characteristic of alpha pattern coma. This condition should not be regarded as a discrete entity when establishing the pr...

  9. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agen

  10. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  11. Alpha fetoprotein

    Science.gov (United States)

    Fetal alpha globulin; AFP ... Greater than normal levels of AFP may be due to: Cancer in testes , ovaries, biliary (liver secretion) tract, stomach, or pancreas Cirrhosis of the liver Liver cancer ...

  12. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    Science.gov (United States)

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  13. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    Science.gov (United States)

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  14. The unusual dynamics of parasite actin result from isodesmic polymerization.

    Science.gov (United States)

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  15. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  16. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  17. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  18. Identification and immunolocalization of actin cytoskeletal components in light- and dark-adapted octopus retinas.

    Science.gov (United States)

    De Velasco, B; Martinez, J M; Ochoa, G H; Miller, A M; Clark, Y M; Matsumoto, B; Robles, L J

    1999-06-01

    Photoreceptors in the octopus retina are of the rhabdomeric type, with rhabdomeres arising from the plasma membrane on opposite sides of the cylindrical outer segment. Each rhabdomere microvillus has an actin filament core, but other actin-binding proteins have not been identified. We used immunoblotting techniques to identify actin-binding proteins in octopus retinal extracts and immunofluorescence microscopy to localize the same proteins in fixed tissue. Antibodies directed against alpha-actinin and vinculin recognized single protein bands on immunoblots of octopus retinal extract with molecular weights comparable to the same proteins in other tissues. Anti-filamin identified two closely spaced bands similar in molecular weight to filamin in other species. Antibodies to the larger of the Drosophila ninaC gene products, p174, identified two bands lower in molecular weight than p174. Anti-villin localized a band that was significantly less in molecular weight than villin found in other cells. Epifluorescence and confocal microscopy were used to map the location of the same actin-binding proteins in dark- and light-adapted octopus photoreceptors and other retinal cells. Antibodies to most of the actin-binding proteins showed heavy staining of the photoreceptor proximal/supportive cell region accompanied by rhabdom membrane and rhabdom tip staining, although subtle differences were detected with individual antibodies. In dark-adapted retinas anti-alpha-actinin stained the photoreceptor proximal/supportive cell region where an extensive junctional complex joins these two cell types, but in the light, immunoreactivity extended above the junctional complex into the rhabdom bases. Most antibodies densely stained the rhabdom tips but anti-villin exhibited a striated pattern of localization at the tips. We believe that the actin-binding proteins identified in the octopus retina may play a significant role in the formation of new rhabdomere microvilli in the dark. We

  19. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms.

    Directory of Open Access Journals (Sweden)

    Jayabalan M Joseph

    Full Text Available Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps. To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group. According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8 as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.

  20. Plant villins:Versatile actin regulatory proteins

    Institute of Scientific and Technical Information of China (English)

    Shanjin Huang; Xiaolu Qu; Ruihui Zhang

    2015-01-01

    Regulation of actin dynamics is a central theme in cel biology that is important for different aspects of cel physiology. Vil in, a member of the vil in/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Vil ins contain six gelsolin homology domains (G1–G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant vil ins are expressed widely, implying that plant vil ins play a more general role in regulating actin dynamics. Some plant vil ins have a defined role in modifying actin dynamics in the pol en tube;most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant vil ins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cel s. In this review, we focus on discussing the biochemical activities and modes of regulation of plant vil ins. Here, we present current understand-ing of the functions of plant vil ins. Final y, we highlight some of the key unanswered questions regarding the functions and regulation of plant vil ins for future research.

  1. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  2. The role of actin turnover in retrograde actin network flow in neuronal growth cones.

    Directory of Open Access Journals (Sweden)

    David Van Goor

    Full Text Available The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.

  3. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    Science.gov (United States)

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  4. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  5. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  6. $\\alpha_s$ review (2016)

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The current world-average of the strong coupling at the Z pole mass, $\\alpha_s(m^2_{Z}) = 0.1181 \\pm 0.0013$, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD "data", (ii) $\\tau$ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in $e^+e^-$ collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other $\\alpha_s$ extractions, usually with a lower level of theoretical and/or experimental precision today, have been proposed: pion, $\\Upsilon$, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and $\\gamma$-p collisions; and photon F$_2$ structure function in $\\gamma\\,\\gamma$ collisions. These 14 $\\alpha_s$ determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

  7. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    CERN Document Server

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  8. Cardiac expression of ms1/STARS, a novel gene involved in cardiac development and disease, is regulated by GATA4.

    Science.gov (United States)

    Ounzain, Samir; Kobayashi, Satoru; Peterson, Richard E; He, Aibin; Motterle, Anna; Samani, Nilesh J; Menick, Donald R; Pu, William T; Liang, Qiangrong; Chong, Nelson W

    2012-05-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease.

  9. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  10. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  11. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  12. Freely suspended actin cortex models on arrays of microfabricated pillars

    NARCIS (Netherlands)

    Roos, Wouter H.; Roth, Alexander; Konle, Johannes; Presting, Hartmut; Sackmann, Erich; Spatz, Joachim P.

    2003-01-01

    Actin networking across pillar-tops: Actin filaments have been self-assembled onto microscopic silicon pillars, forming quasi-two-dimensional networks (see graphic) and creating novel possibilities for mimicking functions of the cellular actin cortex on solid-state devices.

  13. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    Science.gov (United States)

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  14. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  15. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  16. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  17. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells

    OpenAIRE

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cel...

  18. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Directory of Open Access Journals (Sweden)

    Ojaimi Caroline

    2010-08-01

    Full Text Available Abstract Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM have not been defined completely. We have shown in conscious dogs with DM that: 1 baseline coronary blood flow (CBF was significantly decreased, 2 endothelium-dependent (ACh coronary vasodilation was impaired, and 3 reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4. Results The array data revealed that 797 genes were differentially expressed (P 2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase, structural proteins (actin alpha. Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase, which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.

  19. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  20. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.

    Science.gov (United States)

    Li, Hailong; Aksenova, Marina; Bertrand, Sarah J; Mactutus, Charles F; Booze, Rosemarie

    2016-02-10

    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.

  1. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling.

    Science.gov (United States)

    Banno, Tomohiro; Gazel, Alix; Blumenberg, Miroslav

    2004-07-30

    Identification of tumor necrosis factor-alpha (TNF alpha) as the key agent in inflammatory disorders, e.g. rheumatoid arthritis, Crohn's disease, and psoriasis, led to TNF alpha-targeting therapies, which, although avoiding many of the side-effects of previous drugs, nonetheless causes other side-effects, including secondary infections and cancer. By controlling gene expression, TNF alpha orchestrates the cutaneous responses to environmental damage and inflammation. To define TNF alpha action in epidermis, we compared the transcriptional profiles of normal human keratinocytes untreated and treated with TNF alpha for 1, 4, 24, and 48 h by using oligonucleotide microarrays. We found that TNF alpha regulates not only immune and inflammatory responses but also tissue remodeling, cell motility, cell cycle, and apoptosis. Specifically, TNF alpha regulates innate immunity and inflammation by inducing a characteristic large set of chemokines, including newly identified TNF alpha targets, that attract neutrophils, macrophages, and skin-specific memory T-cells. This implicates TNF alpha in the pathogenesis of psoriasis, fixed drug eruption, atopic and allergic contact dermatitis. TNF alpha promotes tissue repair by inducing basement membrane components and collagen-degrading proteases. Unexpectedly, TNF alpha induces actin cytoskeleton regulators and integrins, enhancing keratinocyte motility and attachment, effects not previously associated with TNF alpha. Also unanticipated was the influence of TNF alpha upon keratinocyte cell fate by regulating cell-cycle and apoptosis-associated genes. Therefore, TNF alpha initiates not only the initiation of inflammation and responses to injury, but also the subsequent epidermal repair. The results provide new insights into the harmful and beneficial TNF alpha effects and define the mechanisms and genes that achieve these outcomes, both of which are important for TNF alpha-targeted therapies.

  2. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  3. Transient state model of actin-based motility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...

  4. The 5’cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Tilsner, Jens; Bell, Karen;

    to the motile cortical actin/ER network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5’ methylguanosine TMV cap was shown to be required for vRNA anchoring to the ER. TMV vRNA lacking the 5’cap failed to form granules...

  5. Bundling Actin Filaments From Membranes: Some Novel Players

    Directory of Open Access Journals (Sweden)

    Clément eThomas

    2012-08-01

    Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

  6. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    Science.gov (United States)

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  7. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Directory of Open Access Journals (Sweden)

    Stefan Fischer

    2016-01-01

    Full Text Available Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1 tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2 low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation.

  8. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Science.gov (United States)

    Fischer, Stefan; Rynkiewicz, Michael J.; Moore, Jeffrey R.; Lehman, William

    2016-01-01

    Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1) tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2) low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation. PMID:26798831

  9. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  10. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions.

    Science.gov (United States)

    Hong, Nan Hyung; Qi, Aidong; Weaver, Alissa M

    2015-08-31

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7(+) endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor-induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.

  11. FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2.

    Science.gov (United States)

    Okamoto, Ryuji; Li, Yuxin; Noma, Kensuke; Hiroi, Yukio; Liu, Ping-Yen; Taniguchi, Masaya; Ito, Masaaki; Liao, James K

    2013-04-01

    The Rho-associated coiled-coil containing kinases, ROCK1 and ROCK2, are important regulators of cell shape, migration, and proliferation through effects on the actin cytoskeleton. However, it is not known whether ROCK2 plays an important role in the development of cardiac hypertrophy. To determine whether the loss of ROCK2 could prevent cardiac hypertrophy, cardiomyocyte-specific ROCK2-null (c-ROCK2(-/-)) were generated using conditional ROCK2(flox/flox) mice and α-myosin heavy-chain promoter-driven Cre recombinase transgenic mice. Cardiac hypertrophy was induced by Ang II infusion (400 ng/kg/min, 28 d) or transverse aortic constriction (TAC). Under basal conditions, hemodynamic parameters, cardiac anatomy, and function of c-ROCK2(-/-) mice were comparable to wild-type (WT) mice. However, following Ang II infusion or TAC, c-ROCK2(-/-) mice exhibited a substantially smaller increase in heart-to-body weight ratio, left ventricular mass, myocyte cross-sectional area, hypertrophy-related fetal gene expression, intraventricular fibrosis, cardiac apoptosis, and oxidative stress compared to control mice. Deletion of ROCK2 in cardiomyocytes leads to increased expression of four-and-a-half LIM-only protein-2 (FHL2) and FHL2-mediated inhibition of serum response factor (SRF) and extracellular signal-regulated mitogen-activated protein kinase (ERK). Knockdown of FHL2 expression in ROCK2-deficient cardiomyocytes or placing ROCK2-haploinsufficient (ROCK2(+/-)) mice on FHL2(+/-)-haploinsufficient background restored the hypertrophic response to Ang II. These results indicate that cardiomyocyte ROCK2 is essential for the development of cardiac hypertrophy and that up-regulation of FHL2 may contribute to the antihypertrophic phenotype that is observed in cardiac-specific ROCK2-deficient mice.

  12. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    Science.gov (United States)

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  13. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Cheng Cui

    2013-11-01

    Full Text Available Planar cell polarity (PCP regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin

  14. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  15. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  16. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  17. The neuronal and actin commitment: Why do neurons need rings?

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc.

  18. Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization.

    Directory of Open Access Journals (Sweden)

    Lindsay B Case

    Full Text Available At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.

  19. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    Science.gov (United States)

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  20. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  1. Steric effects induce geometric remodeling of actin bundles in filopodia

    CERN Document Server

    Dobramysl, Ulrich; Erban, Radek

    2016-01-01

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...

  2. Photodynamic therapy for the treatment of actinic cheilitis.

    Science.gov (United States)

    Kodama, Makiko; Watanabe, Daisuke; Akita, Yoichi; Tamada, Yasuhiko; Matsumoto, Yoshinari

    2007-10-01

    Although actinic cheilitis is a common disease, it should be treated carefully because it can undergo malignant transformation. We report a case of actinic cheilitis treated with photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA), with satisfactory outcome in both clinical and pathological aspects. Actinic cheilitis is a pathologic condition affecting mainly the lower lip caused by long-term exposure of the lips to the UV radiation in sunlight. Analogous to actinic keratosis of the skin, actinic cheilitis is considered as a precancerous lesion and it may develop into squamous cell carcinoma. We report a case of actinic cheilitis treated with PDT using ALA, with satisfactory outcome in both clinical and pathological aspects.

  3. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Shuichi Takeda

    Full Text Available The actin capping protein (CP tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity. Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1. V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a

  4. Cardiac tamponade (image)

    Science.gov (United States)

    Cardiac tamponade is a condition involving compression of the heart caused by blood or fluid accumulation in the space ... they cannot adequately fill or pump blood. Cardiac tamponade is an emergency condition that requires hospitalization.

  5. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  6. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    Science.gov (United States)

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  7. Studies on the transcription, translation, and structure of alpha- actinin in Dictyostelium discoideum

    OpenAIRE

    1986-01-01

    A clone coding for the F-actin cross-linking protein alpha-actinin was obtained by screening a genomic library of Dictyostelium discoideum DNA in lambda gt11 with monoclonal antibodies specific for Dictyostelium alpha-actinin. The 1.2-kilobase (kb) genomic clone was confirmed as containing part of the alpha-actinin gene by comparing its nucleotide sequence with the amino acid sequence of tryptic peptides from purified alpha-actinin. The clone recognized a 3.0-kb message in a Northern blot. Hy...

  8. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.

    2010-01-01

    Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used...... cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db......-actin) and natriuretic peptide receptor genes were not consistently altered by obesity across the three mouse models. In contrast, cardiac ventricular triglycerides were similarly increased by 60-115% in all three obese mouse models and incubation with oleic acid caused triglyceride accumulation and an approximately 35...

  9. WH2 domain: a small, versatile adapter for actin monomers.

    Science.gov (United States)

    Paunola, Eija; Mattila, Pieta K; Lappalainen, Pekka

    2002-02-20

    The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.

  10. Formins: Bringing new insights to the organization of actin cytoskeleton

    Institute of Scientific and Technical Information of China (English)

    GUO Chunqing; REN Haiyun

    2006-01-01

    The actin cytoskeleton is an important component of eukaryotic cell cytoskeleton and is temporally and spatially controlled by a series of actin binding proteins (ABPs). Among ABPs, formin family proteins have attracted much attention as they can nucleate unbranched actin filament from the profilin bound actin pool in vivo. In recent years, a number of formin family members from different organisms have been reported, and their characteristics are known more clearly, although some questions are still to be clarified. Here, we summarize the structures, functions and nucleation mechanisms of different formin family proteins, intending to compare them and give some new clues to the study of formins.

  11. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  12. Interaction of calponin with actin and its functional implications.

