Sample records for alpha proteinase inhibitor

  1. Limited proteolysis by macrophage elastase inactivates human alpha 1- proteinase inhibitor



    Inflammatory mouse peritoneal macrophages secrete a metalloproteinase that is not inhibited by alpha 1-proteinase inhibitor. This proteinase, macrophage elastase, recognizes alpha 1-proteinase inhibitor with macrophage elastase does not involve a stable proteinase-inhibitor complex and results in the proteolytic removal of a peptide of apparent molecular weight 4,000-5,000 from the inhibitor. After degradation by macrophage elastase, alpha 1-proteinase inhibitor is no longer able to inhibit h...

  2. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.



    Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluore...

  3. Non enzymatic glycosylation of alpha-1-proteinase inhibitor of human plasma.

    Directory of Open Access Journals (Sweden)

    Phadke M


    Full Text Available Human plasma contains inhibitors, which control the activity of proteolytic enzymes. Alpha-1-proteinase inhibitor and alpha-2-macroglobulin are two of them present in high concentration in human plasma, which inhibit action of trypsin among other proteinases. The trypsin inhibitory capacity (TIC of human plasma is observed to be decreased in pathological conditions like diabetes mellitus. The mechanisms of decrease in TIC was due to nonenzymatic glycosylation of alpha-1-proteinase inhibitor (A1PI. A1PI was partially purified from normal human plasma by steps involving ammonium sulphate precipitation, DEAE Sepharose CL6B chromatography, Concanavalin A Sepharose Chromatography and Sephadex G-100 Gel filtration. Purified inhibitor was glycosylated in vitro by incubating it with varying glucose concentrations, under nitrogen for different periods of time in reducing conditions. After glycosylation, the molecular weight of inhibitor increased from 52 kDa to 57 KDa because of binding with glucose molecules. The percent free amino groups in the protein decreased with increasing glucose concentration and days of incubation. The TIC of such modified inhibitor decreased significantly. Decrease in TIC was dependent on the glucose concentration and period of incubation used during in-vitro glycosylation of native inhibitor.

  4. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins. (United States)

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat


    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%.

  5. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy. (United States)

    Koloczek, H.; Banbula, A.; Salvesen, G. S.; Potempa, J.


    Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet. PMID:8931141

  6. Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation

    NARCIS (Netherlands)

    Schulze, A.J.; Degryse, E.; Speck, D.; Huber, R.; Bischoff, Rainer


    Overproduction of eukaryotic proteins in microorganisms often leads to the formation of insoluble protein aggregates which accumulate as intracellular inclusion bodies. alpha 1-Proteinase inhibitor (alpha 1-PI) when produced as a cytoplasmic protein in Escherichia coli (E. coli) forms inclusion bodi

  7. A feedback regulatory pathway between LDL and alpha-1 proteinase inhibitor in chronic inflammation and infection. (United States)

    Bristow, Cynthia L; Modarresi, Rozbeh; Babayeva, Mariya A; LaBrunda, Michelle; Mukhtarzad, Roya; Trucy, Maylis; Franklin, Aaron; Reeves, Rudy E R; Long, Allegra; Mullen, Michael P; Cortes, Jose; Winston, Ronald


    Dietary lipids are transported via lymph to the liver and transformed to lipoproteins which bind to members of the low density lipoprotein receptor family (LDL-RFMs). Certain LDL-RFMs, e.g., very low density lipoprotein receptor (VLDLR), are also bound by inactivated proteinase inhibitors, the most abundant being α1proteinase inhibitor (α1PI, α1antitrypsin). Inflammation/infection, including HIV-1 infection, is accompanied by low levels of CD4+ T cells and active α1PI and high levels of inactivated α1PI. By inducing LDL-RFMs-mediated cellular locomotion, active α1PI regulates the number of CD4+ T cells. We sought to investigate whether CD4+ T cells and α1PI directly impact lipoprotein levels. At the cellular level, we show that active α1PI is required for VLDLR-mediated uptake of receptor-associated cargo, specifically CD4-bound HIV-1. We show that active α1PI levels linearly correlate with LDL levels in HIV-1 infected individuals (P<0.001) and that therapeutic, weekly infusions of active α1PI elevate the number of CD4+ T cells and HDL levels while lowering LDL levels in patients on antiretroviral therapy with controlled HIV-1. Based on the unusual combination of lipodystrophy and low levels of α1PI and CD4+ T cells in HIV-1 disease, we reveal that LDL and α1PI participate in a feedback regulatory pathway. We demonstrate integral roles for sequentially acting active and inactive α1PI in the uptake and recycling of receptors and cargo aggregated with VLDLR including CD4 and chemokine receptors. Evidence supports a role for α1PI as a primary sentinel to deploy the immune system as a consequence of its role in lipoprotein transport.

  8. Alpha-1 proteinase inhibitor M358R reduces thrombin generation when displayed on the surface of cells expressing tissue factor. (United States)

    Gierczak, Richard F; Pepler, Laura; Bhagirath, Vinai; Liaw, Patricia C; Sheffield, William P


    The M358R variant of alpha-1-proteinase inhibitor (API) is a potent soluble inhibitor of thrombin. Previously we engineered AR-API M358R, a membrane-bound form of this protein and showed that it inhibited exogenous thrombin when expressed on transfected cells lacking tissue factor (TF). To determine the suitability of AR-API M358R for gene transfer to vascular cells to limit thrombogenicity, we tested the ability of AR-API M358R to inhibit endogenous thrombin generated in plasma via co-expression co-expressing it on the surface of cells expressing TF. Transfected AR-API M358R formed inhibitory complexes with thrombin following exposure of recalcified, defibrinated plasma to TF on T24/83 cells, but discontinuously monitored thrombin generation was unaffected. Similarly, AR-API M358R expression did not reduce continuously monitored thrombin generation by T24/83 cell suspensions exposed to recalcified normal plasma in a Thrombogram-Thrombinoscope-type thrombin generation assay (TGA); in contrast, 1 μM hirudin variant 3 or soluble API M358R abolished thrombin generation. Gene transfer of TF to HEK 293 conferred the ability to support TF-dependent thrombin generation on HEK 293 cells. Co-transfection of HEK 293 cells with a 9:1 excess of DNA encoding AR-API M358R to that encoding TF reduced peak thrombin generation approximately 3-fold compared to controls. These in vitro results suggest that surface display of API M358R inhibits thrombin generation when the tethered serpin is expressed in excess of TF, and suggest its potential to limit thrombosis in appropriate vascular beds in animal models.

  9. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity. (United States)

    Bhakta, Varsha; Gierczak, Richard F; Sheffield, William P


    Exhaustive mutagenesis studies of the reactive centre loop (RCL), a key structural component of proteins belonging to the serpin superfamily of protease inhibitors, are complicated by the size of the RCL, serpin conformational complexity, and, for most serpins, the lack of a serpin-dependent phenotype of expressing cells. Here, we describe a thrombin capture assay that distinguished thrombin-inhibitory recombinant human alpha-1 proteinase inhibitor (API M358R) from non-inhibitory API variants in Escherichia coli lysates prepared from either single clones or pools. Binding of API proteins in the lysates to thrombin immobilized on microtiter plate wells was quantified via colour generated by a peroxidase-coupled anti-API antibody. Bacterial expression plasmids encoding inhibitory API M358R were mixed 1:99 with plasmids encoding non-inhibitory API T345R/M358R and the resulting library screened in pools of 10. All above-background signals arising from pools or subsequently re-probed single clones were linked to the presence of plasmids encoding API M358R. Screening of a portion of another expression library encoding hypervariable API with all possibilities at codons 352-358 also yielded only novel, thrombin-inhibitory variants. Probing a smaller library expressing all possible codons at Ala347 yielded the wild type, 6 different functional variants, one partially active variant, and two variants with no thrombin-inhibitory activity. API antigen levels varied considerably less among Ala347 variants than activity levels, and comparison of rate constants of inhibition of purified API variants to their corresponding thrombin capture assay lysate values was used to establish the sensitivity and specificity of the assay. The results indicate that the approach is sufficiently robust to correctly identify functional versus non-functional candidates in API expression libraries, and could be of value in systematically probing structure/function relationships not only in the API

  10. Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: safety, tolerability, and patient outcomes

    Directory of Open Access Journals (Sweden)

    Chotirmall SH


    Full Text Available Sanjay H Chotirmall,1 Mazen Al-Alawi,2 Thomas McEnery,2 Noel G McElvaney2 1Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 2Department of Respiratory Medicine, Beaumont Hospital, Dublin, Republic of Ireland Abstract: Alpha-1 antitrypsin (AAT deficiency remains an underrecognized genetic disease with predominantly pulmonary and hepatic manifestations. AAT is derived primarily from hepatocytes; however, macrophages and neutrophils are secondary sources. As the natural physiological inhibitor of several proteases, most importantly neutrophil elastase (NE, it plays a key role in maintaining pulmonary protease–antiprotease balance. In deficient states, unrestrained NE activity promotes damage to the lung matrix, causing structural defects and impairing host defenses. The commonest form of AAT deficiency results in a mutated Z AAT that is abnormally folded, polymerized, and aggregated in the liver. Consequently, systemic levels are lower, resulting in diminished pulmonary concentrations. Hepatic disease occurs due to liver aggregation of the protein, while lung destruction ensues from unopposed protease-mediated damage. In this review, we will discuss AAT deficiency, its clinical manifestations, and augmentation therapy. We will address the safety and tolerability profiles of AAT replacement in the context of patient outcomes and cost-effectiveness and outline future directions for work in this field. Keywords: alpha-1, augmentation, deficiency, replacement, emphysema

  11. Hypersensitivity Vasculitis with Leukocytoclastic Vasculitis Associated with Alpha-1-Proteinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Nicola W. Mwirigi


    Full Text Available Prolastin is a commercially available form of alpha-1-antitrypsin (AAT that is derived from pooled human plasma and used for treatment of severe alpha-1-antitrypsin deficiency (AATD. We describe a patient with AATD who developed presumed hypersensitivity vasculitis (HV following a Prolastin infusion. Hypersensitivity vasculitis (HV, or cutaneous vasculitis, is characterized by inflammation of the small vessels of the skin with resultant ischemia to the distally supplied areas. To our knowledge, this is the first reported case of presumed hypersensitivity vasculitis following Prolastin infusion.

  12. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase. (United States)

    Yabe, Kimihiko; Koide, Takehiko


    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  13. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio


    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  14. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6. (United States)

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L


    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  15. Evolutionary mechanisms acting on proteinase inhibitor variability. (United States)

    Christeller, John T


    The interaction of proteinase inhibitors produced, in most cases, by host organisms and the invasive proteinases of pathogens or parasites or the dietary proteinases of predators, results in an evolutionary 'arms race' of rapid and ongoing change in both interacting proteins. The importance of these interactions in pathogenicity and predation is indicated by the high level and diversity of observable evolutionary activity that has been found. At the initial level of evolutionary change, recruitment of other functional protein-folding families has occurred, with the more recent evolution of one class of proteinase inhibitor from another, using the same mechanism and proteinase contact residues. The combination of different inhibitor domains into a single molecule is also observed. The basis from which variation is possible is shown by the high rate of retention of gene duplication events and by the associated process of inhibitory domain multiplication. At this level of reorganization, mutually exclusive splicing is also observed. Finally, the major mechanism by which variation is achieved rapidly is hypervariation of contact residues, an almost ubiquitous feature of proteinase inhibitors. The diversity of evolutionary mechanisms in a single class of proteins is unlikely to be common, because few systems are under similar pressure to create variation. Proteinase inhibitors are therefore a potential model system in which to study basic evolutionary process such as functional diversification.

  16. Proteolytic Cleavage of Various Human Serum Proteinase Inhibitors by Candida albicans Aspartic Proteinase


    Tsushima, Hirofumi; MINE, Hiroko


    The secreted Candida albicans aspartic proteinase (SAP) is presumed to be one of the putative Candida virulence factors, while serum proteinase inhibitors depend on host defense mechanisms. We examined the interaction between SAP and serum proteinase inhibitors, such as C1-inhibitor, α2 plasmin inhibitor, and antithrombin III. SAP progressively inactivated plasmin inhibitory activity of C1-inhibitor and α2 plasmin inhibitor. It also inactivated thrombin inhibitory activity of antithrombin III...

  17. Measurement of homonuclear three-bond J(HNH{alpha}) coupling constants in unlabeled peptides complexed with labeled proteins: Application to a decapeptide inhibitor bound to the proteinase domain of the NS3 protein of hepatitis C virus (HCV)

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Daniel O.; Barbato, Gaetano; Koch, Uwe; Ingallinella, Paolo; Bianchi, Elisabetta; Sambucini, Sonia; Neddermann, Petra; De Francesco, Raffaele; Pessi, Antonello; Bazzo, Renzo


    A new isotope-filtered experiment has been designed to measure homonuclear three-bond J(H{sup N}H{sup {alpha}}) coupling constants of unlabeled peptides complexed with labeled proteins. The new experiment is based on the 3D HNHA pulse scheme, and belongs to the 'quantitative J-correlation' type. It has been applied to a decapeptide inhibitor bound to the proteinase domain of the NS3 protein of human hepatitis C virus (HCV)

  18. Safety and pharmacokinetics of 120 mg/kg versus 60 mg/kg weekly intravenous infusions of alpha-1 proteinase inhibitor in alpha-1 antitrypsin deficiency: a multicenter, randomized, double-blind, crossover study (SPARK). (United States)

    Campos, Michael A; Kueppers, Friedrich; Stocks, James M; Strange, Charlie; Chen, Junliang; Griffin, Rhonda; Wang-Smith, Laurene; Brantly, Mark L


    Augmentation therapy with the approved dose of 60 mg/kg weekly intravenous (IV) alpha-1 proteinase inhibitor (alpha1-PI), achieves a trough serum level of 11 μM in individuals with alpha-1 antitrypsin deficiency (AATD), yet this is still below the level observed in healthy individuals. This study assessed the safety and pharmacokinetic profile of weekly infusions of a 120 mg/kg dose of alpha1-PI in 30 adults with AATD. Subjects with symptomatic, genetically determined (genotypes PI*ZZ, PI*Z(null), PI*(null)(null) or PI*(Z)Mmalton) AATD were randomly assigned to weekly infusions of 60 or 120 mg/kg alpha1-PI (Prolastin-C®) for 8 weeks before crossing over to the alternate dose for 8 weeks. Adverse events (AEs) (including exacerbations), vital signs, pulmonary function tests, and laboratory assessments were recorded. Pharmacokinetic measurements included AUC0-7days, Cmax, trough, tmax, and t1/2, based on serum alpha1-PI concentrations. In total for both treatments, 112 AEs were reported, with exacerbation of COPD being the most frequent, consistent with the subjects' diagnoses. Mean steady-state serum alpha1-PI concentrations following 120 mg/kg weekly IV alpha1-PI were higher than with the 60 mg/kg dose and mean trough concentrations were 27.7 versus 17.3 μM, respectively. Dose proportionality was demonstrated for AUC0-7days and Cmax, with low inter-subject variability. The 120 mg/kg alpha1-PI weekly dose was considered to be safe and well tolerated, and provided more favorable physiologic alpha1-PI serum levels than the currently recommended 60 mg/kg dose. The effect of this dosing regimen on slowing and/or preventing emphysema progression in subjects with AATD warrants further investigation.

  19. Novel proteinase inhibitor promotes resistance to insects (United States)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  20. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity. (United States)

    Gierczak, Richard F; Bhakta, Varsha; Xie, Michael; Sheffield, William P


    Serpins are a widely distributed family of serine proteases. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available. The serpin variant alpha-1 proteinase inhibitor M358R (API M358R) inhibits the coagulation protease thrombin, but at sub-maximal rates compared to other serpins. Here we compared two approaches to isolate functional API variants from serpin expression libraries, using the same small library of API randomized at residue 358 (M358X): flow cytometry of transfected HEK 293 cells expressing membrane-displayed API; and a thrombin capture assay (TCA) performed on pools of bacterial lysates expressing soluble API. No enrichment for specific P1 residues was observed when the RCL codons of the 1% of sorted transfected 293 cells with the highest fluorescent thrombin-binding signals were subcloned and sequenced. In contrast, screening of 16 pools of bacterial API-expressing transformants led to the facile identification of API M358R and M358K as functional variants. Kinetic characterization showed that API M358R inhibited thrombin 17-fold more rapidly than API M358K. Reducing the incubation time with immobilized thrombin improved the sensitivity of TCA to detect supra-active API M358R variants and was used to screen a hypervariable library of API variants expressing 16 different amino acids at residues 352-357. The most active variant isolated, with TLSATP substituted for FLEAI, inhibited thrombin 2.9-fold more rapidly than API M358R. Our results indicate that flow cytometric approaches used in protein engineering of antibodies are not appropriate for serpins, and highlight the utility of the optimized TCA for serpin protein engineering.

  1. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    Directory of Open Access Journals (Sweden)

    Benjamin M Scott

    Full Text Available In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1 yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3 was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1 as a serpin amenable to phage display and suggest the utility of this approach for the selection

  2. Inhibitory effects of human alpha 2-macroglobulin on Trypanosoma cruzi epimastigote proteinases. (United States)

    Ramos, A; Remedi, M S; Sánchez, C; Bonacci, G; Vides, M A; Chiabrando, G


    The inactivation of Trypanosoma cruzi proteinases by human alpha 2-macroglobulin (alpha 2-M), a major plasma proteinase inhibitor was studied. Evidences regarding the interaction between alpha 2-M and proteolytic enzymes contained in crude cell-free extracts of T. cruzi were derived from electrophoretic and enzymatic assays. The former showed conformational and structural changes occurring in alpha 2-M, as judged by the appearance of transformed 'fast' form on native PAGE; generation of bands of approximately 90 kDa on reduced SDS-PAGE and formation of covalent complexes enzyme-inhibitor on SDS-PAGE. On the other hand, the total proteolytic activity on azocasein dropped significantly in the presence of alpha 2-M, although partial activity was still maintained. The proteinases detected as a double band of 44 and 53 kDa on gelatin SDS-PAGE were also inhibited by alpha 2-M. Results suggest that the study of specific interactions between alpha 2-M and T. cruzi-proteinases, probably with cruzipain, could be biologically important in the fate of T. cruzi-infection and Chagas' disease.

  3. Domain 15 of the serine proteinase inhibitor LEKTI blocks HIV infection in vitro

    Directory of Open Access Journals (Sweden)

    David Palesch


    Full Text Available Background: Lympho-epithelial Kazal-type-related inhibitor (LEKTI is a 15-domain serine proteinase inhibitor, parts of which have first been isolated from human blood filtrate. It is encoded by the gene SPINK5. In the past, different groups reported antiviral activities of certain serine proteinase inhibitors, such as mucous proteinase inhibitor and alpha1-proteinase inhibitor. The purpose of this study was to test two representative domains of the proteinase inhibitor LEKTI for anti-HIV activities.Methods: LEKTI domains 6 and 15 were recombinantly produced in E.coli. To test their inhibitory activity against HIV infection, the reporter cell line P4-R5 MAGI carrying an HIV-inducible reporter gene was infected by a CCR5-tropic HIV strain in the presence of different inhibitor concentrations. After three days, infection rates were determined by quantifying ß-galactosidase activities using the Galacto-Light Plus™ ß-Galactosidase Reporter Gene Assay.Results: In contrast to LEKTI domain 6, LEKTI domain 15 suppressed HIV-induced reporter gene activities with an IC50 value of approximately 29 µM.Conclusion: LEKTI domain 15 represents an inhibitor of HIV infection. (Med J Indones. 2013;22:131-5. doi: 10.13181/mji.v22i3.580Keywords: HIV, inhibition, LEKTI, P4-R5 MAGI

  4. Proteinase activity in human and murine saliva as a biomarker for proteinase inhibitor efficacy. (United States)

    Fingleton, Barbara; Menon, Ramkumar; Carter, Kathy J; Overstreet, P Dawn; Hachey, David L; Matrisian, Lynn M; McIntyre, J Oliver


    As molecularly targeted agents reach the clinic, there is a need for assays to detect their presence and effectiveness against target molecules in vivo. Proteinase inhibitors are one example of a class of therapeutic agent for which satisfactory methods of identifying successful target modulation in vivo are lacking. This is of particular importance while these drugs are in clinical trials because standard maximum-tolerated dose-finding studies often are not suitable due to lack of toxicity. Saliva represents a readily accessible bodily fluid that can be repeatedly sampled and used for assaying in vivo effects of systemic drugs. Here we show the development of a simple assay that can be used to measure proteinase activity in saliva and proteinase inhibition after systemic treatment with three different proteinase inhibitors. A variety of gelatinolytic activities present in human and murine saliva have been assayed with a fluorescent dye-labeled substrate and assigned to different proteinase categories by inclusion of specific classes of inhibitors. Treatment of mice with either matrix metalloproteinase inhibitors or a urokinase inhibitor for a period as short as 48 hours results in levels of the drugs that can be detected in saliva by mass spectrometry and concomitant decreases in salivary proteinase activity, thus demonstrating that these inhibitors successfully modulate their targets in vivo.

  5. Comparison of concentrations of two proteinase inhibitors, porcine pancreatic elastase inhibitory capacity, and cell profiles in sequential bronchoalveolar lavage samples. (United States)

    Morrison, H M; Kramps, J A; Dijkman, J H; Stockley, R A


    Bronchoalveolar lavage is used to obtain cells and proteins from the lower respiratory tract for diagnosis and research. Uncertainity exists about which site in the lung is sampled by the lavage fluid and what effect different lavage volumes have on recovery of the constituents of lavage fluid. Dilution of alveolar lining fluid by lavage fluid is variable and results are usually expressed as protein ratios to surmount this problem. We have compared cell profiles and the concentrations of two proteinase inhibitors--the low molecular weight bronchial protease inhibitor antileucoprotease and alpha 1 proteinase inhibitor, together with alpha 1 proteinase inhibitor function and its relationship to the cell profile in sequential bronchoalveolar lavage fluid samples from patients undergoing bronchoscopy. There was no difference in total or differential cell counts or albumin or alpha 1 proteinase inhibitor concentrations between the first and second halves of the lavage. Both the concentration of antileucoprotease and the ratio of antileucoprotease to albumin were, however, lower in the second half of the lavage (2p less than 0.01 and 2p less than 0.05 respectively). There was no difference in the function of alpha 1 proteinase inhibitor (assessed by inhibition of porcine pancreatic elastase--PPE) between aliquots (0.28 mole PPE inhibited/mol alpha 1 proteinase inhibitor; range 0-1.19 for the first half and 0.37 mol PPE inhibited/mol alpha 1 proteinase inhibitor; range 0.10-0.80 for the second half). About 60-70% of alpha 1 proteinase inhibitor in each half of the lavage fluid was inactive as an inhibitor. The function of alpha 1 proteinase inhibitor did not differ between bronchitic smokers and ex-smokers. Alpha 1 proteinase inhibitor function was not related to the number of total white cells, macrophages, or neutrophils in the lavage fluid. Contamination of lavage by red blood cells was found to alter the concentration of alpha 1 proteinase inhibitor but not its

  6. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor. (United States)

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar


    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  7. Action of plant proteinase inhibitors on enzymes of physiopathological importance. (United States)

    Oliva, Maria Luiza V; Sampaio, Misako U


    Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.

  8. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities. (United States)

    Ryan, C A; Bishop, P; Pearce, G


    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  9. Several properties of the partially purified proteinase inhibitor in eggplant exocarp. (United States)

    Kanamori, M; Ibuki, F; Yamada, M; Tashiro, M; Miyoshi, M


    A proteinase inhibitor was isolated and partially purified from the exocarp of eggplant, Solanum melongena L., by means of acetate buffer extraction, heat treatment, salting-out and column chromatography on DEAE-cellulose. This preparation showed inhibitory activities on various proteinases; trypsin [EC] and Pronase were strongly inhibited while alpha-chymotrypsin [EC] and Nagarse were weakly inhibited. The inhibitor was a protein substance, and, therefore, it was gradually inactivated by the long-time incubation with Pronase. The inhibition mode was non-competitive on trypsin and competitive on Pronase on the basis of Lineweaver-Burk plots. The investigations on the inhibition behavior in the co-existence of two kinds of proteinases suggested that the inhibitor was not of multi-headed type.

  10. A serine proteinase inhibitor from frog eggs with bacteriostatic activity. (United States)

    Han, Yaoping; Yu, Haining; Yang, Xinbo; Rees, Huw H; Liu, Jingze; Lai, Ren


    By Sephadex G-50 gel filtration, Resource Q anionic exchange and C4 reversed phase liquid high performance liquid chromatography, a proteinase inhibitor protein (Ranaserpin) was identified and purified from the eggs of the odour frog, Rana grahami. The protein displayed a single band adjacent to the molecular weight marker of 14.4 kDa analyzed by SDS-PAGE. The inhibitor protein homogeneity and its molecular weight were confirmed again by MALDI-TOF mass spectrometry analysis. The MALDI-TOF mass spectrum analysis gave this inhibitor protein an m/z of 14422.26 that was matched well with the result from SDS-PAGE. This protein is a serine proteinase inhibitor targeting multiple proteinases including trypsin, elastase, and subtilisin. Ranaserpin inhibited the proteolytic activities of trypsin, elastase, and subtilisin. It has an inhibitory constant (K(i)) of 6.2 x 10(-8) M, 2.7 x 10(-7) M and 2.2 x 10(-8) M for trypsin, elastase, and subtilisin, respectively. This serine proteinase inhibitor exhibited bacteriostatic effect on Gram-positive bacteria Bacillus subtilis (ATCC 6633). It was suggested that ranaserpin might act as a defensive role in resistance to invasion of pests or pathogens. This is the first report of serine proteinase inhibitor and its direct defensive role from amphibian eggs.

  11. Granzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B. (United States)

    Mahrus, Sami; Kisiel, Walter; Craik, Charles S


    Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.

  12. Cloning of a serine proteinase inhibitor from bovine brain: expression in the brain and characterization of its target proteinases. (United States)

    Nakaya, N; Nishibori, M; Kawabata, M; Saeki, K


    A cDNA encoding of the serine proteinase inhibitor (serpin), B-43, was cloned from the cDNA library of the bovine brain. It encoded 378 amino acids, and the MW of the protein was estimated to be 42.6 kDa, which is consistent with that of the native B-43 purified from the bovine brain. The homology search revealed that B-43 belongs to the ovalbumin branch of the serpin superfamily. Among them, B-43 was most homologous to human placental thrombin inhibitor (PI-6) and its murine counterpart, with the amino acid identity of 76% and 71%, respectively. Northern blot analysis showed that the size of the transcript was 1.4 kb, and that the expression of B-43 in the bovine brain varied depending on the brain regions, i.e. a lower level of expression was observed in the cerebral cortex and the hippocampus compared to the level of expression that was observed in the medulla oblongata. [35S]-labeled B-43 protein was synthesized in vitro by using a rabbit reticulocyte lysate system, which formed complexes with proteinases such as thrombin, trypsin, alpha-chymotrypsin, and 7S nerve growth factor (NGF), but not with urokinase or plasmin. These results, together with the immunohistochemical localization of B-43 in astrocytes and in some neurons which was observed in the previous study suggest that B-43 may be involved in the regulation of serine proteinases present in the brain or extravasated from the blood.

  13. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Directory of Open Access Journals (Sweden)

    Maria Luiza V. Oliva


    Full Text Available Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.Obtidas de sementes leguminosas, várias proteínas inibem proteinases de origem animal, incluindo humanas, e podem ser consideradas para o desenvolvimento de compostos com atividade biológica. Inibidores da família Bowman-Birk e da família Kunitz vegetal tem sido caracterizados em relação a especificidade para proteinase, estrutura primária e sitio reativo. O nosso grupo majoritariamente vem estudando o gênero Bauhinia, principalmente as espécies bauhinioides, rufa, ungulatae variegata. Em algumas espécies, mais de um inibidor com propriedades diferentes foi caracterizado. Embora tais proteínas apresentem alta similaridade estrutural, diferem quanto à inibição de proteinases, e foram exploradas em estudos utilizando diversos modelos biológicos.

  14. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity. (United States)

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping


    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  15. Immunomodulation by α(1)-proteinase inhibitor: lack of chemotactic effects of recombinant human α(1)-proteinase inhibitor from yeast on human peripheral blood granulocytes


    Mosheimer, Birgit; Alzner, Reinhard; Wiedermann, Christian J.


    Introduction: Recombinant α(1)-proteinase inhibitor, clinically developed for inhalative augmentation therapy in patients with α(1)-proteinase inhibitor deficiency or cystic fibrosis, may directly contribute to leukocyte accumulation as it may function as a chemoattractant. The migratory effects of yeast-derived human recombinant α(1)-proteinase inhibitor on human peripheral blood neutrophils and eosinophils were therefore tested in vitro. Materials and Methods: Human peripheral blood leukocy...

  16. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition. (United States)

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M


    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  17. Biochemical characterization of Acacia schweinfurthii serine proteinase inhibitor. (United States)

    Odei-Addo, Frank; Frost, Carminita; Smith, Nanette; Ogawa, Tomohisa; Muramoto, Koji; Oliva, Maria Luiza Vilela; Gráf, László; Naude, Ryno


    One of the many control mechanisms of serine proteinases is their specific inhibition by protein proteinase inhibitors. An extract of Acacia schweinfurthii was screened for potential serine proteinase inhibition. It was successfully purified to homogeneity by precipitating with 80% (v/v) acetone and sequential chromatographic steps, including ion-exchange, affinity purification and reversed-phase high performance liquid chromatography. Reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis conditions revealed an inhibitor (ASTI) consisting of two polypeptide chains A and B of approximate molecular weights of 16 and 10 kDa, respectively, and under non-reducing conditions, 26 kDa was observed. The inhibitor was shown to inhibit bovine trypsin (Ki of 3.45 nM) at an approximate molar ratio of inhibitor:trypsin (1:1). The A- and B-chains revealed complete sequences of 140 and 40 amino acid residues, respectively. Sequence similarity (70%) was reported between ASTI A-chain and ACTI A-chain (Acacia confusa) using ClustalW. The B-chain produced a 76% sequence similarity between ASTI and Leucaena leucocephala trypsin inhibitor.

  18. Alkaline proteinase inhibitor of Pseudomonas aeruginosa: a mutational and molecular dynamics study of the role of N-terminal residues in the inhibition of Pseudomonas alkaline proteinase. (United States)

    Feltzer, Rhona E; Trent, John O; Gray, Robert D


    Alkaline proteinase inhibitor of Pseudomonas aeruginosa is a 11.5-kDa, high affinity inhibitor of the serralysin class of zinc-dependent proteinases secreted by several Gram-negative bacteria. X-ray crystallography of the proteinase-inhibitor complex reveals that five N-terminal inhibitor residues occupy the extended substrate binding site of the enzyme and that the catalytic zinc is chelated by the alpha-amino and carbonyl groups of the N-terminal residue of the inhibitor. In this study, we assessed the effect of alteration of inhibitor residues 2-5 on its affinity for Pseudomonas alkaline proteinase (APR) as derived from the ratio of the dissociation and associate rate constants for formation of the enzyme-inhibitor complex. The largest effect was observed at position Ser-2, which occupies the S1' pocket of the enzyme and donates a hydrogen bond to the carboxyl group of the catalytic Glu-177 of the proteinase. Substitution of Asp, Arg, or Trp at this position increased the dissociation constant KD by 35-, 180-, and 13-fold, respectively. Mutation at positions 3-5 of the trunk also resulted in a reduction in enzyme-inhibitor affinity, with the exception of an I4W mutant, which exhibited a 3-fold increase in affinity. Molecular dynamics simulation of the complex formation between the catalytic domain of APR and the S2D mutant showed that the carboxyl of Asp-2 interacts with the catalytic zinc, thereby partially neutralizing the negative charge that otherwise would clash with the carboxyl group of Glu-177 of APR. Simulation of the interaction between the alkaline proteinase and the I4W mutant revealed a major shift in the loop comprised of residues 189-200 of the enzyme that allowed formation of a stacking interaction between the aromatic rings of Ile-4 of the inhibitor and Tyr-158 of the proteinase. This new interaction could account for the observed increase in enzyme-inhibitor affinity.

  19. Structurally unique recombinant Kazal-type proteinase inhibitor retains activity when terminally extended and glycosylated. (United States)

    Kludkiewicz, Barbara; Kodrík, Dalibor; Grzelak, Krystyna; Nirmala, Xavier; Sehnal, Frantisek


    Recombinant derivatives of the Kazal-type serine proteinase inhibitor GmSPI2 (36 amino acid residues), which is a component of insect silk, were prepared in the expression vector Pichia pastoris. The rhSPI2 had a C-terminal hexahistidine tag attached to the GmSPI2 sequence, rtSPI2 was extended with GluAlaAla at the N-terminus, and rfSPI2 included this N-terminal extension and a C-terminal tail of 22 residues (myc epitope and hexahistidine). A portion of the secreted rfSI2 was O-glycosylated with a trimannosyl or hexamannosyl. The native inhibitor was active slightly on trypsin and highly on subtilisin and proteinase K. The extended C-terminus in rhSPI2 and rfSPI2 enhanced activity on the two latter enzymes and rendered rfSPI2 active on elastase and pronase, but abolished the inhibition of trypsin. The glycosylation of rfSPI2 reduced its inhibitory activity to a level comparable with the native inhibitor. The rtSPI2 with tripeptide extension at the N-terminus and no C-terminal modification was clearly less active than the native inhibitor. None of the tested compounds inhibited alpha-chymotrypsin and the non-serine proteinases.

  20. Plasma levels of alpha1-antichymotrypsin and secretory leukocyte proteinase inhibitor in healthy and chronic obstructive pulmonary disease (COPD subjects with and without severe α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Sveger Tomas


    Full Text Available Abstract Background Individuals with severe Z α1-antitrypsin (AAT deficiency have a considerably increased risk of developing chronic obstructive lung disease (COPD. It has been hypothesized that compensatory increases in levels of other protease inhibitors mitigate the effects of this AAT deficiency. We analysed plasma levels of AAT, α1-antichymotrypsin (ACT and secretory leukocyte protease inhibitor (SLPI in healthy (asymptomatic and COPD subjects with and without AAT deficiency. Methods Studied groups included: 71 asymptomatic AAT-deficient subjects (ZZ, n = 48 and SZ, n = 23, age 31 ± 0.5 identified during Swedish neonatal screening for AAT deficiency between 1972 and 1974; age-matched controls (MM, n = 57, age 30.7 ± 0.6; older asymptomatic ZZ (n = 10; healthy MM (n = 20, age 53 ± 9.6; and COPD patients (ZZ, n = 10, age 47.4 ± 11 and MM, n = 10, age 59.4 ± 6.7. Plasma levels of SLPI, AAT and ACT were analysed using ELISA and immunoelectrophoresis. Results No significant difference was found in plasma ACT and SLPI levels between the healthy MM and the ZZ or SZ subjects in the studied groups. Independent of the genetic variant, subjects with COPD (n = 19 had elevated plasma levels of SLPI and ACT relative to controls (n = 153 (49.5 ± 7.2 vs 40.7 ± 9.1 ng/ml, p Conclusion Our findings show that plasma levels of ACT and SLPI are not elevated in subjects with genetic AAT deficiency compared MM controls and do not appear to compensate for the deficiency of plasma AAT.