    Science.gov (United States)

    Kołakowski, J; Makuch, R; Stepkowski, D; Dabrowska, R

    1995-01-01

    Titration of F-actin with calponin causes the formation of two types of complexes. One, at saturation, contains a lower ratio of calponin to actin (0.5:1) and is insoluble at physiological ionic strength. The another is soluble, with a higher ratio of calponin to actin (1:1). Electron microscopy revealed that the former complex consists of paracrystalline bundles of actin filaments, whereas the latter consists of separate filaments. Ca(2+)-calmodulin causes dissociation of bundles with simultaneous increase in the number of separate calponin-containing filaments. Further increase in the calmodulin concentration results in full release of calponin from actin filaments. In motility assays, calponin, when added together with ATP to actin filaments complexed with immobilized myosin, evoked a decrease in both the number and velocity of moving actin filaments. Addition of calponin to actin filaments before their binding to myosin resulted in a formation of actin filament bundles which were dissociated by ATP. Images Figure 2 PMID:7864810

  13. Correlative nanoscale imaging of actin filaments and their complexes.

    Science.gov (United States)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E; Reisler, Emil; Gimzewski, James K

    2013-07-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  14. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L.

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  15. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped...

  16. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    Science.gov (United States)

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  17. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

    Science.gov (United States)

    Moriyama, Kenji; Yahara, Ichiro

    2002-04-15

    Cofilin-ADF (actin-depolymerizing factor) is an essential driver of actin-based motility. We discovered two proteins, p65 and p55, that are components of the actin-cofilin complex in a human HEK293 cell extract and identified p55 as CAP1/ASP56, a human homologue of yeast CAP/SRV2 (cyclase-associated protein). CAP is a bifunctional protein with an N-terminal domain that binds to Ras-responsive adenylyl cyclase and a C-terminal domain that inhibits actin polymerization. Surprisingly, we found that the N-terminal domain of CAP1, but not the C-terminal domain, is responsible for the interaction with the actin-cofilin complex. The N-terminal domain of CAP1 was also found to accelerate the depolymerization of F-actin at the pointed end, which was further enhanced in the presence of cofilin and/or the C-terminal domain of CAP1. Moreover, CAP1 and its C-terminal domain were observed to facilitate filament elongation at the barbed end and to stimulate ADP-ATP exchange on G-actin, a process that regenerates easily polymerizable G-actin. Although cofilin inhibited the nucleotide exchange on G-actin even in the presence of the C-terminal domain of CAP1, its N-terminal domain relieved this inhibition. Thus, CAP1 plays a key role in speeding up the turnover of actin filaments by effectively recycling cofilin and actin and through its effect on both ends of actin filament.

  18. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.

    Science.gov (United States)

    Ramos, S; Moura, J J G; Aureliano, M

    2012-01-01

    Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can

  19. Self-assembly of Artificial Actin Filaments

    Science.gov (United States)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  20. Mechanisms of cardiac pain.

    Science.gov (United States)

    Foreman, Robert D; Garrett, Kennon M; Blair, Robert W

    2015-04-01

    Angina pectoris is cardiac pain that typically is manifested as referred pain to the chest and upper left arm. Atypical pain to describe localization of the perception, generally experienced more by women, is referred to the back, neck, and/or jaw. This article summarizes the neurophysiological and pharmacological mechanisms for referred cardiac pain. Spinal cardiac afferent fibers mediate typical anginal pain via pathways from the spinal cord to the thalamus and ultimately cerebral cortex. Spinal neurotransmission involves substance P, glutamate, and transient receptor potential vanilloid-1 (TRPV1) receptors; release of neurokinins such as nuclear factor kappa b (NF-kb) in the spinal cord can modulate neurotransmission. Vagal cardiac afferent fibers likely mediate atypical anginal pain and contribute to cardiac ischemia without accompanying pain via relays through the nucleus of the solitary tract and the C1-C2 spinal segments. The psychological state of an individual can modulate cardiac nociception via pathways involving the amygdala. Descending pathways originating from nucleus raphe magnus and the pons also can modulate cardiac nociception. Sensory input from other visceral organs can mimic cardiac pain due to convergence of this input with cardiac input onto spinothalamic tract neurons. Reduction of converging nociceptive input from the gallbladder and gastrointestinal tract can diminish cardiac pain. Much work remains to be performed to discern the interactions among complex neural pathways that ultimately produce or do not produce the sensations associated with cardiac pain.

  1. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    OpenAIRE

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    This study identifies actin organization as an upstream regulator of the Hippo pathway: F-actin accumulation promotes Yorkie-dependent transcriptional activation. This modulation of Hippo signalling by actin regulators controls organ growth in Drosophila.

  2. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    Science.gov (United States)

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  3. Deafness and espin-actin self-organization in stereocilia

    Science.gov (United States)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  4. Filament assembly by Spire: key residues and concerted actin binding.

    Science.gov (United States)

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.

  5. Actin puts the squeeze on Drosophila glue secretion.

    Science.gov (United States)

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  6. Interaction of actin and the chloroplast protein import apparatus.

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-07-10

    Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.

  7. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    Science.gov (United States)

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  8. Evidence for an uncommon alpha-actinin protein in Trichomonas vaginalis.

    Science.gov (United States)

    Bricheux, G; Coffe, G; Pradel, N; Brugerolle, G

    1998-09-15

    As part of our ongoing project of identification of actin-binding proteins implicated in the cell transition (flagellate to amoeboid/adherent) of Trichomonas vaginalis, we have characterized an alpha-actinin-related protein in this parasite. The protein (P100) has a molecular mass of 100 kDa and an isoelectric point of 5.5. A monoclonal antibody raised against this protein co-localizes with the actin network. P100 gene transcripts are co-expressed with actin throughout the cell cycle. Analysis of the deduced protein sequence reveals three domains: an N-terminal actin-binding region; a central region rich in alpha-helix; and a C-terminal domain with Ca(2+)-binding capacity. Whereas the N- and C-terminal regions are well-conserved as compared to other alpha-actinins, we observe in the central region an atypical distribution of residues in five repeats. The sequence of the repeats does not show any homology with the rod domain of the other alpha-actinins, except for the first repeat which shows some similarity. The four other repeats of T. vaginalis P100 appear to result from a duplication event which is not detectable in the other sequences.

  9. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  10. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Thomas [University of Heidelberg; Holmes, Kenneth [Max Planck Institute, Heidelberg, Germany; Noe, Frank [DFG Research Center Matheon, FU Berlin, Germany; Smith, Jeremy C [ORNL

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  11. Photodynamic therapy: treatment of choice for actinic cheilitis?

    Science.gov (United States)

    Rossi, R; Assad, G Bani; Buggiani, G; Lotti, T

    2008-01-01

    The major therapeutic approaches (5-fluorouracil, imiquimod, vermilionectomy, and CO(2) Laser ablation) for actinic cheilitis are aimed at avoiding and preventing a malignant transformation into invasive squamous cell carcinoma via destruction/removal of the damaged epithelium. Recently, photodynamic therapy (PDT) has been introduced as a therapeutic modality for epithelial skin tumors, with good efficacy/safety profile and good cosmetic results. Regarding actinic cheilitis, PDT could be considered a new therapeutic option? The target of our study was to evaluate the efficacy and tolerability of PDT in actinic cheilitis, using a methyl-ester of aminolevulinic acid (MAL) as topical photosensitizing agent and controlled the effects of the therapy for a 30-month follow-up period. MAL-PDT seems to be the ideal treatment for actinic cheilitis and other actinic keratosis, especially on exposed parts such as the face, joining tolerability and clinical efficacy with an excellent cosmetic outcome.

  12. Dynamics of actin evolution in dinoflagellates.

    Science.gov (United States)

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop

  13. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    Science.gov (United States)

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  14. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  15. Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir, an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin-, Even-skipped- and Seven up (Svp-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.

  16. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    Science.gov (United States)

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  17. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    Science.gov (United States)

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  18. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro.

    Science.gov (United States)

    Skillman, Kristen M; Daher, Wassim; Ma, Christopher I; Soldati-Favre, Dominique; Sibley, L David

    2012-03-27

    Apicomplexan parasites employ gliding motility that depends on the polymerization of parasite actin filaments for host cell entry. Despite this requirement, parasite actin remains almost entirely unpolymerized at steady state; formation of filaments required for motility relies on a small repertoire of actin-binding proteins. Previous studies have shown that apicomplexan formins and profilin exhibit canonical functions on heterologous actins from higher eukaryotes; however, their biochemical properties on parasite actins are unknown. We therefore analyzed the impact of T. gondii profilin (TgPRF) and FH1-FH2 domains of two formin isoforms in T. gondii (TgFRM1 and TgFRM2) on the polymerization of T. gondii actin (TgACTI). Our findings based on in vitro assays demonstrate that TgFRM1-FH1-FH2 and TgFRM2-FH1-FH2 dramatically enhanced TgACTI polymerization in the absence of profilin, making them the sole protein factors known to initiate polymerization of this normally unstable actin. In addition, T. gondii formin domains were shown to both initiate polymerization and induce bundling of TgACTI filaments; however, they did not rely on TgPRF for these activities. In contrast, TgPRF sequestered TgACTI monomers, thus inhibiting polymerization even in the presence of formins. Collectively, these findings provide insight into the unusual control mechanisms of actin dynamics within the parasite.

  19. Mechanical properties of branched actin filaments

    CERN Document Server

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  20. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Georges Hajje

    Full Text Available The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10 group and a group treated with 6-propyl-2-thiouracil (PTU (n = 20 to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL6 and pro-fibrotic transforming growth factor beta 1 (TGF-β1, were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP and cardiac troponin T (cTnT were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  1. Quantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA

    Science.gov (United States)

    Guo, Liliang; Sui, Zhenghong; Liu, Yuan

    2016-01-01

    Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in different cells of these species differed greatly which result in the large deviation of the amplification. And 18S rDNA amplification of the microalgae was prone to be contaminated by fungus. The amplification of actin gene all was from the dinoflagellates because of its targeted degenerate primers. All the actin sequences of dinoflagellates were detected in the act samples except act4, and sequence percentage of the dinoflagellates in the act samples was not completely consistent with the dinoflagellates percentage of cell samples, but with certain amplification deviations. Indexes of alpha diversity of actin gene sequencing may be better reflection of community structure, and beta diversity analysis could cluster the dinoflagellates samples with identical or similar composition together and was distinguishable with blooming simulating samples at the generic level. Hence, actin gene was more proper than rDNA as the molecular marker for the community analysis of the dinoflagellates. PMID:27721499

  2. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  3. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  4. Interconnection between actin cytoskeleton and plant defense signaling.

    Science.gov (United States)

    Janda, Martin; Matoušková, Jindřiška; Burketová, Lenka; Valentová, Olga

    2014-01-01

    Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.

  5. Concentration profiles of actin-binding molecules in lamellipodia

    Science.gov (United States)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  6. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  7. Ab initio alpha-alpha scattering

    CERN Document Server

    Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-01-01

    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.

  8. Analysis of actinic flux profiles measured from an ozonesonde balloon

    Science.gov (United States)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  9. Actin-based dynamics during spermatogenesis and its significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang; YANG Wan-xi

    2007-01-01

    Actin can be found in all kinds ofeukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and,at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

  10. Role of actin in auxin transport and transduction of gravity

    Science.gov (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  11. Liquid crystal domains and thixotropy of filamentous actin suspensions.

    Science.gov (United States)

    Kerst, A; Chmielewski, C; Livesay, C; Buxbaum, R E; Heidemann, S R

    1990-06-01

    The thixotropic properties of filamentous actin suspensions were examined by a step-function shearing protocol. Samples of purified filamentous actin were sheared at 0.2 sec-1 in a cone and plate rheometer. We noted a sharp stress overshoot upon the initiation of shear, indicative of a gel state, and a nearly instantaneous drop to zero stress upon cessation of shear. Stress-overshoot recovery was almost complete after 5 min of "rest" before samples were again sheared at 0.2 sec-1. Overshoot recovery increased linearly with the square root of rest time, suggesting that gel-state recovery is diffusion limited. Actin suspensions subjected to oscillatory shearing at frequencies from 0.003 to 30 radians/sec confirmed the existence of a 5-min time scale in the gel, similar to that for stress-overshoot recovery. Flow of filamentous actin was visualized by polarized light observations. Actin from 6 mg/ml to 20 mg/ml showed the "polycrystalline" texture of birefringence typical for liquid crystal structure. At shear rates less than 1 sec-1, flow occurred by the relative movement of irregular, roughly ellipsoidal actin domains 40-140 microns long; the appearance was similar to moving ice floes. At shear rates greater than 1 sec-1, domains decreased in size, possibly by frictional interactions among domains. Eventually domains flow in a "river" of actin aligned by the flow. Our observations confirm our previous domain-friction model for actin rheology. The similarities between the unusual flow properties of actin and cytoplasm argue that cytoplasm also may flow as domains.

  12. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    Science.gov (United States)

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  13. Disease causing mutations of troponin alter regulated actin state distributions.

    Science.gov (United States)

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  14. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  15. New insights into dynamic actin-based chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  16. Radioligands for imaging myocardial {alpha}- and β-adrenoceptors

    Energy Technology Data Exchange (ETDEWEB)

    Riemann, B.; Schaefers, M.; Schober, O. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Law, M.P. [MRC Clinical Sciences Centre, Imperial Coll. School of Science, Technology and Medicine, Hammersmith Hospital, London (United Kingdom); Wichter, T. [Dept. of Cardiology and Angiology, Muenster Univ. (Germany)

    2003-02-01

    Alpha- and beta-adrenoceptors play an important role in the control of heart function. According to their molecular, biological, and pharmacological characteristics, they are subdivided into {alpha}{sub 1}-, {alpha}{sub 2}- and β{sub 1}-, β{sub 2}-, β{sub 3}-, β{sub 4}- adrenoceptors. In cardiac disease, there is often a selective downregulation of β{sub 1}-adrenoceptors associated with a relative increase in β{sub 2}- and {alpha}{sub 1}-adrenoceptors. Functional imaging techniques like single-photon emission tomography (SPECT) and positron emission tomography (PET) provide the unique capability for non-invasive assessment of cardiac adrenoceptors. Radioligands with high specific binding to cardiac {alpha}- and β-adrenoceptors suitable for radiolabelling are required for clinical studies. The non-selective β-adrenoceptor antagonist [{sup 11}C]CGP-12177 was used to quantify β-adrenoceptor density using PET in patients with heart disease. New non-selective ligands (e. g. [{sup 11}C]CGP-12388, [{sup 18}F]CGP-12388, [{sup 11}C]carazolol and [{sup 18}F]fluorocarazolol) are currently evaluated; β{sub 1}-selective radioligands (e. g. [{sup 11}C]CGP-26505, [{sup 11}C]bisoprolol, [{sup 11}C]HX-CH 44) and β{sub 2}-selective radioligands (e. g. [{sup 11}C]formoterol, [{sup 11}C]ICI-118551) were assessed in animals. None of them turned out as suitable for cardiac PET. Potential radioligands for imaging cardiac {alpha}{sub 1}-adrenoceptors are based on prazosin. Whereas [{sup 11}C]prazosin shows low specific binding to myocardium, its derivative [{sup 11}C]GB67 looks more promising. The putative {alpha}{sub 2}-adrenoceptor radioligand [{sup 11}C]MK-912 shows high uptake in rodent myocardium but has not yet been evaluated in man. A number of radioligands were evaluated for assessing cardiac adrenoceptors using PET. New radioligands are needed to provide more insight into cardiac pathophysiology which may influence the

  17. EhNCABP166: a nucleocytoplasmic actin-binding protein from Entamoeba histolytica.

    Science.gov (United States)

    Campos-Parra, A D; Hernández-Cuevas, N A; Hernandez-Rivas, R; Vargas, M

    2010-07-01

    The actin cytoskeleton consists of multiple actin binding proteins (ABPs) that participate cooperatively in different cellular functions such as the maintenance of polarity and cell motility as well as the invasion of target cells and regulation of gene expression, among others. Due to the important role of ABPs in the pathogenesis of Entamoeba histolytica, the role of a new nucleocytoplasmic ABP from E. histolytica named EhNCABP166 was investigated. The EhNCABP166 gene encodes a protein with an estimated molecular weight of 166kDa. Structurally, this peptide is composed of two CH domains arranged in tandem at the N-terminus of the protein, followed by an alpha-helical region containing a number of different domains with a low level of homology. Two (Bin1/Amphiphysin/Rvs167) (BAR) domains, one GTPase-binding/formin 3 homology (GBD/FH3) domain, three Bcl2-associated athanogene (BAG) domains, one basic-leucine zipper (bZIP) domain and one poly(A)-binding protein C-terminal (PABC) domain were also present. Molecular and biochemical studies showed that the EhNCABP166 protein is transcribed and translated in trophozoites of E. histolytica. It was also shown that the CH domains are functional and bind to F-actin, whereas the BAR and GBD/FH3 domains interact in vitro and in vivo with different families of GTPases such as Rho and Ras, and with different phosphoinositides. These findings suggest that these domains have the conserved functional properties described in other eukaryotic systems. These domains also interacted with additional GTPase and lipid targets that have not been previously described. Finally, cellular studies showed that EhNCABP166 is localized to the cytoplasm and nucleus of E. histolytica and that it has an important role in phagocytosis, proliferation, and motility of E. histolytica.

  18. IL-1β suppresses TGF-β-mediated myofibroblast differentiation in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Brønnum, Hasse; Eskildsen, Tilde; Andersen, Ditte Caroline;

    2013-01-01

    Cardiac fibrosis is a maladaptive response of the injured myocardium and is mediated through a complex interplay between molecular triggers and cellular responses. Interleukin (IL)-1β is a key inflammatory inducer in cardiac disease and promotes cell invasion and cardiomyocyte injury, but little...... a differentiation model of ventricular fibroblasts, we found that IL-1β instigated substantial anti-fibrogenic effects. In specific, IL-1β reduced proliferation, matrix activity, cell motility and α-smooth muscle actin expression, which are all hallmarks of myoFb differentiation. These findings suggest that IL-1β...

  19. A primary cardiac leiomyosarcoma with mutation at H-ras codon 12.

    Science.gov (United States)

    Parissis, J; Arvanitis, D; Sourvinos, G; Spandidos, D

    1997-01-01

    The presence of activating ras mutations in a cardiac leiomyosarcoma which occurred in the right atrium of the heart of a female patient was examined. The tumor had the appearance of leiomyosarcoma in rutine histopathological examination and the definite diagnosis was confirmed by a positive immunohistochemical reaction to smooth muscle actin. Molecular analysis by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) technique showed a point mutation of H-ras gene at codon 12. To the best of our knowledge, this is the first report describing ras gene mutation in a cardiac leiomyosarcoma implying a role for the ras oncogenes in the development of this tumor.

  20. Cardiac Procedures and Surgeries

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Procedures and Surgeries Updated:Sep 16,2016 If you've had ... degree of coronary artery disease (CAD) you have. Cardiac Procedures and Surgeries Angioplasty Also known as Percutaneous Coronary Interventions [PCI], ...

  1. [Advances in cardiac pacing].

    Science.gov (United States)

    de Carranza, María-José Sancho-Tello; Fidalgo-Andrés, María Luisa; Ferrer, José Martínez; Mateas, Francisco Ruiz

    2012-01-01

    This article contains a review of the current status of remote monitoring and follow-up involving cardiac pacing devices and of the latest developments in cardiac resynchronization therapy. In addition, the most important articles published in the last year are discussed.

  2. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: Specific effect of transforming growth factor. beta

    Energy Technology Data Exchange (ETDEWEB)

    Eghbali, M.; Tomek, R.; Woods, C.; Bhambi, B. (Univ. of Chicago, IL (United States))

    1991-02-01

    Cardiac fibroblasts are mainly responsible for the synthesis of major extracellular matrix proteins in the heart, including fibrillar collagen types I and III and fibronectin. In this report we show that these cells, when stimulated by transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), acquire certain myocyte-specific properties. Cultured cardiac fibroblasts from adult rabbit heart were treated with TGF-{beta}{sub 1}, (10-15 ng/ml) for different periods of time. Northern hybridization analysis of total RNA showed that cells treated with TGF-{beta}{sub 1} became stained with a monoclonal antibody to muscle-specific actin. After treatment of quiescent cells with TGF-{beta}{sub 1}, cell proliferation (as measured by ({sup 3}H)thymidine incorporation) was moderately increased. Cultured cardiac fibroblasts at the subconfluent stage, when exposed to TGF-{beta}{sub 1} in the presence of 10% fetal bovine serum, gave rise to a second generation of slowly growing cells that expressed muscle-specific actin filaments. The findings demonstrate that cardiac fibroblasts can be made to differentiate into cells that display many characteristics of cardiac myocytes. TGF-{beta}{sub 1} seems to be a specific inducer of such conversion.

  3. Demonstration of actin filament stress fibers in microvascular endothelial cells in situ.

    Science.gov (United States)

    Nehls, V; Drenckhahn, D

    1991-07-01

    We have developed a method for immunostaining the microvascular tree of rat mesenteric windows in situ. The procedure consists of three steps, i.e., mild fixation with formaldehyde, controlled proteolytic digestion of the mesothelial layer, and permeabilization with acetone. Discrimination between different microvascular segments was possible by double-fluorescent staining with antibodies to the smooth muscle isoform of alpha-actin and to nonmuscle myosin from platelets. Antibodies to nonmuscle myosin labeled numerous longitudinally oriented cables in endothelial cells of all microvascular segments (arterioles, metarterioles, pre-, mid-, and postcapillaries, small venules). Occasionally, the myosin-containing cables displayed the interrupted sarcomere-like staining pattern that is diagnostic for stress fibers. In contrast, staining of actin filaments with phalloidin-rhodamin resulted in a noninterrupted, continuous fluorescence of the stress fibers. A possible functional role of microvascular endothelial stress fibers is to serve as a tensile cytoskeletal scaffold that stabilizes the tubular, three-dimensional geometry of microvessels and, in addition, to help the endothelium resist the shear forces created by blood flow and by collision with red and white blood cells.

  4. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  5. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  6. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.......p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin...

  7. Antenna mechanism of length control of actin cables

    CERN Document Server

    Mohapatra, Lishibanya; Kondev, Jane

    2014-01-01

    Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentra...

  8. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  9. Roles of Cortactin, an Actin Polymerization Mediator, in Cell Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Zhi-Wei WANG; Jian-wei ZHU; Xi ZHAN

    2006-01-01

    Cortactin, an actin-binding protein and a substrate of Src, is encoded by the EMS 1 oncogene.Cortactin is known to activate Arp2/3 complex-mediated actin polymerization and interact with dynamin, a large GTPase and proline rich domain-containing protein. Transferrin endocytosis was significantly reduced in cells by knock-down of cortactin expression as well as in vivo introduction of cortactin immunoreagents.Cortactin-dynamin interaction displayed morphologically dynamic co-distribution with a change in the endocytosis level in cells treated with an actin depolymerization reagent, cytochalasin D. In an in vitro beads assay, a branched actin network was recruited onto dynamin-coated beads in a cortactin Src homology domain 3 (SH3)-dependent manner. In addition, cortactin was found to function in the late stage of clathrin coated vesicle formation.Taken together, cortactin is required for optimal clathrin mediated endocytosis in a dynamin directed manner.

  10. Curved trajectories of actin-based motility in two dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  11. Actinic cheilitis with a familial pattern: An unusual case

    Directory of Open Access Journals (Sweden)

    Surekha Murthi

    2014-01-01

    Full Text Available Actinic cheilitis is a chronic inflammatory disorder of the lip, affecting the lower lip mainly, caused by cumulative long-term effects of ultraviolet (UV radiation in sunlight. It is a premalignant condition with a malignancy potential of 6-10%. It is reported that it almost exclusively occurs in fair-skinned people and those who work outdoors. However, it has recently been reported that actinic cheilitis is not exclusive to fair-skinned people. It is most common in middle-aged or older male patients. Diagnosis of actinic cheilitis is mainly based on demographical, clinical, and histopathological findings. Factors such as socioeconomic status, smoking, dietary habits, and genetic predisposition are also associated with lip cancer. Here, we present a case of actinic cheilitis in two siblings and in their mother, showing a familial pattern. An incisional biopsy of the lower lip in the mother showed severe dysplastic changes indicating transformation to squamous cell carcinoma.

  12. Computational defect review for actinic mask inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  13. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  14. The core and conserved role of MAL is homeostatic regulation of actin levels.

    Science.gov (United States)

    Salvany, Lara; Muller, Julius; Guccione, Ernesto; Rørth, Pernille

    2014-05-15

    The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.

  15. Polymerization of fluorescent analogue of plant actin in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.

  16. Computational Analysis of the Transcriptional Regulation of the Actin Family

    Institute of Scientific and Technical Information of China (English)

    郑家顺; 吴加金; 孙之荣

    2002-01-01

    Transcriptional regulation is a very important regulatory step in the regulation of gene expression. Transcription factors (TFs) play an important role in controlling the temporal special specificity of gene expression. The regulation area of actin genes was analyzed statistically to predict the transcription factor binding sites in the regulatory area. A group of transcription factors located in most of the sequences is believed to play an important role in co-regulating the expression of actin genes.

  17. Faddeev calculation of 3 alpha and alpha alpha Lambda systems using alpha alpha resonating-group method kernel

    CERN Document Server

    Fujiwara, Y; Kohno, M; Suzuki, Y; Baye, D; Sparenberg, J M

    2004-01-01

    We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are...

  18. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  19. Effect of temperature on the mechanism of actin polymerization.

    Science.gov (United States)

    Zimmerle, C T; Frieden, C

    1986-10-21

    The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.

  20. In vivo imaging and characterization of actin microridges.

    Directory of Open Access Journals (Sweden)

    Pui-ying Lam

    Full Text Available Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.

  1. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  2. The Role of Actin Cytoskeleton in Memory Formation in Amygdala

    Directory of Open Access Journals (Sweden)

    Raphael eLamprecht

    2016-03-01

    Full Text Available The central, lateral and basolateral amygdala nuclei are essential for the formation of long-term memories including emotional and drug-related memories. The study of cellular and molecular mechanisms underpinning memory in amygdala may shed light on the formation of memory and on fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases.

  3. Perspectives on the value of biomarkers in acute cardiac care and implications for strategic management.

    Science.gov (United States)

    Kossaify, Antoine; Garcia, Annie; Succar, Sami; Ibrahim, Antoine; Moussallem, Nicolas; Kossaify, Mikhael; Grollier, Gilles

    2013-01-01

    Biomarkers in acute cardiac care are gaining increasing interest given their clinical benefits. This study is a review of the major conditions in acute cardiac care, with a focus on biomarkers for diagnostic and prognostic assessment. Through a PubMed search, 110 relevant articles were selected. The most commonly used cardiac biomarkers (cardiac troponin, natriuretic peptides, and C-reactive protein) are presented first, followed by a description of variable acute cardiac conditions with their relevant biomarkers. In addition to the conventional use of natriuretic peptides, cardiac troponin, and C-reactive protein, other biomarkers are outlined in variable critical conditions that may be related to acute cardiac illness. These include ST2 and chromogranin A in acute dyspnea and acute heart failure, matrix metalloproteinase in acute chest pain, heart-type fatty acid binding protein in acute coronary syndrome, CD40 ligand and interleukin-6 in acute myocardial infarction, blood ammonia and lactate in cardiac arrest, as well as tumor necrosis factor-alpha in atrial fibrillation. Endothelial dysfunction, oxidative stress and inflammation are involved in the physiopathology of most cardiac diseases, whether acute or chronic. In summary, natriuretic peptides, cardiac troponin, C-reactive protein are currently the most relevant biomarkers in acute cardiac care. Point-of-care testing and multi-markers use are essential for prompt diagnostic approach and tailored strategic management.

  4. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  5. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans.

    Science.gov (United States)

    Ketelaar, Tijs; Meijer, Harold J G; Spiekerman, Marjolein; Weide, Rob; Govers, Francine

    2012-12-01

    The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin

  6. Identification of Obscure yet Conserved Actin-Associated Proteins in Giardia lamblia

    OpenAIRE

    Paredez, Alexander R.; Nayeri, Arash; Xu, Jennifer W.; Krtková, Jana; Cande, W. Zacheus

    2014-01-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectros...

  7. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis

    OpenAIRE

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-01-01

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chl...

  8. Cardiac tumors: echo assessment.

    Science.gov (United States)

    Mankad, Rekha; Herrmann, Joerg

    2016-12-01

    Cardiac tumors are exceedingly rare (0.001-0.03% in most autopsy series). They can be present anywhere within the heart and can be attached to any surface or be embedded in the myocardium or pericardial space. Signs and symptoms are nonspecific and highly variable related to the localization, size and composition of the cardiac mass. Echocardiography, typically performed for another indication, may be the first imaging modality alerting the clinician to the presence of a cardiac mass. Although echocardiography cannot give the histopathology, certain imaging features and adjunctive tools such as contrast imaging may aid in the differential diagnosis as do the adjunctive clinical data and the following principles: (1) thrombus or vegetations are the most likely etiology, (2) cardiac tumors are mostly secondary and (3) primary cardiac tumors are mostly benign. Although the finding of a cardiac mass on echocardiography may generate confusion, a stepwise approach may serve well practically. Herein, we will review such an approach and the role of echocardiography in the assessment of cardiac masses.

  9. Relaxin stimulates MMP-2 and alpha-smooth muscle actin expression by human periodontal ligament cells.

    NARCIS (Netherlands)

    Henneman, S.; Bildt, M.M.; Degroot, J.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2008-01-01

    The main cells in the periodontal ligament (PDL) are the fibroblasts, which play an important role in periodontal remodelling. Matrix metalloproteinases (MMPs) are largely responsible for the degradation of extracellular matrix proteins in the PDL. Previous studies have indicated that MMP production

  10. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts.