  1. Safety and tolerability of an intravenously administered alpha1-proteinase inhibitor at an increased infusion rate: a novel, randomized, placebo-masked, infusion rate-controlled, crossover study in healthy adults

    Directory of Open Access Journals (Sweden)

    Ngo LY


    Full Text Available Leock Y Ngo,1 Adam Haeberle,1 Jacqueline Dyck-Jones,1 David Gelmont,1 Leman Yel11Baxter Healthcare Corporation, Westlake Village, CA, USAPurpose: Alpha1-proteinase inhibitor (A1PI is indicated for chronic augmentation therapy in adults with emphysema due to congenital deficiency of A1PI. An intravenous infusion rate of 0.04 mL/kg/minute is currently recommended for the A1PI product, Glassia®. This randomized, placebo-masked, rate-controlled, crossover study was designed to evaluate the safety and tolerability of A1PI administration at an increased infusion rate.Patients and methods: A total of 30 healthy male and female subjects aged 19–61 years were enrolled. Each subject received simultaneous intravenous infusions of A1PI (Glassia® and placebo (human albumin 2.5% administered through a single infusion site on two separate treatment periods. Subjects were randomized in a 1:1 ratio to receive either test treatment (A1PI 0.2 mL/kg/minute + placebo 0.04 mL/kg/minute, or reference treatment (A1PI 0.04 mL/kg/minute + placebo 0.2 mL/kg/minute on Day 1. On Day 15, subjects received the other treatment regimen in a crossover sequence.Results: A total of 36 adverse events (AEs, regardless of causality, were reported; all were non-serious and of mild intensity, with headaches and dizziness occurring most frequently (12 [33.3%] and three [8.3%] of 36 AEs, respectively. Only seven AEs in six subjects were assessed as related to study treatment: with two AEs reported in two subjects treated with the 0.2 mL/kg/minute rate compared with five AEs in four subjects treated with the 0.04 mL/kg/minute rate.Conclusions: This study demonstrated the safety and tolerability of an A1PI product at an increased infusion rate (0.2 mL/kg/minute resulting in a shorter infusion duration in healthy subjects.Keywords: A1PI, Glassia, administration rate, Alpha-1 antitrypsin, ATT

  2. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain]. (United States)

    Islamov, R A; Furusov, O V


    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  3. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. (United States)

    Pariani, Sebastián; Contreras, Marisol; Rossi, Franco R; Sander, Valeria; Corigliano, Mariana G; Simón, Francisco; Busi, María V; Gomez-Casati, Diego F; Pieckenstain, Fernando L; Duschak, Vilma G; Clemente, Marina


    Many different types of serine proteinase inhibitors have been involved in several kinds of plant physiological processes, including defense mechanisms against phytopathogens. Kazal-type serine proteinase inhibitors, which are included in the serine proteinase inhibitor family, are present in several organisms. These proteins play a regulatory role in processes that involve serine proteinases like trypsin, chymotrypsin, thrombin, elastase and/or subtilisin. In the present work, we characterized two putative Kazal-type serine proteinase inhibitors from Arabidopsis thaliana, which have a single putative Kazal-type domain. The expression of these inhibitors is transiently induced in response to leaf infection by Botrytis cinerea, suggesting that they play some role in defense against pathogens. We also evaluated the inhibitory specificity of one of the Kazal-type serine proteinase inhibitors, which resulted to be induced during the local response to B. cinerea infection. The recombinant Kazal-type serine proteinase inhibitor displayed high specificity for elastase and subtilisin, but low specificity for trypsin, suggesting differences in its selectivity. In addition, this inhibitor exhibited a strong antifungal activity inhibiting the germination rate of B. cinerea conidia in vitro. Due to the important role of proteinase inhibitors in plant protection against pathogens and pests, the information about Kazal-type proteinase inhibitors described in the present work could contribute to improving current methods for plant protection against pathogens.

  4. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    NARCIS (Netherlands)

    Bladergroen, B.A.; Strik, M.C.; Wolbink, A.M.; Wouters, D.; Broekhuizen, R.; Kummer, J.A.; Hack, C.E.


    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells

  5. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels. (United States)

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D


    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC, bovine trypsin (EC, papain (EC, and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.

  6. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.;


    Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (

  7. Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo). (United States)

    Kotłowska, M; Kowalski, R; Glogowski, J; Jankowski, J; Ciereszko, A


    This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.

  8. Trypanosoma cruzi: cruzipain and membrane-bound cysteine proteinase isoform(s) interacts with human alpha(2)-macroglobulin and pregnancy zone protein. (United States)

    Ramos, Adrián M; Duschak, Vilma G; Gerez de Burgos, Nelia M; Barboza, Mariana; Remedi, María S; Vides, Miguel A; Chiabrando, Gustavo A


    Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.

  9. Serine proteinase inhibitors in the Compositae: distribution, polymorphism and properties. (United States)

    Konarev, Alexander V; Anisimova, Irina N; Gavrilova, V A; Vachrusheva, T E; Konechnaya, G Yu; Lewis, Mervyn; Shewry, Peter R


    Multiple molecular forms of inhibitors of trypsin (TI) and chymotrypsin (CI), which are typical digestive enzymes of insects, mammals and micro-organisms, and subtilisin (SI), a proteinase of many bacteria and phytopathogenic fungi, were identified in seeds and vegetative organs of the majority of 128 wild and cultivated species representing 65 genera of three of the subfamilies of the Compositae. Inhibitors with M(r) ranging from 7450 to 7800 and combining activities towards subtilisin and trypsin and/or chymotrypsin (T/C/SI) had the widest distribution and may be involved in plant defense mechanisms. They were found in many species of the subfamilies Carduoideae (genera Carthamus, Centaurea, Cirsium), Cichorioideae (Lactuca, Taraxacum) and Asteroideae (Helianthus, Cosmos, Bidens). Partial amino acid sequencing showed that the safflower (Carthamus tinctorius) T/C/SI and Cosmos bipinnatus T/C/SI, T/SI and C/SI belonged to the potato I inhibitor family. The most active, variable and heterogeneous inhibitors were found in species of the tribe Heliantheae, which is placed in the evolutionary advanced subfamily Asteroideae. Seeds of Helianthus species, Eclipta prostrata, Gailardia aristata, Zinnia elegans and Silphium perfoliatum contained various TI with M(r) ranging from 1500 to 14,750, with some also containing SI. H. annuus seeds contain a unique cyclic TI of M(r) 1514 and similar TI were also present in other Helianthus spp. and the related species Tithonia diversifolia. Zinnia elegans contained a TI with M(r) 11,350 which appeared to represent a novel type of inhibitor distantly related to the cereal subgroup of Bowman-Birk inhibitors. TI and T/SI varied widely in H. annuus lines and wild Helianthus species in their presence or absence and composition. Similar T/SI components were found in the cultivated diploid H. annuus and annual diploid species with the B genome but not in perennials with the A genome. Some T/SI, SI and TI were detected in vegetative organs

  10. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.;


    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  11. Digestive duet: Midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression

    NARCIS (Netherlands)

    Zavala, J.A.; Giri, A.P.; Jongsma, M.A.; Baldwin, I.T.


    The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut prot

  12. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. (United States)

    Rimphanitchayakit, Vichien; Tassanakajon, Anchalee


    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.

  13. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. (United States)

    Franco, Octávio L; Rigden, Daniel J; Melo, Francislete R; Grossi-De-Sá, Maria F


    Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha

  14. Solution structure of PMP-C: a new fold in the group of small serine proteinase inhibitors. (United States)

    Mer, G; Hietter, H; Kellenberger, C; Renatus, M; Luu, B; Lefèvre, J F


    The solution structure and the disulfide pairings of a 36-residue proteinase inhibitor isolated from the insect Locusta migratoria have been determined using NMR spectroscopy and simulated annealing calculations. The peptide, termed PMP-C, was previously shown to inhibit bovine alpha-chymotrypsin as well as human leukocyte elastase, and was also found to block high-voltage-activated Ca2+ currents in rat sensory neurones. PMP-C has a prolate ellipsoid shape and adopts a tertiary fold hitherto unobserved in the large group of small "canonical" proteinase inhibitors. The over-all fold consists mainly of three strands arranged in a right-handed twisted, antiparallel, beta-sheet that demarcates a cavity, together with a linear amino-terminal segment oriented almost perpendicular to the three strands of the beta-sheet. Inside the cavity a phenyl ring constitutes the centre of a hydrophobic core. The proteinase binding loop is located in the carboxy-terminal part of the molecule, between two cysteine residues involved in disulfide bridges. Its conformation resembles that found in other small canonical proteinase inhibitors. A comparison of PMP-C structure with the recently published solution structure of the related peptide PMP-D2 shows that the most significant differences are complementary changes involved in the stabilization of similar folds. This comparison led us to review the structure of PMP-D2 and to identify two salt bridges in PMP-D2.


    NARCIS (Netherlands)



    In the sera of patients with Wegener's granulomatosis (WG), C-ANCA can be detected that are directed against proteinase 3 (PR3). We have previously observed that C-ANCA interfere with PR3 proteolytic activity and with complexation of PR3 with its major physiologic inhibitor, alpha1-antitrypsin (alph

  16. Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression.

    Directory of Open Access Journals (Sweden)

    Jorge A Zavala

    Full Text Available BACKGROUND: The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. METHODOLOGY/ PRINCIPAL FINDINGS: Second and third instars larvae that fed on NaTPI-producing (WT genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. CONCLUSIONS/ SIGNIFICANCE: Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance.

  17. Stress inducible proteinase inhibitor diversity in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Mishra Manasi


    Full Text Available Abstract Background Wound-inducible Pin-II Proteinase inhibitors (PIs are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L. proteinase inhibitor (CanPIs genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs. Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating

  18. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  19. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. (United States)

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C


    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  20. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    Directory of Open Access Journals (Sweden)

    Lepelley Maud


    Full Text Available Abstract Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP and four cysteine proteinase inhibitor (CPI gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is

  1. Expression of human α1-proteinase inhibitor in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Punt Peter J


    Full Text Available Abstract Background Human α1-proteinase inhibitor (α1-PI, also known as antitrypsin, is the most abundant serine protease inhibitor (serpin in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger, a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2, separated by dibasic processing site (N-V-I-S-K-R that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size

  2. Serine proteinase inhibitors in seeds of Cycas siamensis and other gymnosperms. (United States)

    Konarev, Alexander V; Lovegrove, Alison; Shewry, Peter R


    Seeds of 32 species selected from two of the four major groups of gymnosperms, the ancient Cycadales and the economically important Coniferales, were analysed for inhibitors (I) of the serine proteinases trypsin (T), chymotrypsin (C), subtilisin (S) and elastase (E) using isoelectric focusing (IEF) combined with gelatin replicas. Subtilisin inhibitors were detected in 17 species, being particularly active in the Cycadales. Several species of the genera Cephalotaxus, Pseudotsuga and Cycas contained inhibitors active against elastase while strong CSTIs and CSIs were also present in Cycas pectinata and C. siamensis. No inhibitors were detected in seeds of Chamaecyparis, Thuja, Abies, Larix, Picea and Pinus spp. Serine proteinase inhibitors were purified from seeds of C. siamensis by affinity chromatography using trypsin and chymotrypsin, IEF and SDS-PAGE. Several CSTI components with M(r) ranging from 4000 to 18,000 were partially sequenced using Edman degradation and mass spectrometry. Most of the sequences were similar to a hypothetical protein encoded by an mRNA from sporophylls of C. rumphii which in turn was similar to Kunitz-type proteinase inhibitors from flowering plants. Analysis of expressed sequence tag (EST) databases confirmed the presence of mRNAs encoding Kunitz-type inhibitors in the Cycadales and Coniferales and also demonstrated their presence in a third major group of gymnosperms, the Ginkgoales. This is the first report of Kunitz-type serine proteinase inhibitors from plants other than Angiosperms.

  3. Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Zabieglo, Katarzyna;


    Secretory leukocyte proteinase inhibitor (SLPI) is a well-established inhibitor of serine proteases such as human neutrophil elastase (HNE) and a NF-κB regulatory agent in immune cells. In this paper, we report that SLPI plays a previously uncharacterized role in regulating activation...

  4. Alpha macroglobulins and the low-density-lipoprotein-related protein alpha-2-macroglobulin receptor in experimental renal fibrosis

    NARCIS (Netherlands)

    van Goor, H; Diamond, [No Value; Ding, GH; Kaysen, GA


    In this study, we evaluated the location of non-specific proteinase inhibitors and their receptor in experimental glomerular and interstitial fibrosis. The alpha macroglobulins alpha-2-macroglobulin (alpha 2M) and alpha-1-inhibitor 3 (alpha 1I3) are proteinase inhibitors, including metalloproteinase

  5. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle


    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  6. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. (United States)

    Paulillo, L C; Lopes, A R; Cristofoletti, P T; Parra, J R; Terra, W R; Silva-Filho, M C


    The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.

  7. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor. (United States)

    Vitzithum, Klaus; Lauber, Thomas; Kreutzmann, Peter; Schulz, Axel; Sommerhoff, Christian P; Rösch, Paul; Marx, Ute C


    The multidomain proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor) consists of 15 potential serine proteinase inhibitory domains. In various diseases such as the severe skin disorder Netherton syndrome as well as atopy, defects in the gene encoding LEKTI have been identified that generate premature termination codons of translation, suggesting a specific role of the COOH-terminal part of LEKTI in healthy individuals. We overexpressed and purified a sequence comprising the 15th domain of LEKTI for further characterisation. Here, we present a high yield expression system for recombinant production and efficient purification of LEKTI domain 15 as a highly soluble protein with a uniform disulfide pattern that is identical to that of other known Kazal-type inhibitors. Also, the expected P1P1' site was confirmed. LEKTI domain 15 is a well-structured protein as verified by circular dichroism (CD) spectroscopy and a tight-binding and stable inhibitor of the serine proteinase trypsin. These findings confirm the designation of domain 15 as a proteinase inhibitor of the Kazal family.

  8. RBI, a one-domain alpha-amylase/trypsin inhibitor with completely independent binding sites. (United States)

    Maskos, K; Huber-Wunderlich, M; Glockshuber, R


    The bifunctional inhibitor from Ragi (Eleusine coracana Gaertneri) (RBI) is the only member of the alpha-amylase/trypsin inhibitor family that inhibits both trypsin and alpha-amylase. Here, we show that both enzymes simultaneously and independently bind to RBI. The recently solved three-dimensional NMR structure of RBI has revealed that the inhibitor possesses a hitherto unknown fold for serine proteinase and alpha-amylase inhibitors. Despite its different fold, RBI obeys the standard mechanism observed for most protein inhibitors of serine proteinases and is a strong, competitive inhibitor of bovine trypsin (Ki = 1.2 +/- 0.2 nM). RBI is also a competitive inhibitor of porcine alpha-amylase (Ki = 11 +/- 2 nM) when a disaccharide is used as a substrate of alpha-amylase. However, the inhibition mode becomes complex when larger (> or = 7 saccharide units) alpha-amylase substrates are used. A second saccharide binding site on porcine alpha-amylase may enable larger oligosaccharides to displace RBI from its binding site in an intramolecular reaction.

  9. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  10. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. (United States)

    Smigocki, Ann C; Ivic-Haymes, Snezana; Li, Haiyan; Savić, Jelena


    Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  11. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors. (United States)

    Joshi, Rakesh S; Gupta, Vidya S; Giri, Ashok P


    Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s).

  12. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways.

    NARCIS (Netherlands)

    Aarbiou, J.; Schadewijk, A. van; Stolk, J.; Sont, J.K.; Boer, W.I.; Rabe, K.F.; Krieken, J.H.J.M. van; Mauad, T.; Hiemstra, P.S.


    OBJECTIVE: The aim of this study was to analyze a possible contribution of human neutrophil defensins and secretory leukocyte proteinase inhibitor (SLPI) to the induction of airway epithelial changes such as squamous cell metaplasia. MATERIALS AND METHODS: The presence of these molecules and the num

  13. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene (United States)

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  14. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  15. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E;


    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  16. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening

    Institute of Scientific and Technical Information of China (English)

    LUOCheng; CHENJing; LUOHai-Bin; CHENLi-Li; LIGuo-Wei; SUNTao; YUChang-Ying; YUELi-Duo; SHENJian-Hua; JIANGHua-Liang; XIONGBin; GUIChun-Shan; XUXiao-Ying; DUANWen-Hu; SHENJing-Kang; QINLei; SHITi-Liu; LIYi-Xue; CHENKai-Xian; LUOXiao-Min; SHENXu


    AIM:To constructed a three-dimensional (3D) model for the 3C like (3CL) proteinase of SARS coronavirus (SARS_CoV), and to design inhibitors of the 3CL proteinase based on the 3D model. METHODS: Bioinformatics analyses were performed to search the homologous proteins of the SARS_CoV 3CL proteinase from the GenBank and PDB database. A 3D model of the proteinase was constructed by using homology modeling technique. Targeting to the 3D model and its X-ray crystal structure of the main proteinase (Mpro) of transmissible gastroenteritis virus(TGEV), virtual screening was performed employing molecular docking method to identify possible 3CL proteinase inhibitors from small molecular databases. RESULTS:Sequence alignment indicated that the SARS_CoV 3CL proteinase was extremely homologous to TGEV Mpro, especially the substrate-binding pocket (active site). Accordingly, a 3D model for the SARS_CoV 3CL proteinase was constructed based on the crystal structure of TGEV Mpro. The 3D model adopts a similar fold of the TGEV mpro, its structure and binding pocket feature are almost as same as that of TGEV Mpro. The tested virtual screening indicated that 73 available proteinase inhibitors in the MDDR database might dock into both the binding pockets of the TGEV Mpro and the SARS_CoV 3CL proteinase. CONCLUSIONS:Either the 3D model of the SARS_CoV 3CL proteinase or the X-ray crystal stucture of the TGEV Mpro may be used as a starting point for design anti-SARS drugs. Screening the known proteinase inhibitors may be an appreciated shortcut to discover anti-SARS drugs.

  17. Cystatin like thiol proteinase inhibitor from pancreas of Capra hircus: purification and detailed biochemical characterization. (United States)

    Priyadarshini, Medha; Bano, Bilqees


    A thiol proteinase inhibitor from Capra hircus (goat) pancreas (PTPI) isolated by ammonium sulphate precipitation (20-80%) and gel filtration chromatography on Sephacryl S-100HR, with 20.4% yield and 500-fold purification, gave molecular mass of 44 kDa determined by its electrophoretic and gel filtration behavior, respectively. The stokes radius, diffusion and sedimentation coefficients of PTPI were 27.3 A, 7.87 x 10(-7) cm(2) s(-1) and 3.83 s, respectively. It was stable in pH range 3-10 and up to 70 degrees C (critical temperature, E (a) = 21 kJ mol(-1)). Kinetic analysis revealed reversible and competitive mode of inhibition with PTPI showing the highest inhibitory efficiency against papain (K ( i ) = 5.88 nM). The partial amino acid sequence analysis showed that it shared good homology with bovine parotid and skin cystatin C. PTPI possessed 17.18% alpha helical content assessed by CD spectroscopy. The hydropathy plot of first 24 residues suggested that most amino acids of this stretch might be in the hydrophobic core of the protein.

  18. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus). (United States)

    Parambeth, Joseph Cyrus; Suchodolski, Jan S; Steiner, Jörg M


    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (Callithrix jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51,677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species.

  19. Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition (United States)

    Headey, Stephen J.; MacAskill, Ursula K.; Wright, Michele A.; Claridge, Jolyon K.; Edwards, Patrick J. B.; Farley, Peter C.; Christeller, John T.; Laing, William A.; Pascal, Steven M.


    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin. PMID:20538608

  20. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu


    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  1. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum. (United States)

    Luo, Ming; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhen-Yu; Hu, Bo-Lun; Yang, Xiao-Bei; Sun, Qiao-Yang; Xu, Zeng-Fu


    Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2) family. The recombinant SaPIN2b (rSaPIN2b), which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  2. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI). (United States)

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif


    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  3. A five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon and its inhibitory activities. (United States)

    Somprasong, Nawarat; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee


    A novel five-domain Kazal-type serine proteinase inhibitor, SPIPm2, identified from the hemocyte cDNA library of black tiger shrimp Penaeus monodon was successfully expressed in the Escherichia coli expression system. The expressed recombinant SPIPm2 (rSPIPm2) as inclusion bodies was solubilized with a sodium carbonate buffer, pH10, and purified by gel filtration chromatography. The molecular mass of rSPIPm2 was determined using MALDI-TOF mass spectrometry to be 29.065 kDa. The inhibitory activities of rSPIPm2 were tested against trypsin, alpha-chymotrypsin, subtilisin and elastase. The inhibitor exhibited potent inhibitory activities against subtilisin and elastase, weak inhibitory activity against trypsin, and did not inhibit chymotrypsin. Tight-binding inhibition assay suggested that the molar ratios of SPIPm2 to subtilisin and elastase were 1:2 and 1:1, respectively. The inhibition against subtilisin and elastase was a competitive type with inhibition constants (Ki) of 0.52 and 3.27 nM, respectively. The inhibitory activity of SPIPm2 against subtilisin implies that, in shrimp, it may function as a defense component against proteinases from pathogenic bacteria but the elastase inhibitory function is not known.

  4. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Phylip, L H; Lees, W E; Brownsey, B G;


    The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar...... sequences/structures from a wide variety of other species. Systematic truncation and mutagenesis of the IA3 polypeptide revealed that the inhibitory activity is located in the N-terminal half of the sequence. Crystal structures of different forms of IA3 complexed with proteinase A showed that residues...... by the nontarget aspartic proteinases, it was not cleaved by proteinase A. The random coil IA3 polypeptide escapes cleavage by being stabilized in a helical conformation upon interaction with the active site of proteinase A. This results, paradoxically, in potent selective inhibition of the target enzyme....

  5. Isolation and characterization of a proteinase inhibitor from marama beans. (United States)

    Elfant, M; Bryant, L; Starcher, B


    A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.

  6. A Kunitz proteinase inhibitor from corms of Xanthosoma blandum with bactericidal activity. (United States)

    Lima, Thaís B; Silva, Osmar N; Migliolo, Ludovico; Souza-Filho, Carlos R; Gonçalves, Eduardo G; Vasconcelos, Ilka M; Oliveira, José T A; Amaral, André C; Franco, Octávio L


    Bacterial infections directly affect the world's population, and this situation has been aggravated by indiscriminate use of antimicrobial agents, which can generate resistant microorganisms. In this report, an initial screening of proteins with antibacterial activity from corms of 15 species of the Xanthosoma genus was conducted. Since Xanthosoma blandum corms showed enhanced activity toward bacteria, a novel protein with bactericidal activity was isolated from this particular species. Edman degradation was used for protein N-termini determination; the primary structure showed similarities with Kunitz inhibitors, and this protein was named Xb-KTI. This protein was further challenged against serine proteinases from different sources, showing clear inhibitory activities. Otherwise, no hemolytic activity was observed for Xb-KTI. The results demonstrate the biotechnological potential of Xb-KTI, the first proteinase inhibitor with antimicrobial activity described in the Xanthosoma genus.

  7. In situ localization of proteinase inhibitor mRNA in rice plant challenged by brown planthopper

    Institute of Scientific and Technical Information of China (English)


    Proteinase inhibitor (PI) mRNA was localized by in situ hybridization in tissue sections of root, stem and leaf of the resistant rice (B5) plant fed by brown planthopper nymphs. In the rice material without BPH feeding, PI gene was expressed in the root, stem and leaf, while the abundance of PI mRNA was low. In the rice material fed by BPH, PI gene was expressed substantially in the parenchyma of rice stem and leaf, but weakly in the root. The results indicated that the PI gene was up-regulated in the rice plant challenged by brown planthopper. For the first time, we reported the expression changes of proteinase inhibitor gene in plant which was infested by a piercing/sucking insect.

  8. Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill). (United States)

    Kimura, M; Ikeda, T; Fukumoto, D; Yamasaki, N; Yonekura, M


    The complete amino acid sequence of a proteinaceous cysteine proteinase inhibitor from the fruit of avocado (avocado cystatin) is presented. The protein consists of 100 amino acid residues and has a molecular mass of 11,300 Da. Comparison of this sequence with sequences of plant cysteine proteinase inhibitors (phytocystatins), including oryzacystatins I and II from rice seeds, cowpea cystatin, and corn cystatin, showed that the avocado cystatin molecule has 60% and 54% residues identical with the two forms of the rice seed proteins, oryzacystatins I and II, respectively, and 64% and 63% with the cowpea and corn proteins, respectively. The totally conserved sequence, Gln-Val-Val-Ala-Gly, among several of the animal cystatins as well as phytocystatins, is at positions 47-51 in the avocado cystatin molecule.

  9. Characterization of the Proteinase that Initiates the Degradation of the Trypsin Inhibitor in Germinating Mung Beans (Vigna radiata). (United States)

    Wilson, K A; Tan-Wilson, A L


    The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl(2). It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4 degrees C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.

  10. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Han-qiu CHEN; Jian ZHENG


    AIM: To investigate the ability of proteinase inhibitors to modulate nucleated cell infiltration into the peritoneum of mice induced by tryptase and chymase. METHODS: Human lung tryptase and skin chymase were purified by a similar procedure involving high salt extraction, heparin agarose affinity chromatography followed by S-200 Sephacryl gel filtration chromatography. The actions of proteinase inhibitors on tryptase and chymase induced nucleated cell accumulation were examined with a mouse peritoneum model. RESULTS: A selective chymase inhibitor Z-Ile-GluPro-Phe-CO2Me (ZIGPPF) was able to inhibit approximately 90% neutrophil, 73% eosinophil, 87% lymphocyte and 60% macrophage accumulation induced by chymase at 16 h following injection. Soy bean trypsin inhibitor (SBTI), chymostatin, and α1-antitrypsin showed slightly less potency than ZIGPPF in inhibition of the actions of chymase. While all tryptase inhibitors tested were able to inhibit neutrophil, eosinophil, and macrophage accumulation provoked by tryptase at 16 h following injection, only leupeptin, APC366, and aprotinin were capable of inhibiting tryptase induced lymphocyte accumulation. The inhibitiors of tryptase tested were also able to inhibit tryptase induced neutrophil and eosinophil accumulation at 6 h following injection. When being injected alone, all inhibitors of chymase and tryptase at the concentrations tested by themselves had no significant effect on the accumulation of nucleated cells in the peritoneum of mice at both 6 h and 16 h. CONCLUSION: Proteinase inhibitors significantly inhibited tryptase and chymase-induced nucleated cell accumulation in vivo, and therefore they are likely to be developed as a novel class of anti-inflammatory drugs.

  11. Proteinase inhibitory activities of two two-domain Kazal proteinase inhibitors from the freshwater crayfish Pacifastacus leniusculus and the importance of the P(2) position in proteinase inhibitory activity. (United States)

    Donpudsa, Suchao; Söderhäll, Irene; Rimphanitchayakit, Vichien; Cerenius, Lage; Tassanakajon, Anchalee; Söderhäll, Kenneth


    Serine proteinase inhibitors are found ubiquitously in living organisms and involved in homeostasis of processes using proteinases as well as innate immune defense. Two two-domain Kazal-type serine proteinase inhibitors (KPIs), KPI2 and KPI8, have been identified from the hemocyte cDNA library of the crayfish Pacifastacus leniusculus. Unlike other KPIs from P. leniusculus, they are found specific to the hemocytes and contain an uncommon P(2) amino acid residue, Gly. To unveil their inhibitory activities, the two KPIs and their domains were over-expressed. By testing against subtilisin, trypsin, chymotrypsin and elastase, the KPI2 was found to inhibit strongly against subtilisin and weakly against trypsin, while the KPI8 was strongly active against only trypsin. With their P(1) Ser and Lys residues, the KPI2_domain2 and KPI8_domain2 were responsible for strong inhibition against subtilisin and trypsin, respectively. Mutagenesis of KPI8_domain1 at P(2) amino acid residue from Gly to Pro, mimicking the P(2) residue of KPI8_domain2, rendered the KPI8_domain1 strongly active against trypsin, indicating the important role of P(2) residue in inhibitory activities of the Kazal-type serine proteinase inhibitors. Only the KPI2 was found to inhibit against the extracellular serine proteinases from the pathogenic oomycete of the freshwater crayfish, Aphanomyces astaci.

  12. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i. (United States)

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A


    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition.

  13. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus. (United States)

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin


    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (pproteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  14. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo). (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej


    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  15. Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph. (United States)

    Bania, Jacek; Samborski, Jaroslaw; Bogus, Mieczyslawa; Polanowski, Antoni


    The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.

  16. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors. (United States)

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali


    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.

  17. Ethylene-regulated expression of a tomato fruit ripening gene encoding a proteinase inhibitor I with a glutamic residue at the reactive site.


    Margossian, L J; Federman, A D; Giovannoni, J.J.; Fischer, R L


    We report the isolation from tomato (Lycopersicon esculentum) of an ethylene-responsive member of the proteinase inhibitor gene family. DNA sequence analysis of a full-length cDNA clone indicates that the ethylene-responsive gene is distantly related to the tomato proteinase inhibitor I gene, having 53% sequence identity. The predicted amino acid sequence reveals 47% and 45% sequence identity with the tomato and potato proteinase inhibitor I polypeptides, respectively. Additionally, the ethyl...

  18. Purification and characterization of proteinase inhibitors from wild soja (Glycine soja) seeds. (United States)

    Deshimaru, Masanobu; Hanamoto, Ryuji; Kusano, Chiho; Yoshimi, Shingo; Terada, Shigeyuki


    Nine proteinase inhibitors, I-VIIa, VIIb, and VIII, were isolated from wild soja seeds by ammonium sulfate fractionation and successive chromatographies on SP-Toyopearl 650M, Sephacryl S-200SF, and DEAE-Toyopearl 650S columns. Reverse-phase HPLC finally gave pure inhibitors. All of the inhibitors inhibited trypsin with dissociation constants of 3.2-6.2 x 10(-9) M. Some of the inhibitors inhibited chymotrypsin and elastase as well. Two inhibitors (VIIb and VIII) with a molecular weight of 20,000 were classified as a soybean Kunitz inhibitor family. Others (I-VIla) had a molecular weight of about 8,000, and were stable to heat and extreme pH, suggesting that these belonged to the Bowman-Birk inhibitor family. Partial amino acid sequences of four inhibitors were also analyzed. The complete sequence of inhibitor IV was ascertained from the nucleotide sequences of cDNA clones encoding isoinhibitors homologous to soybean C-II.

  19. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O


    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  20. A three-domain Kazal-type serine proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii. (United States)

    Li, Xin-Cang; Wang, Xian-Wei; Wang, Zong-Heng; Zhao, Xiao-Fan; Wang, Jin-Xing


    In crustaceans, Kazal-type serine proteinase inhibitors in hemolymph are believed to function as regulators of the host-defense reactions or inhibitors against proteinases from microorganisms. In this study, we report a Kazal-type serine proteinase inhibitor, named hcPcSPI1, from freshwater crayfish (Procambarus clarkii). We found that hcPcSPI1 is composed of a putative signal peptide, an RGD motif, and three tandem Kazal-type domains with the domain P1 residues L, L and E, respectively. Mainly, hcPcSPI1 was detected in hemocytes as well as in the heart, gills, and intestine at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that hcPcSPI1 in hemocytes was upregulated by the stimulation of Esherichia coli (8099) or became decreased after a white spot syndrome virus (WSSV) challenge. In addition, hcPcSPI1 and its three independent domains were overexpressed and purified to explore their potential functions. All four proteins inhibited subtilisin A and proteinase K, but not alpha-chymotypsin or trypsin. Recombinant hcPcSPI1 could firmly attach to Gram-negative bacteria E. coli and Klebsiella pneumoniae; Gram-positive bacteria Bacillus subtilis, Bacillus thuringiensis and Staphylococcus aureus; fungi Candida albicans and Saccharomyce cerevisiae, and only domain 1 was responsible for the binding to E. coli and S. aureus. In addition, recombinant hcPcSPI1 was also found to possess bacteriostatic activity against the B. subtilis and B. thuringiensis. Domains 2 and 3 contributed mainly to these bacteriostatic activities. All results suggested that hcPcSPI1 might play important roles in the innate immunity of crayfish.

  1. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation. (United States)

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee


    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone.

  2. Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans. (United States)

    Wilson, K A; Tan-Wilson, A L


    The mung bean (Vigna radiata (L.) Wilczek) trypsin inhibitor (MBTI) is rapidly modified by limited proteolysis during the early stages of seedling growth. Using an electrophoretic assay that separates the unmodified inhibitor (MBTI-F) and the first two modified species (MBTI-E and -C), a pH optimum of approximately 4 was found for the modification reaction. The inhibitor modifying activity is initially low in ungerminated seeds, with the reaction F leads to E being the primary reaction catalyzed. Activity catalyzing the production of MBTI-C appears on the first day of germination. This activity (F leads to E leads to C) increases up to 6 days after inhibition, at which time the cotyledons begin to abscise. The activity converting MBTI-F and -E to MBTI-C was strongly inhibited by phenylmethylsulfonyl fluoride (3.3 mM) but only weakly by iodoacetate (9 mM) and not at all by pepstatin A (9 microM), leupeptin (18 microM), or EDTA (5 mM). These results suggest the involvement of proteinases other than the major endopeptidase of the germinating seed, vicilin peptidohydrolase. This conclusion is further supported by gel filtration of the extracts of cotyledons on Sephacryl S-200. At least three proteinases are present in germinated cotyledons capable of modifying MBTI-F to MBTI-C and/or -E. All are distinguishable from vicilin peptidohydrolase on the basis of their molecular weight and inhibition by low molecular weight organic reagents.

  3. Identification of proteinaceous inhibitors of a cysteine proteinase (an Arg-specific gingipain) from Porphyromonas gingivalis in rice grain, using targeted-proteomics approaches. (United States)

    Taiyoji, Mayumi; Shitomi, Yasuyuki; Taniguchi, Masayuki; Saitoh, Eiichi; Ohtsubo, Sadami


    Porphyromonas gingivalis is known to be a major etiologic agent in the onset and progression of chronic periodontitis. Among various virulence factors that this bacterium produces, Arg- and Lys-specific cysteine proteinases (gingipains) are believed to be major determinants of the pathogenicity of P. gingivalis. Here, we report on our finding that there are inhibitors of these cysteine proteinases in a rice protein fraction. Comprehensive affinity chromatography and MS analyses resulted in the identification of 17 Arg-gingipain (Rgp)-interacting proteins in the rice endosperm. Of these, four proteins (i.e., a 26 kDa globulin, a plant lipid transfer/trypsin-alpha amylase inhibitor, the RA17 seed allergen, and an alpha amylase/trypsin inhibitor) were estimated to account for 90% of the Rgp inhibitory activity in the rice protein fraction, using a two-dimensional gel system of double-layer reverse zymography. In addition, a synthetic peptide derived from an Rgp-interacting protein, cyanate hydratase, could inhibit the growth of P. gingivalis and showed inhibitory activity against both the Arg- and Lys-gingipains. These results suggest that these rice proteins may be useful as nutraceutical ingredients for the prevention and management of periodontal diseases.

  4. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds. (United States)

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra


    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  5. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres. (United States)

    Khandelwal, Neha; Doke, Dhananjay S; Khandare, Jayant J; Jawale, Priyanka V; Biradar, Ankush V; Giri, Ashok P


    Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera.

  6. Cloning of Proteinase Inhibitor Gene StPI in Diploid Potato and Its Expression Analysis

    Institute of Scientific and Technical Information of China (English)


    A full-length cDNA of proteinase inhibitor gene with completed open reading frame of 116 amino acids was cloned from Ralstonia solanacearum (Rs) resistant potato leaves using the rapid amplification of cDNA ends (RACE) method and designated as StPI. BLAST search against NCBI showed that the StPI gene shared 89% identity with potato proteinase inhibitor Ⅰ precursor in nucleotide and 74% in amino acid. Analysis of semi-quantitative RT-PCR indicated that this gene was induced by Rs as well as up-regulated by jasmonic acid (JA). The StPI gene expression reached the highest level during 6-12 h post Rs-inoculation or JA-treatment, and then leveled off. Moreover, this gene was strongly induced by JA and its mRNA accumulation increased more quickly than that of Rs-inoculation. The StPI gene may play a role in potato resistance against Rs. The induction of StPI by Rs invasion may have a similar signal transduction pathway with JA treatment.

  7. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae) (United States)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  8. Design of dimerization inhibitors of HIV-1 aspartic proteinase: A computer-based combinatorial approach (United States)

    Caflisch, Amedeo; Schramm, Hans J.; Karplus, Martin


    Inhibition of dimerization to the active form of the HIV-1 aspartic proteinase (HIV-1 PR) may be a way to decrease the probability of escape mutations for this viral protein. The Multiple Copy Simultaneous Search (MCSS) methodology was used to generate functionality maps for the dimerization interface of HIV-1 PR. The positions of the MCSS minima of 19 organic fragments, once postprocessed to take into account solvation effects, are in good agreement with experimental data on peptides that bind to the interface. The MCSS minima combined with an approach for computational combinatorial ligand design yielded a set of modified HIV-1 PR C-terminal peptides that are similar to known nanomolar inhibitors of HIV-1 PR dimerization. A number of N-substituted 2,5-diketopiperazines are predicted to be potential dimerization inhibitors of HIV-1 PR.

  9. Hepatocyte growth factor activator is a potential target proteinase for Kazal-type inhibitor in turkey (Meleagris gallopavo) seminal plasma. (United States)

    Słowińska, Mariola; Bukowska, Joanna; Hejmej, Anna; Bilińska, Barbara; Kozłowski, Krzysztof; Jankowski, Jan; Ciereszko, Andrzej


    A peculiar characteristic of turkey seminal plasma is the increased activity of serine proteinases. It is of interest if the single-domain Kazal-type inhibitor controls the activity of turkey seminal plasma proteinases. Pure preparations of the Kazal-type inhibitor and anti-Kazal-type inhibitor monospecific immunoglobulin Gs were used as ligands in affinity chromatography for proteinase isolation from turkey seminal plasma. Gene expression and the immunohistochemical detection of the single-domain Kazal-type inhibitor in the reproductive tract of turkey toms are described. The hepatocyte growth factor activator (HGFA) was identified in the binding fraction in affinity chromatography. Hepatocyte growth factor activator activity was inhibited by the Kazal-type inhibitor in a dose-dependent manner. This protease was a primary physiological target for the single-domain Kazal-type inhibitor. Numerous proteoforms of HGFA were present in turkey seminal plasma, and phosphorylation was the primary posttranslational modification of HGFA. In addition to HGFA, acrosin was a target proteinase for the single-domain Kazal-type inhibitor. In seminal plasma, acrosin was present only in complexes with the Kazal-type inhibitor and was not present as a free enzyme. The single-domain Kazal-type inhibitor was specific for the reproductive tract. The germ cell-specific expression of Kazal-type inhibitors in the testis indicated an important function in spermatogenesis; secretion by the epithelial cells of the epididymis and the ductus deferens indicated that the Kazal-type inhibitor was an important factor involved in the changes in sperm membranes during maturation and in the maintenance of the microenvironment in which sperm maturation occurred and sperm was stored. The role of HGFA in these processes remains to be established.