    Science.gov (United States)

    Bai, Jian; Zhang, Na; Hua, Ying; Wang, Bingjian; Ling, Lin; Ferro, Albert; Xu, Biao

    2013-01-01

    Differentiation of cardiac fibroblasts into myofibroblasts is a critical event in the progression of cardiac fibrosis that leads to pathological cardiac remodeling. Metformin, an antidiabetic agent, exhibits a number of cardioprotective properties. However, much less is known regarding the effect of metformin on cardiac fibroblast differentiation. Thus, in the present study, we examined the effect of metformin on angiotensin (Ang) II-induced differentiation of cardiac fibroblasts into myofibroblasts and its underlying mechanism. Adult rat cardiac fibroblasts were stimulated with Ang II (100 nM) in the presence or absence of metformin (10-200 µM). Ang II stimulation induced the differentiation of cardiac fibroblasts into myofibroblasts, as indicated by increased expression of α-smooth muscle actin (α-SMA) and collagen types I and III, and this effect of Ang II was inhibited by pretreatment of cardiac fibroblasts with metformin. Metformin also decreased Ang II-induced reactive oxygen species (ROS) generation in cardiac fibroblasts via inhibiting the activation of the PKC-NADPH oxidase pathway. Further experiments using PKC inhibitor calphostin C and NADPH oxidase inhibitor apocynin confirmed that inhibition of the PKC-NADPH oxidase pathway markedly attenuated Ang II-induced ROS generation and myofibroblast differentiation. These data indicate that metformin inhibits Ang II-induced myofibroblast differentiation by suppressing ROS generation via the inhibition of the PKC-NADPH oxidase pathway in adult rat cardiac fibroblasts. Our results provide new mechanistic insights regarding the cardioprotective effects of metformin and provide an efficient therapeutic strategy to attenuate cardiac fibrosis.

  11. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Jian Bai

    Full Text Available Differentiation of cardiac fibroblasts into myofibroblasts is a critical event in the progression of cardiac fibrosis that leads to pathological cardiac remodeling. Metformin, an antidiabetic agent, exhibits a number of cardioprotective properties. However, much less is known regarding the effect of metformin on cardiac fibroblast differentiation. Thus, in the present study, we examined the effect of metformin on angiotensin (Ang II-induced differentiation of cardiac fibroblasts into myofibroblasts and its underlying mechanism. Adult rat cardiac fibroblasts were stimulated with Ang II (100 nM in the presence or absence of metformin (10-200 µM. Ang II stimulation induced the differentiation of cardiac fibroblasts into myofibroblasts, as indicated by increased expression of α-smooth muscle actin (α-SMA and collagen types I and III, and this effect of Ang II was inhibited by pretreatment of cardiac fibroblasts with metformin. Metformin also decreased Ang II-induced reactive oxygen species (ROS generation in cardiac fibroblasts via inhibiting the activation of the PKC-NADPH oxidase pathway. Further experiments using PKC inhibitor calphostin C and NADPH oxidase inhibitor apocynin confirmed that inhibition of the PKC-NADPH oxidase pathway markedly attenuated Ang II-induced ROS generation and myofibroblast differentiation. These data indicate that metformin inhibits Ang II-induced myofibroblast differentiation by suppressing ROS generation via the inhibition of the PKC-NADPH oxidase pathway in adult rat cardiac fibroblasts. Our results provide new mechanistic insights regarding the cardioprotective effects of metformin and provide an efficient therapeutic strategy to attenuate cardiac fibrosis.

  12. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  13. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  14. [Cardiac fibroma: A rare cause of sudden child death].

    Science.gov (United States)

    Humez, Sarah; Gibier, Jean-Baptiste; Recher, Morgan; Leteurtre, Stéphane; Leroy, Xavier; Devisme, Louise

    2015-10-01

    We report the case of a 3-year-old child who died from the consequences of a cardio-respiratory arrest despite reanimation procedures. Echocardiography and magnetic resonance imaging (MRI) revealed a mass of the free wall of the left ventricle. Autopsy confirmed the existence of a solitary myocardial tumor, well-circumscribed, firm, with a whitish and trabeculated cut surface. Histologically, the tumor consisted of bundles of spindle-shaped and regular cells mingling with collagen and elastic fibers, insinuating themselves between myocytes in periphery. Calcifications were present. After immunohistochemistry, the cells were highlighted by anti-actin smooth muscle antibody; but they were not highlighted by anti-desmin, anti-β catenin and anti-Ki67 antibodies. The diagnosis of cardiac fibroma was made. The primary cardiac tumors of child are rare and usually benign. They are essentially represented by rhabdomyoma and fibroma. Cardiac fibroma mostly occurs during the first year of life. It can be revealed by cardiac insufficiency, arrhythmia, chest pain or sudden death.

  15. Multilayer defects nucleated by substrate pits: a comparison of actinic inspection and non-actinic inspection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Goldberg, K; Kearney, P; Rekawa, S; LaFontaine, B; Wood, O; Taylor, J S; Han, H

    2006-10-02

    The production of defect-free mask blanks remains a key challenge for EUV lithography. Mask-blank inspection tools must be able to accurately detect all critical defects while simultaneously having the minimum possible false-positive detection rate. We have recently observed and here report the identification of bump-type buried substrate defects, that were below the detection limit of a non-actinic (i.e. non-EUV) in inspection tool. Presently, the occurrence inspection of pit-type defects, their printability, and their detectability with actinic techniques and non-actinic commercial tools, has become a significant concern. We believe that the most successful strategy for the development of effective non-actinic mask inspection tools will involve the careful cross-correlation with actinic inspection and lithographic printing. In this way, the true efficacy of prototype inspection tools now under development can be studied quantitatively against relevant benchmarks. To this end we have developed a dual-mode actinic mask inspection system capable of scanning mask blanks for defects (with simultaneous EUV bright-field and dark-field detection) and imaging those same defects with a zoneplate microscope that matches or exceeds the resolution of EUV steppers.

  16. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2014-01-01

    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  17. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    Science.gov (United States)

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  18. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    Science.gov (United States)

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  19. De novo expression of fetal ED-A(+) fibronectin and B (+) tenascin-C splicing variants in human cardiac allografts: potential impact for targeted therapy of rejection.

    Science.gov (United States)

    Franz, Marcus; Matusiak-Brückner, Monika; Richter, Petra; Grün, Katja; Ziffels, Barbara; Neri, Dario; Maschek, Hansjörg; Schulz, Uwe; Pfeil, Alexander; Jung, Christian; Figulla, Hans R; Gummert, Jan; Berndt, Alexander; Renner, André

    2014-10-01

    Management of acute and especially chronic rejection after human cardiac transplantation is still challenging. Chronic rejection, represented by allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) is known to cause severe long-term complications. Rejection associated tissue-remodelling entails the reoccurrence of fetal variants of Fibronectin (Fn) and Tenascin-C (Tn-C), which are virtually absent in adult human organs. In a rat model, an extensive re-expression could be demonstrated for ED-A(+) Fn with spatial association to CAV and CIF. Thus, it is of great interest to investigate the cardiac tissue expression and distribution in human samples. From 48 heart transplanted patients, 64 tissue specimens derived from right ventricular biopsies were available. Histopathological analysis was performed according to the International Society for Heart and Lung Transplantation (ISHLT) guidelines for the detection of acute rejection. By immunohistochemistry, protein expression of ED-A(+) Fn, B(+) Tn-C, alpha-smooth muscle actin, CD31 and CD45 was assessed and analysed semiquantitatively. Co-localisation studies were performed by means of immunofluorescence double labelling. Histopathological analysis of the 64 samples revealed different ISHLT grades (0R in 36 cases, 1R in 20 cases and 2R in 8 cases). There was a distinct and quantitatively relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C in most samples. Semi-quantitative evaluation did not show any correlation to the acute rejection grade for all markers. Interestingly, significant correlations to the extent of inflammation could be shown for ED-A(+) Fn (r = 0.442, p = 0.000) and B(+) Tn-C (r = 0.408, p = 0.001) as well as between both proteins (r = 0.663, p = 0.000). A spatial association of ED-A(+) Fn and B(+) Tn-C to CAV and CIF could be demonstrated. A relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C following human heart transplantation could be demonstrated with spatial association to

  20. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation.

    Science.gov (United States)

    Ramos, Susana; Duarte, Rui O; Moura, José J G; Aureliano, Manuel

    2009-10-14

    Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.

  1. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  2. Optogenetics to target actin-mediated synaptic loss in Alzheimer's

    Science.gov (United States)

    Zahedi, Atena; DeFea, Kathryn; Ethell, Iryna

    2013-03-01

    Numerous studies in Alzheimer's Disease (AD) animal models show that overproduction of Aβ peptides and their oligomerization can distort dendrites, damage synapses, and decrease the number of dendritic spines and synapses. Aβ may trigger synapse loss by modulating activity of actin-regulating proteins, such as Rac1 and cofilin. Indeed, Aβ1-42 oligomers can activate actin severing protein cofilin through calcineurin-mediated activation of phosphatase slingshot and inhibit an opposing pathway that suppresses cofilin phosphorylation through Rac-mediated activation of LIMK1. Excessive activation of actin-severing protein cofilin triggers the formation of a non-dynamic actin bundles, called rods that are found in AD brains and cause loss of synapses. Hence, regulation of these actin-regulating proteins in dendritic spines could potentially provide useful tools for preventing the synapse/spine loss associated with earlier stages of AD neuropathology. However, lack of spatiotemporal control over their activity is a key limitation. Recently, optogenetic advancements have provided researchers with convenient light-activating proteins such as photoactivatable Rac (PARac). Here, we transfected cultured primary hippocampal neurons and human embryonic kidney (HEK) cells with a PARac/ mCherry-containing plasmid and the mCherry-positive cells were identified and imaged using an inverted fluorescence microscope. Rac1 activation was achieved by irradiation with blue light (480nm) and live changes in dendritic spine morphology were observed using mCherry (587nm). Rac activation was confirmed by immunostaining for phosphorylated form of effector proteinP21 protein-activated kinase 1 (PAK1) and reorganization of actin. Thus, our studies confirm the feasibility of using the PA-Rac construct to trigger actin re-organization in the dendritic spines.

  3. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.

    Science.gov (United States)

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-12-15

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.

  4. Cardiac Tumors; Tumeurs cardiaques

    Energy Technology Data Exchange (ETDEWEB)

    Laissy, J.P.; Fernandez, P. [Centre Hospitalier Universitaire Bichat Claude Bernard, Service d' Imagerie, 76 - Rouen (France); Mousseaux, E. [Hopital Europeen Georges Pompidou (HEGP), Service de Radiologie Cardio Vasculaire et Interventionnelle, 75 - Paris (France); Dacher, J.N. [Centre Hospitalier Universitaire Charles Nicolle, 75 - Rouen (France); Crochet, D. [Centre Hospitalier Universitaire, Hopital Laennec, Centre Hemodynamique, Radiologie Thoracique et Vasculaire, 44 - Nantes (France)

    2004-04-01

    Metastases are the most frequent tumors of the heart even though they seldom are recognized. Most primary cardiac tumors are benign. The main role of imaging is to differentiate a cardiac tumor from thrombus and rare pseudo-tumors: tuberculoma, hydatid cyst. Echocardiography is the fist line imaging technique to detect cardiac tumors, but CT and MRl arc useful for further characterization and differential diagnosis. Myxoma of the left atrium is the most frequent benign cardiac tumor. It usually is pedunculated and sometimes calcified. Sarcoma is the most frequent primary malignant tumor and usually presents as a sessile infiltrative tumor. Lymphoma and metastases are usually recognized by the presence of known tumor elsewhere of by characteristic direct contiguous involvement. Diagnosing primary and secondary pericardial tumors often is difficult. Imaging is valuable for diagnosis, characterization, pre-surgical evaluation and follow-up. (author)

  5. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;

    2012-01-01

    to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  6. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  7. Synergistic activation of cardiac genes by myocardin and Tbx5.

    Directory of Open Access Journals (Sweden)

    Chunbo Wang

    Full Text Available Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF and alpha myosin heavy chain (α-MHC, but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC. We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs. Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases.

  8. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  9. Port Access Cardiac Surgery.

    Science.gov (United States)

    Viganó, Mario; Minzioni, Gaetano; Spreafico, Patrizio; Rinaldi, Mauro; Pasquino, Stefano; Ceriana, Piero; Locatelli, Alessandro

    2000-10-01

    The port-access technique for cardiac surgery was recently developed at Stanford University in California as a less invasive method to perform some cardiac operations. The port-access system has been described in detail elsewhere. It is based on femoral arterial and venous access for cardiopulmonary bypass (CPB) and on the adoption of a specially designed triple-lumen catheter described originally by Peters, and subsequently modified and developed in the definitive configuration called the endoaortic clamp.

  10. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  11. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E

    1991-01-01

    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery, i...... on the coronary vessels, with cardiac tamponade and chronic pericardial exudate. In the lighter cases, PCIS may be treated with NSAID and, in the more severe cases, with systemic glucocorticoid which has a prompt effect....

  12. Autonomic cardiac innervation

    OpenAIRE

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targe...

  13. Infected cardiac hydatid cyst

    OpenAIRE

    Ceviz, M; Becit, N; Kocak, H.

    2001-01-01

    A 24 year old woman presented with chest pain and palpitation. The presence of a semisolid mass—an echinococcal cyst or tumour—in the left ventricular apex was diagnosed by echocardiography, computed tomography, and magnetic resonance imaging. The infected cyst was seen at surgery. The cyst was removed successfully by using cardiopulmonary bypass with cross clamp.


Keywords: cardiac hydatid cyst; infected cardiac hydatid cyst

  14. Cardiac applications of optogenetics.

    Science.gov (United States)

    Ambrosi, Christina M; Klimas, Aleksandra; Yu, Jinzhu; Entcheva, Emilia

    2014-08-01

    In complex multicellular systems, such as the brain or the heart, the ability to selectively perturb and observe the response of individual components at the cellular level and with millisecond resolution in time, is essential for mechanistic understanding of function. Optogenetics uses genetic encoding of light sensitivity (by the expression of microbial opsins) to provide such capabilities for manipulation, recording, and control by light with cell specificity and high spatiotemporal resolution. As an optical approach, it is inherently scalable for remote and parallel interrogation of biological function at the tissue level; with implantable miniaturized devices, the technique is uniquely suitable for in vivo tracking of function, as illustrated by numerous applications in the brain. Its expansion into the cardiac area has been slow. Here, using examples from published research and original data, we focus on optogenetics applications to cardiac electrophysiology, specifically dealing with the ability to manipulate membrane voltage by light with implications for cardiac pacing, cardioversion, cell communication, and arrhythmia research, in general. We discuss gene and cell delivery methods of inscribing light sensitivity in cardiac tissue, functionality of the light-sensitive ion channels within different types of cardiac cells, utility in probing electrical coupling between different cell types, approaches and design solutions to all-optical electrophysiology by the combination of optogenetic sensors and actuators, and specific challenges in moving towards in vivo cardiac optogenetics.

  15. The determination of $\\alpha_s$ by the ALPHA collaboration

    CERN Document Server

    Bruno, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Schaefer, Stefan; Simma, Hubert; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $\\alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $\\Lambda_\\overline{MS}^{(3)}=332(14)$~MeV is translated to $\\alpha_\\overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark "thresholds". The error of this perturbative step is discussed and estimated as $0.0002$.