  10. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain. (United States)

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A


    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  11. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development (United States)

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  12. The urinary excretion of epidermal growth factor in the rat is reduced by aprotinin, a proteinase inhibitor

    DEFF Research Database (Denmark)

    Jørgensen, P E; Raaberg, Lasse; Poulsen, Steen Seier


    The present study on the rat shows that i.v. administration of the proteinase inhibitor aprotinin reduces the urinary output of immunoreactive epidermal growth factor (EGF) while the amount of immunoreactive EGF in the kidneys is increased. This indicates that the EGF-precursor in the rat kidney ...

  13. Isolation of tomato proteinase inhibitor Ⅱ gene and the function of its intron

    Institute of Scientific and Technical Information of China (English)


    The genomic DNA sequence of tomato proteinase inhibitor Ⅱ gene (named tin2i, whose accession number in GenBank is AF007240) was isolated by PCR techniques. The intron sequence (TPI), with a length of 109 bp, owns typical structures of GT/AG dinucleotides at both ends and high content of AT base pairs which accounts for 80.7% of the total nucleotides. As shown by recombination experiment, the TPI sequence could efficiently promote the expression of the reporter gene gusA and this effect was independent of the position and orientation of the intron, thus showing its role as an enhancer. Such experiments as gel retardation assays, GUS histochemical staining and GUS fluorometric assays further demonstrated that TPI sequence maybe has promoter-like activity.

  14. Cystein proteinase inhibitor stefin A as an indicator of efficiency of tumor treatment in mice. (United States)

    Korolenko, T A; Poteryaeva, O N; Falameeva, O V; Levina, O A


    The concentration of stefin A (cystatin A in mice) was measured in animals with experimental tumors (LS lymphosarcoma, HA-1-hepatoma, and Lewis lung carcinoma) during effective antitumor therapy. In mice with these tumors serum concentrations of stefin A increased, while the concentration of cystatin C (extracellular cystein proteinase inhibitor) decreased. The concentration of stefin A in tumor tissue in Lewis lung carcinoma was higher than in LS lymphosarcoma and HA-1-hepatoma ascitic cells, which can be explained by the degree of their malignancy. The content of stefin A in tumor tissue was similar to that in the liver and spleen of tumor-bearing animals, while its concentration in the liver and spleen of tumor-bearing animals was lower than in intact mice. The level of stefin A is an important marker of malignancy and an indicator of the efficiency of antitumor therapy.

  15. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans. (United States)

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene


    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.

  16. Transgenic tobacco plants harboring tomato proteinase inhibitor II gene and their insect resistance

    Institute of Scientific and Technical Information of China (English)


    The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.

  17. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. (United States)

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P


    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.

  18. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis


    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide.

  19. Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes. (United States)

    Kalra, P; Das, A; Jayaram, B


    Expeditious in silico determinations of the free energies of binding of a series of inhibitors to an enzyme are of immense practical value in structure-based drug design efforts. Some recent advances in the field of computational chemistry have rendered a rigorous thermodynamic treatment of biologic molecules feasible, starting from a molecular description of the biomolecule, solvent, and salt. Pursuing the goal of developing and making available a software for assessing binding affinities, we present here a computationally rapid, albeit elaborate, methodology to estimate and analyze the molecular thermodynamics of enzyme-inhibitor binding with crystal structures as the point of departure. The complexes of aspartic proteinases with seven inhibitors have been adopted for this study. The standard free energy of complexation is considered in terms of a thermodynamic cycle of six distinct steps decomposed into a total of 18 well-defined components. The model we employed involves explicit all-atom accounts of the energetics of electrostatic interactions, solvent screening effects, van der Waals components, and cavitation effects of solvation combined with a Debye-Huckel treatment of salt effects. The magnitudes and signs of the various components are estimated using the AMBER parm94 force field, generalized Born theory, and solvent accessibility measures. Estimates of translational and rotational entropy losses on complexation as well as corresponding changes in the vibrational and configurational entropy are also included. The calculated standard free energies of binding at this stage are within an order of magnitude of the observed inhibition constants and necessitate further improvements in the computational protocols to enable quantitative predictions. Some areas such as inclusion of structural adaptation effects, incorporation of site-dependent amino acid pKa shifts, consideration of the dynamics of the active site for fine-tuning the methodology are easily

  20. Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema. (United States)

    Oliva, M L; Souza-Pinto, J C; Batista, I F; Araujo, M S; Silveira, V F; Auerswald, E A; Mentele, R; Eckerskorn, C; Sampaio, M U; Sampaio, C A


    A serine proteinase inhibitor isolated from Leucaena leucocephala seeds (LlTI) was purified to homogeneity by acetone fractionation, ion exchange chromatography, gel filtration and reverse phase chromatography (HPLC). SDS-PAGE indicated a protein with M(r) 20000 and two polypeptide chains (alpha-chain, M(r) 15000, and beta-chain, M(r) 5000), the sequence being determined by automatic Edman degradation and by mass spectroscopy. LlTI is a 174 amino acid residue protein which shows high homology to plant Kunitz inhibitors, especially those double chain proteins purified from the Mimosoideae subfamily. LlTI inhibits plasmin (K(i) 3.2 x 10(-10) M), human plasma kallikrein (K(i) 6.3 x 10(-9) M), trypsin (K(i) 2.5 x 10(-8) M) and chymotrypsin (K(i) 1.4 x 10(-8) M). Factor XIIa activity is inhibited but K(i) was not determined, and factor Xa, tissue kallikrein and thrombin are not inhibited by LlTI. The action of LlTI on enzymes that participate in the blood clotting extrinsic pathway is confirmed by the prolongation of activated partial thromboplastin time, used as clotting time assay. The inhibition of the fibrinolytic activity of plasmin was confirmed on the hydrolysis of fibrin plates. LlTI inhibits kinin release from high molecular weight kininogen by human plasma kallikrein in vitro and, administered intravenously, causes a decrease in paw edema induced by carrageenin or heat in male Wistar rats. In addition, lower concentrations of bradykinin were found in limb perfusion fluids of LlTI-treated rats.

  1. Neutrophil elastase reduces secretion of secretory leukoproteinase inhibitor (SLPI by lung epithelial cells: role of charge of the proteinase-inhibitor complex

    Directory of Open Access Journals (Sweden)

    Hiemstra Pieter S


    Full Text Available Abstract Background Secretory leukoproteinase inhibitor (SLPI is an important inhibitor of neutrophil elastase (NE, a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes in vitro. Methods Respiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling. Results We observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration. Conclusion These data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon in vitro, which may correlate with changes observed in vivo.

  2. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance. (United States)

    Turra, David; Lorito, Matteo


    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.

  3. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants. (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V


    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  4. Serine proteinase inhibition by the active site titrant N alpha-(N, N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester. A comparative study. (United States)

    Ascenzi, P; Balliano, G; Gallina, C; Polticelli, F; Bolognesi, M


    Kinetics for the hydrolysis of the chromogenic active-site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester (Dmc-azaOrn-ONp) catalysed by bovine beta-trypsin, bovine alpha-thrombin, bovine Factor Xa, human alpha-thrombin, human Factor Xa, human Lys77-plasmin, human urinary kallikrein, Mr 33 000 and Mr 54 000 species of human urokinase, porcine pancreatic beta-kallikrein-A and -B and Ancrod (the coagulating serine proteinase from the Malayan pit viper Agkistrodon rhodostoma venom) have been obtained between pH 6.0 and 8.0, at 21.0 degrees C, and analysed in parallel with those for the enzymatic cleavage of N alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). The enzyme kinetics are consistent with the minimum three-step catalytic mechanism of serine proteinases, the rate-limiting step being represented by the deacylation process. Bovine beta-trypsin kinetics are modulated by the acid-base equilibrium of the His57 catalytic residue (pKa approximately 6.9). Dmc-azaOrn-ONp and Dmc-azaLys-ONp bind stoichiometrically to the serine proteinase active site, and allow the reliable determination of the active enzyme concentration between 1.0 x 10-6 M and 3.0 x 10-4 M. The affinity and the reactivity for Dmc-azaOrn-ONp (expressed by Ks and k+2/Ks, respectively) of the serine proteinases considered are much lower than those for Dmc-azaLys-ONp. The very different affinity and reactivity properties for Dmc-azaOrn-ONp and Dmc-azaLys-ONp have been related to the different size of the ornithine/lysine side chains, and to the ensuing different positioning of the active-site titrants upon binding to the enzyme catalytic centre (i.e. to P1-S1 recognition). These data represent the first detailed comparative investigation on the catalytic properties of serine proteinases towards an ornithine derivative (i. e. Dmc-azaOrn-ONp).

  5. Changes of balance between proteinase and their inhibitors in blood of pigs with high-velocity missile wounds

    Institute of Scientific and Technical Information of China (English)

    周元国; 朱佩芳; 周继红; 李晓炎


    Objective: To study the effect of imbalance between lysosomal enzymes and their inhibitors in blood on disturbance of the local and whole body after trauma. Methods: The dynamic changes of lysosomal enzymes and proteinase inhibitors were studied in 12 pigs with femoral comminuted fractures in both hind limbs caused by high velocity missiles. Four normal pigs served as controls. Results: After injury, the activity of Cathepsin D in arterial plasma increased gradually and reached the highest level at 8 hours, acid phosphatase in serum began to increase at 12 hours and the value of serum elastase did not change significantly. The level of α1-antitrypsin, a proteinase inhibitor in plasma, decreased significantly in the early stage after injury [73.5%±6.4% and 81.0%±5.1% of the baseline value (1.67 μmol*ml-1*min-1± 0.29 μmol*ml-1*min-1) at l and 2 hours after injury, respectively, P<0.05], then increased gradually and was higher than the baseline value at 12 hours after injury. Conclusions: Imbalance between lysosomal enzymes and proteinase inhibitors occurs soon after injury, which might result in continuous tissue damage and play an important role in the disturbance of general reaction after injury.

  6. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. (United States)

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua


    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  7. [Molecular cloning and analysis of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of Vipera nikolskii viper]. (United States)

    Ramazanova, A S; Fil'kin, S Iu; Starkov, V G; Utkin, Iu N


    Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.

  8. Conformational changes of ovine α-1-proteinase inhibitor: The influence of heparin binding (United States)

    Gupta, Vivek Kumar; Gowda, Lalitha R.


    α-1-Proteinase inhibitor (α-1-PI), the archetypal serpin causes rapid, irreversible stoichiometric inhibition of redundant circulating serine proteases and is associated with emphysema, inflammatory response and maintenance of protease-inhibitor equilibrium in vascular and peri-vascular spaces. A homogenous preparation of heparin octasaccharide binds to ovine and human α-1-PI and enhances their protease inhibitory activity phenomenally. Size-exclusion chromatography and dynamic light scattering experiments reveal that ovine α-1-PI undergoes a decrease in the Stokes' radius upon heparin binding. A strong binding; characterizes this α-1-PI-heparin interaction as revealed by the binding constant ( Kα) 1.98 ± 0.2 × 10 -6 M and 2.1 ± 0.2 × 10 -6 M determined by fluorescence spectroscopy and equilibrium dialysis, respectively. The stoichiometry of heparin binding to ovine α-1-PI was 1.1 ± 0.2:1. The Stern-Volmer constants ( Ksv) for heparin activated ovine and human α-1-PI were found to be 5.13 × 10 -6 M and 5.67 × 10 -6 M, respectively, significantly higher than the native inhibitors. FTIR and CD spectroscopy project the systematic structural reorientations that α-1-PI undergoes upon heparin binding characterized by a decrease in α-helical content and a concomitant increase in β-turn and random coil elements. It is likely that these conformational changes result in the movement of the α-1-PI reactive site loop into an extended structure that is better poised to combat the cognate protease and accelerate the inhibition.

  9. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential. (United States)

    Dantzger, Miriam; Vasconcelos, Ilka Maria; Scorsato, Valéria; Aparicio, Ricardo; Marangoni, Sergio; Macedo, Maria Lígia Rodrigues


    Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development.

  10. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor. (United States)

    Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu


    SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.

  11. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family. (United States)

    Rehman, Shazia; Aziz, Ejaz; Akhtar, Wasim; Ilyas, Muhammad; Mahmood, Tariq


    Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.

  12. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model. (United States)

    Meléndez-López, Samuel G; Herdman, Scott; Hirata, Ken; Choi, Min-Ho; Choe, Youngchool; Craik, Charles; Caffrey, Conor R; Hansell, Elisabeth; Chávez-Munguía, Bibiana; Chen, Yen Ting; Roush, William R; McKerrow, James; Eckmann, Lars; Guo, Jianhua; Stanley, Samuel L; Reed, Sharon L


    Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.

  13. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity. (United States)

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John


    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein.

  14. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. (United States)

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo


    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.

  15. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice (United States)

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo


    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  16. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). (United States)

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija


    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.

  17. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes. (United States)

    Perron, Michel J; Blouse, Grant E; Shore, Joseph D


    Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.

  18. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa. (United States)

    Sheffield, William P; Bhakta, Varsha


    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin.

  19. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family.

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    Full Text Available Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C, and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution.

  20. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. (United States)

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca


    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.

  1. The reaction of serpins with proteinases involves important enthalpy changes. (United States)

    Boudier, C; Bieth, J G


    When active serpins are proteolytically inactivated in a substrate-like reaction, they undergo an important structural transition with a resultant increase in their conformational stability. We have used microcalorimetry to show that this conformational alteration is accompanied by an important enthalpy change. For instance, the cleavage of alpha(1)-proteinase inhibitor by Pseudomonas aeruginosa elastase, Staphylococcus aureus V8 proteinase, or papain and that of antithrombin by leukocyte elastase are characterized by large enthalpy changes (DeltaH = -53 to -63 kcal mol(-1)). The former reaction also has a large and negative heat capacity (DeltaC(p)() = -566 cal K(-1) mol(-1)). In contrast, serpins release significantly less heat when they act as proteinase inhibitors. For example, the inhibition of pancreatic elastase, leukocyte elastase, and pancreatic chymotrypsin by alpha(1)-proteinase inhibitor and that of pancreatic trypsin and coagulation factor Xa by antithrombin are accompanied by a DeltaH of -20 to -31 kcal mol(-1). We observe no heat release upon proteolytic cleavage of inactive serpins or following inhibition of serine proteinases by canonical inhibitors or upon acylation of chymotrypsin by N-trans-cinnamoylimidazole. We suggest that part of the large enthalpy change that occurs during the structural transition of serpins is used to stabilize the proteinase in its inactive state.

  2. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti. (United States)

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues


    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  3. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family. (United States)

    Christeller, John T; Farley, Peter C; Marshall, Richelle K; Anandan, Ananda; Wright, Michele M; Newcomb, Richard D; Laing, William A


    The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed approximately 30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering approximately 99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family.

  4. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity. (United States)

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min


    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  5. Effects of EGF and TGF-alpha on invasion and proteinase expression of uterine cervical adenocarcinoma OMC-4 cells. (United States)

    Ueda, M; Fujii, H; Yoshizawa, K; Terai, Y; Kumagai, K; Ueki, K; Ueki, M

    Uterine cervical adenocarcinoma typically is an aggressive neoplasm with a propensity for early invasion and dissemination; however, the regulatory mechanism of invasive activity of cervical adenocarcinoma cells has not been fully understood. In this study, biological effects of epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha on invasion and proteinase expression of human cervical adenocarcinoma OMC-4 cells were investigated. Tumor cell migration along a gradient of substratum-bound fibronectin and invasion into the reconstituted basement membrane were stimulated by 0.1-10 nM EGF and TGF-alpha in a concentration-dependent manner. Their effects on tumor cell migration were also confirmed by wound assay. The zymography of tumor-conditioned medium showed that the treatment of OMC-4 cells with EGF and TGF-alpha resulted in the increase of matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (uPA). Matrilysin (MMP-7), also secreted by OMC-4 cells, was not affected by these growth factors. These results suggest that EGF and TGF-alpha act as positive regulators on the invasion of cervical adenocarcinoma cells, which may be associated with their stimulatory effects on tumor cell motility and the induction of type IV collagenase and uPA secreted by tumor cells.

  6. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. (United States)

    Vila, Laura; Quilis, Jordi; Meynard, Donaldo; Breitler, Jean Christophe; Marfà, Victoria; Murillo, Isabel; Vassal, Jean Michel; Messeguer, Joaquima; Guiderdoni, Emmanuel; San Segundo, Blanca


    The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.

  7. Ixodes scapularis tick serine proteinase inhibitor (serpin gene family; annotation and transcriptional analysis

    Directory of Open Access Journals (Sweden)

    Chalaire Katelyn C


    Full Text Available Abstract Background Serine proteinase inhibitors (Serpins are a large superfamily of structurally related, but functionally diverse proteins that control essential proteolytic pathways in most branches of life. Given their importance in the biology of many organisms, the concept that ticks might utilize serpins to evade host defenses and immunizing against or disrupting their functions as targets for tick control is an appealing option. Results A sequence homology search strategy has allowed us to identify at least 45 tick serpin genes in the Ixodes scapularis genome that are structurally segregated into 32 intronless and 13 intron-containing genes. Nine of the intron-containing serpins occur in a cluster of 11 genes that span 170 kb of DNA sequence. Based on consensus amino acid residues in the reactive center loop (RCL and signal peptide scanning, 93% are putatively inhibitory while 82% are putatively extracellular. Among the 11 different amino acid residues that are predicted at the P1 sites, 16 sequences possess basic amino acid (R/K residues. Temporal and spatial expression analyses revealed that 40 of the 45 serpins are differentially expressed in salivary glands (SG and/or midguts (MG of unfed and partially fed ticks. Ten of the 38 serpin genes were expressed from six to 24 hrs of feeding while six and fives genes each are predominantly or exclusively expressed in either MG and SG respectively. Conclusion Given the diversity among tick species, sizes of tick serpin families are likely to be variable. However this study provides insight on the potential sizes of serpin protein families in ticks. Ticks must overcome inflammation, complement activation and blood coagulation to complete feeding. Since these pathways are regulated by serpins that have basic residues at their P1 sites, we speculate that I. scapularis may utilize some of the serpins reported in this study to manipulate host defense. We have discussed our data in the context of

  8. Affinity purification and enzymatic cleavage of inter-alpha inhibitor proteins using antibody and elastase immobilized on CIM monolithic disks. (United States)

    Lim, Yow-Pin; Josic, Djuro; Callanan, Helen; Brown, Jeanne; Hixson, Douglas C


    Epoxy-activated monolithic CIM disks seem to be excellent supports for immobilization of protein ligands. The potential use of enzymes, immobilized on monolithic disks for rapid preparative cleavage proteins in solution was investigated. Digestion of complex plasma proteins was demonstrated by using inter-alpha inhibitors with elastase, immobilized on epoxy-activated CIM disks. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAb 69.31) was developed. MAb 69.31 blocks the inhibitory activity of inter-alpha inhibitor proteins to serine proteases. These results suggest that the epitope defined by this antibody is located within or proximal to the active site of the inhibitor molecule. This antibody, immobilized on monolithic disk, was used for very rapid isolation of inter-alpha proteins. The isolated complex protein was used for enzymatic digestion and isolation of cleavage products, especially from inter-alpha inhibitor light chain to elucidate precisely the target sequence for MAb 69.31 by N-terminal amino acid sequencing. Bovine pancreatic elastase immobilized on monolithic disk cleaves inter-alpha inhibitor protein complex into small fragments which are still reactive with MAb 69.31. One of these proteolytic fragments was isolated and partially sequenced. It could be shown that this sequence is located at the beginning of two proteinase inhibitor domains of the inter-alpha inhibitor light chain (bikunin). Elastase immobilized on monolithic disk offers a simple and rapid method for preparative isolation of protease cleavage fragments. The immobilized enzyme is stable and still active after repeated runs. A partial or complete digestion can be achieved by varying the flow rate.

  9. Enzyme specificity of proteinase inhibitor region in amyloid precursor protein of Alzheimer's disease: different properties compared with protease nexin I. (United States)

    Kitaguchi, N; Takahashi, Y; Oishi, K; Shiojiri, S; Tokushima, Y; Utsunomiya, T; Ito, H


    Senile plaques, often surrounded by abnormally grown neurites, are characteristic of Alzheimer's diseased brain. The core of the plaque is mainly composed of amyloid beta protein (beta-AP), two of whose three precursors (APP) have serine proteinase inhibitor regions (APPI). APPI derivatives containing 60, 72 or 88 amino-acid fragments (APPI-60, APPI-72 and APPI-88, respectively) of the longest APP were produced in COS-1 cell culture medium, with the APPI cDNA ligated to the signal sequence of tissue plasminogen activator. The secreted APPIs were purified by sequential acetone precipitation followed by affinity chromatography using immobilized trypsin. These three APPIs and O-glycosylation-site-mutated APPI showed similar inhibitory activity against trypsin, chymotrypsin and plasmin. The purified APPI-72 was found to inhibit trypsin (Ki = 1.1 x 10(-10) M) and chymotrypsin (Ki = 5.8 x 10(-9) M) most strongly, and to inhibit leukocyte elastase (Ki = 7.9 x 10(-7) M) and several blood coagulation proteinases (Ki = 0.46-12 x 10(-7) M), but not urokinase or thrombin. The observed inhibition pattern was quite different from that of protease nexin I, one of serine proteinase inhibitors possessing neurite outgrowth activity. This suggests that the physiological roles of APPI are different from those of protease nexin I, and that APPI could not cause aberrant growth of neurite into the plaque. The presence of APPI having strong inhibitory activity in the brain might lead to the formation of amyloid deposits by preventing complete degradation of APPs.

  10. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae

    Indian Academy of Sciences (India)

    S Ramesh Babu; B Subrahmanyam; Srinivasan; I M Santha


    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

  11. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus). (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie


    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  12. A four-domain Kunitz-type proteinase inhibitor from Solen grandis is implicated in immune response. (United States)

    Wei, Xiumei; Yang, Jialong; Yang, Jianmin; Liu, Xiangquan; Liu, Meijun; Yang, Dinglong; Xu, Jie; Hu, Xiaoke


    Serine proteinase inhibitor (SPI) serves as a negative regulator in immune signal pathway by restraining the activities of serine proteinase (SP) and plays an essential role in the innate immunity. In the present study, a Kunitz-type SPI was identified from the mollusk razor clam Solen grandis (designated as SgKunitz). The full-length cDNA of SgKunitz was of 1284 bp, containing an open reading frame (ORF) of 768 bp. The ORF encoded four Kunitz domains, and their amino acids were well conserved when compared with those in other Kunitz-type SPIs, especially the six cysteines involved in forming of three disulfide bridges in each domain. In addition, the tertiary structure of all the four domains adopted a typical model of Kunitz-type SPI family, indicating SgKunitz was a new member of Kunitz-type SPI superfamily. The mRNA transcripts of SgKunitz were detected in all tested tissues of razor clam, including muscle, mantle, gonad, gill, hepatopancreas and hemocytes, and with the highest expression level in gill. When the razor clams were stimulated by LPS, PGN or β-1, 3-glucan, the expression level of SgKunitz mRNA in hemocytes was significantly up-regulated (P inhibitor of SP involving in the immune response of S. grandis, and provided helpful evidences to understand the regulation mechanism of immune signal pathway in mollusk.

  13. Crystal quality and inhibitor binding by aspartic proteinases; preparation of high quality crystals of mouse renin (United States)

    Badasso, M.; Sibanda, B. L.; Cooper, J. B.; Dealwis, C. G.; Wood, S. P.


    Renin from mouse submandibular glands has been highly purified and co-crystallized with a synthetic nonapeptide fragment of rat angiotensionogen in which the scissile Leu-Leu bond has been modified as a hydroxyethylene mimic of the transition state. The strong diffraction from these crystals compared to the native form is discussed in relation to the behaviour of other members of the aspartic proteinase family in crystallisation.

  14. Determination of the three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy. (United States)

    Strobl, S; Mühlhahn, P; Bernstein, R; Wiltscheck, R; Maskos, K; Wunderlich, M; Huber, R; Glockshuber, R; Holak, T A


    The three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor (RBI) from seeds of ragi (Eleusine coracana Gaertneri) has been determined in solution using multidimensional 1H and 15N NMR spectroscopy. The inhibitor consists of 122 amino acids, with 5 disulfide bridges, and belongs to the plant alpha-amylase/trypsin inhibitor family for which no three-dimensional structures have yet been available. The structure of the inhibitor was determined on the basis of 1131 interresidue interproton distance constraints derived from nuclear Overhauser enhancement measurements and 52 phi angles, supplemented by 9 psi and 51 chi 1 angles. RBI consists of a globular four-helix motif with a simple "up-and-down" topology. The helices are between residues 18-29, 37-51, 58-65, and 87-94. A fragment from Val 67 to Ser 69 and Gln 73 to Glu 75 forms an antiparallel beta-sheet. The fold of RBI represents a new motif among the serine proteinase inhibitors. The trypsin binding loop of RBI adopts the "canonical", substrate-like conformation which is highly conserved among serine proteinase inhibitors. The binding loop is stabilized by the two adjacent alpha-helices 1 and 2. This motif is also novel and not found in known structures of serine proteinase inhibitors. The three-dimensional structure of RBI together with biochemical data suggests the location of the alpha-amylase binding site on the face of the molecule opposite to the site of the trypsin binding loop. The RBI fold should be general for all members of the RBI family because conserved residues among the members of the family from the core of the structure.

  15. Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo). (United States)

    Prasad, E R; Dutta-Gupta, A; Padmasree, K


    A proteinase inhibitor (BgPI) was purified from black gram, Vigna mungo (cv. TAU-1) seeds by using ammonium sulfate fractionation, followed by ion-exchange, affinity and gel-filtration chromatography. BgPI showed a single band in SDS-PAGE under non-reducing condition with an apparent molecular mass of approximately 8kDa correlating to the peak 8041.5Da in matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum. BgPI existed in different isoinhibitor forms with pI values ranging from 4.3 to 6.0. The internal sequence "SIPPQCHCADIR" of a peak 1453.7 m/z, obtained from MALDI-TOF-TOF showed 100% similarity with Bowman-Birk inhibitor (BBI) family. BgPI exhibited non-competitive-type inhibitory activity against both bovine pancreatic trypsin (K(i) of 309.8nM) and chymotrypsin (K(i) of 10.7muM), however, with a molar ratio of 1:2 with trypsin. BgPI was stable up to a temperature of 80 degrees C and active over a wide pH range between 2 and 12. The temperature-induced conformational changes in secondary structure are reversed when BgPI was cooled from 90 to 25 degrees C. Further, upon reduction with dithiothreitol, BgPI lost both its inhibitory activity as well as secondary structural conformation. Lysine residue(s) present in the reactive site of BgPI play an important role in inhibiting the bovine trypsin activity. The present study provides detailed biochemical characteristic features of a BBI type serine proteinase inhibitor isolated from V. mungo.

  16. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? (United States)

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru


    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  17. Safety of TNF-alpha inhibitors during IBD pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Loftus, Edward V; Jess, Tine


    Tumor necrosis factor (TNF)-alpha inhibitors are increasingly being used in inflammatory bowel disease (IBD). Because this chronic intestinal disorder often affects women of fertile age, it is essential to assess the effect of biologics on pregnancy outcome.......Tumor necrosis factor (TNF)-alpha inhibitors are increasingly being used in inflammatory bowel disease (IBD). Because this chronic intestinal disorder often affects women of fertile age, it is essential to assess the effect of biologics on pregnancy outcome....

  18. Effect of Recombinant alpha1-Antitrypsin Fc-Fused (AAT-Fc)Protein on the Inhibition of Inflammatory Cytokine Production and Streptozotocin-Induced Diabetes

    NARCIS (Netherlands)

    Lee, S.; Lee, Y.; Hong, K.; Hong, J.; Bae, S.; Choi, J.; Jhun, H.; Kwak, A.; Kim, E.; Jo, S.; Dinarello, C.A.; Kim, S.


    alpha1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant reg

  19. A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate. (United States)

    Epinette, Christophe; Croix, Cécile; Jaquillard, Lucie; Marchand-Adam, Sylvain; Kellenberger, Christine; Lalmanach, Gilles; Cadene, Martine; Viaud-Massuard, Marie-Claude; Gauthier, Francis; Korkmaz, Brice


    The biological functions of human neutrophil proteinase 3 (PR3) remain unclear because of its close structural resemblance to neutrophil elastase and its apparent functional redundancy with the latter. Thus, all natural inhibitors of PR3 preferentially target neutrophil elastase. We have designed a selective PR3 inhibitor based on the sequence of one of its specific, sensitive FRET substrates. This azapeptide, azapro-3, inhibits free PR3 in solution, PR3 bound to neutrophil membranes, and the PR3 found in crude lung secretions from patients with chronic inflammatory pulmonary diseases. But it does not inhibit significantly neutrophil elastase or cathepsin G. Unlike most of azapeptides, this inhibitor does not form a stable acyl-enzyme complex; it is a reversible competitive inhibitor with a K(i) comparable to the K(m) of the parent substrate. Low concentrations (60 μM) of azapro-3 totally inhibited the PR3 secreted by triggered human neutrophils (200,000 cells/100 μL) and the PR3 in neutrophil homogenates and in lung secretions of patients with lung inflammation for hours. Azapro-3 also resisted proteolysis by all proteases contained in these samples for at least 2h.


    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez


    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  1. Domain 2 of a Kazal serine proteinase inhibitor SPIPm2 from Penaeus monodon possesses antiviral activity against WSSV. (United States)

    Visetnan, Suwattana; Donpudsa, Suchao; Supungul, Premruethai; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien


    A 5-domain Kazal type serine proteinase inhibitor SPIPm2 from Penaeus monodon is involved in innate immune defense against white spot syndrome virus (WSSV). To test which domains were involved, the 5 domains of SPIPm2 were over-expressed and tested against WSSV infection. By using hemocyte primary cell culture treated with each recombinant SPIPm2 domain along with WSSV, the expression of WSSV early genes ie1, WSV477 and late gene VP28 were substantially reduced as compared to other domains when the recombinant domain 2, rSPIPm2D2, was used. Injecting the WSSV along with rSPIPm2D2 but not with other domains caused delay in mortality rate of the infected shrimp. The results indicate that the SPIPm2D2 possesses strong antiviral activity and, hence, contributes predominantly to the antiviral activity of SPIPm2.

  2. Matrix metalloproteinases-2, -9 and tissue inhibitor of metallo-proteinase-1 in lung cancer invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    MING Shu-hong; SUN Tie-ying; XIAO Wei; XU Xiao-mao


    @@ Lung cancer is a major cause of death from malignant disease due to its high incidence, malignant behavior and lack of major advancements in treatment strategies. The ability to invade tissues and establish colonies at remote sites is a defining characteristic of malignant neoplasms. Matrix metalloproteinases (MMPs) are zinc proteinases that degrade compounds of extracellular matrix (ECM). These enzymes have been implicated in tumour invasion and metastasis through degrading many extracellular matrix proteins especially MMP-2 and MMP-9, which are regarded as markers of tumour invasion and metastasis.1 The purpose of this study is to examine the role of MMP-9, MMP-2, tissue inhibitor of metalloproteinase-1 (TIMP-1) and MMP-9/TIMP-1 in tumour invasion and metastasis as well as the relationships between the mRNA expression of MMP-9 in white blood cells and MMP-9 levels in the plasma.

  3. Arabidopsis cysteine proteinase inhibitor AtCYSb interacts with a Ca(2+)-dependent nuclease, AtCaN2. (United States)

    Guo, Kunyuan; Bu, Yuanyuan; Takano, Tetsuo; Liu, Shenkui; Zhang, Xinxin


    Plant cysteine proteinase inhibitors (cystatins) play important roles in plant defense mechanisms. Some proteins that interact with cystatins may defend against abiotic stresses. Here, we showed that AtCaN2, a Ca(2+)-dependent nuclease in Arabidopsis, is transcribed in senescent leaves and stems and interacts with an Arabidopsis cystatin (AtCYSb) in a yeast two-hybrid screen. The interaction between AtCYSb and AtCaN2 was confirmed by in vitro pull-down assay and bimolecular fluorescence complementation. Agarose gel electrophoresis showed that the nuclease activity of AtCaN2 against λDNA was inhibited by AtCYSb, which suggests that AtCYSb regulates nucleic acid degradation in cells.

  4. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T


    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... or unwilling to undergo surgical resection of the prostate will benefit from such therapy....

  5. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W. (UIC)


    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  6. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches (United States)

    Katritch, Vsevolod; Byrd, Chelsea M.; Tseitin, Vladimir; Dai, Dongcheng; Raush, Eugene; Totrov, Maxim; Abagyan, Ruben; Jordan, Robert; Hruby, Dennis E.


    Essential for viral replication and highly conserved among poxviridae, the vaccinia virus I7L ubiquitin-like proteinase (ULP) is an attractive target for development of smallpox antiviral drugs. At the same time, the I7L proteinase exemplifies several interesting challenges from the rational drug design perspective. In the absence of a published I7L X-ray structure, we have built a detailed 3D model of the I7L ligand binding site (S2-S2' pocket) based on exceptionally high structural conservation of this site in proteases of the ULP family. The accuracy and limitations of this model were assessed through comparative analysis of available X-ray structures of ULPs, as well as energy based conformational modeling. The 3D model of the I7L ligand binding site was used to perform covalent docking and VLS of a comprehensive library of about 230,000 available ketone and aldehyde compounds. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase activity were confirmed in biochemical assays (˜20% overall hit rate). These experimental results both validate our I7L ligand binding model and provide initial leads for rational optimization of poxvirus I7L proteinase inhibitors. Thus, fragments predicted to bind in the prime portion of the active site can be combined with fragments on non-prime side to yield compounds with improved activity and specificity.

  7. Macroalage as a source of alpha-glucosidase inhibitors

    Institute of Scientific and Technical Information of China (English)


    Alpha-glucosidase inhibitors were screened from organic solvent extracts of macroalgae by a spectrophotometrical method with p-nitrophenyl-D-glucopyranosidase as the substrate. The result indicates that organic crude extracts from some macroalgae such as Rhodomela confervoides (Huds.) Silva, Gracilaria textorii (Suringar) DeToni, Plocamium telfairiae Harv., Dictyopteris divaricata (Okam.) Okam, Ulval pertusa and Enteromorpha intestinalis (L.) Link et al. show strong inhibitory activity of alpha-glucosidase at concentration of 79.6 μg/ml.

  8. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease as alarm antiproteinases in inflammatory lung disease

    Directory of Open Access Journals (Sweden)

    Sallenave Jean-Michel


    Full Text Available Abstract Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications.

  9. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families

    Institute of Scientific and Technical Information of China (English)

    WANG YuePing; CHEN XiongTing; QIU LiJuan


    Trypsin inhibitors have been found in various animals, plants and microorganisms. There were two types of trypsin inhibitors in soybean including Bowman-Birk protease inhibitors (BBI) and Kunitz in-hibitors (KTI). The different BBI genes from wild soybean (G.soja) and cultivated soybean (G max) formed a multigene family. We constructed a cDNA library of cultivar 'SuiNong 14' seed at the R7 growth stage using the SMART Kit. Seventeen contigs or singletons were highly homologous to soy-bean protease inhibitors. Contigs of 5, 35, 8 and 9 were highly homologous to BBI family members BBI-A1, BBI-A2, BBI-C and BBI-D, respectively. Sequence analyses showed there were novel allelic varia-tions among the 4 BBI members in SuiNong 14. Based on the comparison of soybean seed cDNA li-braries from different developmental stages, it was apparent that the expression of trypsin inhibitors increased during seed development in soybean. Phylogenetic analysis of BBI gene sequences among dicotyledonous and monocotyledonous plants demonstrated that these genes shared a common pro-genitor.

  10. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families

    Institute of Scientific and Technical Information of China (English)


    Trypsin inhibitors have been found in various animals, plants and microorganisms.There were two types of trypsin inhibitors in soybean including Bowman-Birk protease inhibitors(BBI) and Kunitz in-hibitors(KTI).The different BBI genes from wild soybean(G.soja) and cultivated soybean(G.max) formed a multigene family.We constructed a cDNA library of cultivar ’SuiNong 14’ seed at the R7 growth stage using the SMART Kit.Seventeen contigs or singletons were highly homologous to soy-bean protease inhibitors.Contigs of 5, 35, 8 and 9 were highly homologous to BBI family members BBI-A1, BBI-A2, BBI-C and BBI-D, respectively.Sequence analyses showed there were novel allelic varia-tions among the 4 BBI members in SuiNong 14.Based on the comparison of soybean seed cDNA li-braries from different developmental stages, it was apparent that the expression of trypsin inhibitors increased during seed development in soybean.Phylogenetic analysis of BBI gene sequences among dicotyledonous and monocotyledonous plants demonstrated that these genes shared a common pro-genitor.

  11. Zinc oxide nanoparticles as novel alpha-amylase inhibitors (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.


    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  12. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice. (United States)

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo


    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  13. Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy. (United States)

    Popovic, Milica M; Milovanovic, Mina; Burazer, Lidija; Vuckovic, Olga; Hoffmann-Sommergruber, Karin; Knulst, Andre C; Lindner, Buko; Petersen, Arnd; Jankov, Ratko; Gavrovic-Jankulovic, Marija


    Kiwifruit has become a frequent cause of fruit allergy in the recent years. The molecular basis of type I hypersensitivity to kiwifruit is attributed to 11 IUIS allergens, with Act d 1, Act d 2 and Act d 5 characterized in extenso. Evaluation of the allergenic properties of Act d 4, a cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa) was performed in this study. Identity of the purified glycoprotein was determined by Edman degradation and by mass fingerprint whereby more than 90% of the primary structure of the mature kiwifruit cystatin was confirmed. Using MALDI TOF analysis, molecular masses of 10902.5 and 11055.2 Da were detected for Act d 4, respectively. Positive skin prick reactivity with Act d 4 was induced in three kiwifruit allergic patients, as well as the upregulation of CD63 and CD203c molecules in the basophile activation assay. The IgE reactivity was detected in dot blot analysis while Western blot analysis was negative using sera from six kiwifruit patients, suggesting the presence of conformational IgE epitopes on the Act d 4 molecule. As activator of effector cells in type I hypersensitivity Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy.

  14. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI Attenuates Elastase-Induced Emphysema in Mice

    Directory of Open Access Journals (Sweden)

    Bruno Tadeu Martins-Olivera


    Full Text Available Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD. However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group or saline (SAL group and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups. At day 28, the following analyses were performed: (I lung mechanics, (II exhaled nitric oxide (ENO, (III bronchoalveolar lavage fluid (BALF, and (IV lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  15. Expression, purification and characterization of recombinant human serine proteinase inhibitor Kazal-type 6 (SPINK6) in Pichia pastoris. (United States)

    Lu, Hairong; Huang, Jinjiang; Li, Guodong; Ge, Kuikui; Wu, Hongyu; Huang, Qingshan


    Human serine proteinase inhibitor Kazal-type 6 (SPINK6) belongs to the medically important SPINK family. Malfunctions of SPINK members are linked to many diseases, including pancreatitis, skin barrier defects, and cancer. SPINK6 has been shown to selectively inhibit Kallikrein-related peptidases (KLKs) in human skin. As a SPINK protein, it contains a typical Kazal domain, which requires three intramolecular disulfide bonds for correct folding and activity. Preparation of functional protein is a prerequisite for studying this important human factor. Here, we report the successful generation of tagless SPINK6 using a yeast expression system. The recombinant protein was secreted and purified by cation exchange and size-exclusion chromatography. The protein identity was confirmed by MALDI-TOF MS and N-terminal sequencing. Pichia pastoris-derived recombinant human SPINK6 (rhSPINK6) showed higher inhibitory activity against Kallikrein-related peptidase 14 (KLK14) (K(i)=0.16 nM) than previously reported Escherichia coli-derived rhSPINK6 (K(i)=0.5 nM). This protein also exhibited moderate inhibition of bovine trypsin (K(i)=33 nM), while previous E. coli-derived rhSPINK6 did not. The results indicate that P. pastoris is a better system to generate active rhSPINK6, warranting further studies on this medically important SPINK family candidate.

  16. alpha 2-Plasmin inhibitor metabolism in patients with liver cirrhosis. (United States)

    Knot, E A; Drijfhout, H R; ten Cate, J W; de Jong, E; Iburg, A H; Kahlé, L H; Grijm, R


    We describe the metabolism of purified human alpha 2-plasmin inhibitor in patients with liver cirrhosis to determine whether low plasma concentrations of alpha 2-plasmin inhibitor are the result of impaired synthesis or increased catabolism or both. A kinetic study was performed with 131I-alpha 2-plasmin inhibitor as a sensitive parameter of fibrinolysis in 14 patients with histologically proved liver cirrhosis compared with six healthy control subjects. Eight patients had macronodular cirrhosis (with positive hepatitis B surface antigen), and six had micronodular cirrhosis as a result of alcohol abuse. None of the patients had clinical signs of ascites, and in all the disease was stabilized. alpha 2-Plasmin inhibitor levels biologically and immunologically measured were decreased in all patients. Ten microCi 131I-alpha 2PI was injected intravenously, the disappearance of plasma radioactivity was measured, and turnover data were calculated according to the function x(t) = A1e-alpha 1t + A2e-alpha 2t + Be-beta t. Mean (+/- SD) turnover data in the control subjects were plasma radioactivity half-life 60.1 +/- 5.3 hours, fractional catabolic rate constant of the plasma pool 0.0318 +/- 0.0106 hr-1, and absolute catabolic (synthetic) rate constant 2.10 +/- 0.60 mg/kg/day. The alpha 1-phase was 1.26 +/- 0.23, and the transcapillary influx constant (k2,1) was 0.974 +/- 0.109 hr-1. In the patients, plasma radioactivity half-life was 58.7 +/- 12.09 hr, and fractional catabolic rate constant of the plasma pool 0.0283 +/- 0.0043 hr-1. The alpha 1-phase 4.74 +/- 6.48 and the transcapillary influx (k2,1) 3.08 +/- 3.9 hr-1 were both significantly increased compared with control values (p less than 0.05 and p less than 0.05, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Interaction between Kazal serine proteinase inhibitor SPIPm2 and viral protein WSV477 reduces the replication of white spot syndrome virus. (United States)

    Ponprateep, Sirikwan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien


    White spot syndrome (WSS) is a viral disease caused by white spot syndrome virus (WSSV) which leads to severe mortality in cultured penaeid shrimp. In response to WSSV infection in Penaeus monodon, a Kazal serine proteinase inhibitor SPIPm2, normally stored in the granules of granular and semi-granular hemocytes is up-regulated and found to deter the viral replication. By using yeast two-hybrid screening, we have identified a viral target protein, namely WSV477. Instead of being a proteinase, the WSV477 was reported to be a Cys2/Cys2-type zinc finger regulatory protein having ATP/GTP-binding activity. In vitro pull down assay confirmed the protein-protein interaction between rSPIPm2 and rWSV477. Confocal laser scanning microscopy demonstrated that the SPIPm2 and WSV477 were co-localized in the cytoplasm of shrimp hemocytes. Using RNA interference, the silencing of WSV477 resulted in down-regulated of viral late gene VP28, the same result obtained with SPIPm2. In this instance, the SPIPm2 does not function as proteinase inhibitor but inhibit the regulatory function of WSV477.

  18. Occurrence of Two Distinct Types of Tissue Inhibitors of Metallo-proteinases-2 in Fugu rubripes

    Institute of Scientific and Technical Information of China (English)

    Yoshihiro Yokoyama; Hiroshi Tsukamoto; Tohru Suzuki; Shohshi Mizuta; Reiji Yoshinaka


    In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, whichmight form six disulfide bonds as in other animals TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.

  19. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance. (United States)

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B


    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  20. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    Energy Technology Data Exchange (ETDEWEB)

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.; Thorn, Katherine J.; Christianson, David W. (MIT); (Episcopal U); (Rutgers); (Drexel); (Penn)


    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.

  1. The response to epidermal growth factor of human maxillary tumor cells in terms of tumor growth, invasion and expression of proteinase inhibitors. (United States)

    Mizoguchi, H; Komiyama, S; Matsui, K; Hamanaka, R; Ono, M; Kiue, A; Kobayashi, M; Shimizu, N; Welgus, H G; Kuwano, M


    Three cancer cell lines, IMC-2, IMC-3 and IMC-4, were established from a single tumor of a patient with maxillary cancer. We examined responses to epidermal growth factor (EGF) of these 3 cell lines with regard to cell growth and tumor invasion. The growth rate of IMC-2 in nude mice was markedly faster than that of the IMC-3 and IMC-4 cell lines. Assay for invasion through fibrin gels showed significantly enhanced invasive capacity of IMC-2 cells in response to EGF, but no change for IMC-3 and IMC-4 cells. We examined response to EGF of IMC-2 cells with regard to expression of a growth-related oncogene (c-fos), proteinases and their inhibitors. Expression of c-fos was transiently increased in IMC-2 cells at rates comparable to those seen in the 2 other lines in the presence of EGF. There was no apparent effect of EGF on the expression of urokinase-type plasminogen activator and 72-kDa type-IV collagenase in IMC-2 cells. In contrast, EGF specifically enhanced the expression of plasminogen activator inhibitor-I (PAI-I) and tissue inhibitor of metalloproteinases-I (TIMP-I) in IMC-2 cells. Our data suggest that proteinase inhibitors or other related factors may play an important role in tumor growth and invasion in response to EGF.

  2. A unique downstream estrogen responsive unit mediates estrogen induction of proteinase inhibitor-9, a cellular inhibitor of IL-1beta- converting enzyme (caspase 1). (United States)

    Krieg, S A; Krieg, A J; Shapiro, D J


    Recently, proteinase inhibitor 9 (PI-9) was identified as the first endogenous inhibitor of caspase 1 (IL-1beta-converting enzyme). The regulation of PI-9 expression, therefore, has great importance in the control of inflammatory processes. We reported that PI-9 mRNA and protein are rapidly and directly induced by estrogen in human liver cells. Using transient transfections to assay PI-9 promoter truncations and mutations, we demonstrate that this strong estrogen induction is mediated by a unique downstream estrogen responsive unit (ERU) approximately 200 nucleotides downstream of the transcription start site. Using primers flanking the ERU in chromatin immunoprecipitation assays, we demonstrate estrogen-dependent binding of ER to the cellular PI-9 promoter. The ERU consists of an imperfect estrogen response element (ERE) palindrome immediately adjacent to a direct repeat containing two consensus ERE half-sites separated by 13 nucleotides (DR13). In transient transfections, all four of the ERE half-sites in the imperfect ERE and in the DR13 were important for estrogen inducibility. Transfected chicken ovalbumin upstream transcription factor I and II down-regulated estrogen-mediated expression from the ERU. EMSAs using purified recombinant human ERalpha demonstrate high-affinity binding of two ER complexes to the ERU. Further EMSAs showed that one ER dimer binds to an isolated DR13, supporting the view that one ER dimer binds to the imperfect ERE and one ER dimer binds to DR13. Deoxyribonuclease I footprinting showed that purified ER protected all four of the half-sites in the ERU. Our finding that a direct repeat can function with an imperfect ERE palindrome to confer estrogen inducibility on a native gene extends the repertoire of DNA sequences able to function as EREs.

  3. Off-label use of TNF-alpha inhibitors in a dermatological university department

    DEFF Research Database (Denmark)

    Sand, Freja Lærke; Thomsen, Simon Francis


    of TNF-alpha inhibitors used for off-label dermatological indications. We retrospectively evaluated patient records of 118 patients treated off-label with TNF-alpha inhibitors in a dermatological university department. Patients presented with severe aphthous stomatitis/genital aphthous lesions (26......Tumor necrosis factor-alpha (TNF)-alpha inhibitors are licensed for patients with severe refractory psoriasis and psoriatic arthritis. However, TNF-alpha inhibitors have also been used off-label for various recalcitrant mucocutaneous diseases. This study aimed to evaluate the efficacy and safety...

  4. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Farrukh Jamal


    Full Text Available An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1×10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50 of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50 was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants.

  5. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L.(Fabaceae active against Gut Proteases of Lepidopteran pest Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Marri Swathi


    Full Text Available AbstractProteinase inhibitors (PIs are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63 were purified from mature dry seeds of C. platycarpus (ICPW-63 and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI activity than trypsin inhibitor (TI activity. Analysis of CpPI 63 using two-dimensional (2-D electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6-58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs. The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6 of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs as well as miraculin-like proteins (MLPs. Further, modification of lysine residue(s lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus.

  6. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M.E. Pereira


    Full Text Available The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

  7. Substrate-inhibitor interactions in the kinetics of alpha-amylase inhibition by ragi alpha-amylase/trypsin inhibitor (RATI) and its various N-terminal fragments. (United States)

    Alam, N; Gourinath, S; Dey, S; Srinivasan, A; Singh, T P


    The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.

  8. Evaluation of in vitro and in vivo effects of semipurified proteinase inhibitors from Theobroma seeds on midgut protease activity of Lepidopteran pest insects. (United States)

    Paulillo, Luis Cesar Maffei Sartini; Sebbenn, Alexandre Magno; de Carvalho Derbyshire, Maria Tereza Vitral; Góes-Neto, Aristóteles; de Paula Brotto, Marco Aurélio; Figueira, Antonio


    We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.

  9. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. (United States)

    Jensen, Jan K; Dolmer, Klavs; Gettins, Peter G W


    The low density lipoprotein receptor-related protein (LRP) is the principal clearance receptor for serpins and serpin-proteinase complexes. The ligand binding regions of LRP consist of clusters of cysteine-rich approximately 40-residue complement-like repeats (CR), with cluster II being the principal ligand-binding region. To better understand the specificity of binding at different sites within the cluster and the ability of LRP to discriminate in vivo between uncomplexed and proteinase-complexed serpins, we have systematically examined the affinities of plasminogen activator inhibitor-1 (PAI-1) and proteinase nexin-1 (PN-1) in their native, cleaved, and proteinase-complexed states to (CR)(2) and (CR)(3) fragments of LRP cluster II. A consistent blue shift of the CR domain tryptophan fluorescence suggested a common mode of serpin binding, involving lysines on the serpin engaging the acidic region around the calcium binding site of the CR domain. High affinity binding of non-proteinase-complexed PAI-1 and PN-1 occurred to all fragments containing three CR domains (3-59 nm) and most that contain only two CR domains, although binding energies to different (CR)(3) fragments differed by up to 18% for PAI-1 and 9% for PN-1. No detectable difference in affinity was seen between native and cleaved serpin. However, the presence of proteinase in complex with the serpin enhanced affinity modestly and presumably nonspecifically. This may be sufficient to give preferential binding of such complexes in vivo at the relevant physiological concentrations.

  10. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B


    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  11. 丝氨酸蛋白酶抑制剂PI-9的研究进展%The present understanding of serine proteinase inhibitor-9

    Institute of Scientific and Technical Information of China (English)

    雷晓晔; 周业江


    丝氨酸蛋白酶抑制剂-9(serine proteinase inhibitor9,PI-9)是丝氨酸蛋白酶抑制剂的重要成员,也是目前发现的颗粒蛋白酶B(granzyme B,GrB)唯一的内源性丝氨酸蛋白酶抑制剂.近年研究发现,PI-9能抑制GrB所致的靶细胞DNA断裂而阻断其诱导的细胞凋亡.在生理状况下,PI-9能阻止细胞毒淋巴细胞之间的相互攻击,维持机体免疫豁免部位的功能.近年研究发现PI-9还涉及-多种病理过程,诸如调节炎性介质反应,移植免疫应答及介导肿瘤免疫耐受等多种功能.%Serine proteinase inhibitor9(P1-9),a charac-teristic member of serpins,has been identified as the only inhibitor of granzyme B(GrB).Accumulated evidence suggested that PI-9 inhibits GrB-induced apoptosis by blocking DNA fragmentation of target cell.Physiologically,PI-9 could protect cytotoxic lymphocytes from committing autolysis or fratricide,and play an important role in facilitating immunologic tolerance of immune-privileged sites.In addition,evidences in recent years suggest that PI-9 Was also involved in vailous pathologic processes,such as inflammation,trans plantation and immune tolerance of tumor.

  12. 5-Amino-pyrazoles as potent and selective p38[alpha] inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jagabandhu; Moquin, Robert V.; Dyckman, Alaric J.; Li, Tianle; Pitt, Sidney; Zhang, Rosemary; Shen, Ding Ren; McIntyre, Kim W.; Gillooly, Kathleen; Doweyko, Arthur M.; Newitt, John A.; Sack, John S.; Zhang, Hongjian; Kiefer, Susan E.; Kish, Kevin; McKinnon, Murray; Barrish, Joel C.; Dodd, John H.; Schieven, Gary L.; Leftheris, Katerina (BMS)


    The synthesis and structure-activity relationships (SAR) of p38{alpha} MAP kinase inhibitors based on a 5-amino-pyrazole scaffold are described. These studies led to the identification of compound 2j as a potent and selective inhibitor of p38{alpha} MAP kinase with excellent cellular potency toward the inhibition of TNF{alpha} production. Compound 2j was highly efficacious in vivo in inhibiting TNF{alpha} production in an acute murine model of TNF{alpha} production. X-ray co-crystallography of a 5-amino-pyrazole analog 2f bound to unphosphorylated p38{alpha} is also disclosed.

  13. Molecular characterization, expression and function analysis of a five-domain Kazal-type serine proteinase inhibitor from pearl oyster Pinctada fucata. (United States)

    Zhang, Dianchang; Ma, Jianjun; Jiang, Shigui


    Serine proteinase inhibitors represent an expanding superfamily of endogenous inhibitors that are regulate proteolytic events and involved in a variety of physiological and immunological processes. A five-domain Kazal-type serine proteinase inhibitor (poKSPI) was identified and characterized from pearl oyster Pinctada fucata based on expressed sequence tag (EST) analysis. The full-length cDNA was 737 bp with an open reading frame (ORF) 660 bp encoding a 219 amino acid protein a theoretical molecular weight (Mw) of 23.3 kDa and an isoelectric point (pI) of 8.40. A putative signal peptide of 19 amino acid residues and five tandem Kazal domains were identified. Four of the Kazal domains had the highly conserved motif sequences with six cysteine residues responsible for the formation of disulfide bridges. The deduced amino acid sequence of the poKSPI shared high homology with KSPIs from Hirudo medicinalis. The poKSPI mRNA could be detected in all examined tissues, the expression level of the poKSPI mRNA was the highest in mantle and gonad, while the lowest in haemocyte and intestine. After LPS challenge, the expression level of the poKSPI mRNA in digestive gland was significantly up-regulated at 4 h post-challenge and reached the peak at 12 h post-challenge, which was 4.23-fold higher than control group; the expression level of the poKSPI mRNA in gill was also significantly up-regulated at 8 and 12 h post-challenge, which were 4.48 and 2.26-fold higher than control group. After Vibrio alginolyticus challenge, the expression levels of the poKSPI mRNA in digestive gland were significantly up-regulated at 8, 12, 48 and 72 h post-challenge, which were 1.70, 1.79, 3.89 and 5.69-fold higher than control group, respectively; the expression level of the poKSPI mRNA in gill was significantly up-regulated at 24 h post-challenge, which was 5.30-fold higher than control group. The recombinant poKSPI protein could inhibit chymotrypsin and trypsin activities in dose

  14. The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan

    Directory of Open Access Journals (Sweden)

    Yan Ze-Hong


    Full Text Available Abstract Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature. Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to a small genetic divergence between large geographic distances also suggested that the SNPs were subjected to natural selection, and ecological factors had an important evolutionary role in polymorphisms at this locus. According to population and codon analysis, these results suggested that monomeric alpha-amylase inhibitors are adaptively selected under different environmental conditions.

  15. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira


    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  16. [Neurological complications during treatment of the tumor necrosis alpha inhibitors]. (United States)

    Piusińska-Macoch, Renata


    Medications with TNF-alpha inhibitors family are successfully applicable in rheumatology, gastroenterology, dermatology and neurology. Still, the ongoing research on the safety assessment of their application, also due to neurological complications. The vast majority of these complications is associated with an increased risk of serious virus (Herpes simplex--JC) and bacterial (Listeria monocytogenes) neuroinfections. They can cause the occurrence of progressive multifocal leukoencephalopathy--PML with a severe clinical course and poor prognosis or herpes simplex encephalitis--HSE. Meta-analysis revealed a number of cases of PML and the HSE in the first 6 months of treatment with natalizumab, efalizumab, rituximab, abatacept and infliximab. Common complication occasionally turning on this biologics is chronic demyelinating polyneuropathy or Lewis-Sumner syndrome. Described are cases of central and peripheral demyelination typical of multiple sclerosis (MS). Are also reported cases of motor multifocal neuropathy with conduction block acute encephalithis with polyneuropathy or mononeuropathy in the form of anterior optic neuropathy Guillen-Barre' syndrome and its variant, Miller-Fisher syndrome have been confirmed as adverse events following treatment with infliximab. Also revealed several cases of myasthenia gravis after using etanercept. In the few cases of systemic lupus CNS involvement caused by treatment with TNF inhibitors, the mechanism of these disorders is still considered too vague. Due to the emerging reports on the number of neurological adverse events of TNF antagonists, significantly higher than those described in the literature, the safety of their use requires further monitoring and multicenter studies.

  17. The Kinetic Characteristics of Proteinase A Inhibitor GLPAI%蛋白酶A抑制剂GLPAI动力学性质的研究

    Institute of Scientific and Technical Information of China (English)

    李屹松; 田亚平


    对一种从灵芝发酵液中提取得到的蛋白酶A抑制剂GLPAI(Ganoderma Lucidum pro-teinase A inhibitor)的动力学性质进行了研究,分别以胃蛋白酶、胰蛋白酶和蛋白酶A为底物考察了GLPAI的动力学性质,实验结果:GLPAI对上述3种蛋白酶的抑制类型均属于混合型抑制模式,对胃蛋白酶的Ki=4.64(μmol/L);对胰蛋白酶的Ki=33.5(μmo1/L);对蛋白酶A的Ki=2.7(μmol/L).

  18. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes. (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe


    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  19. Cloning of a Potato Proteinase Inhibitor Gene PINII-2x from Diploid Potato (Solanum phurejia L.) and Transgenic Investigation of Its Potential to Confer Insect Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    Qing-Yun Bu; Liang Wu; Shi-Hu Yang; Jian-Min Wan


    Both cDNA and a genomic DNA fragment encoding a new potato proteinase inhibitor Ⅱ were isolated from a diploid potato IVP101 (Solanum phurejia L.) and named PINⅡ-2x. Nucleotide sequencing confirmed that the DNA fragment of PINⅡ-2xwas 580 bp, including a 115-bp intron and two exons. The deduced PINⅡ-2x protein contained an intact signal peptide and two active sites. The PINⅡ-2x gene and its deduced PINⅡ-2x protein had 88% and 93% homology with another tetraploid potato proteinase inhibitor Ⅱ, respectively. Northern blotting analysis indicated that the mRNA of PINⅡ-2x gene was wound induced in potato leaves. Binary vector pNAR301 and pNAR302 were constructed for rice transformation, in which the PINⅡ-2x cDNA was driven,respectively, by rice actin I promoter (Actl) and maize ubiquitin promoter (Ubil). Via an Agrobacteriummediated method, these two constructs were transferred into japonica rice cv. Xiushui 63. PCR and Southern blotting analysis for transgenic rice revealed the integration of the PINⅡ-2x gene. Northern blotting analysis also confirmed transcripts of the PINⅡ-2x gene in transgenic rice plants. Insect bioassays using stripe stem borer (Chilo suppressalis Walker) demonstrated that the average weight and body length of larvae in transgenic plants were only nearly 50% and 61% of those of larvae in control plants, respectively.These results indicate that the PINⅡ-2x gene should be an effective insect-resistance gene and could be valuable for application in crop breeding for insect resistance.

  20. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen. (United States)

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R


    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  1. Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema. (United States)

    Cruz-Silva, Ilana; Neuhof, Christiane; Gozzo, Andrezza Justino; Nunes, Viviane Abreu; Hirata, Izaura Yoshico; Sampaio, Misako Uemura; Figueiredo-Ribeiro, Rita de Cássia; Neuhof, Heinz; Araújo, Mariana da Silva


    Acute lung injury (ALI) is characterized by neutrophil infiltration and the release of proteases, mainly elastase (NE), cathepsin G (Cat G) and proteinase 3 (PR3), which can be controlled by specific endogenous inhibitors. However, inhibitors of these proteases have been isolated from different sources, including plants. For this study, CeEI, or Caesalpinia echinata elastase inhibitor, was purified from C. echinata (Brazil-wood) seeds after acetone fractionation, followed by ion exchange and reversed phase chromatographic steps. Characterization with SDS-PAGE, stability assays, amino acid sequencing and alignment with other protein sequences confirmed that CeEI is a member of the soybean Kunitz trypsin inhibitor family. Like other members of this family, CeEI is a 20 kDa monomeric protein; it is stable within a large pH and temperature range, with four cysteine residues forming two disulfide bridges, conserved amino acid residues and leucine-isoleucine residues in the reactive site. CeEI was able to inhibit NE and Cat G at a nanomolar range (with K(i)s of 1.9 and 3.6 nM, respectively) and inhibited PR3 within a micromolar range (K(i) 3.7 μM), leading to hydrolysis of specific synthetic substrates. In a lung edema model, CeEI reduced the lung weight and pulmonary artery pressure until 180 min after the injection of zymosan-activated polymorphonuclear neutrophils. In experiments performed in the presence of a Cat G and PR3, but not an NE inhibitor, lung edema was reduced only until 150 min and pulmonary artery pressure was similar to that of the control. These results confirm that NE action is crucial to edema establishment and progression. Additionally, CeEI appears to be a useful tool for studying the physiology of pulmonary edema and provides a template for molecular engineering and drug design for ALI therapy.

  2. 无核荔枝半胱氨酸蛋白酶抑制剂基因克隆及序列分析%Cloning and Sequence Analysis of a Cysteine Proteinase Inhibitor Gene of Seedless Litchi

    Institute of Scientific and Technical Information of China (English)

    刘兴地; 刘娜; 李明芳; 郑学勤


    [ Objective] This study aimed to clone the cysteine proteinase inhibitor gene of seedless litchi and analyze the sequence. [ Method] According to the EST sequence of cysteine proteinase inhibitor in constructed SSH subtractive library of seedless litchi abortion, nucleotide sequence of the cysteine proteinase inhibitor gene was obtained by using RACE technology and analyzed by using bioinformatics software. [ Result] A cysteine protease inhibitor gene was obtained with the sequence of 635 bp containing a 321 bp open reading frame. It was predicted that the encoded protein contained 106 amino acids with conserved domain of cysteine proteinase inhibitor and had relatively high homology with the cysteine proteinase inhibitor gene of several species. [ Conclusion] This study had laid the foundation for further exploring the physiological functions of this cysteine proteinase inhibitor gene in plants.%[目的]对无核荔枝的半胱氨酸蛋白酶抑制剂基因进行克隆,并对其序列下进行分析.[方法]根据构建的无核荔枝胚败育SSH消减文库的半胱氨酸蛋白酶抑制剂EST序列,通过RACE技术获得半胱氨酸蛋白酶抑制基因的核苷酸序列并应用生物信息学软件进行分析.[结果]获得一个635 bp的半胱氨酸蛋白酶抑制基因序列,预测该序列含有321 bp的开放阅读框,推导其编码的蛋白质含106个氨基酸,具有半胱氨酸蛋白酶抑制剂保守区,与多个物种的半胱氨酸蛋白酶抑制剂基因具有较高的同源性.[结论]为进一步研究半胱氨酸蛋白酶抑制剂在植物中的生理功能奠定了基础.

  3. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji;


    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors.......-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI...

  4. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. (United States)

    Chen, Lili; Gui, Chunshan; Luo, Xiaomin; Yang, Qingang; Günther, Stephan; Scandella, Elke; Drosten, Christian; Bai, Donglu; He, Xichang; Ludewig, Burkhard; Chen, Jing; Luo, Haibin; Yang, Yiming; Yang, Yifu; Zou, Jianping; Thiel, Volker; Chen, Kaixian; Shen, Jianhua; Shen, Xu; Jiang, Hualiang


    The 3C-like proteinase (3CLpro) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for anti-SARS-CoV drugs due to its crucial role in the viral life cycle. In this study, a database containing structural information of more than 8,000 existing drugs was virtually screened by a docking approach to identify potential binding molecules of SARS-CoV 3CLpro. As a target for screening, both a homology model and the crystallographic structure of the binding pocket of the enzyme were used. Cinanserin (SQ 10,643), a well-characterized serotonin antagonist that has undergone preliminary clinical testing in humans in the 1960s, showed a high score in the screening and was chosen for further experimental evaluation. Binding of both cinanserin and its hydrochloride to bacterially expressed 3CLpro of SARS-CoV and the related human coronavirus 229E (HCoV-229E) was demonstrated by surface plasmon resonance technology. The catalytic activity of both enzymes was inhibited with 50% inhibitory concentration (IC50) values of 5 microM, as tested with a fluorogenic substrate. The antiviral activity of cinanserin was further evaluated in tissue culture assays, namely, a replicon system based on HCoV-229E and quantitative test assays with infectious SARS-CoV and HCoV-229E. All assays revealed a strong inhibition of coronavirus replication at nontoxic drug concentrations. The level of virus RNA and infectious particles was reduced by up to 4 log units, with IC50 values ranging from 19 to 34 microM. These findings demonstrate that the old drug cinanserin is an inhibitor of SARS-CoV replication, acting most likely via inhibition of the 3CL proteinase.

  5. Biochemical, immunological and kinetic characterization and partial sequence analysis of a thiol proteinase inhibitor from Bubalus bubalis kidney: An attempt targeting kidney disorders. (United States)

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees


    In the present study a thiol proteinase inhibitor was isolated from buffalo kidney making use of ammonium sulphate precipitation and gel filtration chromatography on Sephacryl S-100HR column. Purified inhibitor is homogeneous as it displayed a single band in gel electrophoresis both under reducing and non-reducing environment and is of 65KDa as revealed by gel filtration and SDS PAGE. Kinetic studies revealed the presence of reversible accompanied with competitive mode of inhibition; showing maximum efficacy against papain (Ki=2.90×10(-4)). It was maximally active at pH 8.0 and was stable for a period of 30, 60 and 90 days at 37, 4 and -20°C respectively. Immunological studies confirmed its purity of epitopes as a single precipitin line is obtained in immunodiffusion. N-terminal analysis revealed that it shared a good homology with mouse kidney cystatin as well as with Human Cys C and Cys E thereby advocating its use as a model for various human oriented studies which targets how the kidney cystatin level varies in accordance with various drugs that are currently being used as a target for variety of diseases.

  6. A Kazal-type serine proteinase inhibitor from chicken liver (clTI-1): purification, primary structure, and inhibitory properties. (United States)

    Kubiak, Agnieszka; Jakimowicz, Piotr; Polanowski, Antoni


    Low-molecular-mass trypsin inhibitor (clTI-1; chicken liver Trypsin Inhibitor-1) was purified from chicken liver by extraction with perchloric acid, ammonium sulfate precipitation, a combination of ethanol-acetone fractionation followed by gel filtration, ion-exchange chromatography and RP-HPLC on a C18 column. The inhibitor occurs in two isoforms with molecular masses of 5938.56 and 6026.29 Da (determined by MALDI TOFF mass spectrometry). The complete amino acid sequences of both isoforms were determined (UniProtKB/Swiss-Prot P85000; ISK1L_CHICK). The inhibitor shows a high homology to Kazal-type family inhibitors, especially to trypsin/acrosin inhibitors and pancreatic secretory trypsin inhibitors. clTI-1 inhibits both bovine and porcine trypsin (K(a)=1.1 x 10(9) M(-1) and 2.5 x 10(9) M(-1), respectively). Significant differences were shown in the inhibition of the anionic and cationic forms of chicken trypsin (K(a)=4.5 x 10(8) M(-1) and 1.2 x 10(10) M(-1)). Weak interaction with human plasmin (K(a)=1.2 x 10(7) M(-1)) was also revealed.

  7. DNA structures decorated with cathepsin G/secretory leukocyte proteinase inhibitor stimulate IFNI production by plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Banas, Magdalena;


    psoriasis. Here, we demonstrate that IFNI production in pDCs is stimulated by DNA structures containing the neutrophil serine protease cathepsin G (CatG) and the secretory leukocyte protease inhibitor (SLPI), which is a controlling inhibitor of serine proteases. We also demonstrate the presence...... of neutrophil-derived DNA structures containing CatG and SLPI in lesional skin samples from psoriasis patients. These findings suggest a previously unappreciated role for CatG in psoriasis by linking CatG and its inhibitor SLPI to the IFNI-dependent regulation of immune responses by pDCs in psoriatic skin....

  8. Triangular gold nanoparticles conjugated with peptide ligands: a new class of inhibitor for Candida albicans secreted aspartyl proteinase. (United States)

    Jebali, Ali; Hajjar, Farzaneh Haji Esmaeil; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; De La Fuente, Jesus M; Rashidi, Mohsen


    The aim of this study was to find the peptide ligands to inhibit Candida albicans secreted aspartyl proteinase 2 (Sap2). First, a ligand library, containing 300 different peptides, was constructed, and their interaction with Sap2 was separately calculated by molecular dynamic software. Second, 10 peptide ligands with the lowest intermolecular energy were selected. Then, triangular gold nanoparticles were synthesized, and separately conjugated with the peptide ligands. After synthesis, antifungal property and Sap inactivation of conjugated triangular gold nanoparticles, peptide ligands, and naked triangular gold nanoparticle were separately assessed, against thirty clinical isolates of C. albicans. In this study, we measured the uptake of conjugated and naked nanoparticles by atomic adsorption spectroscopy. This study showed that naked triangular gold nanoparticle and all conjugated triangular gold nanoparticles had high antifungal activity, but no peptide ligands had such activity. Of 300 peptide ligands, the peptide containing N-Cys-Lys-Lys-Arg-Met-Met-Lys-Ser-Met-Cys-C and its conjugate had the highest capability to inhibit Sap. Moreover, the uptake assay demonstrated that triangular gold nanoparticles conjugated with the peptide ligand had the highest uptake.

  9. Elastase, α1-proteinase inhibitor, and interleukin-8 in children and young adults with end-stage kidney disease undergoing continuous ambulatory peritoneal dialysis. (United States)

    Polańska, Bożena; Augustyniak, Daria; Makulska, Irena; Niemczuk, Maria; Jankowski, Adam; Zwolińska, Danuta


    Peritoneal dialysis is one of the main modality of treatment in end-stage kidney diseases (ESKD) in children. In our previous work in chronic kidney disease patients, in pre-dialyzed period and on hemodialysis, the neutrophils were highly activated. The aim of this study was to assess an inflammatory condition and neutrophil activation in ESKD patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Thirteen CAPD patients without infection, both sexes, aged 2.5-24 years, and group of healthy subjects (C) were studied. For comparative purposes the conservatively treated (CT) group of ESKD patients was included. Neutrophil elastase in complex with α1-proteinase inhibitor (NE-α1PI; ELISA), α1-proteinase inhibitor (α1PI; radial immunodiffusion) and interleukin-8 (IL-8; ELISA) were measured in the blood samples from CAPD, CT, and C group and in the peritoneal dialysate fluid (PDF) samples of patients on CAPD. A significantly increased plasma NE-α1PI levels (median 176.5 μg/L, range 85.2-373.2 μg/L; p < 0.00005), serum IL-8 (median 18.6 pg/mL, range 15.73-35.28 pg/mL; p < 0.05), and slightly decreased serum α1PI (median 1,540 mg/L, range 1,270-1,955; p ≤ 0.05) compared to the control groups were found. There were no significant differences of analyzed parameters between CAPD and CT patients. The concentration ratio of NE-α1PI, α1PI and IL-8 in blood/PDF was 29.97, 8.24, and 4.48, respectively. There were significantly positive correlations between serum and PDF concentration of α1PI and IL-8 (r = 0.613, p < 0.05; r = 0.59; p < 0.005, respectively). The results of our study demonstrate that neutrophils are highly activated in non-infected CAPD patients. The pivotal marker of this activation is NE-α1PI. It may contribute to chronic inflammation and tissues injury.

  10. Matrix metalloproteinase-2 and tissue inhibitor of metallo-proteinase-2 in colorectal carcinoma invasion and metastasis


    Li, Bing-hui; zhao,Peng; Liu, Shi-Zheng; Yu, Yue-Ming; Han, Mei; Wen, Jin-kun


    AIM: To explore the relationship between matrix metallopr-oteinase-2 (MMP-2) and tissue inhibitor of metallopr-oteinase-2 (TIMP-2) in the development of colorectal carcinoma and to provide a valuable marker for clinical diagnosis.

  11. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. (United States)

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H


    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  12. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases. (United States)

    Rufino, Fabiola P S; Pedroso, Vanessa M A; Araujo, Jonalson N; França, Anderson F J; Rabêlo, Luciana M A; Migliolo, Ludovico; Kiyota, Sumika; Santos, Elizeu A; Franco, Octavio L; Oliveira, Adeliana S


    Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.

  13. Potential Use of Proteinase Inhibitors, Avidin, and Other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt (United States)

    After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insect...