  16. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  17. Automated detection of actinic keratoses in clinical photographs.

    Directory of Open Access Journals (Sweden)

    Samuel C Hames

    Full Text Available BACKGROUND: Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. OBJECTIVE: The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. METHODS: Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist's assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. RESULTS: The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist's intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001 were detected in the high actinic keratosis group compared to the no actinic keratosis group. CONCLUSIONS: The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve

  18. State transitions of actin cortices in vitro and in vivo

    Science.gov (United States)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  19. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  20. Antenna Mechanism of Length Control of Actin Cables.

    Directory of Open Access Journals (Sweden)

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  1. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  2. Multiscale modeling and mechanics of filamentous actin cytoskeleton.

    Science.gov (United States)

    Yamaoka, Hidetaka; Matsushita, Shinji; Shimada, Yoshitaka; Adachi, Taiji

    2012-03-01

    The adaptive structure and functional changes of the actin cytoskeleton are induced by its mechanical behavior at various temporal and spatial scales. In particular, the mechanical behaviors at different scales play important roles in the mechanical functions of various cells, and these multiscale phenomena require clarification. To establish a milestone toward achieving multiscale modeling and simulation, this paper reviews mathematical analyses and simulation methods applied to the mechanics of the filamentous actin cytoskeleton. The actin cytoskeleton demonstrates characteristic behaviors at every temporal and spatial scale, and mathematical models and simulation methods can be applied to each level of actin cytoskeletal structure ranging from the molecular to the network level. This paper considers studies on mathematical models and simulation methods based on the molecular dynamics, coarse-graining, and continuum dynamics approaches. Every temporal and spatial scale of actin cytoskeletal structure is considered, and it is expected that discrete and continuum dynamics ranging from functional expression at the molecular level to macroscopic functional expression at the whole cell level will be developed and applied to multiscale modeling and simulation.

  3. Control of nuclear organization by F-actin binding proteins.

    Science.gov (United States)

    Pfisterer, Karin; Jayo, Asier; Parsons, Maddy

    2017-01-06

    The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.

  4. Novel actin-like filament structure from Clostridium tetani.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  5. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  6. A coarse-grained model to study calcium activation of the cardiac thin filament

    Science.gov (United States)

    Zhang, Jing; Schwartz, Steven

    2015-03-01

    Familial hypertrophic cardiomyopathy (FHC) is one of the most common heart disease caused by genetic mutations. Cardiac muscle contraction and relaxation involve regulation of crossbridge binding to the cardiac thin filament, which regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin (cTn) and tropomyosin (Tm). An atomistic model of cTn complex interacting with Tm has been studied by our group. A more realistic model requires the inclusion of the dynamics of actin filament, which is almost 6 times larger than cTn and Tm in terms of atom numbers, and extensive sampling of the model becomes very resource-demanding. By using physics-based protein united-residue force field, we introduce a coarse-grained model to study the calcium activation of the thin filament resulting from cTn's allosteric regulation of Tm dynamics on actin. The time scale is much longer than that of all-atom molecular dynamics simulation because of the reduction of the degrees of freedom. The coarse-grained model is a good template for studying cardiac thin filament mutations that cause FHC, and reduces the cost of computational resources.

  7. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    Science.gov (United States)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  8. [Psychosomatic aspects of cardiac arrhythmias].

    Science.gov (United States)

    Siepmann, Martin; Kirch, Wilhelm

    2010-07-01

    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  9. Dissecting principles governing actin assembly using yeast extracts.

    Science.gov (United States)

    Michelot, Alphée; Drubin, David G

    2014-01-01

    In this chapter, we describe recent protocols that we have developed to trigger actin assembly and actin-based motility in yeast cell extracts. Our method allows for the fast preparation of yeast extracts that are competent in dynamic assembly of distinct actin filament structures of biologically appropriate protein composition. Compared to previous extract-based systems using other eukaryotic cell types, yeast provides a unique advantage for combining reconstituted assays with the preparation of extracts from genetically modified yeast strains. We present a global strategy for dissecting the functions of individual proteins, where the activities of the proteins are analyzed in systems of variable complexity, ranging from simple mixtures of pure proteins to the full complexity of a cell's cytoplasm.

  10. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  11. An Arabidopsis Class Ⅱ Formin, AtFH19, Nucleates Actin Assembly, Binds to the Barbed End of Actin Filaments, and Antagonizes the Effect of AtFH1 on Actin Dynamics

    Institute of Scientific and Technical Information of China (English)

    Yiyan Zheng; Haibo Xin; Jinxing Lin; Chun-Ming Liu; Shanjin Huang

    2012-01-01

    Formin is a major protein responsible for regulating the nucleation of actin filaments,and as such,it permits the cell to control where and when to assemble actin arrays.It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana.The Arabidopsis formins can be separated into two phylogenetically-distinct classes:there are 11 class Ⅰ formins and 10 class Ⅱ formins.Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant,and how the different isovariants coordinate to regulate actin dynamics in cells.Here,we characterize a class Ⅱ formin,AtFH19,biochemically.We found that AtFH19 retains all general properties of the formin family,including nucleation and barbed end capping activity.It can also generate actin filaments from a pool of actin monomers bound to profilin.However,both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin,AtFH1.Interestingly,AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends,and inhibits the effect of AtFH1 FH1FH2 on actin.We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.

  12. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  13. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  14. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice

    Science.gov (United States)

    Montgomery, Megan D.; Chan, Trevor; Swigart, Philip M.; Myagmar, Bat-erdene; Dash, Rajesh; Simpson, Paul C.

    2017-01-01

    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35–40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies. PMID:28081170

  15. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.;

    2014-01-01

    A muscle contracts rapidly under low load, but slowly under high load. This load-dependent muscle shortening has been described with a hyperbolic load-velocity curve. Its molecular mechanisms remain to be elucidated, however. During muscle contraction, myosins in thick filaments interact with actin...... is slow under high load and fast under low load. We use a new, simple method we call "harmonic force spectroscopy" to extract a load-velocity relationship from a single human beta cardiac myosin II motor (S1). With a dual-beam optical trap, we hold an actin dumbbell over a single myosin molecule...... that is anchored to the microscope stage, which we oscillate sinusoidally in the direction of the dumbbell. Upon binding of the motor to the actin filament, it experiences an oscillatory load with a mean value that may be directed forward or backward, depending on where the binding took place. We find...

  16. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  17. Interpreting EEG alpha activity.

    Science.gov (United States)

    Bazanova, O M; Vernon, D

    2014-07-01

    Exploring EEG alpha oscillations has generated considerable interest, in particular with regards to the role they play in cognitive, psychomotor, psycho-emotional and physiological aspects of human life. However, there is no clearly agreed upon definition of what constitutes 'alpha activity' or which of the many indices should be used to characterize it. To address these issues this review attempts to delineate EEG alpha-activity, its physical, molecular and morphological nature, and examine the following indices: (1) the individual alpha peak frequency; (2) activation magnitude, as measured by alpha amplitude suppression across the individual alpha bandwidth in response to eyes opening, and (3) alpha "auto-rhythmicity" indices: which include intra-spindle amplitude variability, spindle length and steepness. Throughout, the article offers a number of suggestions regarding the mechanism(s) of alpha activity related to inter and intra-individual variability. In addition, it provides some insights into the various psychophysiological indices of alpha activity and highlights their role in optimal functioning and behavior.

  18. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  19. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  20. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  1. Oral nicotinamide and actinic keratosis: a supplement success story.

    Science.gov (United States)

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses.

  2. Filament attachment dynamics in actin-based propulsion

    CERN Document Server

    Katz, J I

    2005-01-01

    Theory and experiment have established that F-actin filaments are strongly attached to the intracellular parasites (such as Listeria) they propel with ``comet tails''. We consider the implications of these observations for propulsion. By calculating the motion produced in various models of attachment and comparing to experiment we demonstrate that the attachment must be sliding rather than hinged. By modeling experiments on ActA-coated spheres we draw conclusions regarding the interaction between F-actin and their surfaces that may also be applicable to living systems.

  3. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  4. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... for the situation at hand. Due to challenging circumstances, the cost assessment turned out to be ex-post and top-down. RESULTS: Cost per treatment sequence is estimated to be approximately euro 976, whereas the incremental cost (compared with usual care) is approximately euro 682. The cost estimate is uncertain...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  5. Toothache of cardiac origin.

    Science.gov (United States)

    Kreiner, M; Okeson, J P

    1999-01-01

    Pain referred to the orofacial structures can sometimes be a diagnostic challenge for the clinician. In some instances, a patient may complain of tooth pain that is completely unrelated to any dental source. This poses a diagnostic and therapeutic problem for the dentist. Cardiac pain most commonly radiates to the left arm, shoulder, neck, and face. In rare instances, angina pectoris may present as dental pain. When this occurs, an improper diagnosis frequently leads to unnecessary dental treatment or, more significantly, a delay of proper treatment. This delay may result in the patient experiencing an acute myocardial infarction. It is the dentist's responsibility to establish a proper diagnosis so that the treatment will be directed toward the source of pain and not to the site of pain. This article reviews the literature concerning referred pain of cardiac origin and presents a case report of toothache of cardiac origin.

  6. The cardiac anxiety questionnaire: cross-validation among cardiac inpatients

    NARCIS (Netherlands)

    Beek, M.H. van; Oude Voshaar, R.C.; Deelen, F.M. van; Balkom, A.J. van; Pop, G.A.; Speckens, A.E.

    2012-01-01

    OBJECTIVE: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  7. THE CARDIAC ANXIETY QUESTIONNAIRE : CROSS-VALIDATION AMONG CARDIAC INPATIENTS

    NARCIS (Netherlands)

    van Beek, M. H. C. T.; Voshaar, R. C. Oude; van Deelen, F. M.; van Balkom, A. J. L. M.; Pop, G.; Speckens, A. E. M.

    2012-01-01

    Objective: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  8. Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints.

    Directory of Open Access Journals (Sweden)

    Jayant James Jayasundar

    Full Text Available Cardiac troponin (cTn is the Ca(2+-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+ signal received at cardiac troponin C (cTnC is communicated to cardiac troponin I (cTnI are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET measurements and molecular dynamic (MD simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+-free and saturating Ca(2+ conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+-saturated structure, the absence of regulatory Ca(2+ perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+, induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+ the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.

  9. The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor

    OpenAIRE

    Ono, Shoichiro

    2013-01-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in a...

  10. A comparison between Vanadyl, Vanadate, and decavanadate effects in actin structure and function: combination of several spectroscopic studies

    OpenAIRE

    2012-01-01

    The studies about the interaction of actin with vanadium are seldom. In the present paper the effects of vanadyl, vanadate, and decavanadate in the actin structure and function were compared. Decavanadate clearly interacts with actin, as shown by 51V-NMR spectroscopy. Decavanadate interaction with actin induces protein cysteine oxidation and vanadyl formation, being both prevented by the natural ligand of the protein, ATP. Monomeric actin (G-actin) titration with vanadyl, as analysed by...

  11. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  12. Pattern formation in polymerising actin flocks: spirals, spots and waves without nonlinear chemistry

    CERN Document Server

    Goff, Thomas Le; Marenduzzo, Davide

    2016-01-01

    We propose a model solely based on actin treadmilling and polymerisation which describes many characteristic states of actin wave formation: spots, spirals and travelling waves. In our model, as in experiments on cell recovering motility following actin depolymerisation, we choose an isotropic low density initial condition; polymerisation of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin wave formation in the absence of any system specific nonlinear biochemistry, and it may help understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  13. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane.

    Science.gov (United States)

    Cohen, C M; Foley, S F

    1980-08-01

    Binding of F-actin to spectrin-actin-depleted erythrocyte membrane inside-out vesicles was measured using [3H]F-actin. F-actin binding to vesicles at 25 degrees C was stimulated 5-10 fold by addition of spectrin dimers or tetramers to vesicles. Spectrin tetramer was twice as effective as dimer in stimulating actin binding, but neither tetramer nor dimer stimulated binding at 4 degrees C. The addition of purified erythrocyte membrane protein band 4.1 to spectrin-reconstituted vesicles doubled their actin-binding capacity. Trypsinization of unreconstituted vesicles that contain ghosts, decreased their F-actin-binding capacity by 70%. Whereas little or none of the residual spectrin was affected by trypsinization, band 4.1 was significantly degraded. Our results show that spectrin can anchor actin filaments to the cytoplasmic surface of erythrocyte membranes and suggest that band 4.1 may be importantly involved in the association.

  14. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction

    Institute of Scientific and Technical Information of China (English)

    Haim Breitbart; Nir Etkovitz

    2011-01-01

    To bind and fertilize the egg,the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation.The capacitated spermatozoon binds to the egg zona pellucida,and then undergoes the acrosome reaction(AR),which allows its penetration into the egg.The mechanisms regulating sperm capacitation and the AR are not completely understood.In the present review,we summarize some data regarding the role and regulation of the epidermal growth factor receptor(EGFR)in these processes.In the capacitation process,the EGFR is partially activated by protein kinase A(PKA),resulting in phospholipase D(PLD)activation and actin polymerization.Protein kinase C alpha(PKCα),which is already activated at the beginning of the capacitation,also participates in PLD activation.Further activation of the EGFR at the end of the capacitation enhances intracellular Ca2+concentration leading to F-actin breakdown and allows the AR to take place.Under in vivo conditions,the EGFR can be directly activated by its known ligand epidermal growth factor(EGF),and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors(GPCRs)activation or by ouabain.Under physiological conditions,sperm PKA is activated mainly by bicarbonate,which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate(cAMP),the activator of PKA.The GPCR activators angiotensin ll or lysophosphatidic acid,as well as ouabain and EGF are physiological components present in the female reproductive tract.

  15. Buffett’s Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting...

  16. Perioperative management of cardiac disease.

    Science.gov (United States)

    Aresti, N A; Malik, A A; Ihsan, K M; Aftab, S M E; Khan, W S

    2014-01-01

    Pre-existing cardiac disease contributes significantly to morbidity and mortality amongst patients undergoing non cardiac surgery. Patients with pre-existing cardiac disease or with risk factors for it, have as much as a 3.9% risk of suffering a major perioperative cardiac event (Lee et al 1999, Devereaux 2005). Furthermore, the incidence of perioperative myocardial infarction (MI) is increased 10 to 50 fold in patients with previous coronary events (Jassal 2008).

  17. Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos

    OpenAIRE

    1992-01-01

    In the syncytial blastoderm stage of Drosophila embryogenesis, dome- shaped actin "caps" are observed above the interphase nuclei. During mitosis, this actin rearranges to participate in the formation of pseudocleavage furrows, transient membranous invaginations between dividing nuclei. Embryos laid by homozygous sponge mothers lack these characteristic actin structures, but retain other actin associated structures and processes. Our results indicate that the sponge product is specifically re...

  18. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  19. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    OpenAIRE

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. He...

  20. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics

    DEFF Research Database (Denmark)

    Li, M.-M.; Shi, Y.; Niu, Y.

    2013-01-01

    and midbody via association with methylated actin. ALKBH4-mediated regulation of actomyosin dynamics is completely dependent on its catalytic activity. Disorganization of cleavage furrow components and multinucleation associated with ALKBH4 deficiency can all be restored by reconstitution with wild...

  1. Suspected Pulmonary Metastasis of Actinic Cutaneous Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Monet E. Meter

    2017-01-01

    Full Text Available Introduction. It is rare for actinic or squamous cell carcinoma (SCC in situ to metastasize. Case Presentation. A 67-year-old male had a significant medical history including severe psoriatic arthritis treated with UVB, methotrexate, and rapamycin. He had twenty-five different skin excisions of actinic keratosis four of which were invasive SCC. Our patient developed shortness of breath necessitating a visit to the emergency department. A CT scan of his chest revealed a mass in the right lower lung. A subsequent biopsy of the mass revealed well-differentiated SCC. He underwent thoracoscopic surgery with wedge resection of the lung lesion. Discussion. Actinic keratosis (AK is considered precancerous and associated with UV exposure. It exists as a continuum of progression with low potential for malignancy. The majority of invasive SCCs are associated with malignant progression of AK, but only 5–10% of AKs will progress to malignant potential. Conclusion. In this case, a new finding of lung SCC in the setting of multiple invasive actinic cutaneous SCC associated with a history of extensive UV light exposure and immunosuppression supports a metastatic explanation for lung cancer.

  2. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  3. Mical links semaphorins to F-actin disassembly

    NARCIS (Netherlands)

    Hung, R.J.; Yazdani, U.; Yoon, J.; Wu, H.; Yang, T.; Gupta, N.; Huang, Z.; Berkel, van W.J.H.; Terman, J.R.

    2010-01-01

    How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer

  4. Severe congenital actin related myopathy with myofibrillar myopathy features.

    Science.gov (United States)

    Selcen, Duygu

    2015-06-01

    Mutations in ACTA1 have been associated with different pathologic findings including nemaline myopathy, intranuclear rod myopathy, actin myopathy, cap myopathy, congenital fiber type disproportion, and core myopathy. Myofibrillar myopathies are morphologically distinct but genetically heterogeneous muscular dystrophies arising from mutations in Z-disk related proteins. We report a 26-month-old boy with significantly delayed motor development requiring mechanical ventilation and tube-feeding since birth. The muscle biopsy displayed typical features of myofibrillar myopathy with abnormal expression of multiple proteins. Whole exome sequencing revealed two-amino-acid duplication in ACTA1. In cell culture system, mutant actin was expressed at ~11% of wild-type, and mutant actin formed pleomorphic cytoplasmic aggregates whereas wild-type actin appeared in filamentous structures. We conclude that mutations in ACTA1 can cause pathologic features consistent with myofibrillar myopathy, and mutations in ACTA1 should be considered in patients with severe congenital hypotonia associated with muscle weakness and features of myofibrillar myopathy.

  5. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  6. The integrin-actin connection, an eternal love affair

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Fässler, Reinhard

    2003-01-01

    Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial role...

  7. Photodynamic therapy for actinic keratosis in organ transplant patients

    NARCIS (Netherlands)

    Basset-Seguin, N.; Baumann Conzett, K.; Gerritsen, M.J.P.; Gonzalez, H.; Haedersdal, M.; Hofbauer, G.F.; Aguado, L.; Kerob, D.; Lear, J.T.; Piaserico, S.; Ulrich, C.

    2013-01-01

    BACKGROUND: The incidence of actinic keratoses (AK) and non-melanoma skin cancer (NMSC) in organ transplant recipients (OTRs) is significantly higher than in immunocompetent patients. Rates of progression and recurrence following treatment are higher too, in part due to the effects of the immunosupp

  8. p53 and MDM2 protein expression in actinic cheilitis.

    Science.gov (United States)

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  9. p53 and MDM2 protein expression in actinic cheilitis

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Andrade de Freitas

    2008-12-01

    Full Text Available Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976 parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  10. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  11. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  12. Data analysis in cardiac arrhythmias.

    Science.gov (United States)

    Rodrigo, Miguel; Pedrón-Torecilla, Jorge; Hernández, Ismael; Liberos, Alejandro; Climent, Andreu M; Guillem, María S

    2015-01-01

    Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.

  13. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...

  14. Cardiac troponins and high-sensitivity cardiac troponin assays.

    Science.gov (United States)

    Conrad, Michael J; Jarolim, Petr

    2014-03-01

    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  15. Laser assisted {alpha} decay

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda Cortes, Hector Mauricio

    2012-02-01

    Excited or short-lived nuclei often decay by emitting alpha particles that are assumed to be preformed inside the nucleus and confined in the nuclear potential well. In this picture, {alpha} decay refers to the tunneling of the alpha particle through the potential barrier. In this thesis we investigate for the first time how strong laser fields can assist the tunneling of the alpha particle and thus influence the nuclear decay. Generally speaking, laser-assisted {alpha} decay can be described as laser-assisted tunneling of a quasistationary state, i.e, a slowly decaying state. Our theoretical treatment is developed starting from the complex trajectory formulation of the well-known strong-field approximation used to describe laser-induced ionization. We extend this formulation and develop a method to treat the decay of quasistationary states. The effect of both static and optical and X-ray monochromatic fields on the lifetimes and {alpha}-particle emission spectra are investigated for a number of {alpha}-emitting nuclei. We find that even at strong intensities, the laser-induced acceleration of the {alpha} decay is negligible, ranging from a relative modification in the decay rate of 10{sup -3} for static fields of electric field strengths of 10{sup 15} V/m, to 10{sup -8} for strong optical fields with intensities of 10{sup 22} W/cm{sup 2}, and to 10{sup -6} for strong X-ray fields with laser intensities around 10{sup 24} W/cm{sup 2}. However, the effect of the external field is visible in the spectrum of emitted alpha particles, leading in the case of optical fields even to rescattering phenomena for intensities approaching 6 x 10{sup 22} W/cm{sup 2}. The dynamics of the alpha particle in laser fields of intensities below the rescattering limit is investigated.

  16. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    Institute of Scientific and Technical Information of China (English)

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  17. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells.

    Science.gov (United States)

    Po'uha, Sela T; Kavallaris, Maria

    2015-01-01

    Reorganization of the actin cytoskeleton during mitosis is crucial for regulating cell division. A functional role for γ-actin in mitotic arrest induced by the microtubule-targeted agent, paclitaxel, has recently been demonstrated. We hypothesized that γ-actin plays a role in mitosis. Herein, we investigated the effect of γ-actin in mitosis and demonstrated that γ-actin is important in the distribution of β-actin and formation of actin-rich retraction fibers during mitosis. The reduced ability of paclitaxel to induce mitotic arrest as a result of γ-actin depletion was replicated with a range of mitotic inhibitors, suggesting that γ-actin loss reduces the ability of broad classes of anti-mitotic agents to induce mitotic arrest. In addition, partial depletion of γ-actin enhanced centrosome amplification in cancer cells and caused a significant delay in prometaphase/metaphase. This prolonged prometaphase/metaphase arrest was due to mitotic defects such as uncongressed and missegregated chromosomes, and correlated with an increased presence of mitotic spindle abnormalities in the γ-actin depleted cells. Collectively, these results demonstrate a previously unknown role for γ-actin in regulating centrosome function, chromosome alignment and maintenance of mitotic spindle integrity.

  18. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    2011-01-01

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This resu

  19. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    Science.gov (United States)

    Skillman, Kristen M; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L David

    2011-10-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  20. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    Directory of Open Access Journals (Sweden)

    Kristen M Skillman

    2011-10-01

    Full Text Available Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI and Plasmodium (PfACTI and PfACTII actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  1. Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens.

    Science.gov (United States)

    Yamashita, Hiroko; Sato, Yoshikatsu; Kanegae, Takeshi; Kagawa, Takatoshi; Wada, Masamitsu; Kadota, Akeo

    2011-02-01

    Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.

  2. Actin-filament disassembly: it takes two to shrink them fast.

    Science.gov (United States)

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  3. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  4. Cardiac Risk Assessment

    Science.gov (United States)

    ... Risk Assessment Related tests: Lipid Profile , VLDL Cholesterol , hs-CRP , Lp(a) Overview | Common Questions | Related Pages What ... cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring CRP with a ...

  5. The cardiac malpositions.

    Science.gov (United States)

    Perloff, Joseph K

    2011-11-01

    Dextrocardia was known in the 17th century and was 1 of the first congenital malformations of the heart to be recognized. Fifty years elapsed before Matthew Baillie published his account of complete transposition in a human of the thoracic and abdominal viscera to the opposite side from what is natural. In 1858, Thomas Peacock stated that "the heart may be congenitally misplaced in various ways, occupying either an unusual position within the thorax, or being situated external to that cavity." In 1915, Maude Abbott described ectopia cordis, and Richard Paltauf's remarkable illustrations distinguished the various types of dextrocardia. In 1928, the first useful classification of the cardiac malpositions was proposed, and in 1966, Elliott et al's radiologic classification set the stage for clinical recognition. The first section of this review deals with the 3 basic cardiac malpositions in the presence of bilateral asymmetry. The second section deals with cardiac malpositions in the presence of bilateral left-sidedness or right-sidedness. Previous publications on cardiac malpositions are replete with an arcane vocabulary that confounds rather than clarifies. Even if the terms themselves are understood, inherent complexity weighs against clarity. This review was designed as a guided tour of an unfamiliar subject.

  6. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia

    2014-01-01

    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  7. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  8. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions alpha thalassemia alpha thalassemia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Alpha thalassemia is a blood disorder that reduces the production ...

  9. Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells

    Directory of Open Access Journals (Sweden)

    Thompson Oliver

    2012-01-01

    Full Text Available Abstract Background SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. Results We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. Conclusions These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.

  10. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Sansing, Hope A. [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States); Sarkeshik, Ali; Yates, John R. [Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA (United States); Patel, Vyomesh; Gutkind, J. Silvio [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Berrier, Allison L., E-mail: allison.berrier@gmail.com [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States)

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  11. Regulation of actin cytoskeleton architecture by Eps8 and Abi1

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey R

    2005-10-01

    Full Text Available Abstract Background The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive. Results Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects. Conclusion Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.

  12. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  13. Viruses that ride on the coat-tails of actin nucleation.

    Science.gov (United States)

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.

  14. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  15. alpha_s from tau decays revisited

    CERN Document Server

    Boito, D; Golterman, M; Jamin, M; Maltman, K; Osborne, J; Peris, S

    2011-01-01

    Being a determination at low energies, the analysis of hadronic tau decay data provides a rather precise determination of the strong coupling alpha_s after evolving the result to M_Z. At such a level of precision, even small non-perturbative effects become relevant for the central value and error. While those effects had been taken into account in the framework of the operator product expansion, contributions going beyond it, so-called duality violations, have previously been neglected. The following investigation fills this gap through a finite-energy sum rule analysis of tau decay spectra from the OPAL experiment, including duality violations and performing a consistent fit of all appearing QCD parameters. The resulting values for alpha_s(M_tau) are 0.307(19) in fixed-order perturbation theory and 0.322(26) in contour-improved perturbation theory, which translates to the n_f=5 values 0.1169(25) and 0.1187(32) at M_Z, respectively.

  16. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  17. Identification of obscure yet conserved actin-associated proteins in Giardia lamblia.

    Science.gov (United States)

    Paredez, Alexander R; Nayeri, Arash; Xu, Jennifer W; Krtková, Jana; Cande, W Zacheus

    2014-06-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.

  18. Preliminarily Investigating the Polymorphism of Self-organized Actin Filament in Vitro by Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Yuan-Liang WANG; Xin-Yong Chen; Chuang-Long HE; Chao CHENG; Yang CAO

    2004-01-01

    With the atomic force microscope (AFM), we preliminarily investigated the large-scale structure of actin filaments formed in low concentration protein solution (5 μg/ml) via self-organization without the presence of any F-actin dynamic interfering factors (such as phalloidin) in vitro. It was found that the G-actin could be polymerized into ordered filamentous structures with different diameter from the slimmest filament of single F-actin to giant filament in tree-like branched aggregates. The observed polymerized actin filaments, to which our most intense attention was attracted, was discretely distributed and showed obvious polymorphism distinctly different from those in the presence of phalloidin or actin binding proteins (fimbrin, gelsolin, etc.) in previous experiments. Latter structures were mainly composed of single F-actin and/or multifilaments clearly consisting of several single F-actin. The experimental results clearly demonstrated that non-interference with the F-actin intrinsic dynamics in self-organizing could lead to the polymorphism of actin filamentous structures, and further analysis implied that the disturbance of normal F-actin dynamics by many factors could prevent the emergence of structural polymorphism, more often than not, give rise to formation of specific structures instead and different interference would bring about various particular structures under certain conditions.

  19. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Science.gov (United States)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  20. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis.

    Science.gov (United States)

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-08-04

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.

  1. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  2. Alpha-1 Antitrypsin Deficiency

    Science.gov (United States)

    ... by blood tests showing the low levels of alpha-1 antitrypsin and abnormal liver tests. Other tests such as ultrasound imaging or tests using specialized X-ray techniques may be necessary. A liver biopsy may ...

  3. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles.

    Science.gov (United States)

    Chen, Yun; Guzik, Stephanie; Sumner, James P; Moreland, John; Koretsky, Alan P

    2011-02-11

    The actin cytoskeleton controls cell shape, motility, as well as intracellular molecular trafficking. The ability to remotely manipulate actin is therefore highly desirable as a tool to probe and manipulate biological processes at the molecular level. We demonstrate actin manipulation by labeling actin filaments with superparamagnetic iron oxide particles (IOPs) and applying a uniform magnetic field to affect actin orientation, polymerization and gliding on myosin. We show for the first time magnetic manipulation of magnetizable actin filaments at the molecular level while gliding on a bed of myosin molecules and during polymerization. A model for the magnetic alignment and guiding mechanism is proposed based on the torque from the induced molecular anisotropy due to interactions between neighboring IOPs distributed along magnetically labeled actin molecules.

  4. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    towards the projection tip at one end of the cell. Following cell fusion, F-actin dots were randomly scattered during the horsetail movement that precedes meiosis I and remained scattered until prometaphase or metaphase of meiosis II, when they concentrated around the nucleus. F-actin was seen...... on the lagging face of the nuclei which faced the partner nucleus during anaphase B of meiosis II. Early on in this anaphase F-actin was also seen on the opposite side of the nucleus, near the spindle pole body. F-actin accumulated within the spores in the mature ascus. Treatment with the actin depolymerising...... drug Latrunculin A showed that F-actin is required for cell fusion and spore formation. Latrunculin A treatment extended all stages from karyogamy to meiosis I. The S. pombe homologue of the actin binding protein profilin, Cdc3, was shown to be required for conjugation. Cdc3 co...