  14. Acute myocardial ischemia in a patient with heterozygous alpha-2-plasmin inhibitor deficiency

    NARCIS (Netherlands)

    Brands-Nijenhuis, Angelique V. M.; van Geel, Peter P.; Meijer, Karina


    In this brief report we present a patient with heterozygous alpha 2 plasmin inhibitor (alpha 2PI) deficiency who developed atherosclerosis and myocardial ischemia in the presence of multiple classical risk factors. Management was complicated by fear of bleeding complications with the use of antiplat

  15. Binding of carbohydrates and protein inhibitors to the surface of alpha-amylases

    DEFF Research Database (Denmark)

    Bozonnet, Sophie; Bønsager, Birgit Christine; Kramhoft, B.


    This review on barley alpha-amylases 1 (AMY1) and 2 (AMY2) addresses rational mutations at distal subsites to the catalytic site, polysaccharide hydrolysis, and interactions with proteinaceous inhibitors. Subsite mapping of barley alpha-amylases revealed 6 glycone and 4 aglycone substrate subsite...

  16. Selective non-steroidal inhibitors of 5 alpha-reductase type 1. (United States)

    Occhiato, Ernesto G; Guarna, Antonio; Danza, Giovanna; Serio, Mario


    The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed.

  17. Effect of quercetin on expression of matrix metallo-proteinases and tissue inhibitor of matalloproteinase-1 in cultured rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    康鲁平; 齐荔红; 张俊平; 周斌


    Objective: To study the effects of quercetin (QU) on matrix metallo-proteinases (MMPs), the tissue inhibitor of matalloproteinase-1 (TIMP-1), procollagen I and 2 proteoglycans (decorin and biglycan) mRNA expression in cultured rat hepatic stellate cell line HSC-T6 cells.Methods: Cells were treated with different concentrations of QU (12.5, 25, 50 μmol/L) or drug solvent (0.1 % Me2SO) for 24 h.mRNA expression was determined by reverse transcription polymerase chain reaction (RT-PCR).Results: QU (12.5 - 50 μmol/L) enhanced collagenase (rat MMP-13) and membrane type1-MMP (MMP-14) mRNA expression, decreased procollagen I mRNA expression in a concentration-dependent manner, but did not affect gelatinase-A (MMP-2), TIMP-1, decorin and biglycan expression.Conclusion: QU may decrease matrix deposition and increase matrix degradation, which might be beneficial to liver fibrosis.

  18. Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains. (United States)

    Mora-Galindo, Juan; Anaya-Velázquez, Fernando; Ramírez-Romo, Susana; González-Robles, Arturo


    Entamoeba histolytica trophozoites are able to degrade human erythrocytes; the loss of erythrocyte cellular matrix and degradation of plasma membrane were observed, along with the decrease in the average size of digestive vacuoles. Ninety-six percent of hemoglobin ingested was hydrolyzed by trophozoites within 3h, as evidenced by electrophoresis. Accordingly, X-ray spectroscopy revealed the presence of iron inside vacuoles after erythrophagocytosis, the concentration of which decreased to control levels in a similar period. Quantification of erythrocyte digestion at the early and late periods was determined by a spectrophotometric procedure, with t(1/2)=1.67 h and 35-min for HM-1:IMSS and HK-9:NIH trophozoites, respectively. In the latter, activity was due to the combined action of intracellular enzymatic activity and exocytosis. E-64c and leupeptin totally inhibited erythrocyte digestion within a 3-h period, thereafter hydrolysis took place at lower rate. Our results suggest that erythrocyte digestion in E. histolytica proceeds in different ways in these two amebic strains, and can be blocked by proteinase inhibitors.

  19. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39. (United States)

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana


    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis.

  20. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis. (United States)

    Cárdenas-Guerra, Rosa Elena; Ortega-López, Jaime; Flores-Pucheta, Claudia Ivonne; Benítez-Cardoza, Claudia Guadalupe; Arroyo, Rossana


    Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.

  1. A Kazal-type serine proteinase inhibitor from Cyclina sinensis is involved in immune response and signal pathway initiation. (United States)

    Ren, Yipeng; Zhang, Hao; Pan, Baoping; Yan, Chuncai


    Serine protease inhibitors (SPIs) are an important group of protease inhibitors involved in a variety of biological processes. In the present study, a Kazal-type serine protease inhibitor homolog gene (designated as CsKPI) was identified from a Cyclina sinensis cDNA library. The open reading frame consists of 456 bp and encodes a protein of 151 amino acid residues with a theoretical molecular mass of 16.85 kDa and an isoelectric point of 5.74. Furthermore, using quantitative real-time PCR, we focused on the expression patterns of CsKPI found in tissues and on the stimulation of this gene's expression by bacteria. The results show that a higher-level mRNA expression of CsKPI was detected in hemocytes (P < 0.05) and was significantly upregulated at 3 h (P < 0.01) upon receiving bacterial challenges with Vibrio anguillarum. In addition, after the CsKPI gene was silenced by RNA interference, the expression of the CsTLR2 and CsMyD88 genes was extremely significantly decreased (P < 0.01) in C. sinensis. Finally, the recombinant CsKPI (rCsKPI) protein was purified and shown to exhibit less inhibitory activity than C-lyz against V. anguillarum in vitro. Hence, we propose that CsKPI plays an important role in the innate immunity and mediates TLR2 and MyD88-dependent pathway initiation in C. sinensis.

  2. 丝氨酸蛋白酶抑制剂B9与相关免疫细胞%Serine proteinase inhibitor B9 and related immune cells

    Institute of Scientific and Technical Information of China (English)

    邓常文; 张星星; 白冲


    Serine proteinase inhibitor B9 (Serpin B9),one member of the protease inhibitor superfamily including human serine proteinase inhibitor 9 (PI-9) and rat serine proteinase inhibitor homologous protein SPI-6,is an endogenous protease inhibitor mainly against GrB.Serpin B9 regulate apoptosis,immune reaction,DNA vaccines' abilities in T lymphocytes,dendritic cells,natural killer cells,neutrophils,mesenchymal stem cells and tumor cells.Study on the function of Serpin B9 could not only facilitate further exploration of the mechanism of immune related diseases,but also provide new theoretical basis for the treatment of tumor and the clinical applicution of stem cells.%丝氨酸蛋白酶抑制剂B9(Serpin B9)是蛋白酶抑制剂超家族成员,包括人丝氨酸蛋白酶抑制剂(PI-9)及鼠丝氨酸蛋白酶抑制剂同源蛋白(SPI-6),是主要针对颗粒蛋白酶B(GrB)的内源性蛋白酶抑制剂.Serpin B9的调节在T淋巴细胞、树突状细胞、自然杀伤细胞、中性粒细胞、间充质干细胞、肿瘤细胞有抑制凋亡、维持细胞平衡、调节免疫反应、增强DNA疫苗能力等功能.研究Serpin B9的作用机理,将有利于相关免疫疾病发生机制的探索,并为临床干细胞治疗、抗肿瘤治疗等提供新的理论依据.

  3. Effect of adding Matrix Metallo proteinase inhibitors on the degree of conversion of monomers to polymer an experimental bonding agent

    Directory of Open Access Journals (Sweden)

    Ghavam M.


    Full Text Available "nBackground and Aim: In spite of the achievements in the field of dental adhesives, we are facing challenges with dentine bonding resistance, strength and stability. According to recent studies the role of MMP inhibitors in association with bonding,s persistence and leakage reduction and restoration,s persistence is important. The aim of this study was to investigate the effect of doxycycline as a MMP inhibitor on the degree of conversion (DC of an experimental dental adhesive. "nMaterials and Methods: In this experimental study, a new dental adhesive blend was prepared by mixing doxycycline monohydrate (in concentrations of 0.0, 0.25, 0.5, and 1 wt.% with monomers. The monomers were composed of 12% Bis-GMA and 10% TMPTMA, 28% HEMA, and 50% Ethanol by weight for all groups. Comphorquinone and amines were chosen as photo initiator system. Degree of conversion of all adhesives was measured using FTIR spectroscopy. The results were analyzed using one-way ANOVA and Tukey post hoc tests. "nResults: The results showed that addition of 0.25, 0.5, and 1 weight percent doxycycline did not significantly reduce the DC of the adhesives compared to 0.0% control group (p>0.05%. "nConclusion: According to the results of this study, adding doxycycline to the adhesives did not adversely affect the DC.

  4. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. (United States)

    Gorman, Maureen J; Wang, Yang; Jiang, Haobo; Kanost, Michael R


    Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.

  5. Natural plant enzyme inhibitors. Characterization of an unusual alpha-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.). (United States)

    Shivaraj, B; Pattabiraman, T N


    An inhibitor I-1, capable of acting on both alpha-amylase and trypsin, was purified to homogeneity from ragi (finger-millet) grains. The factor was found to be stable to heat treatment at 100 degrees C for 1 h in the presence of NaCl and also was stable over the wide pH range 1-10. Pepsin and Pronase treatment of inhibitor I-1 resulted in gradual loss of both the inhibitory activities. Formation of trypsin-inhibitor I-1 complex, amylase-inhibitor I-1 complex and trypsin-inhibitor I-1-amylase trimer complex was demonstrated by chromatography on a Bio-Gel P-200 column. This indicated that the inhibitor is 'double-headed' in nature. The inhibitor was retained on a trypsin-Sepharose 4B column at pH 7.0. Elution at acidic pH resulted in almost complete recovery of amylase-inhibitory and trypsin-inhibitory activities. alpha-Amylase was retained on a trypsin-Sepharose column to which inhibitor I-1 was bound, but not on trypsin-Sepharose alone. Modification of amino groups of the inhibitor with 2,4,6-trinitrobenzenesulphonic acid resulted in complete loss of amylase-inhibitory activity but only 40% loss in antitryptic activity. Modification of arginine residues by cyclohexane-1,2-dione led to 85% loss of antitryptic activity after 5 h, but no effect on amylase-inhibitory activity. The results show that a single bifunctional protein factor is responsible for both amylase-inhibitory and trypsin-inhibitory activities with two different reactive sites.

  6. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function. (United States)

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T


    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.

  7. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang


    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  8. Serum and fecal canine α1-proteinase inhibitor concentrations reflect the severity of intestinal crypt abscesses and/or lacteal dilation in dogs. (United States)

    Heilmann, Romy M; Parnell, Nolie K; Grützner, Niels; Mansell, Joanne; Berghoff, Nora; Schellenberg, Stefan; Reusch, Claudia E; Suchodolski, Jan S; Steiner, Jörg M


    Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs.

  9. Rice bifunctional alpha-amylase/subtilisin inhibitor: cloning and characterization of the recombinant inhibitor expressed in Escherichia coli. (United States)

    Yamasaki, Teruyuki; Deguchi, Masaki; Fujimoto, Toshiko; Masumura, Takehiro; Uno, Tomohide; Kanamaru, Kengo; Yamagata, Hiroshi


    The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional alpha-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to alpha-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial alpha-amylases, but not toward animal or insect alpha-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.

  10. The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop. (United States)

    Joshi, Rakesh S; Mishra, Manasi; Tamhane, Vaijayanti A; Ghosh, Anirban; Sonavane, Uddhavesh; Suresh, C G; Joshi, Rajendra; Gupta, Vidya S; Giri, Ashok P


    Capsicum annuum (L.) expresses diverse potato type II family proteinase inhibitors comprising of inhibitory repeat domain (IRD) as basic functional unit. Most IRDs contain eight conserved cysteines forming four disulfide bonds, which are indispensible for their stability and activity. We investigated the functional significance of evolutionary variations in IRDs and their role in mediating interaction between the inhibitor and cognate proteinase. Among the 18 IRDs encoded by C. annuum, IRD-7, -9, and -12 were selected for further characterization on the basis of variation in their reactive site loop, number of conserved cysteine residues, and higher theoretical ΔGbind for interaction with Helicoverpa armigera trypsin. Moreover, inhibition kinetics showed that IRD-9, despite loss of some of the disulfide bonds, was a more potent proteinase inhibitor among the three selected IRDs. Molecular dynamic simulations revealed that serine residues in the place of cysteines at seventh and eighth positions of IRD-9 resulted in an increase in the density of intramolecular hydrogen bonds and reactive site loop flexibility. Results of the serine residues chemical modification also supported this observation and provided a possible explanation for the remarkable inhibitory potential of IRD-9. Furthermore, this natural variant among IRDs showed special attributes like stability to proteolysis and synergistic inhibitory effect on other IRDs. It is likely that IRDs have coevolved selective specialization of their structure and function as a response towards specific insect proteases they encountered. Understanding the molecular mechanism of pest protease-plant proteinaceous inhibitor interaction will help in developing effective pest control strategies. An animated interactive 3D complement (I3DC) is available in Proteopedia at

  11. Expression and regulation of metalloproteinases-2, -9 and tissue inhibitors of metallo- proteinases in rat corpus luteum

    Institute of Scientific and Technical Information of China (English)


    The expression and regulation of metalloproteinases-2, -9 (MMP-2, -9) and their tissue inhibitors TIMP-1, -2, -3 mRNA were studied in this experiment. In the PMSG- hCG primed pseudopregnant rat, MMP-2, -9 mRNA levels were the highest at Day 1, decreased from Day 4, and reached the minimal level at Day 8, then increased at Day 14; no significant changes were observed in TIMP-2 mRNA expression from Day 1 to Day 14; TIMP-3 mRNA expression was the lowest at Day 1, increased from Day 4, reached the maximal level at Day 8, and persisted to Day 14. TNF-αcould significantly increase the expression of MMP-2, -9 and TIMP-1 mRNA in the in vitro perfused pseudopregnant CL, and decrease the expression of TIMP-3 mRNA, but had no effect on TIMP-2 mRNA expression. The results indicate that MMP-2, -9 and TIMP-1, -2, -3 might be involved in the regulation of CL function and maintenance of CL structure via their coordinated gene expression. TNF-α could inhibit luteal regression via increasing MMP-2, -9 and TIMP-1 mRNA in the in vitro perfused pseudopregnant ovary.

  12. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review (United States)

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.


    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  13. TNF-alpha inhibitors in Systemic Lupus Erythematosus. A case report and a systematic literature review. (United States)

    Mosca, Marta; Tani, Chiara; Filice, Maria Elena; Carli, Linda; Delle Sedie, Andrea; Vagnani, Sabrina; Della Rossa, Alessandra; Baldini, Chiara; Bombardieri, Stefano


    Joint involvement is a common manifestation of systemic lupus erythematosus (SLE) and is described as a non-erosive mild synovitis. However some SLE patients may present a more severe joint involvement requiring aggressive therapy. We describe the case of a SLE patient with a severe arthritis unresponsive to methotrexate, successfully treated with anti-TNF-alpha drug as induction therapy and we report the results of a systematic literature review on the use of TNF-alpha inhibitors in SLE.

  14. Expression of gelatinases and tissue inhibitors of metallo- proteinases in the rhesus monkey (Macaca mulatta) corpus luteum

    Institute of Scientific and Technical Information of China (English)


    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are believed to play important roles in the formation and regression of corpus luteum (CL). This study is to investigate the expression of gelatinases (MMP-2, -9) and TIMPs in the rhesus monkey CL in both early and late luteal phases and during the early stages of pregnancy. Ovaries were collected from regularly cycling rhesus monkey at D5 and D15 following ovulation and at D12, D18 and D26 of pregnancy. In situ hybridization revealed that in the CL MMP-2 mRNA was expressed during both formation and regression, while MMP-9 mRNA was mainly localized in the late luteal phase. Reduction of MMP-2, -9 transcripts in the CL was observed during pregnancy. MMP-2 mRNA in the CL reduced to an undetectable level at D26 of pregnancy. TIMP-1 mRNA was highly expressed in the CL in both early and late luteal phases and persisted throughout the early stages of pregnancy. Strong signal for TIMP-2 mRNA was also detected in both luteal phases, and the level of TIMP-2 mRNA gradually increased with the progresses of pregnancy. No TIMP-3 mRNA was detected in the macaque CL in this study. In conclusion, these results suggest that MMP-2, -9 and TIMP-1, -2 may have functional roles in rhesus monkey CL. Coordinated expression of MMP-2, -9 and TIMP-2 may play a role in the maintaining of luteal function during early pregnancy. The unchanged expression pattern of TIMP-1 indicates that it may have other functions in the primate CL than inhibition of MMPs.

  15. The discovery of novel tartrate-based TNF-[alpha] converting enzyme (TACE) inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Kristin E.; Guo, Zhuyan; Orth, Peter; Shipps, Jr., Gerald W.; Belanger, David B.; Chan, Tin Yau; Curran, Patrick J.; Dai, Chaoyang; Deng, Yongqi; Girijavallabhan, Vinay M.; Hong, Liwu; Lavey, Brian J.; Lee, Joe F.; Li, Dansu; Liu, Zhidan; Popovici-Muller, Janeta; Ting, Pauline C.; Vaccaro, Henry; Wang, Li; Wang, Tong; Yu, W.; Zhou, G.; Niu, X.; Sun, J.; Kozlowski, J.A.; Lundell, D.J.; Madison, V.; McKittrick, B.; Piwinski, J.J.; Shih, N.Y.; Siddiqui, M. Arshad; Strickland, Corey O. (SPRI)


    A novel series of TNF-{alpha} convertase (TACE) inhibitors which are non-hydroxamate have been discovered. These compounds are bis-amides of L-tartaric acid (tartrate) and coordinate to the active site zinc in a tridentate manner. They are selective for TACE over other MMP's. We report the first X-ray crystal structure for a tartrate-based TACE inhibitor.

  16. Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). (United States)

    Iulek, J; Franco, O L; Silva, M; Slivinski, C T; Bloch, C; Rigden, D J; Grossi de Sá, M F


    Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.

  17. [Drug therapy of benign prostatic hyperplasia. Is combination therapy with 5 alpha-reductase inhibitors and alpha-receptor blockers effective?]. (United States)

    Horninger, W; Bartsch, G


    5 alpha-reductase inhibitors and alpha 1-receptor blockers are the two main drug therapies used in the management of symptomatic benign prostatic hyperplasia. As alpha-reductase inhibitors and alpha 1-receptor blockers act through different mechanisms, a combination of the two agents might be promising. The potential benefits of combination therapy with selective alpha 1-receptor blockers and finasteride, a 5 alpha-reductase inhibitor, are currently being evaluated in several placebo-controlled prospective multicenter studies (VA Study, ALFIN Study, PREDICT Study, and MTOPS Study). The data from these studies available so far demonstrate a statistically significant benefit for the study groups receiving alpha 1-receptor blockers and combination therapy vs placebo and finasteride monotherapy in terms of symptom scores and peak urine flow rates. However, none of the studies yielded a statistically significant advantage of combination therapy over treatment with alpha 1-receptor blockers. These results should be interpreted with reference to the prostatic volume, which in the studies mentioned above was relatively low. From the results of all these studies, it can be concluded that in symptomatic patients with prostate volumes of up to 40-45 ml a combination of 5 alpha-reductase inhibitors with alpha 1-receptor blockers does not appear to provide any benefit. Yet, it can be assumed that in symptomatic patients with prostate volumes of more than 60 ml combination therapy may indeed prove more effective.

  18. Tumor necrosis factor-alpha inhibitor treatment for sarcoidosis

    Directory of Open Access Journals (Sweden)

    José Luis Callejas-Rubio


    Full Text Available José Luis Callejas-Rubio, Lourdes López-Pérez, Norberto Ortego-CentenoUnit of Autoimmune Systemic Diseases, Hospital Clinico San Cecilio, Granada, SpainAbstract: Sarcoidosis is a chronic multisystem disease of unknown etiology, characterized by noncaseating granulomatous infiltration of virtually any organ system. Treatment is often undertaken in an attempt to resolve symptoms or prevent progression to organ failure. Previous studies have suggested a prominent role for tumor necrosis factor-alpha (TNF-α in the inflammatory process seen in sarcoidosis. TNF-α and interleukin-1 are released by alveolar macrophages in patients with active lung disease. Corticosteroids have proved to be efficacious in the treatment of sarcoidosis, possibly by suppressing the production of TNF-α and other cytokines. Three agents are currently available as specific TNF antagonists: etanercept, infliximab, and adalimumab. Although data from noncomparative trials suggest that all three have comparable therapeutic effects in rheumatoid arthritis, their effects in a granulomatous disease such as sarcoidosis are less consistent. In this review, current data on the effectiveness are summarized.Keywords: sarcoidosis, infliximab, etanercept, adalimumab, anti-TNA alpha

  19. An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. (United States)

    Singh, Bahaderjeet; Kaur, Tamanreet; Kaur, Sanehdeep; Manhas, Rajesh K; Kaur, Amarjeet


    This study highlights the importance of alpha-glucosidase inhibitors as mechanisms for endophyte-mediated resistance to insect pests. One of the major benefits which endophytes confer on plants is providing resistance against insect pests. This built-in defense mechanism of the plant can be used for exploring ecofriendly strategies for pest control. In the present study, 34 endophytic fungi were isolated from Tinospora cordifolia and screened for their ability to produce alpha-glucosidase inhibitors. Maximum inhibitory activity was observed in an isolate from T. cordifolia (TN-9S), identified to be Cladosporium sp. The inhibitor was purified using chromatographic techniques. The insecticidal activity of the purified inhibitor was evaluated against Spodoptera litura. The inhibitor induced a significant mortality in the larvae of S. litura and adversely affected its survival and development. It also inhibited the activity of α-glycosidases in vivo in the gut of the larvae. The purified inhibitor was determined to be a phenolic compound with amine groups, demonstrating a noncompetitive type of inhibition in vitro. The production of the inhibitor was optimized. Response surface methodology (RSM) analysis revealed a significant interaction between dextrose and malt extract, with first-order effect of pH.

  20. Syntheses and structure-activity relationships for some triazolyl p38 alpha MAPK inhibitors

    NARCIS (Netherlands)

    Seerden, Jean-Paul G.; Leusink-Ionescu, Gabriela; Leguijt, Robin; Saccavini, Catherine; Gelens, Edith; Dros, Bas; Woudenberg-Vrenken, Titia; Molema, Grietje; Kamps, Jan A. A. M.; Kellogg, Richard M.


    The design, synthesis and biological evaluation of novel triazolyl p38 alpha MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a 'click' reaction of f

  1. Cuminaldehyde: Aldose Reductase and alpha-Glucosidase Inhibitor Derived from Cuminum cyminum L. Seeds. (United States)

    Lee, Hoi-Seon


    The inhibitory activity of Cuminum cyminum seed-isolated component was evaluated against lens aldose reductase and alpha-glucosidase isolated from Sprague-Dawley male rats and compared to that of 11 commercially available components derived from C. cyminum seed oil, as well as quercitrin as an aldose reductase inhibitor and acarbose as an alpha-glucosidase inhibitor. The biologically active constituent of C. cyminum seed oil was characterized as cuminaldehyde by various spectral analyses. The IC(50) value of cuminaldehyde is 0.00085 mg/mL against aldose reductase and 0.5 mg/mL against alpha-glucosidase, respectively. Cuminaldehyde was about 1.8 and 1.6 times less in inhibitory activity than acarbose and quercitin, respectively. Nonetheless, cuminaldehyde may be useful as a lead compound and a new agent for antidiabetic therapeutics.

  2. Assay-guided fractionation study of alpha-amylase inhibitors from Garcinia mangostana pericarp. (United States)

    Loo, Alvin Eng Kiat; Huang, Dejian


    Alpha-amylase inhibitor (alpha-AI) activity of Garcinia mangostana, commonly known as mangosteen, pericarp extracts was studied by assay guided fractionations from lipophilic to hydrophilic using combined solvent extraction and Amberlite XAD2 adsorption chromatography. Neither the lipophilic, xanthone containing fraction, nor the highly polar fraction, which has no affinity on Amberlite XAD2, showed any alpha-AI. The fraction that shows very high inhibitory activity contains primarily polyphenols and can be adsorbed on Amberlite XAD2. The IC50 of 5.4 microg/mL of this fraction is comparable to that of acarbose, a prescribed alpha-AI used in the control of type II diabetes, at 5.2 microg/mL. Total phenolic content (TPC) of each fraction was measured and the TPC has no correlation with the alpha-AI activity. The lipophilic fraction contains mainly xanthones as revealed by HPLC-MS analysis. Colorimetric analysis coupled with UV-vis and IR spectroscopic analysis demonstrated that the fractions with high alpha-AI activity are primarily oligomeric proanthocyanidins (OPCs) with little gallate moiety. There is also evidence to show that the alpha-AI by these OPCs is not purely by nonspecific protein complexation. Both tannic acid and G. mangostana OPCs precipitate BSA equally well but G. mangostana OPCs are 56 times more effective in inhibiting alpha-amylase.

  3. Effect of TNF-alpha--converting enzyme inhibitor on insulin resistance in fructose-fed rats. (United States)

    Togashi, Nobuhiko; Ura, Nobuyuki; Higashiura, Katsuhiro; Murakami, Hideyuki; Shimamoto, Kazuaki


    Insulin resistance is associated with hypertension, obesity, dyslipidemia, and type 2 diabetes. It is well known that tumor necrosis factor (TNF)-alpha is one of the factors linked to obesity-induced insulin resistance; however, there have been no reports on the role of TNF-alpha in insulin resistance in nonobese insulin-resistant hypertensives. We tested the hypothesis that TNF-alpha affects insulin resistance in nonobese insulin-resistant hypertensive fructose-fed rats (FFR) and that a TNF-alpha--converting enzyme (TACE) inhibitor that blocks TNF-alpha secretion improves insulin resistance in FFR. Six-week-old male Sprague-Dawley rats were fed either standard chow (control) or fructose-rich chow (FFR) for 6 weeks. For the last two weeks of a six-week period of either diet, the rats were treated with a vehicle (control or FFR) or a TACE inhibitor (100 mg/kg/d of KB-R7785; FFR+TACE-I) in peritoneal injection. At the age of 12 weeks, insulin sensitivity was assessed in all conscious rats by the euglycemic hyperinsulinemic glucose clamp technique. While FFR had higher blood pressure than the control rats (Pobese models but also in nonobese insulin-resistant models.

  4. Alpha-1 antitrypsin reduces ovariectomy-induced bone loss in mice (United States)

    Alpha-1antitrypsin (AAT) is a multifunctional protein with proteinase inhibitor and anti-inflammatory activities. Recent studies showed that AAT has therapeutic effect for diseases associated with inflammation, such as type 1 diabetes and arthritis. Proinflammatory cytokines are primary mediators of...

  5. Bilateral optic neuropathy associated with the tumor necrosis factor-alpha inhibitor golimumab. (United States)

    Chang, Jessica R; Miller, Neil R


    A 62-year-old man developed bilateral blurred vision associated with bilateral optic disc swelling shortly after receiving his third dose of the tumor necrosis factor-alpha (TNF-α) inhibitor golimumab, that he took for psoriatic arthritis. An extensive assessment including magnetic resonance imaging, lumbar puncture, and serologies was negative. He was treated with systemic corticosteroids and the golimumab was stopped, after which his vision improved and his disc swelling resolved. We postulate that the bilateral, simultaneous anterior optic neuropathies in this patient were due to golimumab, representing a rare but well-documented serious adverse event associated with TNF-α inhibitors.

  6. Alpha-fluoromethylhistidine, a histamine synthesis inhibitor, inhibits orexin-induced wakefulness in rats. (United States)

    Yasuko, Seki; Atanda, Akanmu Moses; Masato, Matsuura; Kazuhiko, Yanai; Kazuki, Honda


    Orexins A and B are involved in the regulation of feeding and arousal state. Previously, we reported that third intracerebroventricular (icv) infusion of both orexins A and B induced a significant arousal effect in rats. We determined the effects of intraperitoneal (i.p.) injection of alpha-fluoromethylhistidine (alpha-FMH), a histamine synthesis inhibitor, on orexin-induced wakefulness in freely behaving rats. Male Sprague-Dawley rats were chronically implanted with cortical electroencephalogram (EEG) and neck electromyogram (EMG) electrodes, and a cannula for icv infusion. EEG and EMG were monitored for three consecutive days during continuous icv saline infusion at a rate of 10 microl/h. For a 5-h diurnal period, orexin-B (10 nmol/50 microl saline) replaced the icv infusion of saline. alpha-FMH (100mg/kg, i.p.) was administered 6h before icv infusion of orexin-B. Orexin-B at a dose of 10 nmol/h markedly increased the amount of wakefulness by 99.4% (p<0.05) over the baseline value, whereas alpha-FMH decreased orexin-B-induced wakefulness by 48.8%. Orexin-B-induced suppression of non-REM sleep was reversed by alpha-FMH treatment. Pretreatment with alpha-FMH, significantly inhibited orexin-B-induced wakefulness in rats. The findings of this study therefore suggest that arousal-state regulation by orexin neurons is possibly mediated via the histaminergic system in the tuberomammilary nucleus.

  7. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522 (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)


    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  8. High-level expression of the native barley alpha-amylase/subtilisin inhibitor in Pichia pastoris

    DEFF Research Database (Denmark)

    Micheelsen, Pernille Ollendorff; Ostergaard, Peter Rahbek; Lange, Lene;


    An expression system for high-level expression of the native Hordeum vulgare alpha-amylase/subtilisin inhibitor (BASI) has been developed in Pichia pastoris, using the methanol inducible alcohol oxidase 1 (AOX1) promoter. To optimize expression, two codon-optimized coding regions have been designed...... and characterized by Edman degradation, liquid chromatography mass spectrometry and insoluble blue starch assay, and was shown to possess the same characteristics as wild-type protein purified from barley grains....

  9. Effects of alpha-glucosidase inhibitors on mouth to caecum transit time in humans.


    Ladas, S D; Frydas, A; Papadopoulos, A.; S. A. Raptis


    The alpha-glucosidase inhibitors acarbose and miglitol have been successfully used to control postprandial hyperglycaemia in diabetics. They probably work by slowing carbohydrate digestion and absorption, but their effect on mouth to caecum transit time has not been studied. The effect acarbose (100 mg), miglitol (100 mg), and placebo on mouth to caecum transit time (380 kcal breakfast with 20 g of lactulose) was investigated in 18 normal volunteers using breath hydrogen analysis. Both miglit...

  10. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    Energy Technology Data Exchange (ETDEWEB)

    Altabella, T.; Chrispeels, M.J. (Univ. of California, San Diego, La Jolla (USA))


    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{sub r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.

  11. Alternative Agents in Type 1 Diabetes in Addition to Insulin Therapy: Metformin, Alpha-Glucosidase Inhibitors, Pioglitazone, GLP-1 Agonists, DPP-IV Inhibitors, and SGLT-2 Inhibitors. (United States)

    DeGeeter, Michelle; Williamson, Bobbie


    Insulin is the mainstay of current treatment for patients with type 1 diabetes mellitus (T1DM). Due to increasing insulin resistance, insulin doses are often continually increased, which may result in weight gain for patients. Medications currently approved for the treatment of type 2 diabetes offer varying mechanisms of action that can help to reduce insulin resistance and prevent or deter weight gain. A MEDLINE search was conducted to review literature evaluating the use of metformin, alpha-glucosidase inhibitors, pioglitazone, glucagon-like peptide 1 agonists, dipeptidyl peptidase, and sodium-dependent glucose transporter 2 inhibitors, in patients with T1DM. Varying results were found with some benefits including reductions in hemoglobin A1c, decreased insulin doses, and favorable effects on weight. Of significance, a common fear of utilizing multiple therapies for diabetes treatment is the risk of hypoglycemia, and this review displayed limited evidence of hypoglycemia with multiple agents.

  12. Kinetics of the inhibition of neutrophil proteinases by recombinant elafin and pre-elafin (trappin-2) expressed in Pichia pastoris. (United States)

    Zani, Marie-Louise; Nobar, Shila M; Lacour, Sandrine A; Lemoine, Soazig; Boudier, Christian; Bieth, Joseph G; Moreau, Thierry


    Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.

  13. Prospeção de inibidores de serinoproteinases em folhas de leguminosas arbóreas da floresta Amazônica Prospecting serine proteinase inhibitors in leaves from leguminous trees of the Amazon forest

    Directory of Open Access Journals (Sweden)

    Larissa Ramos Chevreuil


    Full Text Available Os inibidores de proteinases são proteínas extensivamente investigadas nos tecidos de estocagem, mas pouco prospectadas em outros tecidos vegetais. O objetivo deste estudo foi detectar a presença de inibidores de serinoproteinases em extratos foliares de quinze espécies de leguminosas arbóreas da Amazônia. As espécies estudadas foram: Caesalpinia echinata, C. ferrea, Cedrelinga cateniformis, Copaifera multijuga, Dinizia excelsa, Enterolobium contortisiliquum, E. maximum, E. schomburgkii, Leucaena leucocephala, Ormosia paraensis, Parkia multijuga, P. pendula, P. platycephala, Swartzia corrugata e S. polyphylla. Folhas foram coletadas, secas a 30ºC durante 48 h, trituradas e submetidas à extração com NaCl (0,15 M, 10% p/v resultando no extrato total. Ensaios foram executados para determinar a concentração de proteínas e detectar a atividade inibitória contra a tripsina e quimotripsina bovina. Os teores de proteínas bruta e solúvel nos extratos foliares variaram de 7,9 a 31,2% e 1,3 a 14,8%, respectivamente. A atividade inibitória sobre a tripsina e quimotripsina foi observada em todos os extratos foliares. Contudo, nos extratos de E. maximum, L. leucocephala, P. pendula, S. corrugata e S. polyphylla a inibição foi maior sobre a tripsina, enquanto o extrato de P. multijuga foi mais efetivo contra a quimotripsina. Nós concluímos que nos extratos foliares de leguminosas arbóreas têm inibidores de serinoproteinases e exibem potencial aplicações biotecnológicas.The proteinase inhibitors are proteins extensively investigated in tissue storage, but few prospected in other plant tissues. The aim of this study was to detect the presence of serine proteinase inhibitors in leaf extracts from fifteen species of leguminous trees of the Amazon forest. The species studied were Caesalpinia echinata, C. ferrea, Cedrelinga cateniformis, Copaifera multijuga, Dinizia excelsa, Enterolobium contortisiliquum, E. maximum, E. schomburgkii

  14. Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency. (United States)

    Kiyota, Atsushi; Iwama, Shintaro; Sugimura, Yoshihisa; Takeuchi, Seiji; Takagi, Hiroshi; Iwata, Naoko; Nakashima, Kohtaro; Suzuki, Haruyuki; Nishioka, Tomoki; Kato, Takuya; Enomoto, Atsushi; Arima, Hiroshi; Kaibuchi, Kozo; Oiso, Yutaka


    Isolated adrenocorticotropin deficiency (IAD) is characterized by low or absent adrenocorticotropic hormone (ACTH) production. IAD is presumed to be caused in part by an autoimmune mechanism, and several lines of evidence have suggested the presence of anti-pituitary antibodies in IAD. However, the exact autoantigens remain unknown. The present study was designed to identify the autoantigen(s) in IAD using chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Rat anterior pituitary lysate was subjected to SDS-PAGE, and immunoblotting was performed using the sera from two patients with IAD and from a healthy subject. The bands detected by the patient serum samples, but not by the healthy subject sample, were excised, in-gel digested using trypsin, and subjected to LC-MS/MS analysis. On immunoblots, a 51-kDa band in the insoluble pellet was detected by the sera from the IAD patients but not from the healthy subject. Mass spectrometric analysis revealed the 51-kDa band contained Rab guanine nucleotide dissociation inhibitor (GDI) alpha. Consistent with the mass spectrometric analysis, a recombinant full-length human Rab GDI alpha was recognized by the two IAD patient samples but not by the healthy subject sample using immunoblotting. In total, anti-Rab GDI alpha antibodies were detected in serum samples from three of five patients with IAD (60%) but were absent in 5 healthy subjects. In addition, Rab GDI alpha was expressed in the anterior pituitary. In conclusion, it appears that Rab GDI alpha is a candidate autoantigen involved in IAD, and that anti-Rab GDI alpha antibodies are present predominantly in patients with IAD.

  15. [Characterization of thermal denaturation process of proteinase K by spectrometry]. (United States)

    Zhang, Qi-Bing; Na, Xin-Zhu; Yin, Zong-Ning


    The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.

  16. Interactions of barley alpha-amylase isozymes with Ca2+, substrates and proteinaceous inhibitors

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Bozonnet, Sophie; Willemoes, Martin


    , and proteinaceous inhibitors for alpha-amylases. Isozyme specific effects of Ca2+ on the 80% sequence identical barley alpha-amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2+ with identical ligands. A fully hydrated fourth Ca2+ at the interface of the AMY2...... has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly...... discovered 'sugar tongs' site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other...

  17. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution. (United States)

    Gourinath, S; Alam, N; Srinivasan, A; Betzel, C; Singh, T P


    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin (RATI) from ragi seeds (Indian finger millet, Eleusine coracana Gaertneri) has been determined by X-ray diffraction at 2.2 A resolution. The inhibitor consists of 122 amino acids, with five disulfide bridges, and belongs to the plant alpha-amylase/trypsin inhibitor family. The crystals were grown by the microdialysis method using ammonium sulfate as a precipitating agent. The structure was determined by the molecular-replacement method using as models the structures of Corn Hageman factor inhibitor (CHFI) and of RATI at 2.9 A resolution determined previously. It has been refined to an R factor of 21.9%. The structure shows an r.m.s. deviation for C(alpha) atoms of 2.0 A compared with its own NMR structure, whereas the corresponding value compared with CHFI is found to be 1.4 A. The r.m.s. difference for C(alpha) atoms when compared with the same protein in the structure of the complex with alpha-amylase is 0.7 A. The conformations of trypsin-binding loop and the alpha-amylase-binding N-terminal region were also found to be similar in the crystal structures of native RATI and its complex with alpha-amylase. These regions differed considerably in the NMR structure.

  18. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming


    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  19. Effects of alpha-glucosidase inhibitors on mouth to caecum transit time in humans. (United States)

    Ladas, S D; Frydas, A; Papadopoulos, A; Raptis, S A


    The alpha-glucosidase inhibitors acarbose and miglitol have been successfully used to control postprandial hyperglycaemia in diabetics. They probably work by slowing carbohydrate digestion and absorption, but their effect on mouth to caecum transit time has not been studied. The effect acarbose (100 mg), miglitol (100 mg), and placebo on mouth to caecum transit time (380 kcal breakfast with 20 g of lactulose) was investigated in 18 normal volunteers using breath hydrogen analysis. Both miglitol and acarbose significantly increased breath hydrogen excretion (F2,34 = 6.31, p = 0.005) and shortened the mouth to caecum transit time (F2,34 = 3.49, p = 0.04) after breakfast compared with placebo. There was a significant negative correlation between breath hydrogen excretion and mouth to caecum transit time suggesting that with shorter transit times significantly more carbohydrates were spilled into the colon. These results indicate that alpha-glucosidase inhibitors accelerate mouth to caecum transit time by inducing carbohydrate malabsorption.

  20. 丝氨酸蛋白酶抑制剂9与支气管哮喘相关免疫细胞%Serine proteinase inhibitor 9 and bronchial asthma related immune cells

    Institute of Scientific and Technical Information of China (English)

    邓常文; 张星星; 屈玉兰; 白冲


    丝氨酸蛋白酶抑制剂9(serine proteinase inhibitor 9,PI-9)是一种主要针对颗粒蛋白酶B的内源性蛋白酶抑制剂.研究发现,PI-9对支气管哮喘相关免疫细胞有调节细胞凋亡、改变细胞功能等作用.研究PI-9的作用机制将有利于支气管哮喘发病机制的探索,并为临床治疗提供新的理论依据.%PI-9 is an endogenous protease inhibitor of GrB.When interacting with bronchial asthma related immune cells,PI-9 plays an important role in regulating cell apoptosis and function.Studying the mechanism of PI-9 is not only beneficial for the exploration of bronchial asthma nosogenesis,but also provide theoretical base for novel clinical therapy.

  1. Solution structure of the main alpha-amylase inhibitor from amaranth seeds. (United States)

    Martins, J C; Enassar, M; Willem, R; Wieruzeski, J M; Lippens, G; Wodak, S J


    The most abundant alpha-amylase inhibitor (AAI) present in the seeds of Amaranthus hypochondriacus, a variety of the Mexican crop plant amaranth, is the smallest polypeptide (32 residues) known to inhibit alpha-amylase activity of insect larvae while leaving that of mammals unaffected. In solution, 1H NMR reveals that AAI isolated from amaranth seeds adopts a major trans (70%) and minor cis (30%) conformation, resulting from slow cis-trans isomerization of the Val15-Pro16 peptide bond. Both solution structures have been determined using 2D 1H-NMR spectroscopy and XPLOR followed by restrained energy refinement in the consistent-valence force field. For the major isomer, a total of 563 distance restraints, including 55 medium-range and 173 long-range ones, were available from the NOESY spectra. This rather large number of constraints from a protein of such a small size results from a compact fold, imposed through three disulfide bridges arranged in a cysteine-knot motif. The structure of the minor cis isomer has also been determined using a smaller constraint set. It reveals a different backbone conformation in the Pro10-Pro20 segment, while preserving the overall global fold. The energy-refined ensemble of the major isomer, consisting of 20 low-energy conformers with an average backbone rmsd of 0.29 +/- 0.19 A and no violations larger than 0.4 A, represents a considerable improvement in precision over a previously reported and independently performed calculation on AAI obtained through solid-phase synthesis, which was determined with only half the number of medium-range and long-range restraints reported here, and featured the trans isomer only. The resulting differences in ensemble precision have been quantified locally and globally, indicating that, for regions of the backbone and a good fraction of the side chains, the conformation is better defined in the new solution structure. Structural comparison of the solution structure with the X-ray structure of the

  2. 5-Alpha reductase inhibitor use and prostate cancer survival in the Finnish Prostate Cancer Screening Trial. (United States)

    Murtola, Teemu J; Karppa, Elina K; Taari, Kimmo; Talala, Kirsi; Tammela, Teuvo L J; Auvinen, Anssi


    Randomized clinical trials have shown that use of 5α-reductase inhibitors (5-ARIs) lowers overall prostate cancer (PCa) risk compared to placebo, while the proportion of Gleason 8-10 tumors is elevated. It is unknown whether this affects PCa-specific survival. We studied disease-specific survival by 5-ARI usage in a cohort of 6,537 prostate cancer cases diagnosed in the Finnish Prostate Cancer Screening Trial and linked to the national prescription database for information on medication use. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals for prostate cancer-specific deaths. For comparison, survival among alpha-blocker users was also evaluated. During the median follow-up of 7.5 years after diagnosis a total of 2,478 men died; 617 due to prostate cancer and 1,861 due to other causes. The risk of prostate cancer death did not differ between 5-ARI users and nonusers (multivariable adjusted HR 0.94, 95% CI 0.72-1.24 and HR 0.98, 95% CI 0.69-1.41 for usage before and after the diagnosis, respectively). Alpha-blocker usage both before and after diagnosis was associated with increased risk of prostate cancer death (HR 1.29, 95% CI 1.08-1.54 and HR 1.56, 95% CI 1.30-1.86, respectively). The risk increase vanished in long-term alpha-blocker usage. Use of 5-ARIs does not appear to affect prostate cancer mortality when used in management of benign prostatic hyperplasia. Increased risk associated with alpha-blocker usage should prompt further exploration on the prognostic role of lower urinary tract symptoms.

  3. Long-term therapy of interferon-alpha induced pulmonary arterial hypertension with different PDE-5 inhibitors: a case report

    Directory of Open Access Journals (Sweden)

    Baumann Gert


    Full Text Available Abstract background Interferon alpha2 is widely used in hepatitis and high-risk melanoma. Interferon-induced pulmonary arterial hypertension as a side effect is rare. Case presentation We describe a melanoma patient who developed severe pulmonary arterial hypertension 30 months after initiation of adjuvant interferon alpha2b therapy. Discontinuation of interferon did not improve pulmonary arterial hypertension. This patient could be treated successfully with phosphodiesterase-5 inhibitor therapy. Conclusion This is only the 5th case of interferon-induced pulmonary arterial hypertension and the first documented case where pulmonary arterial hypertension was not reversible after termination of interferon alpha2 therapy. If interferon alpha2 treated patients develop respiratory symptoms, pulmonary arterial hypertension should be considered in the differential diagnosis. For these patients phosphodiesterase-5 inhibitors, e.g. sildenafil or vardenafil, could be an effective therapeutic approach.

  4. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci. (United States)

    Aizawa, S; Miyasawa-Hori, H; Nakajo, K; Washio, J; Mayanagi, H; Fukumoto, S; Takahashi, N


    This study evaluated acid production from cooked starch by Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus mitis, and the effects of alpha-amylase inhibitors (maltotriitol and acarbose) and xylitol on acid production. Streptococcal cell suspensions were anaerobically incubated with various carbohydrates that included cooked potato starch in the presence or absence of alpha-amylase. Subsequently, the fall in pH and the acid production rate at pH 7.0 were measured. In addition, the effects of adding alpha-amylase inhibitors and xylitol to the reaction mixture were evaluated. In the absence of alpha-amylase, both the fall in pH and the acid production rate from cooked starch were small. On the other hand, in the presence of alpha-amylase, the pH fell to 3.9-4.4 and the acid production rate was 0.61-0.92 micromol per optical density unit per min. These values were comparable to those for maltose. When using cooked starch, the fall in pH by S. sanguinis and S. mitis was similar to that by S. mutans and S. sobrinus. For all streptococci, alpha-amylase inhibitors caused a decrease in acid production from cooked starch, although xylitol only decreased acid production by S. mutans and S. sobrinus. These results suggest that cooked starch is potentially acidogenic in the presence of alpha-amylase, which occurs in the oral cavity. In terms of the acidogenic potential of cooked starch, S. sanguinis and S. mitis were comparable to S. mutans and S. sobrinus. Alpha-amylase inhibitors and xylitol might moderate this activity.

  5. A barley flour inhibitor of insect alpha-amylase is a major allergen associated with baker's asthma disease. (United States)

    Barber, D; Sánchez-Monge, R; Gómez, L; Carpizo, J; Armentia, A; López-Otín, C; Juan, F; Salcedo, G


    A barley salt-soluble protein of 14.5 kDa, which inhibits the alpha-amylase from the insect Tenebrio molitor, has been identified as a major IgE-binding component of sera from baker's asthma patients. The N-terminal amino acid sequence of this protein indicates that it is a member of a previously described family of alpha-amylase/trypsin inhibitors.

  6. Role of golimumab, a TNF-alpha inhibitor, in the treatment of the psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    Melissa A Michelon


    Full Text Available Melissa A Michelon1, Alice B Gottlieb1,21Tufts University School of Medicine, 2Department of Dermatology, Tufts Medical Center, Boston, MA, USAAbstract: Psoriatic arthritis (PsA is an inflammatory arthritis that affects many psoriasis patients and can often have a debilitating disease progression. Golimumab is a new tumor necrosis factor (TNF antagonist recently approved by the FDA for controlling signs and symptoms of psoriatic arthritis. In a Phase III clinical trial in patients with PsA, patients receiving golimumab showed significant improvement in the signs and symptoms of disease. It was usually well tolerated, but adverse events generally occurred more in patients receiving golimumab compared to placebo. Golimumab has also recently shown efficacy in slowing structural damage in PsA. This new biologic therapy provides physicians with another option in the treatment of this inflammatory arthritis while offering patients certain advantages over other TNF antagonists.Keywords: golimumab, psoriatic arthritis, TNF-alpha inhibitor

  7. Silencing Brassinosteroid Receptor BRI1 Impairs Herbivory-elicited Accumulation of Jasmonic Acid-isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in Nicotiana attenuata

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yang; lan T.Baldwin; Jianqiang Wu


    The brassinosteroid (BR) receptor,BR insensitive 1 (BRI1),plays a critical role in plant development,but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown.Here,we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta.Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels,but was important for the induction of JA-Ile.Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of lie in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels.Consistently,M.sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants.Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides,chlorogenic acid,and rutin),but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors).Thus,NaBRI1-mediated BR signaling is likely involved in plant defense responses to M.sexta,including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.

  8. 杜梨CPI基因的克隆、序列分析及表达%Cloning, sequencing and expression of a cysteine proteinase inhibitor gene (PbCPI) from Pyrus betulaefolia Bunge

    Institute of Scientific and Technical Information of China (English)

    李慧; 丛郁; 常有宏; 蔺经; 盛宝龙


    植物半胱氨酸蛋白酶抑制剂(Cysteine proteinase inhibitor,CPI)在植物的抗逆基因工程中发挥着越来越重要的作用,分离和克隆植物CPI基因进而研究该基因的功能是植物抗逆基因工程研究的热点.为从分子水平上揭示CPI基因在杜梨防御机制中所起的作用,利用RACE和PCR方法,从杜梨种子中克隆CPI基因的cDNA和DNA序列,并采用跨内含子表达引物进行半定量RT-PCR来分析该基因在不同胁迫条件下的表达情况.结果表明:PbCPI基因cDNA长度为987 bp,开放阅读框包含738个核苷酸,编码1个由信号肽(26个氨基酸)和成熟肽(219个氨基酸)组成的多肽.该多肽预测的等电点为6.68,估计的相对分子质量为27 190.其对应基因组DNA序列由3个外显子(1 ~302 bp,401 ~772 bp,1615~1 897 bp)和2个内含子(303~400 bp,773~1 614 bp)组成.通过PSORT进行亚细胞定位分析发现PbCPI蛋白位于内质网上.PbCPI基因编码的多肽具有植物CPI产生抑制活性所必需的一级结构:2个甘氨酸残基( Gly46-Gly47)、假定的反应域QXVXG(Q90 -V91 -V92 -A93 -G94)和A/PW基序(p120-w121);并包含植物CPI家族高度保守的特征序列模式LARFAVQEHN、QVVAG和YQAKVWVKPW.进化树分析表明PbCP1和蔷薇科植物CPI蛋白位于分子进化树的同一发育分支上,并且与苹果MdCPI(AAO19652)蛋白具有较高的一致性(95.92%).杜梨叶片中PbCPI为诱导型表达,高温(30℃)、低温(4℃)、NaCl、机械损伤、MeJA或ABA处理4h后其表达量明显上调,即其对温度胁迫、盐碱、机械损伤和外源激素处理均存在转录响应,这表明该基因参与了杜梨对生物或非生物胁迫的防御机制.%Plant cysteine proteinase inhibitor (CPI) has played more and more important roles in the fields of plant genetic engineering for resistance to adverse environments. It is one of the hot issues to isolate and validate CPI gene functions in the stress-tolerance gene engineering at present

  9. High-Resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: A new tool for detailed interaction studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J.; Gettins, P. (UIC)


    Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 {angstrom}. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.

  10. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli. (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong


    Glucose-6-phosphate isomerase (GPI) (EC can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation.

  11. Screening and purification of a novel trypsin inhibitor from Prosopis juliflora seeds with activity toward pest digestive enzymes. (United States)

    Sivakumar, S; Franco, O L; Tagliari, P D; Bloch, C; Mohan, M; Thayumanavan, B


    Several pests are capable of decreasing crop production causing severe economical and social losses. Aiming to find novel molecules that could impede the digestion process of different pests, a screening of alpha-amylase and trypsin-like proteinase inhibitors was carried out in Prosopis juliflora, showing the presence of both in dry seeds. Furthermore, a novel trypsin inhibitor, with molecular mass of 13,292 Da, was purified showing remarkable in vitro activity against T. castaneum and C. maculatus.

  12. Tumor Necrosis Factor-alpha Inhibitor Etanercept Does Not Alter Methotrexate-induced Gastrointestinal Mucositis in Rats

    NARCIS (Netherlands)

    Kuiken, Nicoline S S; Rings, Edmond H H M; Alffenaar, Jan-Willem C; Havinga, Rick; Jurdzinski, Angelika; Groen, Albert K; Tissing, Wim J E


    OBJECTIVES: Gastrointestinal (GI) mucositis is a severe side effect of chemotherapy and radiotherapy. Pro-inflammatory cytokines are thought to play an important role in the pathophysiology of GI mucositis. We aimed to determine the effect of the Tumor Necrosis Factor-alpha (TNF-α) inhibitor Etanerc

  13. Impact of tobacco smoking on response to tumour necrosis factor-alpha inhibitor treatment in patients with ankylosing spondylitis

    DEFF Research Database (Denmark)

    Glintborg, Bente; Højgaard, Pil; Lund Hetland, Merete;


    OBJECTIVES: To investigate the association between tobacco smoking and disease activity, treatment adherence and treatment responses in patients with AS treated with their first tumour necrosis factor-alpha inhibitor (TNFi) therapy in routine care. METHODS: Observational cohort study based on the...

  14. Preliminary neutron and ultrahigh-resolution X-ray diffraction studies of the aspartic proteinase endothiapepsin cocrystallized with a gem-diol inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Han-Fang [Spallation Neutron Source, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Erskine, Peter [Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Hampstead Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Langan, Paul [Bioscience Division, Mailstop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Chemistry, University of Toledo, Toledo, OH 53606 (United States); Cooper, Jon [Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Hampstead Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Coates, Leighton, E-mail: [Spallation Neutron Source, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Department of Chemistry, University of Toledo, Toledo, OH 53606 (United States)


    Three data sets have been collected on endothiapepsin complexed with the gem-diol inhibitor PD-135,040: a high-resolution synchrotron X-ray data set, a room-temperature X-ray data set and a neutron diffraction data set. Until recently, it has been impossible to grow large protein crystals of endothiapepsin with any gem-diol inhibitor that are suitable for neutron diffraction. Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site.

  15. The Crystal Water Affect in the Interaction between the Tenebrio Molitor Alpha-Amylase and Its Inhibitor

    Directory of Open Access Journals (Sweden)

    Zhu Zhi-Fei


    Full Text Available Molecular dynamics simulation of the interaction between the Tenebrio molitor alpha-amylase and its inhibitor at different proportion of crystal water was carried out with OPLS force field by hyperchem 7.5 software. In the correlative study, the optimal temperature of wheat monomeric and dimeric protein inhibitors was from 273 K to 318 K. The the average temperature of experimentation is 289 K. (1 The optimal temperature of interaction between alpha-amylase and its inhibitors was 280 K without crystal water that was close to the results of experimentation. The forming of enzyme-water and inhibitor-water was easy, but incorporating third monomer was impossible. (2 Having analyzed the potential energy data, the optimal temperature of interaction energy between alpha-amylase and its inhibitors covering 9 : 1, 5 : 5, 4 : 6, and 1 : 9 proportion crystal water was 290 K. (3 We compared the correlative QSAR properties. The proportion of crystal water was close to the data of polarizability (12.4% in the QSAR properties. The optimal temperature was 280 K. This result was close to 289 K. These findings have theoretical and practical implications.

  16. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase. (United States)

    Roth, M; Hoechst, M; Afting, E G


    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  17. Interactions outside the proteinase-binding loop contribute significantly to the inhibition of activated coagulation factor XII by its canonical inhibitor from corn. (United States)

    Korneeva, Vera A; Trubetskov, Mikhail M; Korshunova, Alena V; Lushchekina, Sofya V; Kolyadko, Vladimir N; Sergienko, Olga V; Lunin, Vladimir G; Panteleev, Mikhail A; Ataullakhanov, Fazoil I


    Activated factor XII (FXIIa) is selectively inhibited by corn Hageman factor inhibitor (CHFI) among other plasma proteases. CHFI is considered a canonical serine protease inhibitor that interacts with FXIIa through its protease-binding loop. Here we examined whether the protease-binding loop alone is sufficient for the selective inhibition of serine proteases or whether other regions of a canonical inhibitor are involved. Six CHFI mutants lacking different N- and C-terminal portions were generated. CHFI-234, which lacks the first and fifth disulfide bonds and 11 and 19 amino acid residues at the N and C termini, respectively, exhibited no significant changes in FXIIa inhibition (Ki = 3.2 ± 0.4 nm). CHFI-123, which lacks 34 amino acid residues at the C terminus and the fourth and fifth disulfide bridges, inhibited FXIIa with a Ki of 116 ± 16 nm. To exclude interactions outside the FXIIa active site, a synthetic cyclic peptide was tested. The peptide contained residues 20-45 (Protein Data Bank code 1BEA), and a C29D substitution was included to avoid unwanted disulfide bond formation between unpaired cysteines. Surprisingly, the isolated protease-binding loop failed to inhibit FXIIa but retained partial inhibition of trypsin (Ki = 11.7 ± 1.2 μm) and activated factor XI (Ki = 94 ± 11 μm). Full-length CHFI inhibited trypsin with a Ki of 1.3 ± 0.2 nm and activated factor XI with a Ki of 5.4 ± 0.2 μm. Our results suggest that the protease-binding loop is not sufficient for the interaction between FXIIa and CHFI; other regions of the inhibitor also contribute to specific inhibition.

  18. Proteinases of the cornea and preocular tear film. (United States)

    Ollivier, F J; Gilger, B C; Barrie, K P; Kallberg, M E; Plummer, C E; O'Reilly, S; Gelatt, K N; Brooks, D E


    Maintenance and repair of corneal stromal extracellular matrix (ECM) requires a tightly coordinated balance of ECM synthesis, degradation and remodeling in which proteolytic enzymes (proteinases) perform important functions. There are natural proteinase inhibitors present in preocular tear film (PTF) and cornea simultaneously with proteinases that prevent excessive degradation of normal healthy tissue. Disorders occur when there is an imbalance between proteinases and proteinase inhibitors in favor of the proteinases, causing pathologic degradation of stromal collagen and proteoglycans in the cornea. Two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are of major importance in terms of remodeling and degradation of the corneal stromal collagen. Immunohistochemical studies have shown different origins of MMP-2 and -9. MMP-2 is synthesized by corneal keratocytes and performs a surveillance function in the normal cornea, becoming locally activated to degrade collagen molecules that occasionally become damaged. Alternatively, MMP-9 may be produced by epithelial cells and polymorphonuclear neutrophils following corneal wounding. Because the cornea is in close contact with the preocular tear film (PTF), proteinases have been evaluated in the PTF. In damaged corneas, total proteolytic activity in the tear fluid was found to be significantly increased compared to normal eyes and contralateral eyes. Studies analyzing the proteolytic activity in serial PTF samples during corneal healing led to the following conclusions: ulcerative keratitis in animals is associated with initially high levels of tear film proteolytic activity, which decrease as ulcers heal; proteinase levels in melting ulcers remain elevated leading to rapid progression of the ulcers. The success of medical and surgical treatment of the corneal ulcers is reflected by the proteolytic activity in tears. In animals, successful treatment leads to a rapid reduction in tear film proteolytic activity that

  19. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. (United States)

    Artanti, N; Tachibana, S; Kardono, L B S; Sukiman, H


    Endophytic microbes are considered as an important source of natural products. They show antibiotic, anticancer, antioxidative and antidiabetic activities. Therefore, there are many reports on the isolation and bioactivity screening of endophytic fungi from various plants including Taxus species. Taxus sumatrana (Miq.) de Laub is found in Indonesia. The objective of this study is to conduct an in vitro screening of 14 endophytic fungi isolated from Taxus sumatrana having antioxidative and alpha-glucosidase inhibitor activities. Each endophytic fungus was cultured for 7 days and the fungal mycelium and medium were extracted with methanol and ethyl acetate, respectively, to produce each extract. The antioxidative activity of each extract was tested by DPPH free radical scavenging activity and beta-carotene bleaching assays, whereas antidiabetic activity was tested based on alpha-glucosidase inhibitor activity. The screening results showed that fungal mycelia of TSC 13 had the best alpha-glucosidase inhibitor activity and TSC 24 had the best antioxidative activity. Isolation of bioactive compounds from TSC 13 and TSC 24 is being conducted. This is the first report that endophytic fungi isolated from T. sumatrana exhibited anti alpha-glucosidase inhibitory and anti oxidative activities.

  20. Detection of noncovalent complex between alpha-amylase and its microbial inhibitor tendamistat by electrospray ionization mass spectrometry. (United States)

    Douglas, D J; Collings, B A; Numao, S; Nesatyy, V J


    Electrospray ionization mass spectrometry (ESI-MS) is now routinely used for detection of noncovalent complexes. However, detection of noncovalent protein-protein complexes is not a widespread practice and still produces some challenges for mass spectrometrists. Here we demonstrate the detection of a noncovalent protein-protein complex between alpha-amylase and its microbial inhibitor tendamistat using ESI-MS. Crude porcine pancreatic alpha-amylase was purified using a glycogen precipitation method. Noncovalent complexes between porcine pancreatic alpha-amylase and its microbial inhibitor tendamistat are probed and detected using ESI-MS. The atmosphere-vacuum ESI conditions along with solution conditions and the ratio of inhibitor over enzyme strongly affect the detection of noncovalent complexes in the gas phase. ESI mass spectra of alpha-amylase at pH 7 exhibited charge states significantly lower than that reported previously, which is indicative of a native protein conformation necessary to produce a noncovalent complex. Detection of noncovalent complexes in the gas phase suggests that further use of conventional biochemical approaches to provide a qualitative, and in some cases even quantitative, characterization of equilibria of noncovalent complexes in solution is possible.

  1. Localization and possible role of membrane type metallo-proteinase and tissue inhibitors of metalloproteinase-1 in early stages of placentation

    Institute of Scientific and Technical Information of China (English)


    Human placental tissues from the first and second trimesters of gestation have been investigated using riboprobe in situ hybridisation of mRNA sequences coding for membrane type metalloproteinase (MT-1-MMP) and tissue inhibitors of metalloproteinase-1 (TIMP-1). Results show that (i) both mRNAs express at a relatively high level in the chorion laeve trophoblast cells and the adjacent decidual cells of fetal membrane; (ii) the most abundant expression of the two mRNAs was found in the extravillous trophoblast between Rohrs and Nitabuch striae of basal plate, trophoblast shell and gland cells of the decidua; (iii) isolated or small groups of cytotrophoblast cells in the chorionic villi and in the cells lining arterioles in decidua and stem villi also expressed both MT-1-MMP and TIMP-1 at defferent extents. The data suggest that the coordinated expression of the MT-MMP and its inhibitor TIMP in defferent cells of the placental tissue may play an essential role in trophoblast invasion and angiogenesis related to placentation in the first two trimesters of gestation. They may also have an ability to effect separation of fetal from material tissue at a favorable junctional site during parturition.

  2. The polyamine inhibitor alpha-difluoromethylornithine modulates hippocampus-dependent function after single and combined injuries.

    Directory of Open Access Journals (Sweden)

    Susanna Rosi

    Full Text Available Exposure to uncontrolled irradiation in a radiologic terrorism scenario, a natural disaster or a nuclear battlefield, will likely be concomitantly superimposed on other types of injury, such as trauma. In the central nervous system, radiation combined injury (RCI involving irradiation and traumatic brain injury may have a multifaceted character. This may entail cellular and molecular changes that are associated with cognitive performance, including changes in neurogenesis and the expression of the plasticity-related immediate early gene Arc. Because traumatic stimuli initiate a characteristic early increase in polyamine metabolism, we hypothesized that treatment with the polyamine inhibitor alpha-difluoromethylornithine (DFMO would reduce the adverse effects of single or combined injury on hippocampus structure and function. Hippocampal dependent cognitive impairments were quantified with the Morris water maze and showed that DFMO effectively reversed cognitive impairments after all injuries, particularly traumatic brain injury. Similar results were seen with respect to the expression of Arc protein, but not neurogenesis. Given that polyamines have been found to modulate inflammatory responses in the brain we also assessed the numbers of total and newly born activated microglia, and found reduced numbers of newly born cells. While the mechanisms responsible for the improvement in cognition after DFMO treatment are not yet clear, the present study provides new and compelling data regarding the potential use of DFMO as a potential countermeasure against the adverse effects of single or combined injury.

  3. High-Throughput Screening Methodology to Identify Alpha-Synuclein Aggregation Inhibitors. (United States)

    Pujols, Jordi; Peña-Díaz, Samuel; Conde-Giménez, María; Pinheiro, Francisca; Navarro, Susanna; Sancho, Javier; Ventura, Salvador


    An increasing number of neurodegenerative diseases are being found to be associated with the abnormal accumulation of aggregated proteins in the brain. In Parkinson's disease, this process involves the aggregation of alpha-synuclein (α-syn) into intraneuronal inclusions. Thus, compounds that inhibit α-syn aggregation represent a promising therapeutic strategy as disease-modifying agents for neurodegeneration. The formation of α-syn amyloid aggregates can be reproduced in vitro by incubation of the recombinant protein. However, the in vitro aggregation of α-syn is exceedingly slow and highly irreproducible, therefore precluding fast high throughput anti-aggregation drug screening. Here, we present a simple and easy-to-implement in-plate method for screening large chemical libraries in the search for α-syn aggregation modulators. It allows us to monitor aggregation kinetics with high reproducibility, while being faster and requiring lower protein amounts than conventional aggregation assays. We illustrate how the approach enables the identification of strong aggregation inhibitors in a library of more than 14,000 compounds.

  4. Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous estrogen receptor alpha and beta. (United States)

    Cotrim, Cândida Z; Amado, Francisco L; Helguero, Luisa A


    Estrogens are key regulators in mammary development and breast cancer and their effects are mediated by estrogen receptors alpha (ERα) and beta (ERβ). These two receptors are ligand activated transcription factors that bind to regulatory regions in the DNA known as estrogen responsive elements (EREs). ERα and ERβ activation is subject to modulation by phosphorylation and p42/p44 MAP kinases are the best characterized ER modifying kinases. Using a reporter gene (3X-ERE-TATA-luciferase) to measure activation of endogenous ERs, we found that MEK1 inhibitor PD98059, used in concentrations insufficient to inhibit MEK1 activation of p42/p44 MAP kinases, exerted estrogenic effects on the reporter gene and on the ERE-regulated RIP 140 protein. Such estrogenic effects were observed in mammary epithelial HC11 cells and occur on unliganded ERα and ligand activated ERβ. Additionally, concentrations of PD98059 able to inhibit p42/p44 phosphorylation were not estrogenic. Further, inhibition of p42 MAP kinase expression with siRNAs also resulted in loss of PD98059 estrogenic effect. In summary, PD98059 in concentrations below the inhibitory for MEK1, exerts estrogenic effects in HC11 mammary epithelial cells.

  5. Multigene family for Bowman-Birk type proteinase inhibitors of wild soja and soybean: the presence of two BBI-A genes and pseudogenes. (United States)

    Deshimaru, Masanobu; Yoshimi, Shingo; Shioi, Seijiro; Terada, Shigeyuki


    Genes for Bowman-Birk type protease inhibitors (BBIs) of wild soja (Glycine soja) and soybean (Glycine max) comprise a multigene family. The organization of the genes for wild soja BBIs (wBBIs) was elucidated by an analysis of their cDNAs and the corresponding genomic sequences, and compared with the counterparts in the soybean. The cDNAs encoding three types of wild soja BBIs (wBBI-A, -C, and -D) were cloned. Two subtypes of cDNAs for wBBI-A, designated wBBI-A1 and -A2, were further identified. Similar subtypes (sBBI-A1 and -A2) were also found in the soybean genome. cDNA sequences for wBBIs were highly homologous to those for the respective soybean homologs. Phylogenetic analysis of these cDNAs demonstrated the evolutional proximity between these two leguminae strains.

  6. Molecular characteristics and expression analysis of Kazal-type serines proteinase inhibitor (KSPI) gene from Hyriopsis cumingii%三角帆蚌 KSPI cDNA 的分子特征及表达分析

    Institute of Scientific and Technical Information of China (English)

    徐龙威; 王芹; 汪桂玲; 李家乐


    Kazal-type serines proteinase inhibitor ( KSPI) is very important in the immune reaction of biological body , but the study of KSPI in Hyriopsis cumingii has been rarely reported .In this study , the full length of cDNA sequence of Kazal-type serines proteinase inhibitor(KSPI) gene (accession number:KT901291) of H.cumingii was cloned.It was 1029 bp in length, containing 5′and 3′-UTRs parts of 61 bp and 206 bp, and an ORF of 762 bp encoding 253 amino acids, and the molecular weight was 27397.5 u.The amino acid sequence contains five Kazal domain structures , and the result of homology analysis showed that it has a few of similarity with other species, suggesting that this gene belongs to the typical KSPI gene.Real-time quantitative PCR showed that KSPI gene expressed in a wide range of tissues including the adductor , foot, liver, blood, mantle, gill and gonad, and the highest expression was in mantle , on the contrary, the lowest in liver.After being infected with Aeromonas hydrophila, the expression of KSPI gene had significant increas-ing in 7 tissues compared with the control group .The results suggested that KSPI gene is very important in the immune reaction of Hyri-opsis cumingii.%Kazal型丝氨酸蛋白酶抑制因子( KSPI)在生物体的免疫应答过程中发挥着重要作用,但在三角帆蚌中尚未进行其相关研究与报道,为研究KSPI对三角帆蚌免疫过程的影响,采用RACE法克隆了三角帆蚌KSPI cDNA全序列(登录号:KT901291),获得了1029 bp的全长,其中包含5′、3′端非翻译区分别为61 bp、206 bp,开放阅读框762 bp,共编码氨基酸253个,分子质量为27397.5u,氨基酸序列包含5个Kazal结构域,与一些已知物种的KSPI编码的氨基酸序列进行同源性分析后发现,与各种物种间具有相似的结构域,属于典型的KSPI。实时荧光定量PCR分析结果表明KSPI在外套膜、血液、肝、腮、闭壳肌、性腺、斧足7个组织中均

  7. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan


    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  8. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.9 A resolution. (United States)

    Gourinath, S; Srinivasan, A; Singh, T P


    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin from the seeds of ragi (Indian finger millet, Eleusine coracana Gaertneri) has been determined by an X-ray diffraction method. The inhibitor consists of 122 amino acids with five disulfide bridges and belongs to the plant alpha-amylase/trypsin-inhibitor family. This is the first crystal structure determination of a member of this family. The protein, purified from the seeds of ragi, has a molecular mass of 13300 Da with a pI of 10.3. Crystals were grown by a microdialysis method using ammonium sulfate as precipitant. The improved purification protocol and the modified crystallization conditions enabled reproducible growth of the crystals. The cell parameters are a = 41. 2, b = 47.4, c = 55.9 A. The intensity data were collected to 2.9 A resolution, and the crystal structure was determined using the molecular-replacement method. The structure was refined using the X-PLOR and CCP4 program packages to a conventional R factor of 21%. The structure contains four alpha-helices between residues 19-29, 37-51, 56-65 and 90-95, and two short antiparallel beta-strands between residues 67-70 and 73-75.

  9. Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum. (United States)

    Maldonado-Aguayo, Waleska; Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian


    This study reports two kazal-type serine protease inhibitors (KPI) identified in a cDNA library from the surf clam Mesodesma donacium, and characterized through Rapid Amplification of cDNA Ends (RACE). The KPIs, denoted as MdSPI-1 and MdSPI-2, presented full sequences of 1139 bp and 781 bp respectively. MdSPI-1 had a 5'untranslated region (UTR) of 175 bp, a 3'UTR of 283 bp and an open reading frame (ORF) of 681 pb that encodes for 227 amino acids. MdSPI-2 showed a 5'UTR of 70 bp, a 3'UTR of 279 bp and an ORF of 432 bp that encodes for 144 amino acids. Both sequences presented two kazal-type tandem domains. Phylogenetic analysis of MdSPI-1 and MdSPI-2 shows a main clade composed by other bivalve species and closely related crustaceans. Real time PCR analysis showed that MdSPI-1 is mainly up-regulated in mantle, foot, gills and muscle tissues, while MdSPI-2 is expressed principally in foot tissue. Moreover, to evaluate the immune response of MdSPI-1 and MdSPI-2, infections with Vibrio anguillarum were performed. Herein, MdSPI-1 and MdSPI-2 transcription expression were significantly up-regulated at 2 and 8 h post-challenge. Our results suggest that MdSPI-1 and MdSPI-2 are important humoral factors of innate immunity in M. donacium.

  10. Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available The licensed human papillomavirus (HPV vaccines elicit type-restricted immunity but do not target cutaneous HPV types of the beta genus that are associated with non-melanoma skin cancer in immune-compromised patients, and it is unclear if these diverse types share a common mechanism of infection. Residues 11-88 of minor capsid protein L2 contain cross-protective epitopes, and vaccination with concatamers of this region derived from as many as eight alpha HPV (L2 α11-88x8 is being developed as an alternative prophylactic vaccine with potentially broader efficacy. There is also interest in developing broadly protective topical microbicides, such as carrageenan or heparin that block HPV receptor interactions, or small molecule inhibitors of infection. Here we have examined several inhibitors of HPV infection and antisera to L2 α11-88x8 for their breadth of activity against infection by 34 HPV types from within both the alpha and beta families using pseudovirions (PsV carrying a luciferase reporter as surrogates for native virus. We observed that both heparin and carrageenan prevented infection by mucosatropic HPV types, but surprisingly PsV of several epidermotropic alpha4 and beta HPV types exhibited increased infectivity especially at low inhibitor concentrations. Furin and γ-secretase inhibitors and L2 α11-88x8 antiserum blocked infection by all HPV PsV types tested. These findings suggest that the distinct tropism of mucosal and cutaneous HPV may reflect distinct cell surface receptor interactions, but a common uptake mechanism dependent upon furin and γ-secretase proteolytic activities. Carrageenan, which is being tested as a vaginal microbicide, broadly inhibited infection by the high-risk mucosatropic HPV PsV, but not most skin tropic alpha and beta HPV. Vaccination with an L2 multimer derived exclusively from alpha papillomavirus sequences induced antibodies that broadly neutralized PsV of all 34 HPVs from within both the alpha and

  11. Synthesis and activity of 8-substituted benzo[c]quinolizin-3-ones as dual inhibitors of human 5alpha-reductases 1 and 2. (United States)

    Ferrali, Alessandro; Menchi, Gloria; Occhiato, Ernesto G; Danza, Giovanna; Mancina, Rosa; Serio, Mario; Guarna, Antonio


    Some potent dual inhibitors of 5alpha-reductases 1 and 2, based on the benzo[c]quinolizin-3-one structure and with IC(50) values ranging between 93 and 166nM for both isozymes, were found. The presence of the F atom on the ester moiety at the position 8 was crucial. This result can help in the design of other potent, dual inhibitors to be developed as drugs in the treatment of 5alpha-reductase related diseases.