  5. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    Science.gov (United States)

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  6. AlphaACT

    Science.gov (United States)

    2014-07-20

    CBR can be found in the world around us (e.g., a doctor’s diagnosis based on a prior patient case, a lawyer preparing arguments based on legal ... metaphors in decision research. Judgment & Decision Making, 3(3), 195-204. Payne, J., Bettman, J., & Johnson, E. (1993). The Adaptive Decision Maker...alphaact. com 64 AlphaACT HAZMAT User Guide 8.3 Changing Measurement Units AlphaACT HAZMAT lets you show distances in either metric or English

  7. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  8. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  9. Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Yipsy María Gutiérrez Báez

    2015-09-01

    Full Text Available Since the second half of the twentieth century, dying suddenly due to heart-related problems has become the main health issue in all countries where infectious diseases are not prevalent. Sudden death from cardiac causes is an important global health problem. Major databases were searched for the leading causes of sudden cardiac death. It has been demonstrated that there is a group of hereditary diseases with structural alterations or without apparent organic cause that explains many cases of sudden death in young people, whether related or not to physical exertion. Certain population groups are at higher risk for this disease. They are relatively easy to identify and can be the target of primary prevention measures.

  10. Cardiac arrhythmias in pregnancy.

    Science.gov (United States)

    Knotts, Robert J; Garan, Hasan

    2014-08-01

    As more women with repaired congenital heart disease survive to their reproductive years and many other women are delaying pregnancy until later in life, a rising concern is the risk of cardiac arrhythmias during pregnancy. Naturally occurring cardiovascular changes during pregnancy increase the likelihood that a recurrence of a previously experienced cardiac arrhythmia or a de novo arrhythmia will occur. Arrhythmias should be thoroughly investigated to determine if there is a reversible etiology, and risks/benefits of treatment options should be fully explored. We discuss the approach to working up and treating various arrhythmias during pregnancy with attention to fetal and maternal risks as well as treatment of fetal arrhythmias. Acute management in stable patients includes close monitoring and intravenous pharmacologic therapy, while DC cardioversion should be used to terminate arrhythmias in hemodynamically unstable patients. Long-term management may require continued oral antiarrhythmic therapy, with particular attention to fetal safety, to prevent complications associated with arrhythmias.

  11. Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover.

    Science.gov (United States)

    Quintero-Monzon, Omar; Jonasson, Erin M; Bertling, Enni; Talarico, Lou; Chaudhry, Faisal; Sihvo, Maarit; Lappalainen, Pekka; Goode, Bruce L

    2009-04-17

    Srv2/cyclase-associated protein is expressed in virtually all plant, animal, and fungal organisms and has a conserved role in promoting actin depolymerizing factor/cofilin-mediated actin turnover. This is achieved by the abilities of Srv2 to recycle cofilin from ADP-actin monomers and to promote nucleotide exchange (ATP for ADP) on actin monomers. Despite this important and universal role in facilitating actin turnover, the mechanism underlying Srv2 function has remained elusive. Previous studies have demonstrated a critical functional role for the G-actin-binding C-terminal half of Srv2. Here we describe an equally important role in vivo for the N-terminal half of Srv2 in driving actin turnover. We pinpoint this activity to a conserved patch of surface residues on the N-terminal dimeric helical folded domain of Srv2, and we show that this functional site interacts with cofilin-actin complexes. Furthermore, we show that this site is essential for Srv2 acceleration of cofilin-mediated actin turnover in vitro. A cognate Srv2-binding site is identified on a conserved surface of cofilin, suggesting that this function likely extends to other organisms. In addition, our analyses reveal that higher order oligomerization of Srv2 depends on its N-terminal predicted coiled coil domain and that oligomerization optimizes Srv2 function in vitro and in vivo. Based on these data, we present a revised model for the mechanism by which Srv2 promotes actin turnover, in which coordinated activities of its N- and C-terminal halves catalyze sequential steps in recycling cofilin and actin monomers.

  12. Actin-based propulsion of spatially extended objects

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, Mihaela [Institute for Theoretical Physics, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Falcke, Martin, E-mail: mihaela.enculescu@tu-berlin.de [Max-Delbrueck-Center for Molecular Medicine, Mathematical Cell Physiology, Robert-Roessle-Street 10, 13125 Berlin (Germany)

    2011-05-15

    We propose a mathematical model of the actin-based propulsion of spatially extended obstacles. It starts from the properties of individual actin filaments and includes transient attachment to the obstacle, polymerization as well as cross-linking. Two particular geometries are discussed, which apply to the motion of protein-coated beads in a cell-like medium and the leading edge of a cell protrusion, respectively. The model gives rise to both steady and saltatory movement of beads and can explain the experimentally observed transitions of the dynamic regime with changing bead radius and protein surface density. Several spatiotemporal patterns are obtained with a soft obstacle under tension, including the experimentally observed spontaneous emergence of lateral traveling waves in crawling cells. Thus, we suggest a unifying mechanism for systems that are currently described by differential concepts.

  13. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan;

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments with prop......The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  14. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    Science.gov (United States)

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed.

  15. Osmotic Force-Controlled Microrheometry of Entangled Actin Networks

    Science.gov (United States)

    Uhde, Jorg; Feneberg, Wolfgang; Ter-Oganessian, N.; Sackmann, Erich; Boulbitch, Alexei

    2005-05-01

    In studying a magnetic bead’s creep response to force pulses in an entangled actin network we have found a novel regime where the bead motion obeys a power law x(t)˜t1/2 over two decades in time. It is flanked by a short-time regime with x(t)˜t3/4 and a viscous with x(t)˜t. In the intermediate regime the creep compliance depends on the actin concentration c as c-β with β≈1.1±0.3. We explain this behavior in terms of osmotic restoring force generated by the piling up of filaments in front of the moving bead. A model based on this concept predicts intermediate x(t)˜t1/2 and long-time regimes x(t)˜t in which the compliance varies as c-4/3, in agreement with experiment.

  16. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  17. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  18. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  19. Cardiac surgery 2015 reviewed.

    Science.gov (United States)

    Doenst, Torsten; Strüning, Constanze; Moschovas, Alexandros; Gonzalez-Lopez, David; Essa, Yasin; Kirov, Hristo; Diab, Mahmoud; Faerber, Gloria

    2016-10-01

    For the year 2015, almost 19,000 published references can be found in PubMed when entering the search term "cardiac surgery". The last year has been again characterized by lively discussions in the fields where classic cardiac surgery and modern interventional techniques overlap. Lacking evidence in the field of coronary revascularization with either percutaneous coronary intervention or bypass surgery has been added. As in the years before, CABG remains the gold standard for the revascularization of complex stable triple-vessel disease. Plenty of new information has been presented comparing the conventional to transcatheter aortic valve implantation (TAVI) demonstrating similar short- and mid-term outcomes at high and low risk, but even a survival advantage with transfemoral TAVI at intermediate risk. In addition, there were many relevant and interesting other contributions from the purely operative arena. This review article will summarize the most pertinent publications in the fields of coronary revascularization, surgical treatment of valve disease, heart failure (i.e., transplantation and ventricular assist devices), and aortic surgery. While the article does not have the expectation of being complete and cannot be free of individual interpretation, it provides a condensed summary that is intended to give the reader "solid ground" for up-to-date decision-making in cardiac surgery.

  20. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  1. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  2. Scanning coherent scattering methods for actinic EUV mask inspection

    Science.gov (United States)

    Ekinci, Y.; Helfenstein, P.; Rajeev, R.; Mochi, I.; Mohacsi, I.; Gobrecht, J.; Yoshitake, S.

    2016-10-01

    Actinic mask inspection for EUV lithography with targeted specifications of resolution, sensitivity, and throughput remains a big hurdle for the successful insertion of EUVL into high volume manufacturing and effective solutions are needed to address this. We present a method for actinic mask inspection based on scanning coherent scattering microscopy. In this method, the mask is scanned with an EUV beam of relatively small spot size and the scattered light is recorded with a pixel detector. Customized algorithms reconstruct the aerial image by iteratively solving the phaseproblem using over-determined diffraction data gathered by scanning across the specimen with a finite illumination. This approach provides both phase and amplitude of actinic aerial images of the mask with high resolution without the need to use high NA (numerical aperture) lenses. Futher, we describe a reflective mode EUV mask scanning lensless imaging tool (RESCAN), which was installed at the XIL-II beamline and later at the SIM beamline of the Swiss Light Source and show reconstructed aerial images down to 10 nm (on-wafer) resolution. As a complementary method, the a-priori knowledge of the sample is employed to identify potential defect sites by analyzing the diffraction patterns. In this method, the recorded diffraction patterns are compared with the die or database data (i.e. previously measured or calculated diffraction data from the defect-free mask layout respectively) and their difference is interpreted as the defect signal. Dynamic software filtering helps to suppress the strong diffraction from defect-free structures and allows registration of faint defects with high sensitivity. Here, we discuss the basic principles of these Fourier domain techniques and its potential for actinic mask inspection with high signal-to-noise ratio and high throughput.

  3. Actinic inspection of multilayer defects on EUV masks

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-03-24

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.

  4. Dynamic actin controls polarity induction de novo in protoplasts.

    Science.gov (United States)

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  5. The Evolution of the Actin Binding NET Superfamily

    Directory of Open Access Journals (Sweden)

    Tim eHawkins

    2014-06-01

    Full Text Available The arabidopsis Networked protein superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in arabidopsis which group into 4 distinct clades or subfamilies. NET homologues are absent from the genomes of metazoa and fungi, furthermore in Plantae NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single subfamily of the NET proteins are found encoded in the club moss genome; an extant species of the earliest vascular plants. Gymnosperms have examples from subfamilies 4 and 3 with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 subfamilies, the NET1 and pollen-expressed NET2 subfamilies are only found as independent sequences in angiosperms. This is consistent with the divergence of reproductive actin. The four subfamilies are conserved across monocots and eudicots with the numbers of members of each clade expanding at this point due in part to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants they have continued to develop and diversify in a manner which has mirrored the divergence and complexity of plant species through evolution in the ‘March of Progress’.

  6. Dynamics of Actin Filament Ends in a Network

    Science.gov (United States)

    Yang, Le; Sept, David; Carlsson, Anders

    2004-03-01

    The formation of filopodia-like bundles in vitro from a dendritic actin network has been observed(D. Vignjevic et al, J. Cell Biol. 160, 951 (2003)) to occur as a result of a nucleation process. We study the dynamics of the actin filament ends in such a network in order to evaluate the dynamics of the bundle nucleation process. Our model treats two semiflexible actin filaments fixed at one end and free at the other, moving according to Brownian dynamics. The initial filament positions are chosen according to a thermal distribution, and we evaluate the time for the filaments to come close enough to each other to interact and bind. The capture criterion is based either on the distance between filaments, or on a combination of distance and relative orientation. We evaluate the dependence of the capture time on the filament length and radius, and the distance between the filament bases. Since treating the movement of the individual monomers in filaments is computationally unwieldy, we treat the filament motion using a normal mode analysis which permits use of a much longer timestep. We find that this method yields rapid convergence even when only the few longest-wavelength modes are included.

  7. Force-producing ADP state of myosin bound to actin.

    Science.gov (United States)

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  8. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Institute of Scientific and Technical Information of China (English)

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  9. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  10. Indeterminacy of Spatiotemporal Cardiac Alternans

    CERN Document Server

    Zhao, Xiaopeng

    2007-01-01

    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Usin...

  11. Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells

    NARCIS (Netherlands)

    Tamma, G.; Procino, G.; Svelto, M.; Valenti, G.

    2007-01-01

    Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho famil

  12. LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization

    Institute of Scientific and Technical Information of China (English)

    Stacy Visser-Grieve; Zhonghua Zhou; Yi-Min She; He Huang; Terry D Cyr; Tian Xu; Xiaolong Yang

    2011-01-01

    Dear Editor,The LATS tumor suppressor,conserved from Drosophila (dlats) to humans (LATS1,LATS2),plays a vital role in maintaining cellular homeostasis in humans since loss of either LATS1 or LATS2 leads to the development of numerous cancer types such as breast cancer and leukemia [1].Apart from its roles as a Ser/Thr kinase within the emerging Hippo pathway regulating cell proliferation and apoptosis,ultimately leading to the control of organ size and tumorigenesis [2],LATS is also implicated in a broad range of functions including regulation of genetic stability,transcription,and protein stability [1 ].Recently,tumor suppressors have also been shown to affect the later stages of tumorigenesis,including metastasis.Among this group of metastasis regulators are genes that can directly affect actin dynamics by binding to F-actin,such as the tumor suppressors p53 [3],NF2 [4] and APC [5].

  13. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle

    OpenAIRE

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-01-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we repo...

  14. Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited

    OpenAIRE

    Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-01-01

    In a recent publication using an actin-visualized line of Arabidopsis (Ichikawa et al. 2011, ref. 11), we reported a detailed analysis with higher time resolution on the dynamics of chloroplast actin filaments (cp-actin filaments) during chloroplast avoidance movement and demonstrated a good correlation between the biased configuration of cp-actin filaments and chloroplast movement. However, we could not conclusively determine whether the reorganization of cp-actin filaments into a biased con...

  15. Platelet adhesion: structural and functional diversity of short dystrophin and utrophins in the formation of dystrophin-associated-protein complexes related to actin dynamics.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Rojas, Dalila; Chávez, Oscar; Martínez-Pérez, Francisco; García-Sierra, Francisco; Rendon, Alvaro; Mornet, Dominique; Mondragón, Ricardo

    2005-12-01

    Platelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71 d, as well as the Up71 isoform and the dystrophin-associated proteins, alpha and beta -dystrobrevins. Distribution of Dp71d/Dp71delta110m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71delta100m approximately DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC in the biological roles of the platelets is discussed.

  16. Regulation of actin catch-slip bonds with a RhoA-formin module

    Science.gov (United States)

    Lee, Cho-Yin; Lou, Jizhong; Wen, Kuo-Kuang; McKane, Melissa; Eskin, Suzanne G.; Rubenstein, Peter A.; Chien, Shu; Ono, Shoichiro; Zhu, Cheng; McIntire, Larry V.

    2016-10-01

    The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions.

  17. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  18. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  19. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  20. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    Science.gov (United States)

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.

  1. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  2. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement.

    Science.gov (United States)

    Wang, Xiu-Ling; Gao, Xin-Qi; Wang, Xue-Chen

    2011-08-01

    Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.

  3. Expression of Chlamydomonas actin-gfp fusion gene in to-bacco suspension cell and polymerization of the actin-gfp protein in vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fusion gene of actin (cDNA of Chlamydo- monas reinhardtii) and green fluorescence protein (gfp) had been constructed into two expression vectors which could be expressed in E. coli and tobacco suspension cells BY2. The correct expression was observed in E. coli and BY2 with a fluorescence microscopy. The fusion protein, which took part in the membrane skeleton, was mainly located peripherally along the membrane, specially the fusion protein was dis-tributed around nucleus and cell plate, while the fusion pro-tein also forms F-actin in the cell. The fusion protein was purified from Bl21plus by ammonium sulfate fractionation, ion exchange chromatography and hydrophobic interaction chromatography. The purified production could polymerize into F-actin when the actin polymerizing buffer was added. It was demonstrated that the characteristics and function of actin in Chlamydomonas was similar with those of animals and higher plants.