  12. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. (United States)

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M


    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  13. A potent and selective p38 inhibitor protects against bone damage in murine collagen-induced arthritis : a comparison with neutralization of mouse TNF alpha

    NARCIS (Netherlands)

    Mihara, K.; Almansa, C.; Smeets, R. L.; Loomans, E. E. M. G.; Dulos, J.; Vink, P. M. F.; Rooseboom, M.; Kreutzer, H.; Cavalcanti, F.; Boots, A. M.; Nelissen, R. L.


    Background and purpose: The p38 kinase regulates the release of proinflammatory cytokines including tumour-necrosis factor-alpha (TNF alpha) and is regarded as a potential therapeutic target in rheumatoid arthritis (RA). Using the novel p38 inhibitor Org 48762-0, we investigated the therapeutic pote

  14. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors. (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László


    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  15. Adapted J6/JFH1-based hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N;


    ), boceprevir (Sch503034), simeprevir (TMC435350), danoprevir (ITMN-191), and vaniprevir (MK-7009), to alpha interferon 2b, and to the putative NS4A inhibitor ACH-806. The efficacy of ACH-806 was lower than that of protease inhibitors and was not influenced by changes at amino acids 1042 and 1065 (in the NS3...


    NARCIS (Netherlands)



    Antithrombin is a member of the serine proteinase inhibitor (serpin) family which contain a flexible reactive site loop that interacts with, and is cleaved by the target proteinase. In cleaved and latent serpins, the reactive site loop is inserted into a large central beta-sheet in the same molecule

  17. Signal peptide homology between the sweet protein thaumatin II and unrelated cereal alpha-amylase/trypsin inhibitors. (United States)

    Lázaro, A; Rodriguez-Palenzuela, P; Maraña, C; Carbonero, P; Garcia-Olmedo, F


    A cDNA clone (pUP-23) corresponding to a member of a protein family that includes inhibitors of trypsin and of heterologous alpha-amylases has been selected from a library derived from developing barley endosperm and its sequence has been determined. A stretch of 95 nucleotides that included the signal peptide and the first 8 residues of the mature protein was found to be homologous to an exactly equivalent region of the nucleotide sequence encoding the sweet protein thaumatin II. Evolutionary implications of this finding are discussed.

  18. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.


    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  19. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. (United States)

    Jayapalan, Jaime J; Ng, Keng L; Shuib, Adawiyah S; Razack, Azad H A; Hashim, Onn H


    The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required.

  20. Characterization of a small molecule inhibitor of tumor necrosis factor-alpha production

    Institute of Scientific and Technical Information of China (English)

    YANG Gao-yun; XIE Zhi-qiang; QIAN Ge; CUI Wen-ying; ZHAO Jun-yin; ZHANG Jian-zhong; LIAN Shi


    Background Numerous studies have shown that reducing the level of tumor necrosis factor-alpha (TNFα) through the use of anti-TNF antibodies or soluble TNF receptor is a safe and efficacious treatment to inflammatory diseases such as rheumatoid arthritis. Therefore, novel approaches to achieve this outcome are desired. The aim of this study was to investigate the characterization of a small molecule inhibitor, Y316, which blocks TNF mRNA upregulation and TNF production by lipopolysaccharides (LPS) stimulated monocytes.Methods Peripheral blood mononuclear cells (PBMC) from healthy volunteers were plated in 24-well plates and stimulated with LPS (1 μg/ml), phorbol-12-myristate-13-acetate (PMA) (100 ng/ml), zymosan (10 μg/ml) and Tsst (100 ng/ml). Supernatants were collected after 4-hour culture at 37C, and quantitative determination of TNFα, interleukin-1β(IL-1β), IL-6, IL-8, IL-10 and IL-2 production in the supernatants was performed by colorimetric enzyme-linked immunosorbent assay (ELISA). Total RNA of PBMC was isolated and cytokine mRNA quantitation was performed by using a RNA level measuring kit (R & D Systems). PBMC were pretreated with Y316 (10 μmol/L, 1 μmol/L, 0.1 μmol/L,0.01 μmol/L and 0.001 μmol/L) or dimethyl sulfoxide at 37C for 10 minutes, and then stimulated with LPS or PMA,protein concentrations of p44.42, IKBα, P38 and Jun NH2-terminal kinase were determined by Western blotting. Cyclic adenosine-3',5'-monophosphate (cAMP) of PBMC was measured by enzyme immunoassay kit (Amersham Pharmacia Biotech).Results Y316 blocked TNF production and inhibited the upregulation of TNF mRNA levels in response to LPS, and also prevented the production of IL-1 and IL-6. In contrast, Y316 augmented the production of IL-10 in LPS-stimulated monocytes. Y316 failed to prevent the production of IL-2 and TNF in antigen-stimulated T cells, suggesting that its effects may be cell-type specific. Y316 prevented the phosphorylation and activation of the MAPK, ERK, and

  1. Rye inhibitors of animal alpha-amylases show different specificities, aggregative properties and IgE-binding capacities than their homologues from wheat and barley. (United States)

    García-Casado, G; Sánchez-Monge, R; López-Otín, C; Salcedo, G


    Three new members of the alpha-amylase/trypsin-inhibitor family of cereal endosperm have been isolated from rye. N-terminal amino acid sequence comparison revealed that two of the purified proteins were the rye homologues of the barley monomeric inhibitor (BMAI-1) previously described, while the other rye protein corresponded to one of the subunits of the barley and wheat heterotetrameric inhibitors. However, the inhibitory specificities (active against human salivary alpha-amylase), aggregative behaviours (mainly as dimeric forms) and IgE-binding capacities (not recognized by sera from allergic patients) of the rye inhibitors were clearly different from those of their wheat and barley counterparts. These results indicate that homologous inhibitors may have distinctive properties in different cereal species.

  2. Cutaneous lymphocyte-associated antigen as a novel predictive marker of TNF-alpha inhibitor biological therapy in psoriasis. (United States)

    Jókai, Hajnalka; Szakonyi, József; Kontár, Orsolya; Barna, Gábor; Inotai, Dóra; Kárpáti, Sarolta; Holló, Péter


    A considerable number of patients with psoriasis show secondary resistance during long-term TNF-alpha inhibitor therapy, necessitating the identification of reliable predictive markers. Predictive role of cutaneous lymphocyte-associated antigen (CLA) was investigated. Thirty-eight severe patients with psoriasis were treated for a 24-week-long study period. Clinical responsiveness (PASI) and changes in flow cytometry-measured peripheral lymphocyte CLA expression (week 0-2-6) were statistically analysed. Regarding 24-week-long treatment outcome patients were divided into two groups: During the first 6 weeks, mean CLA expression showed significant (P = 0.034604) increase among responders (32/38), while after a preliminary increase, it was significantly (P = 0.012539) decreasing in the relapsing group (6/38). Pearson's correlation analysis showed significant negative correlation between PASI and CLA changes. Responders showed (not significantly) lower initial CLA expression than relapsing patients. Our observations suggest change in CLA expression during the first 6 weeks of induction period to serve as a potential predictive marker of TNF-alpha inhibitor therapy in psoriasis.

  3. Effect of MK-906, a specific 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates in normal men. (United States)

    Rittmaster, R S; Stoner, E; Thompson, D L; Nance, D; Lasseter, K C


    To determine the hormonal effects of MK-906, an orally active 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates, 12 healthy men were given 10, 20, 50, and 100 mg MK-906 2 weeks apart in randomized order in a 4-period crossover design. Serum testosterone (T), dihydrotestosterone (DHT), androstanediol glucuronide, and androsterone glucuronide were measured before and 24 hours after each dose. The effect of MK-906 on glucuronyl transferase activity, the enzyme responsible for androstanediol glucuronide and androsterone glucuronide formation, was assessed in vitro using rat prostate tissue. Serum T levels were unchanged after all doses. Serum DHT, androstanediol glucuronide, and androsterone glucuronide were suppressed by 70, 40, and 56%, respectively, after the 10-mg dose, and by 82, 52, and 66% after the 100-mg dose (P less than 0.02 for the comparison between the 10 and 100-mg doses for all three steroids), respectively. Baseline serum T and DHT levels were strongly correlated (R = 0.89, P = 0.0002), as were androstanediol glucuronide and androsterone glucuronide levels (R = 0.78, P = 0.003), but there was no correlation between DHT levels and the levels of either conjugated steroid. MK-906 had no effect on glucuronyl transferase activity in vitro. It was concluded that single doses of MK-906 suppress both conjugated and unconjugated 5 alpha-reduced androgens. While all three steroids appeared to be good markers of systemic 5 alpha-reductase inhibition, further research will be needed to determine which steroid best reflects tissue DHT levels in patients receiving these inhibitors.

  4. [Involvement of proteinases produced by both neurons and microglia in neuronal lesion and death pathways]. (United States)

    Nakanishi, H; Yamamoto, K


    Much attention has been paid to proteinases derived from not only neurons but also microglia in relation to neuronal death. There is accumulating evidence that intra- and extracellular proteinases in these cells are part of the basic machinery of neuronal death pathways. Some members of the ced-3/interleukin-1 beta converting enzyme (ICE) (caspase) family of cysteine proteinases have been thought to play a major role in apoptosis of not only non-neuronal cells but also neurons. Calpain has also been demonstrated to be a mediator of the neurodegenerative response. Recent studies have shown that excitotoxic and ischemic neuronal injury could be attenuated by inhibitors of caspases and calpain. Several recent studies have suggested the involvement of endosomal/lysosomal proteinases, including cathepsins B, D and E, in neuronal death induced by excitotoxins and ischemia. Furthermore, it has been reported that the extracellular tissue-type plasminogen activator/plasmin proteolytic cascade is involved in excitotoxic injury of the hippocampal neurons. In addition to such neuronal proteinases, microglial proteinases are believed to be important for the modification of neuronal functions positively or negatively. Cathepsins E and S derived from microglia have been suggested to contribute to neuronal survival through degradation and removal of beta-amyloid, damaged neurons and cellular debris. On the other hand, 6-hydroxydopamine-induced microglial cell death was inhibited by inhibitors of aspartic proteinases and caspases, suggesting the involvement of cathepsins E and D and caspases in microglial cell death. Therefore, identification of which proteinases play a causative role in neuronal death execution and clarification of the regulators and substrates for such proteinases is very important for understanding the molecular basis of the neuronal death pathways and to develop novel neuroprotective agents.

  5. Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2alpha/CK2beta interaction

    DEFF Research Database (Denmark)

    Hochscherf, Jennifer; Lindenblatt, Dirk; Steinkrueger, Michaela;


    active site-directed approaches. The current article describes the development of a fluorescence anisotropy-based assay that mimics the principle of CK2 subunit interaction by using CK2alpha1-335 and the fluorescent probe CF-Ahx-Pc as a CK2beta analog. In addition, we identified new inhibitors able......Increased activity of protein kinase CK2 is associated with various types of cancer, neurodegenerative diseases, and chronic inflammation. In the search for CK2 inhibitors, attention has expanded toward compounds disturbing the interaction between CK2alpha and CK2beta in addition to established...... crystal structure of the Pc/CK2alpha1-335 complex. The dissociation constants obtained in the fluorescence anisotropy assay for binding of all compounds to human CK2alpha1-335 were validated by isothermal titration calorimetry. I-Pc was identified as the tightest binding ligand with a KD value of 240n...

  6. Synthesis and biochemical studies of 7 alpha-substituted androsta-1,4-diene-3,17-diones as enzyme-activated irreversible inhibitors of aromatase. (United States)

    Ebrahimian, S; Chen, H H; Brueggemeier, R W


    Several 7 alpha-thiosubstituted derivatives of androstenedione have demonstrated effective inhibition of aromatase, the cytochrome P450 enzyme complex responsible for the biosynthesis of estrogens. Introduction of an additional double bond in the A ring resulted in 7 alpha-(4'-amino)phenylthioandrosta-1,4-diene-3,17-dione (7 alpha-APTADD), a potent inhibitor that inactivated aromatase by an enzyme-catalyzed process. Additional 7 alpha-thiosubstituted androsta-1,4-diene-3,17-dione derivatives were designed to further examine enzyme-catalyzed inactivation. Two halogenated and one unsubstituted 7 alpha-phenylthioandrosta-1,4-diene-3,17-diones were synthesized via an acid-catalyzed conjugate Michael addition of substituted thiophenols with androsta-1,4,6-triene-3,17-dione. Two 7 alpha-naphthylthioandrosta-1,4-diene-3,17-diones were synthesized via either acid-catalyzed or based-catalyzed conjugate Michael addition of substituted thionaphthols with androsta-1,4,6-triene-3,17-dione. These agents were evaluated for aromatase inhibitory activity in the human placental microsomal preparation. Under initial velocity assay conditions of low product formation, the inhibitors demonstrated potent inhibition of aromatase, with apparent Ki's ranging from 12 to 27 nM. Furthermore, these compounds produced time-dependent, first-order inactivation of aromatase in the presence of NADPH, whereas no aromatase inactivation was observed in the absence of NADPH. This enzyme-activated irreversible inhibition, also referred to as mechanism-based inhibition, can be prevented by the substrate androstenedione. Thus, the apparent Ki values for these inhibitors are consistent with earlier studies on 7 alpha-substituted competitive inhibitors that indicate bulky substituents can be accommodated at the 7 alpha-position.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Molecular cloning of the barley seed protein CMd: a variant member of the alpha-amylase/trypsin inhibitor family of cereals. (United States)

    Halford, N G; Morris, N A; Urwin, P; Williamson, M S; Kasarda, D D; Lew, E J; Kreis, M; Shewry, P R


    The nucleotide and deduced amino-acid sequences of a cDNA clone encoding the barley seed protein CMd are described. The sequence is homologous with those of a family of inhibitors of alpha-amylase and trypsin, except for two short insertions. The longest of these (14 residues) is at the junction between the three proposed ancestral regions that comprise this family of proteins, and has limited identity with alpha-amylases of bacterial origin.

  8. Reflection on design and testing of pancreatic alpha-amylase inhibitors: an in silico comparison between rat and rabbit enzyme models

    Directory of Open Access Journals (Sweden)

    Khalil-Moghaddam Shiva


    Full Text Available Abstract Background Inhibitors of pancreatic alpha-amylase are potential drugs to treat diabetes and obesity. In order to find compounds that would be effective amylase inhibitors, in vitro and in vivo models are usually used. The accuracy of models is limited, but these tools are nonetheless valuable. In vitro models could be used in large screenings involving thousands of chemicals that are tested to find potential lead compounds. In vivo models are still used as preliminary mean of testing compounds behavior in the whole organism. In the case of alpha-amylase inhibitors, both rats and rabbits could be chosen as in vivo models. The question was which animal could present more accuracy with regard to its pancreatic alpha-amylase. Results As there is no crystal structure of these enzymes, a molecular modeling study was done in order to compare the rabbit and rat enzymes with the human one. The overall result is that rabbit enzyme could probably be a better choice in this regard, but in the case of large ligands, which could make putative interactions with the −4 subsite of pancreatic alpha-amylase, interpretation of results should be made cautiously. Conclusion Molecular modeling tools could be used to choose the most suitable model enzyme that would help to identify new enzyme inhibitors. In the case of alpha-amylase, three-dimensional structures of animal enzymes show differences with the human one which should be taken into account when testing potential new drugs.

  9. Purification and partial characterization of a protein proteinanse inhibitor isolated from eggplant exocarp. (United States)

    Kanamori, M; Ibuki, F; Tashiro, M; Yamada, M; Miyoshi, M


    A protein proteinase inhibitor was isolated and purified from eggplant exocarp by heat treatment, ammomium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-25 and G-50. The final purified preparation of the inhibitor was found homogeneous by electrophoretic analysis. The inhibitor showed strong and stoichiometric inhibition on trypsin whereas it showed weak inhibition on alpha-chymotrypsin. It displayed no inhibiting characteristics on pepsin. The molecular weight of the inhibitor was estimated to be approximately 6000. This finding, with the trypsin inhibition data, suggested that the inhibitor combined trypsin in the molar ratio of 1:1. The amino acid analysis indicated that the inhibitor is rich in half-cystine, glycine and aspartic acid, and contains no tryptophan, histidine, methionine or valine.

  10. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. (United States)

    Bourguignon, Saulo C; Cavalcanti, Danielle F B; de Souza, Alessandra M T; Castro, Helena C; Rodrigues, Carlos R; Albuquerque, Magaly G; Santos, Dilvani O; da Silva, Gabriel Gomes; da Silva, Fernando C; Ferreira, Vitor F; de Pinho, Rosa T; Alves, Carlos R


    In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.

  11. Purification and characterization of major extracellular proteinases from Trichophyton rubrum. (United States)

    Asahi, M; Lindquist, R; Fukuyama, K; Apodaca, G; Epstein, W L; McKerrow, J H


    Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).

  12. [The clinical importance of determining fibronectin and the activity of proteolysis inhibitors in patients with bronchial asthma complicated by pulmonary emphysema]. (United States)

    Okopnaia, L M; Glazatova, T M; Zorin, V N; Vassim, K; Padalka, I M


    Examinations of 27 inpatients with infection-dependent bronchial asthma complicated by pulmonary emphysema revealed low levels of fibronectin and alpha proteinase inhibitor, which were in a positive correlation. The said deficiency was stable in asthmatics and was virtually unchanged as remission was attained. Hence, we may propose that the said changes may underlie not only the development, but stabilization and progress of pulmonary emphysema in patients with the infection-dependent variant of bronchial asthma.

  13. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86

    Directory of Open Access Journals (Sweden)

    Vensel William H


    Full Text Available Abstract Background Wheat grains accumulate a variety of low molecular weight proteins that are inhibitors of alpha-amylases and proteases and play an important protective role in the grain. These proteins have more balanced amino acid compositions than the major wheat gluten proteins and contribute important reserves for both seedling growth and human nutrition. The alpha-amylase/protease inhibitors also are of interest because they cause IgE-mediated occupational and food allergies and thereby impact human health. Results The complement of genes encoding alpha-amylase/protease inhibitors expressed in the US bread wheat Butte 86 was characterized by analysis of expressed sequence tags (ESTs. Coding sequences for 19 distinct proteins were identified. These included two monomeric (WMAI, four dimeric (WDAI, and six tetrameric (WTAI inhibitors of exogenous alpha-amylases, two inhibitors of endogenous alpha-amylases (WASI, four putative trypsin inhibitors (CMx and WTI, and one putative chymotrypsin inhibitor (WCI. A number of the encoded proteins were identical or very similar to proteins in the NCBI database. Sequences not reported previously included variants of WTAI-CM3, three CMx inhibitors and WTI. Within the WDAI group, two different genes encoded the same mature protein. Based on numbers of ESTs, transcripts for WTAI-CM3 Bu-1, WMAI Bu-1 and WTAI-CM16 Bu-1 were most abundant in Butte 86 developing grain. Coding sequences for 16 of the inhibitors were unequivocally associated with specific proteins identified by tandem mass spectrometry (MS/MS in a previous proteomic analysis of milled white flour from Butte 86. Proteins corresponding to WDAI Bu-1/Bu-2, WMAI Bu-1 and the WTAI subunits CM2 Bu-1, CM3 Bu-1 and CM16 Bu-1 were accumulated to the highest levels in flour. Conclusions Information on the spectrum of alpha-amylase/protease inhibitor genes and proteins expressed in a single wheat cultivar is central to understanding the importance of

  14. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides. (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven


    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition.

  15. Studies on prekallikrein of bovine plasma. II. Activation of prekallikrein with proteinases and properties of kallikrein activated by bovine Hageman factor. (United States)

    Takahashi, H; Nagasawa, S; Suzuki, T


    Activation of bovine plasma prekallikrein was investigated with several proteinases. Highly purified bovine plasma prekallikrein was rapidly activated to kallikrein [EC] by bovine activated Hageman factor, trypsin [EC] and Pronase P (proteinases from Streptomyces griseus) and more gradually by papain [EC] and ficin [EC]. Activation of prekallikrein was also observed with bovine plasmin [EC], but not with bovine clotting factors Xa (Stuart factor) [EC] and IXa (Christmas factor) or thrombin [EC]. Urokinase [EC], Reptilase, collagenase [EC], elastase [EC], alpha-chymotrypsin [EC], Nagarse [EC], and stem bromelain [EC 3.4.22 4] did not convert prekallikrein to kallikrein. Plasma kallikrein activated to Hageman factor released kinin rapidly from bovine high molecular weight (HMW) kininogen. However, from bovine low molecular weight (LMW) kininogen, liberation of kinin was extremely slow. The kallikrein activity was inhibited by soybean trypsin inhibitor (SBTI), Trasylol, diisopropylfluorophosphate (DFP), and N-alpha-tosyl-L-lysine chloromethylketone (TLCK), but not by egg-white trypsin inhibitor (EWTI), lima bean trypsin inhibitor (LBTI), heparin or hexadimethrine bromide (Polybrene). The kallikrein formed an enzyme-inhibitor complex with SBTI and Trasylol, but not with LBTI. Prekallikrein did not react with SBTI. Prekallikrein consists of a single polypeptide chain of molecular weight about 90,000, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Activation of prekallikrein by Hageman factor was found to involve cleavage of the single peptide bond on the disulfide-bridged polypeptide chain, and no change of molecular weight was observed during the activation. The peptide bond cleaved in prekallikrein by the activation was an Arg-X peptide bond on a disulfide-bridged polypeptide chain.

  16. Treatment of fistulating pouchitis with tumour necrosis factor-alpha-inhibitor (infliximab)

    DEFF Research Database (Denmark)

    Semb, S.; Nordgaard-Lassen, I.


    The surgical first choice treatment for patients with ulcerative colitis (UC) involves total proctocolectomy with ileal pouch-anal anastomosis (IPAA). Postoperative development of pouch-related fistula is a rare complication, but it is associated with significant morbidity, a high recurrence rate...... and is a major cause of pouch failure. We report the use of infliximab, a monoclonal antibody to tumour necrosis factor-alpha, in three patients who developed pouch-related fistula after undergoing IPAA surgery for UC Udgivelsesdato: 2008/12/8...

  17. Do rheumatoid arthritis patients have equal access to treatment with new medicines? Tumour necrosis factor-alpha inhibitors use in four European countries

    NARCIS (Netherlands)

    Hoebert, Joelle M.; Mantel-Teeuwisse, Aukje K.; van Dijk, Liset; Bijlsma, Johannes W. J.; Leufkens, Hubert G. M.


    Purpose: To explore the use of the biological tumour necrosis factor alpha (TNFalpha) inhibitors used in the treatment of rheumatoid arthritis as a measure of access to treatment with new medicines. In addition, characteristics both related to national health systems and spending will be assessed to

  18. Do rheumatoid arthritis patients have equal access to treatment with new medicines? Tumour necrosis factor-alpha inhibitors use in four European countries.

    NARCIS (Netherlands)

    Hoebert, J.M.; Mantel-Teeuwisse, A.K.; Dijk, L. van; Bijlsma, J.W.J.; Leufkens, H.G.M.


    Purpose: To explore the use of the biological tumour necrosis factor alpha (TNFalpha) inhibitors used in the treatment of rheumatoid arthritis as a measure of access to treatment with new medicines. In addition, characteristics both related to national health systems and spending will be assessed to

  19. ONO 3403, a synthetic serine protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production and protects mice from lethal endotoxic shock

    NARCIS (Netherlands)

    Tumurkhuu, Gantsetseg; Koide, Naoki; Hiwasa, Takaki; Ookoshi, Motohiro; Dagvadorj, Jargalsaikhan; Noman, Abu Shadat Mohammod; Iftakhar-E-Khuda, Imtiaz; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi


    ONO 3403, a new synthetic serine protease inhibitor, is a derivative of camostat mesilate and has a higher protease-inhibitory activity. The effect of ONO 3403 on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha and nitric oxide (NO) production in RAW 264.7 macrophage-like cells wa

  20. Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins

    DEFF Research Database (Denmark)

    Pastorello, Elide A; Farioli, Laura; Conti, Amedeo


    /globulin fraction and several low-molecular-weight (LMW) glutenin subunits in the gluten fraction. All these allergens showed heat resistance and lack of cross-reactivity to grass pollen allergens. LTP was a major allergen only in Italian patients. CONCLUSIONS: The alpha-amylase inhibitor was confirmed...

  1. Tumor necrosis factor-alpha inhibitor combined with methotrexate for ankylosing spondylitis: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Shaopeng Lin


    Full Text Available To evaluate the benefits and harms of combination of tumor necrosis factor-alpha (TNF-α inhibitor and methotrexate (MTX compared with TNF-α inhibitor monotherapy in the treatment of ankylosing spondylitis (AS. Randomized controlled trials were identified from Medline, Embase, Cinahl, Central and Clinical Trials Registry Platform, as well as from the reference sections of retrieved articles. The risk of bias was evaluated in all included trials. Data were extracted by two reviewers independently using a specially designed extraction form. The Cochrane Collaboration’s Review Manager 5.2 software was used for data analysis. The search retrieved 852 titles, of which 3 original trials were included, involving 187 participants. The overall risk of bias is low in all three trials. Only one study was placebo controlled, and all of them examined small samples. The analysis showed no significant advantage of the MTX combination versus monotherapy. Two trials assessed Assessment of Ankylosing Spondylitis (ASAS 40 and the pooled risk ratio (RR was 1.37 and 95% confidence interval 0.84 to 2.23. The RR for ASAS20 was 1.16 (0.88 to 1.52. Likewise, there were no significant difference between two groups in partial remission, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Magnetic resonance imaging activity score and other secondary outcomes. Withdrawals for side effects and for any reason were similar in two groups, RR were 1.89 (0.71 to 5.02 and 1.11 (0.67 to 1.84, respectively. The evidence available did not support any benefit of adding MTX to TNF-α inhibitor for the treatment of AS.

  2. Nuclear magnetic resonance studies on the pKa values and interaction of ionizable groups in bromelain inhibitor VI from pineapple stem. (United States)

    Hatano, Ken-ichi; Kojima, Masaki; Tanokura, Masaru; Takahashi, Kenji


    Bromelain inhibitor VI (BI-VI), a cysteine proteinase inhibitor from pineapple stem, is a unique double-chain molecule composed of two distinct domains A and B. In order to clarify the molecular mechanism of the proteinase-inhibitor interaction, we investigated the electrostatic properties of this inhibitor. The inhibitory activity toward bromelain was revealed to be maximal at pH 3-4 and the gross conformation to be stable over a wide range of pH. Based on these results, pH titration experiments were performed on the proton resonances of BI-VI in the pH range of 1.5-9.9, and pKa values (pKexp) were determined for all carboxyl groups and alpha-amino groups. The pKexp were also compared with theoretical values calculated from the NMR-derived structures of BI-VI. The electrostatic surface potential map constructed using the pKexp values revealed that BI-VI possesses continuous negatively charged and scattered positively charged regions on the molecular surface and both regions appear to serve for docking properly with a basic target enzyme. Furthermore, it was suggested that the ionic interaction of the inhibitor with the target enzyme is primarily important for the inhibition, which seems to involve some carboxyl groups in the inhibitor and a thiol group in the proteinase.

  3. Specificity of proteinase K at P2 to P3' sub-sites and its comparison to other serine proteases. (United States)

    Qasim, Mohammad A


    Specificity of the commercially important serine protease, proteinase K, has been investigated by measuring free energies of association of proteinase K with turkey ovomucoid third domain inhibitor variants at contact positions P2, P1, P1', P2', and P3'. Correlations of these values were run with similar values that have been obtained for six other serine proteases. Among the six proteases, subtilisin Carlsberg shows a near perfect correlation (Pearson Product correlation coefficient = 0.93 to 0.99) with proteinase K at all of these positions. Proteinase K has only 35% sequence identity with subtilisin Carlsberg, yet, the two enzymes are nearly identical in their specificity at P2 to P3' positions. With other serine proteases such as bovine chymotrypsin, human leukocyte elastase, porcine pancreatic elastase, Streptomyces griseus protease A and B, proteinase K showed relatively poor or no correlation.

  4. Wheat and barley allergens associated with baker's asthma. Glycosylated subunits of the alpha-amylase-inhibitor family have enhanced IgE-binding capacity. (United States)

    Sanchez-Monge, R; Gomez, L; Barber, D; Lopez-Otin, C; Armentia, A; Salcedo, G


    A 16 kDa protein, designated CM16*, which strongly binds IgE from baker's-asthma patients has been identified as a glycosylated form of the previously reported WTAI-CM16, which is a subunit of the wheat tetrameric alpha-amylase inhibitor. A glycosylated form (CMb*) of BTAI-CMb, the equivalent inhibitor subunit from barley, has been also found to have significantly enhanced IgE-binding capacity. In all, 14 purified members of the alpha-amylase/trypsin-inhibitor family showed very different IgE-binding capacities when tested by a dot-blot assay. The glycosylated components CM16*, CMb* and the previously described non-glycosylated 14.5 kDa allergen from barley (renamed BMAI-1) were found to be the strongest allergens.

  5. Increase in net activity of serine proteinases but not gelatinases after local endotoxin exposure in the peripheral airways of healthy subjects.

    Directory of Open Access Journals (Sweden)

    Margaretha E Smith

    Full Text Available We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL samples were harvested 24 or 48 hours (h later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE. Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.

  6. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity. (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S


    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.

  7. Effect of cholinesterase inhibitor galanthamine on circulating tumor necrosis factor alpha in rats with lipopolysaccharide induced peritonitis

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hai; MA Yue-feng; WU Jun-song; GAN Jian-xin; XU Shao-wen; JIANG Guan-yu


    Background The nervous system, through the vagus nerve and its neurotransmitter acetylcholine, can down-regulate the systemic inflammation in vivo, and recently, a role of brain cholinergic mechanisms in activating this cholinergic anti-inflammatory pathway has been indicated. Galanthamine is a cholinesterase inhibitor and one of the centrally acting cholinergic agents available in clinic. This study aimed to evaluate the effect of galanthamine on circulating tumor necrosis factor alpha (TNF-α) in rats with lipopolysaccharide-induced peritonitis and the possible role of the vagus nerve in the action of galanthamine.Methods Rat models of lipopolysaccharide-induced peritonitis and bilateral cervical vagotomy were produced. In the experiment 1, the rats were randomly divided into control group, peritonitis group, and peritonitis groups treated with three dosages of galanthamine. In the experiment 2, the rats were randomly divided into sham group, sham plus peritonitis group, sham plus peritonitis group treated with galanthamine, vagotomy plus peritonitis group, and vagotomy plus peritonitis group treated with galanthamine. The levels of plasma TNF-α were determined in every group. Results The level of circulating TNF-α was significantly increased in rats after intraperitoneal injection of endotoxin. Galanthamine treatment decreased the level of circulating TNF-α in rats with lipopolysaccharide-induced peritonitis, and there was significant difference compared with rats with lipopolysaccharide-induced peritonitis without treatment. The 3 mg/kg dosage of galanthamine had the most significant inhibition on circulating TNF-α level at all the three tested doses. Galanthamine obviously decreased the TNF-α level in rats with lipopolysaccharide-induced peritonitis with sham operation, but could not decrease the TNF-α level in rats with lipopolysaccharide-induced peritonitis with vagotomy. Conclusion Cholinesterase inhibitor galanthamine has an inhibitory effect on TNF

  8. Effects of a high-pressure treatment on the wheat alpha-amylase inhibitor and its relationship to elimination of allergenicity

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S [Food Science Center, Niigata University, Ikarashi, Niigata, 950-2181 (Japan); Takanohashi, K; Nishiumi, T [Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181 (Japan); Hara, T [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata, 950-2181 (Japan); Odani, S [Department of Living Science and Technology, Faculty of Education and Human Science, Ikarashi, Niigata, 950-2181 (Japan); Suzuki, A, E-mail: [Department of Health and Nutrition, Faculty of Medical Science for Health, Teikyo Heisei University, Ikebukuro, Tokyo, 170-0013 (Japan)


    In this study, the effects of high-pressure treatment on structure and allergeincity of alpha amylase inhibitor (a-AI) were investigated. The pressure-induced structural changes of {alpha}-AI were estimated by fluorescence spectra and by fourth derivative UV-spectroscopy for probed tyrosine residues and by circular dichroism (CD) spectroscopy. The changes in the tertiary structure detected by fluorescence spectra and by fourth derivative UV-spectroscopy under high pressure were indicated at over 300 MPa. Measurements of CD spectroscopy suggested that the effects of a high-pressure treatment on changes in the secondary structure of {alpha}-AI were little. From our results, pressure-induced changes of the {alpha}-AI structure were not apparent. On the other hands, the IgE-specific binding activities of pressurized {alpha}-AI to sera from allergic patients against wheat, which is estimated by observations of dot-blotting, were decreased by high-pressure treatment. It is known that the pressure-induced elimination of allergenicity is related to the tertiary structural changes of allergen molecules. This study are suspected that the epitopes of {alpha}-AI do not contain tyrosine residues, and thus the decrease of IgE-specific binding activities is probably caused by the tertiary structural changes of these parts of {alpha}-AI.

  9. Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: A case report and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Tatsuhiro Tsujimoto; Hiroshi Fukui; Erika Shioyama; Kei Moriya; Hideto Kawaratani; Yasuyo Shirai; Masahisa Toyohara; Akira Mitoro; Jun-ichi Yarnao; Hisao Fujii


    A 69-year-old man was diagnosed as having myasthenia gravis (MG) in September 2004, and treated with thymectomy and prednisolone. He was then diagnosed as having steroid-induced diabetes mellitus, and received sulfonylurea (SU) therapy in May 2005. An alpha-glucosidase inhibitor (αGI) was added in March 2006, resulting in good glycemic control. He experienced symptoms of abdominal distention, increased flatus, and constipation in October 2007, and was admitted into our hospital in late November with hematochezia. Plain abdominal radiography revealed small linear radiolucent clusters in the wall of the colon. Computed tomography (CT) showed intramural air in the sigmoid colon. Colonoscopy revealed multiple smooth surfaced hemispherical protrusions in the sigmoid colon. The diagnosis of pneumatosis cystoides intestinalis (PCI) was made on the basis of these findings. As the αGI voglibose was suspected as the cause of this patient's PCI, treatment was conservative, ceasing voglibose, with fasting and fluid supplementation. The patient progressed well, and was discharged 2 wk later. Recently, several reports of PCI associated with αGI therapy have been published, predominantly in Japan where αGIs are commonly used. If the use of αGIs becomes more widespread, we can expect more reports of this condition on a global scale. The possibility of PCI should be considered in diabetic patients complaining of gastrointestinal symptoms, and the gastrointestinal tract should be thoroughly investigated in these patients.

  10. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family. (United States)

    Adachi, T; Izumi, H; Yamada, T; Tanaka, K; Takeuchi, S; Nakamura, R; Matsuda, T


    Genomic and two novel cDNA clones for rice seed allergenic protein (RA) belonging to the alpha-amylase/trypsin inhibitor family were isolated and their nucleotide sequences determined. Ten cysteine residues deduced from nucleotide sequences were completely conserved among three cDNA clones including a clone, RA17, reported previously. One genomic clone, lambda 4, contained two RA genes, RAG1 and RAG2. Although RAG1 was cloned at the 5' portion only, two RA genes were arranged divergently. Nucleotide sequencing and DNA blotting analyses showed that RA are encoded by a multigene family consisting of at least four members. The transcriptional initiation site of RAG1 was localized at A, 26 bp upstream of the putative translational initiation codon, ATG, by the primer extension assay. The putative TATA box and CAAT box existed about 45 bp and 147 bp upstream of the transcription initiation site, respectively. A conserved sequence (ATGCAAAA) which was similar to the sequence (TGCAAAA) identified in rice glutelin promoters was observed in the 5' region of the two genes. In addition, RNA blotting analyses provided that RA genes specifically expressed in ripening seed and their transcripts accumulated maximally between 15 and 20 days after flowering.

  11. Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and meta-analysis (United States)

    Zhang, Longhao; Chen, Qiyan; Li, Ling; Kwong, Joey S. W.; Jia, Pengli; Zhao, Pujing; Wang, Wen; Zhou, Xu; Zhang, Mingming; Sun, Xin


    Alpha-glucosidase inhibitors (AGIs) was reported to be associated with several rare adverse hepatic events, but with inconsistent results. We aimed to investigate the risk of hepatotoxicity associated with the use of AGIs in patients with type 2 diabetes mellitus (T2DM), and performed a systematic review and meta-analysis. Fourteen studies (n = 2881) were eligible, all of which were RCTs. Meta-analysis of data regarding elevation of more than 3-fold the upper limit of normal (ULN) of AST and ALT showed statistically significant differences between AGIs treatment versus control (OR 6.86, 95% CI 2.50 to 18.80; OR 6.48, 95% CI 2.40 to 17.49). Subgroup analyses of elevation of more than 1.8-fold ULN of AST and ALT by dose of AGIs showed differential effects on AST and ALT (AST: OR 0.38 vs 7.31, interaction P = 0.003 ALT: OR 0.32 vs 4.55, interaction p = 0.02). Meta-analysis showed that AGIs might increase the risk of hepatotoxicity, and higher dose appeared to be associated with higher risk of hepatotoxicity. However, the evidence is limited with surrogate measures (i.e. ALT and AST), and no clinically important adverse events were observed.

  12. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds. (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L


    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  13. Doping-control analysis of the 5alpha-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. (United States)

    Thevis, Mario; Geyer, Hans; Mareck, Ute; Flenker, Ulrich; Schänzer, Wilhelm


    5alpha-Reductase inhibitors such as finasteride are prohibited in sports according to the World Anti-Doping Agency. This class of drugs is used therapeutically to treat benign prostatic hyperplasia, as well as male baldness, by decreasing 5alpha-reductase activity. Accordingly, metabolic pathways of endogenous as well as synthetic steroids are influenced, which complicates the evaluation of steroid profiles in sports drug testing. The possibility of manipulating steroid excretion profiles and, presumably, to mask steroid abuse was investigated in 5 administration studies with use of finasteride at different doses, with and without coadministration of 19-norandrostenedione. The evaluation of urinary steroid profiles demonstrated the intense effect of finasteride on numerous crucial analytical parameters, in particular the production of 5alpha-steroids such as androsterone and 5alpha-androstane-3alpha,17beta-diol, which was significantly reduced. In addition, the excretion of the main metabolite of norandrostenedione, norandrosterone, was significantly suppressed, by up to 84%, in elimination studies. For doping-control analysis the use of 5alpha-reductase inhibitors causes considerable problems because steroid profile parameters, which are commonly considered stable, are highly affected and complicate the detection of steroid abuse. In addition, the suppression of production and renal excretion of 5alpha-steroids such as 19-norandrosterone generated from anabolic agents such as 19-norandrostenedione may lead to false-negative doping-control results, because urine specimens are reported positive only when a threshold level of 2 ng/mL is exceeded. Finally, a method for the determination of the major urinary metabolite of finasteride (carboxy-finasteride) in routine doping-control screening with use of liquid chromatography-tandem mass spectrometry is described, allowing the detection of carboxy-finasteride for up to 94 hours in urine specimens collected after an oral

  14. Abnormal production of tumor necrosis factor (TNF) -- alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected]. (United States)

    Cortis, Elisabetta; De Benedetti, Fabrizio; Insalaco, Antonella; Cioschi, Stefania; Muratori, Flaminia; D'Urbano, Leila E; Ugazio, Alberto G


    We report a family with pyogenic sterile arthritis, pyoderna and acne syndrome (PAPA). The proband presented several episodes of sterile pyogenic arthritis and became unresponsive to glucocorticoids. After treatment with the tumor necrosis factor inhibitor etanercept, the disease underwent rapid and sustained clinical remission. Production of tumor necrosis factor-alpha by mononuclear cells of the proband and of the affected relatives was abnormally elevated.

  15. Risk of gynecomastia and breast cancer associated with the use of 5-alpha reductase inhibitors for benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Hagberg KW


    Full Text Available Katrina Wilcox Hagberg,1 Hozefa A Divan,2 Shona C Fang,2 J Curtis Nickel,3 Susan S Jick1 1Boston Collaborative Drug Surveillance Program, Boston University School of Public Health, Lexington, 2New England Research Institutes, Inc., Watertown, MA, USA; 3Kingston General Hospital, Queen’s University, Kingston, ON, Canada Background: Clinical trial results suggest that 5-alpha reductase inhibitors (5ARIs for the treatment of benign prostatic hyperplasia (BPH may increase the risk of gynecomastia and male breast cancer, but epidemiological studies have been limited. Patients and methods: We conducted a cohort study with nested case–control analyses using the UK Clinical Practice Research Datalink. We identified men diagnosed with BPH who were free from Klinefelter syndrome, prostate, genital or urinary cancer, prostatectomy or orchiectomy, or evidence of gynecomastia or breast cancer. Patients entered the cohort at age ≥40 years and at least 3 years after the start of their electronic medical record. We classified exposure as 5ARIs (alone or in combination with alpha blockers [ABs], AB only, or unexposed to 5ARIs and ABs. Cases were men who had a first-time diagnosis of gynecomastia or breast cancer. Incidence rates and incidence rate ratios (IRRs with 95% confidence intervals (CIs in the gynecomastia analysis and crude and adjusted odds ratios (ORs with 95% CIs in both analyses were calculated. Results: Compared to no exposure, gynecomastia risk was elevated for users of 5ARIs (alone or in combination with ABs in both the cohort (IRR=3.55, 95% CI 3.05–4.14 and case–control analyses (OR=3.31, 95% CI 2.66–4.10, whereas the risk was null for users of AB only. The increased risk of gynecomastia with the use of 5ARIs persisted regardless of the number of prescriptions, exposure timing, and presence or absence of concomitant prescriptions for drugs known to be associated with gynecomastia. The risk was higher for dutasteride than for

  16. Risk of gynecomastia and breast cancer associated with the use of 5-alpha reductase inhibitors for benign prostatic hyperplasia (United States)

    Hagberg, Katrina Wilcox; Divan, Hozefa A; Fang, Shona C; Nickel, J Curtis; Jick, Susan S


    Background Clinical trial results suggest that 5-alpha reductase inhibitors (5ARIs) for the treatment of benign prostatic hyperplasia (BPH) may increase the risk of gynecomastia and male breast cancer, but epidemiological studies have been limited. Patients and methods We conducted a cohort study with nested case–control analyses using the UK Clinical Practice Research Datalink. We identified men diagnosed with BPH who were free from Klinefelter syndrome, prostate, genital or urinary cancer, prostatectomy or orchiectomy, or evidence of gynecomastia or breast cancer. Patients entered the cohort at age ≥40 years and at least 3 years after the start of their electronic medical record. We classified exposure as 5ARIs (alone or in combination with alpha blockers [ABs]), AB only, or unexposed to 5ARIs and ABs. Cases were men who had a first-time diagnosis of gynecomastia or breast cancer. Incidence rates and incidence rate ratios (IRRs) with 95% confidence intervals (CIs) in the gynecomastia analysis and crude and adjusted odds ratios (ORs) with 95% CIs in both analyses were calculated. Results Compared to no exposure, gynecomastia risk was elevated for users of 5ARIs (alone or in combination with ABs) in both the cohort (IRR=3.55, 95% CI 3.05–4.14) and case–control analyses (OR=3.31, 95% CI 2.66–4.10), whereas the risk was null for users of AB only. The increased risk of gynecomastia with the use of 5ARIs persisted regardless of the number of prescriptions, exposure timing, and presence or absence of concomitant prescriptions for drugs known to be associated with gynecomastia. The risk was higher for dutasteride than for finasteride. 5ARI users did not have an increased risk of breast cancer compared to unexposed men (OR=1.52, 95% CI 0.61–3.80). Conclusion In men with BPH, 5ARIs significantly increased the risk of gynecomastia, but not breast cancer, compared to AB use and no exposure. PMID:28228662

  17. Synthesis of 17beta-N-substituted 19-Nor-10-azasteroids as inhibitors of human 5alpha-reductases I and II. (United States)

    Scarpi, Dina; Occhiato, Ernesto G; Danza, Giovanna; Serio, Mario; Guarna, Antonio


    The synthesis of 17beta-[N-(phenyl)methyl/phenyl-amido] substituted 10-azasteroids has been accomplished by either the TiCl4- or TMSOTf-catalysed reaction of carbamates 11 and 12 with Danishefsky's diene. The reaction provided 5alpha-H isomers 3a-5a and 5beta-H isomers 3b-5b depending on the reaction conditions. Both epimers of each compound were tested against human 5alpha-reductase types I and II. Unexpectedly, 5beta-H compounds were found more active than their 5alpha-H counterparts, the best inhibitors being 3b (IC50=279 and 2000 nM toward isoenzyme I and II, respectively) and 5b (IC50=913 and 247 nM toward isoenzymes I and II, respectively).

  18. Interferon-alpha-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas

    NARCIS (Netherlands)

    L.J. Hofland (Leo); W.W. de Herder (Wouter); M. Waaijers (Marlijn); J. Zuijderwijk; P. Uitterlinden (Piet); P.M. van Koetsveld (Peter); S.W.J. Lamberts (Steven)


    textabstractInterferon-alpha (IFN alpha) may exert direct inhibitory effects on cell proliferation and on the production of different peptide hormones. We investigated the effect of IFN alpha on hormone production by 15 GH-secreting pituitary adenomas, 4 clinically nonf

  19. The cysteine proteinases of the pineapple plant. (United States)

    Rowan, A D; Buttle, D J; Barrett, A J


    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

  20. Structural and mutational analyses of the interaction between the barley alpha-amylase/subtilisin inhibitor and the subtilisin savinase reveal a novel mode of inhibition. (United States)

    Micheelsen, Pernille Ollendorff; Vévodová, Jitka; De Maria, Leonardo; Ostergaard, Peter Rahbek; Friis, Esben Peter; Wilson, Keith; Skjøt, Michael


    Subtilisins represent a large class of microbial serine proteases. To date, there are three-dimensional structures of proteinaceous inhibitors from three families in complex with subtilisins in the Protein Data Bank. All interact with subtilisin via an exposed loop covering six interacting residues. Here we present the crystal structure of the complex between the Bacillus lentus subtilisin Savinase and the barley alpha-amylase/subtilisin inhibitor (BASI). This is the first reported structure of a cereal Kunitz-P family inhibitor in complex with a subtilisin. Structural analysis revealed that BASI inhibits Savinase in a novel way, as the interacting loop is shorter than loops previously reported. Mutational analysis showed that Thr88 is crucial for the inhibition, as it stabilises the interacting loop through intramolecular interactions with the BASI backbone.

  1. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.


    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  2. Use of 5-alpha-reductase inhibitors did not increase the risk of cardiovascular diseases in patients with benign prostate hyperplasia: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Teng-Fu Hsieh

    Full Text Available This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH using the National Health Insurance Research Database (NHIRD in Taiwan.In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors.The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003. In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI 0.42 to 0.92; P=0.018, however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively.5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed.

  3. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.;


    ) overproduction of Vps10p suppressed the missorting phenotype associated with overproduction of proteinase A, 2) overproduction of proteinase A induced missorting of carboxypeptidase Y, 3) vacuolar sorting of proteinase A in a deltavps10 strain was readily saturated by modest overproduction of proteinase A, and 4...

  4. Genetic polymorphisms of tumour necrosis factor alpha (TNF-α) promoter gene and response to TNF-α inhibitors in Spanish patients with inflammatory bowel disease. (United States)

    López-Hernández, R; Valdés, M; Campillo, J A; Martínez-Garcia, P; Salama, H; Salgado, G; Boix, F; Moya-Quiles, M R; Minguela, A; Sánchez-Torres, A; Miras, M; Garcia, A; Carballo, F; Álvarez-López, M R; Muro, M


    Tumour necrosis factor alpha (TNF-α) has an important role in inflammatory response. Alterations in the regulation of TNF-α have been implicated in a variety of inflammatory disorders, including Inflammatory bowel disease (IBD). Indeed, a common treatment for IBD is the use of TNF-α inhibitors. Polymorphisms in the TNF-α promoter region are known to affect the level of gene expression. Our aim was to investigate the influence of these single nucleotide polymorphisms (SNPs) in TNF-α promoter gene play in the risk of IBD in a Spanish population and their individual response to anti-TNF-α treatment. DNA samples from patients with IBD and controls were screened for TNF-α -238G/A (rs361525) and -308G/A (rs1800629) SNPs by PCR-SSOP using a microbeads luminex assay and compared with response to TNF-α inhibitors. There were not statistical differences in -238G/A and -308G/A allele and genotype frequencies between patients. However, we found an increased frequency of -308A allele and -308GA genotype in these nonresponders patients to TNF-α inhibitors with respect to responders patients (Pc TNF-α inhibitors. TNF-α promoter gene polymorphism does not seem to play a role in IBD susceptibility, but particular TNF-α genotypes may be involved in the different responses to TNF-α inhibitor treatment in Spanish patients with IBD.

  5. Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis). (United States)

    Aoki, H; Ahsan, M N; Watabe, S


    We purified a cathepsin L-like proteinase to homogeneity from the hepatopancreas of northern shrimp Pandalus borealis by several chromatographic procedures. The purified proteinase showed the highest specificity for leucine residue at P2, a specificity pattern similar to cathepsins S and K whereas proline and arginine residues were not suitable as P2 substrates. However, unlike these proteinases, it accepted valine almost equally to the phenylalanine residue at P2. The shrimp cathepsin was strongly inhibited by E-64, leupeptin and antipain, while benzyloxycarbonyl-Phe-Tyr(t-Bu)-CHN2, a specific inhibitor of cathepsin L, remained largely ineffective. Next, we determined the primary structure of the shrimp enzyme by molecular cloning and investigated the residues constituting the S2 subsite, which is possibly involved in its unusual substrate specificity. The deduced amino acid sequence of the shrimp proteinase shared the highest identity of 65% with a cathepsin L-like proteinase from lobster, but its identity to the well-characterized mammalian cathepsins S, L, and K fell within narrower ranges of 52-55%. However, the shrimp proteinase differed from these cathepsins in some key residues including, for example, the unique occurrence of cysteine and glutamine residues at the structurally important S2 subsite. Interestingly, transcripts of this proteinase were exclusively detected in the shrimp gut coinciding with its broad pH activity and stability profiles, which is also unusual as a cysteine proteinase. These results suggest that the shrimp enzyme is homologous to mammalian cathepsins S, L, and K, but is distinct from each of these proteinases in both enzymatic and structural properties.

  6. In vivo assay for conversion of testosterone to dihydrotestosterone by rat prostatic steroid 5 alpha-reductase and comparison of two inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, R.E.; Goode, R.L.; Petrow, V.; Neubauer, B.L. (Endocrine Research, Lilly Research Labs, Indianapolis, IN (USA))


    An in vivo assay for steroid 5 alpha-reductase in rat ventral prostate has been developed and used to compare the inhibitory activity of N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and 6-methylene-4-pregnene-3,20-dione (LY207320). Immature rats (70-80 g) received test compounds 30 min prior to s.c. injection of (3H)-T. The rats were sacrificed 30 min later and the ventral prostates were analyzed for (3H)-T metabolites. Intraprostatic (3H)-T and (3H)-DHT reached peak levels within 5 min after injection of (3H)-T and declined to about 25% of peak levels after 2 hr. 4-MA was a very potent inhibitor of (3H)-DHT formation with an estimated IC50 of 0.2 mg/kg. LY207320, an inhibitor of 5 alpha-reductase in vitro, was weakly active in vivo and did not achieve greater than 45% inhibition at high doses (greater than 200 mg/kg, s.c.). Tissue uptake of (3H)-T was also inhibited by LY207320, which may contribute to its inhibitory activity on accessory sex organ growth in the rat.

  7. Taraxalisin -- a serine proteinase from dandelion Taraxacum officinale Webb s.l. (United States)

    Rudenskaya, G N; Bogacheva, A M; Preusser, A; Kuznetsova, A V; Dunaevsky YaE; Golovkin, B N; Stepanov, V M


    Latex of dandelion roots contains a serine proteinase that hydrolyzes a chromogenic peptide substrate Glp-Ala-Ala-Leu-pNA optimally at pH 8.0. Maximal activity of the proteinase in the roots is attained in April, at the beginning of plant development after the winter period. The protease was isolated by ammonium sulfate precipitation of the root extract followed by affinity chromatography on a Sepharose-Ala-Ala-Leu-mrp and gel filtration on Superose 6R performed in FPLC regime. Pure serine proteinase named taraxalisin was inactivated by specific inhibitors of serine proteinases, diisopropylfluorophosphate (DFP) and phenylmethylsulfonylfluoride (PMSF). Its molecular mass is 67 kDa and pI 4.5. pH stability range is 6-9 in the presence of 2 mM Ca2+, temperature optimum is at 40 degrees C; Km=0.37+/-0.06 mM. The substrate specificity of taraxalisin towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases, cucumisin and macluralisin. The taraxalisin N-terminal sequence traced for 15 residues revealed 40% coinciding residues when aligned with that of subtilisin Carlsberg.

  8. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj


    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website:

  9. Semi-synthetic analogs of pinitol as potential inhibitors of TNF-alpha cytokine expression in human neutrophils. (United States)

    Bhat, Khurshid A; Shah, Bhahwal A; Gupta, Kuldeep K; Pandey, Anjali; Bani, Sarang; Taneja, Subhash C


    Semi-synthetic analogs of pinitol were subjected to screening by determining TNF-alpha expression in human neutrophils using flowcytometry. Among the tested compounds, three derivatives displayed more than 50% inhibition of TNF-alpha cytokine secretion in LPS induced stimulated neutrophils and can be considered as potent anti-inflammatory moieties.

  10. Synthesis Activity and Structural Analysis of Novel alpha-Hydroxytropolone Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H

    Energy Technology Data Exchange (ETDEWEB)

    S Chung; D Himmel; J Jiang; K Wojtak; J Bauman; J Rausch; J Wilson; J Beutler; C Thomas; et al.


    The {alpha}-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one), potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating {alpha}-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified {alpha}-hydroxytropolones exhibit antiviral activity at noncytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogues can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved {alpha}-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use.

  11. Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38[alpha] MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunjian; Lin, James; Wrobleski, Stephen T.; Lin, Shuqun; Hynes, Jr., John; Wu, Hong; Dyckman, Alaric J.; Li, Tianle; Wityak, John; Gillooly, Kathleen M.; Pitt, Sidney; Shen, Ding Ren; Zhang, Rosemary F.; McIntyre, Kim W.; Salter-Cid, Luisa; Shuster, David J.; Zhang, Hongjian; Marathe, Punit H.; Doweyko, Arthur M.; Sack, John S.; Kiefer, Susan E.; Kish, Kevin F.; Newitt, John A.; McKinnon, Murray; Dodd, John H.; Barrish, Joel C.; Schieven, Gary L.; Leftheris, Katerina (BMS)


    The discovery and characterization of 7k (BMS-582949), a highly selective p38{alpha} MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38{alpha} inhibitor. Unlike alkyl and other cycloalkyls, the sp{sup 2} character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38{alpha} enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38{alpha} was confirmed by X-ray crystallographic analysis.

  12. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding. (United States)

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro


    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity.

  13. Effects of glucocorticoids and tumor necrosis factor-alpha inhibitors on both clinical and molecular parameters in patients with Takayasu arteritis

    Directory of Open Access Journals (Sweden)

    Raffaele Serra


    Full Text Available Objective: To explore the effect of sequential treatment with glucocorticoid and tumor necrosis factor-alpha inhibitors in patients with Takayasu arteritis (TA. Materials and Methods: In five patients with TA, the effects of the sequential treatment with prednisone for 5-7 months and then with adalimumab (ADA + methotrexate (MTX or infliximab + MTX, or with ADA only, for 12 months on both clinical and laboratory findings were evaluated. Results: All treatments improved both symptoms and laboratory parameters without the development of side-effects. Conclusions: It was hypothesized that MMP-9 and neutrophil gelatinase-associated lipocalin could be markers of the response to the treatments.

  14. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro. (United States)

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir


    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions.

  15. A trypsin inhibitor from snail medic seeds active against pest proteases. (United States)

    Ceciliani, F; Tava, A; Iori, R; Mortarino, M; Odoardi, M; Ronchi, S


    A protein trypsin inhibitor from seeds of snail medic (Medicago scutellata), MsTI, has been purified by ion-exchange chromatography, gel-filtration chromatography and reverse-phase HPLC. The protein inhibits the catalytic activity of bovine beta-trypsin, with an apparent Kd of 1.8 x 10(-9), but exhibits no activity towards bovine alpha-chymotrypsin. Moreover, MsTI inhibits the trypsin-like proteinase activity present in larvae of the crop pests Adoxophyes orana, Hyphantria cunea, Lobesia botrana and Ostrinia nubilalis. The complete amino acid sequence of MsTI consists of 62 residues corresponding to a M(r) of 6925. Sequence comparison shows that MsTI exhibits significant similarity to other proteins belonging to the Bowman-Birk trypsin inhibitor family, and the closest identity (81%) with the wound-induced trypsin inhibitor from Medicago sativa leaves.

  16. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Geborek, Pierre; Svenson, Morten


    Infliximab, an anti-tumor necrosis factor alpha (anti-TNFalpha) antibody, is effective in the treatment of several immunoinflammatory diseases. However, many patients experience primary or secondary response failure, suggesting that individualization of treatment regimens may be beneficial...

  17. Tertiary and quaternary structures of 0.19 alpha-amylase inhibitor from wheat kernel determined by X-ray analysis at 2.06 A resolution. (United States)

    Oda, Y; Matsunaga, T; Fukuyama, K; Miyazaki, T; Morimoto, T


    The crystal structure of 0.19 alpha-amylase inhibitor (0.19 AI) from wheat kernel was determined by the multiple-isomorphous replacement method coupled with density modification and noncrystallographic symmetry averaging and then refined by simulated annealing using diffraction data to 2.06 A resolution (R = 18.7%, free R = 22.3%). The asymmetric unit has four molecules of 0.19 AI, each comprised of 124 amino acid residues. Electron density for residues 1-4 and 69-77 is absent in all subunits, probably because of the intrinsic flexibility of these segments. Each subunit has four major alpha-helices and one one-turn helix which are arranged in the up-and-down manner, maintaining the favorable packing modes of the alpha-helices. 0.19 AI, however, has two short antiparallel beta-strands. All 10 cysteine residues in 0.19 AI form disulfide bonds (C6-C52, C20-C41, C28-C83, C42-C99, and C54-C115), consistent with the assignments made biochemically for 0.28 AI from wheat kernel and by NMR analysis of the bifunctional alpha-amylase/trypsin inhibitor from ragi seeds (RBI). The disulfide bond patterns in these AIs are similar to those in the hydrophobic protein from soybean (HPS), which lack only the bond corresponding to C28-C83 in 0.19 AI. Extensive interactions occurred between particular pairs of 0.19 AI subunits, mainly involving hydrophobic residues. Comparisons of the structures of 0.19 AI, RBI, and HPS showed that the arrangements of the major alpha-helices are similar but the conformations of the remaining residues differ markedly. The present X-ray analysis for 0.19 AI and the NMR analysis for RBI suggest that all the AIs in this family have a common fold. The alpha-amylase binding site is discussed on the basis of the tertiary and quaternary structures of 0.19 AI together with biochemical and spectroscopic data for AIs.

  18. Crystal structure of the Bowman-Birk Inhibitor from Vigna unguiculata seeds in complex with beta-trypsin at 1.55 A resolution and its structural properties in association with proteinases. (United States)

    Barbosa, João Alexandre R G; Silva, Luciano P; Teles, Rozeni C L; Esteves, Gisele F; Azevedo, Ricardo B; Ventura, Manuel M; de Freitas, Sonia M


    The structure of the Bowman-Birk inhibitor from Vigna unguiculata seeds (BTCI) in complex with beta-trypsin was solved and refined at 1.55 A to a crystallographic R(factor) of 0.154 and R(free) of 0.169, and represents the highest resolution for a Bowman-Birk inhibitor structure to date. The BTCI-trypsin interface is stabilized by hydrophobic contacts and hydrogen bonds, involving two waters and a polyethylene glycol molecule. The conformational rigidity of the reactive loop is characteristic of the specificity against trypsin, while hydrophobicity and conformational mobility of the antichymotryptic subdomain confer the self-association tendency, indicated by atomic force microscopy, of BTCI in complex and free form. When BTCI is in binary complexes, no significant differences in inhibition constants for producing a ternary complex with trypsin and chymotrypsin were detected. These results indicate that binary complexes present no conformational change in their reactive site for both enzymes confirming that these sites are structurally independent. The free chymotrypsin observed in the atomic force microscopy assays, when the ternary complex is obtained from BTCI-trypsin binary complex and chymotrypsin, could be related more to the self-association tendency between chymotrypsin molecules and the flexibility of the reactive site for this enzyme than to binding-related conformational changes.

  19. Isolation of linoleic and alpha-linolenic acids as COX-1 and -2 inhibitors in rose hip

    DEFF Research Database (Denmark)

    Jäger, Anna; Petersen, K N; Thomasen, G.;


    /2 activity-guided. The bioassay-guided fractionation led to the isolation of linoleic acid (the IC50 for COX-1 was 85 microm and 0.6 microM for COX-2) and alpha-linolenic acid (the IC50 for COX-1 was 52 microM and 12 microM for COX-2). The COX-2/COX-1 ratio was 0.007 for linoleic acid and 0.2 for alpha...

  20. Use of proteinase K for RT-PCR of cytokine mRNA in formalin fixed tissue

    DEFF Research Database (Denmark)

    Davies, G N; Bevan, I S; Banner, Jytte;


    formalin fixed, paraffin wax embedded material of sufficient purity for reverse transcription (RT)-PCR is described. Proteinase K treatment of formalin fixed, wax embedded tissue followed by RNA STAT-60 extraction was successful in isolating mRNA suitable for RT-PCR. Interleukin (IL)-1alpha, IL-6...

  1. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.


    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. C...... of the mutant zymogen, owing to a strong, proteinase-B-dependent, phenotypic lag. In a proteinase-B-negative strain, processing of pro-proteinase A led to an active form of a higher molecular mass than the normal mature form....

  2. 血清视黄醇结合蛋白与半胱氨酸蛋白酶抑制剂C对肾脏疾病的诊断价值%Diagnosis value of serum retinal-binding protein and cysteine proteinase inhibitor C in renal diseases

    Institute of Scientific and Technical Information of China (English)

    陈晓婷; 张炳峰; 金菲


    Objective:To evaluate the value of serum retinal-binding protein(RBP) and cysteine proteinase inhibitor C(Cys C) in the diagnosis of renal diseases.Methods:A total of 165 patients with renal disease (patient group) and 177 healthy subjects (control group) were enrolled in the study.Serum RBP,Cys C,creatinine(Cr) and urine Cr were assayed and compared; creatinine clearance rate(Ccr)of the two groups were calculated and compared.Correlation between serum RBP with Cys C,creatinine (Cr) and Ccr were analyzed.ROC curve for the diagnosis of renal disease were drawn and the area under ROC curve was calculated.Results:Compared with the control group,the serum levels of RBP,Cys C and Cr in patient group were higher,but Ccr was lower; Serum levels of RBP in patient group was positively correlated to Cr,while Cys C levels negatively correlated to Ccr (r =0.726,0.705,-0.803,both P <0.01).The area under the ROC curve of RBP,Cys C and Cr were 0.856,0.917 and 0.810,respectively; the diagnosis sensitivity were 81.2%,91.5% and 63.3% ; and the diagnosis specificity were 73.2%,78.2% and 95.2%.Conclusion:The value of serum levels of RBP in the diagnosis of renal disease was lower than that of Cys C.%目的:探讨血清视黄醇结合蛋白(retinal-binding protein,RBP)与半胱氨酸蛋白酶抑制剂C(cysteine proteinase inhibitor C,Cys C)在肾脏疾病中的诊断价值.方法:选取165例肾脏疾病患者和177例健康对照者,分别检测并比较两者血清中RBP,Cys C,血肌酐和尿肌酐水平以及肌酐清除率(creatinine clearance rate,Ccr);对血清中RBP的含量与Cys C、肌酐、Ccr等指标的含量作相关性分析;作RBP、Cys C与肌酐对肾脏疾病诊断的ROC曲线,计算ROC曲线下面积.结果:与健康对照组相比,患者组血清RBP、Cys C和肌酐水平显著增高,而Ccr水平明显降低(P均<0.000 1);患者组血清中RBP与Cys C、肌酐呈明显正相关,与Ccr呈明显负相关(r分别为0.726,0.705,-0.803,P均<0.01).RBP

  3. 乳腺丝氨酸蛋白酶抑制剂在口腔鳞状细胞癌亚细胞中的表达及意义%Mammary serine proteinase inhibitor subcellular expression in oral squamous cell carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    罗军; 舒海荣; 应于康; 吴伟力; 季彤; 钟来平


    目的 检测乳腺丝氨酸蛋白酶抑制剂(mammary serine proteinase inhibitor,Maspin)在口腔鳞状细胞癌亚细胞中的表达,观察其与口腔鳞状细胞癌患者临床病理特征之间的关系,以期为临床提供参考.方法 应用免疫组织化学方法对45例口腔鳞状细胞癌的癌组织标本行Maspin蛋白含量的半定量测定,统计其亚细胞定位表达,并与各临床病理指标进行统计学分析.结果 Maspin蛋白在口腔鳞状细胞癌胞核中表达的强阳性率为24%(11/45),弱阳性率为11%(5/45),阴性率为64%(29/45),细胞核表达与肿瘤大小(P=0.019)、淋巴结转移(P=0.011)及术后转移(P=0.017)呈负相关,与患者术后的生存时间呈正相关(P=0.030);Maspin蛋白在口腔鳞状细胞癌胞质中表达的强阳性率为31%(14/45),弱阳性率为31%(14/45),阴性率为38%(17/45),细胞质表达与淋巴结转移(P=0.038)、术后转移(P=0.004)呈负相关,与患者术后的生存时间呈正相关(P=0.014).结论 Maspin蛋白在口腔鳞状细胞癌胞核或胞质中的表达对判断预后可能具有重要价值.%Objective To investigate the subcellular expression of mammary serine proteinase inhibitor(Maspin) in oral squamous cell carcinoma and its relationship to the clinicopathological features.Methods The Maspin protein subcellular expression was detected in 45 patients with oral squamous cell carcinoma by immunohistochemical staining.The relationship between the Maspin protein subcellular expression and the clinicopathological parameters was analyzed.Results The negative rate of nuclear maspin expression was 64%(29/45),and the weakly positive rate was 11%(5/45),and the strong positive rate was 24%(11/45).Nuclear maspin expression was negatively correlated with T stage(P=0.019),lymph node metastasis(P=0.038) and postoperative metastasis(P=0.004),but positively correlated with the patients′ survival rate (P=0.014).The negative rate of cytoplasmatic maspin expression was 38%(17/45),and the

  4. The protease inhibitor alpha-2-macroglobulin-like-1 is the p170 antigen recognized by paraneoplastic pemphigus autoantibodies in human.

    Directory of Open Access Journals (Sweden)

    Isabelle Schepens

    Full Text Available BACKGROUND: Paraneoplastic pemphigus (PNP is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170, thought to be critical in PNP pathogenesis, has remained unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using an immunoprecipitation and mass spectrometry based approach, we identified p170 as alpha-2-macroglobuline-like-1, a broad range protease inhibitor expressed in stratified epithelia and other tissues damaged in the PNP disease course. We demonstrate that 10 PNP sera recognize alpha-2-macroglobuline-like-1 (A2ML1, while none of the control sera obtained from patients with bullous pemphigoid, pemphigus vulgaris, pemphigus foliaceus and normal subjects does. CONCLUSIONS/SIGNIFICANCE: Our study unravels a broad range protease inhibitor as a new class of target antigens in a paraneoplastic autoimmune multiorgan syndrome and opens a new challenging investigation avenue for a better understanding of PNP pathogenesis.

  5. 肺间质纤维化大鼠肺组织基质金属蛋白酶及其组织抑制因子含量变化%Changes of lung tissue matrix metallo proteinase and its tissue inhibitor in pulmonary fibrosis rats

    Institute of Scientific and Technical Information of China (English)

    黄日红; 吴泰华; 张中和


    观察肺纤维化形成过程中基质金属蛋白酶(Matrix Metallo proteinas 简称MMPs)及其组织抑制因子(Tissue inhibitors of Metallo proteinases 简称TIMPs)含量的变化,探讨其在肺纤维化发病中的作用.将W istar大鼠60只,随机均分为对照组及模型组,气管内注入博莱霉素A5 5mg/kg,制备肺间质纤维化动物模型,观察注药后1、3、7、14及28d肺脏病理变化,利用酶谱法及免疫印记法分析肺组织MMP-2、MMP-9,TIMP-1的含量变化.结果显示各模型组pro-MMP-2、MMP -2、TIMP-1蛋白含量均较对照组增加,尤其7、14及28d组MMP-2较前明显增多.而MMP- 9变化不很明显.提示在肺纤维化形成过程中, pro-MMP-2、MMP-2 及TIMP-1都有所增高,MMP/TIMP比例失衡是最终导致肺间质纤维化形成的重要因素.

  6. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. (United States)

    Jones, M L; Larsen, P B; Woodson, W R


    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  7. Recombinant expression and bioactivity assay of Kazal-type serine proteinase inhibitor(Fc-Kazal) from Fenneropenaeus chinensis%中国明对虾Kazal型丝氨酸蛋白酶抑制剂基因(Fc-Kazal)的重组表达及活性分析

    Institute of Scientific and Technical Information of China (English)

    黄明; 刘逸尘; 张亦陈; 孙妍; 孙金生


    Kazal型丝氨酸蛋白酶抑制剂可以通过精确调控丝氨酸蛋白酶的活力,在生物体的防御应答等众多生物过程中发挥重要作用.以前期克隆的中国明对虾Kaza1型丝氨酸蛋白酶抑制剂基因(Fc-Kazal,GenBank注册号为DQ318856)为基础,对其功能结构域进行序列比对和进化分析;组织表达分析结果表明,该基因在血细胞、鳃和淋巴器官等组织中高水平表达,而在眼柄、神经和肌肉中无表达;利用原核表达系统对该基因成熟肽区域成功进行了重组表达,纯化后的目的蛋白最终得率为0.4 g/L培养液;活性分析结果显示,复性后的rFc-Kazal对鳗弧菌、金黄色葡萄球菌、杀鲑气单胞菌、苏云金芽孢杆菌有明显的抑菌作用.%Chinese shrimp (Fenneropenaeus chinensis) is one of the most important aquaculture animals in China. The studies on the innate immune responses of shrimp, especially on immune defense against the main crustacean pathogens, will provide more knowledge of shrimp immunity to prevent infectious diseases. Arthropod innate defence responses[e. G. Prophenoloxidase(proPO) activation and Toll pathway initiation] and many other biological processes are mediated by serine proteinase( SP) cascades. If the activity of SPs is out of control, it will be fatal to organisms. Serine protease inhibitors ( SPI) play a critical role in precise regulation of SP activity, and also directly participate in the selection and digestion of pathogen. One of the well known SPI is the Kazal-type SPI which are usually multi-domain proteins containing more than one Kazal domain. Each domain contains 50-60 amino acids with six cysteine residues forming a 1 -5,2 -4, 3-6 disulphide bridges resulting in a characteristic three-dimensional structure. The inhibitory specificity of a Kazal domain varies with a different reactive PI amino acid, which is the second amino acid after the second Cys. However,the knowledge about the Kazal-type SPI in

  8. Complete inhibition of the tentoxin-resistant F1-ATPase from Escherichia coli by the phytopathogenic inhibitor tentoxin after substitution of critical residues in the alpha - and beta -subunit. (United States)

    Schnick, Claudia; Körtgen, Nicole; Groth, Georg


    Substitution of critical residues in the alpha- and beta-subunit can turn the typically resistant ATP synthase from the bacterium Escherichia coli into an enzyme showing high sensitivity to the phytopathogenic inhibitor tentoxin, which usually affects only certain sensitive plant species. In contrast to recent results obtained with the thermophilic F(1) (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119), substitution of a critical serine in the beta-subunit (betaSer(59)), which is supposed to provide an important intermolecular hydrogen bond in the binding site, was not sufficient on its own for conferring tentoxin sensitivity to the E. coli F(1) complex. Superimposition of the chloroplast F(1)-tentoxin inhibitor complex on a homology model of the E. coli F(1) complex provided detailed information on the critical residues in the alpha-subunit of the binding cleft and allowed us to model the binding site according to the steric requirements of the inhibitor. Substitution of the highly conserved residue alphaLeu(64) seems to be most important for allowing access of the inhibitor to the binding site. Combining this substitution with either additional replacements in the alpha-subunit (Q49A, L95A, E96Q, I273M) or the replacement of Ser(59) in the beta-subunit enhanced the sensitivity to the inhibitor and resulted in a complete inhibition of the E. coli F(1)-ATPase by the plant-specific inhibitor tentoxin.

  9. The tryptophan hydroxylase activation inhibitor, AGN-2979, decreases regional 5-HT synthesis in the rat brain measured with alpha-[14C]methyl-L-tryptophan: an autoradiographic study. (United States)

    Hasegawa, Shu; Kanemaru, Kazuya; Gittos, Maurice; Diksic, Mirko


    Many experimental conditions are stressful for animals. It is well known that stress induces tryptophan hydroxylase (TPH) activation, resulting in increased serotonin (5-HT) synthesis. In our experimental procedure to measure 5-HT synthesis using alpha-[(14)C]methyl-L-tryptophan (alpha-MTrp) autoradiographic method, the hind