  4. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from t

  5. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Science.gov (United States)

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  6. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Directory of Open Access Journals (Sweden)

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  7. Case Report: Penetrating Cardiac Injury

    Directory of Open Access Journals (Sweden)

    Adem Grbolar

    2013-10-01

    Full Text Available Summary: Penetrating cardiac injurys caused by gunshots and penetrating tools have high mortality rates. The way of injury, how the cardiac area is effected and the presence of cardiac tamponadecauses mortality in different rates. However the better treatment quality of hospitals, increasingoperative techniques, and internel care unit quality has not been change during the years. Searching the literature, we want to present a 42 years old male patient whowas injured by knife and had a 1 cm skin wound on chest with cardiac tamponade. After sternotomy a 7 cm laseration was observed in heart. Cardioraphy was performed.

  8. Cardiac surgery for Kartagener syndrome.

    Science.gov (United States)

    Tkebuchava, T; von Segesser, L K; Niederhäuser, U; Bauersfeld, U; Turina, M

    1997-01-01

    Two patients (one girl, one boy) with Kartagener syndrome (situs inversus, bronchiectasis, sinusitis), despite pulmonary problems and associated congenital cardiac anomalies, were operated on at the ages of 4 years and 7 years, respectively. They had had previous palliative treatment at the age of 3 months and 1.3 years, respectively. Both postoperative periods after total correction were without significant complications. Long-term follow-up was available for 9 and 19 years, respectively, with no manifestations of heart insufficiency. Both patients are physically active, and neither requires cardiac medication. Patients with Kartagener syndrome and associated congenital cardiac anomalies can successfully undergo multiple cardiac operations with good long-term outcome.

  9. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  10. PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Leone Teresa C

    2005-01-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha-/- mice. With age, the PGC-1alpha-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  11. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues.

    Science.gov (United States)

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to

  12. Mutational Analysis Reveals a Noncontractile but Interactive Role of Actin and Profilin in Viral RNA-Dependent RNA Synthesis▿

    Science.gov (United States)

    Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen

    2009-01-01

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role. PMID:19710142

  13. ALPHA MIS: Reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  14. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms.

  15. AlphaSphere

    OpenAIRE

    Place, A.; Lacey, L.; Mitchell, T.

    2013-01-01

    The AlphaSphere is an electronic musical instrument featuring a series of tactile, pressure sensitive touch pads arranged in a spherical form. It is designed to offer a new playing style, while allowing for the expressive real-time modulation of sound available in electronic-based music. It is also designed to be programmable, enabling the flexibility to map a series of different notational arrangements to the pad-based interface.\\ud \\ud The AlphaSphere functions as an HID, MIDI and OSC devic...

  16. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  17. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells

    Directory of Open Access Journals (Sweden)

    Tiantian eSun

    2013-12-01

    Full Text Available Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  18. Cloning and Characterization of an Abalone (Haliotis discus hannai) Actin Gene

    Institute of Scientific and Technical Information of China (English)

    MA Hongming; XU Wei; MAI Kangsen; LIUFU Zhiguo; CHEN Hong

    2004-01-01

    An actin encoding gene was cloned by using RT-PCR, 3' RACE and 5' RACE from abalone Haliotis discus hannai. The full length of the gene is 1532 base pairs, which contains a long 3' untranslated region of 307 base pairs and 79 base pairs of 5' untranslated sequence. The open reading frame encodes 376 amino acid residues. Sequence comparison with those of human and other mollusks showed high conservation among species at amino acid level. The identities was 96%, 97% and 96% respectively compared with Aplysia californica, Biomphalaria glabrata and Homo sapience β-actin. It is also indicated that this actin is more similar to the human cytoplasmic actin(β-actin)than to human muscle actin.

  19. A morphometric analysis of adrenocortical actin localized by immunoelectron microscopy: the effect of adrenocorticotropin.

    Science.gov (United States)

    Loesser, K E; Malamed, S

    1987-10-01

    The localization of actin and the effect of ACTH on its concentration was examined in freshly isolated rat adrenocortical cells. Lowicryl K4M-embedded cells were used for the immunoelectron localization of actin; gold was used as a label for immunoreactive sites. Actin was at least 4 times as concentrated at the cortical cytoplasm as in the lipid droplets and at least 5 times as concentrated in the microvilli as in the lipid droplets. ACTH stimulation approximately doubled the concentration of actin in the cortical cytoplasm and increased by 50% the concentration of actin in the microvilli. The microvillar contribution to the cell surface area was 40% higher in ACTH-stimulated cells than it was in unstimulated cells. These results provide quantitative evidence suggesting that actin and the microvilli participate in steroid secretion by the adrenocortical cell.

  20. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.

    Science.gov (United States)

    Dahlgaard, Katja; Raposo, Alexandre A S F; Niccoli, Teresa; St Johnston, Daniel

    2007-10-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.

  1. Xenopus oocyte wound healing as a model system for analysis of microtubule-actin interactions.

    Science.gov (United States)

    Zhang, Tong; Mandato, Craig A

    2007-01-01

    Microtubule-actin interactions are fundamental to many cellular processes such as cytokinesis and cellular locomotion. Investigating the mechanism of microtubule-actin interactions is the key to understand the cellular morphogenesis and related pathological processes. The abundance and highly dynamic nature of microtubules and F-actin raise a serious challenge when trying to distinguish between the real and fortuitous interactions within a cell. Xenopus oocyte wound model represents an ideal system to study microtubule-actin interactions as well as microtubule-dependent control of the actin polymerization. Here, we describe a series of cytoskeleton specific treatments in Xenopus oocyte wound healing experiments and use confocal fluorescence microscopy to analyze fixed oocytes to examine microtubule-actin interactions.

  2. Viral exploitation of actin:force-generation and scaffolding functions in viral infection

    Institute of Scientific and Technical Information of China (English)

    Mark Spear; Yuntao Wu

    2014-01-01

    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efifcacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Speciifcally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surifng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

  3. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A, a regulatory subunit of protein phosphatase 2A (PP2A, is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR, plays an important role in the excitation-contraction (EC coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated proteins (Cas system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening. Hematoxylin and eosin (H&E staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT. Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function.

  4. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish

    Science.gov (United States)

    Yang, Jie; Li, Zuhua; Gan, Xuedong; Zhai, Gang; Gao, Jiajia; Xiong, Chenling; Qiu, Xueping; Wang, Xuebin; Yin, Zhan; Zheng, Fang

    2016-01-01

    Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR), plays an important role in the excitation-contraction (EC) coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening). Hematoxylin and eosin (H&E) staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT). Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function. PMID:27845735

  5. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  6. Hypokalemia and sudden cardiac death

    DEFF Research Database (Denmark)

    Kjeldsen, Keld

    2010-01-01

    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  7. The Danish Cardiac Rehabilitation Database

    DEFF Research Database (Denmark)

    Zwisler, Ann-Dorthe; Rossau, Henriette Knold; Nakano, Anne

    2016-01-01

    AIM OF DATABASE: The Danish Cardiac Rehabilitation Database (DHRD) aims to improve the quality of cardiac rehabilitation (CR) to the benefit of patients with coronary heart disease (CHD). STUDY POPULATION: Hospitalized patients with CHD with stenosis on coronary angiography treated with percutane...

  8. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    . An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  9. [Cardiac myxoma with cerebral metastases].

    Science.gov (United States)

    Bazin, A; Peruzzi, P; Baudrillard, J C; Pluot, M; Rousseaux, P

    1987-01-01

    A 56 year old woman developed multiple metastases in the cerebrum and cerebellum, four years after cardiac intervention on a left atrial myxoma. The absence of stroke is noteworthy. Multiple high density lesions with contrast enhancement were seen by CT scan, suggesting metastatic neoplasms. Histological examination confirmed the diagnosis of metastases of cardiac myxoma. Only four cases were recorded in the literature.

  10. Health Instruction Packages: Cardiac Anatomy.

    Science.gov (United States)

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  11. Pneumothorax in cardiac pacing

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2012-01-01

    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... patients who received their first pacemaker (PM) or cardiac resynchronization device from 1997 to 2008. Multiple logistic regression was used to estimate adjusted odds ratios (aOR) with 95% confidence intervals for the association between risk factors and pneumothorax treated with a chest tube. The median...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  12. Leadership in cardiac surgery.

    Science.gov (United States)

    Rao, Christopher; Patel, Vanash; Ibrahim, Michael; Ahmed, Kamran; Wong, Kathie A; Darzi, Ara; von Segesser, Ludwig K; Athanasiou, Thanos

    2011-06-01

    Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance.

  13. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    Science.gov (United States)

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  14. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

    OpenAIRE

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q. P.; Kadota, Akeo; Wada, Masamitsu

    2010-01-01

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for c...

  15. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  16. Keeping it all together: auxin–actin crosstalk in plant development

    OpenAIRE

    2015-01-01

    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in...

  17. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  18. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  19. Alpha Antihydrogen Experiment

    CERN Document Server

    Fujiwara, M C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Cesar, C L; Fajans, J; Friesen, T; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2011-01-01

    ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.

  20. Case Study - Alpha

    Directory of Open Access Journals (Sweden)

    Stephen Leybourne

    2016-11-01

    Full Text Available This case study was developed from an actual scenario by Dr. Steve Leybourne of Boston University.  The case documents the historical evolution of an organization, and has been used successfully in courses dealing with organizational and cultural change, and the utilization of ‘soft skills’ in project-based management. This is a short case, ideal for classroom use and discussion.  The issues are easily accessible to students, and there is a single wide ranging question that allows for the inclusion of many issues surrounding strategic decision-making, and behavioural and cultural change. Alpha was one of the earlier companies in the USA to invest in large, edge-of-town superstores, with plentiful free vehicle parking, selling food and related household products. Alpha was created in the 1950s as a subsidiary of a major publicly quoted retail group.  It started business by opening a string of very large discount stores in converted industrial and warehouse premises in the south of the United States. In the early days shoppers were offered a limited range of very competitively priced products. When Alpha went public in 1981 it was the fourth largest food retailer in the US, selling an ever-widening range of food and non-food products.  Its success continued to be based on high volume, low margins and good value for money, under the slogan of ‘Alpha Price.’

  1. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line; Stensland, Hilde Monica Frostad Riise; Olsen, Klaus Juul;

    2015-01-01

    of the three subgroups of genotype/subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed...

  2. Microrheology and micromechanics of actin-coated membranes

    Science.gov (United States)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  3. Mammalian CAP interacts with CAP, CAP2, and actin.

    Science.gov (United States)

    Hubberstey, A; Yu, G; Loewith, R; Lakusta, C; Young, D

    1996-06-01

    We previously identified human CAP, a homolog of the yeast adenylyl cyclase-associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts.

  4. Actin-based propulsion of functionalized hard versus fluid spherical objects

    Science.gov (United States)

    Delatour, Vincent; Shekhar, Shashank; Reymann, Anne-Cécile; Didry, Dominique; Diêp Lê, Kim Hô; Romet-Lemonne, Guillaume; Helfer, Emmanuèle; Carlier, Marie-France

    2008-02-01

    The directed polymerization of a branched actin network against a functionalized surface drives cell protrusions and organelle propulsion in living cells. Solid microspheres or giant unilamellar vesicles, functionalized with neural Wiskott-Aldrich syndrome protein (N-WASP), initiate the formation of a branched actin array using actin-related protein 2/3 (Arp2/3) complex, when placed in a motility assay reconstituted with pure proteins. These systems are useful biomimetic models of actin-based propulsion that allow to address how the interplay between the physical properties of the functionalized surface and the dynamics of the actin cytoskeleton determines motile behavior. Both solid beads and deformable vesicles display either continuous or saltatory propulsive motions, which are analyzed comparatively; we show that the deformability of liposomes and the mobility of N-WASP at the lipid surface affect the dynamic and structural parameters of the actin meshwork. Our results indicate that beads and vesicles use different mechanisms to translate insertional polymerization of actin at their surface into directed movement: stress relaxation within the actin gel prevents the accumulation of filaments at the front of moving beads, while segregation of nucleators reduces actin polymerization at the front of moving vesicles.

  5. Cell-cycle regulation of formin-mediated actin cable assembly.

    Science.gov (United States)

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  6. F-actin distribution and function during sexual development in Eimeria maxima.

    Science.gov (United States)

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  7. Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria.

    Science.gov (United States)

    Guljamow, Arthur; Delissen, Friedmar; Baumann, Otto; Thünemann, Andreas F; Dittmann, Elke

    2012-01-01

    A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.

  8. Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Arthur Guljamow

    Full Text Available A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.

  9. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    Science.gov (United States)

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.

  10. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  11. Fertilization in Torenia fournieri: actin organization and nuclear behavior in the central cell and primary endosperm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

  12. Actin induction during PMA and cAMP-dependent signal pathway activation in Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Ortiz, D; del Carmen Dominguez-Robles, M; Villegas-Sepúlveda, N; Meza, I

    2000-10-01

    Activation of PKC or cAMP-dependent signalling pathways in Entamoeba histolytica triggers the phosphorylation of proteins involved in actin rearrangements necessary for adhesion and locomotion. Analogous motifs to SRE and CRE sequences--known to respond to PMA and cAMP--were identified within the 5' regulatory region (5'RR) of one of the parasite actin genes. These sequences could be involved in the actin transcriptional upregulation reported during signalling. To test this hypothesis, a plasmid containing the 5'RR of the actin gene fused to the bacterial neomycin gene (neo) was used for stable transfection. Expression of neo and endogenous actin was measured after stimulation of transfected amoebae by PMA and dcAMP. It was found that both compounds induced neo and actin expression and showed a co-operative effect in the induction of neo. Induction by PMA or dcAMP failed if the directing amoebic 5'RR lacked SRE and CRE motifs. Transfection of amoebae with plasmid constructs, containing either progressive deletions of the actin 5'RR or site-directed mutations of the SRE and CRE-like motifs, corroborated that these sequences and a co-ordinated participation of PKC- and PKA-activated transcription factors are responsible for the increments in neo and actin mRNAs. In vivo, these PMA and cAMP-response elements could play an important role in regulating actin expression and organization in signalling processes activated during tissue invasion.

  13. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens.

    Science.gov (United States)

    Herrera-Martínez, M; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Chávez-Munguía, B; Talamás-Rohana, P

    2013-01-01

    In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  14. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  15. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.

    Science.gov (United States)

    Roth-Johnson, Elizabeth A; Vizcarra, Christina L; Bois, Justin S; Quinlan, Margot E

    2014-02-14

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.

  16. Interaction between Microtubules and the Drosophila Formin Cappuccino and Its Effect on Actin Assembly*

    Science.gov (United States)

    Roth-Johnson, Elizabeth A.; Vizcarra, Christina L.; Bois, Justin S.; Quinlan, Margot E.

    2014-01-01

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte. PMID:24362037

  17. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    Science.gov (United States)

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  18. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity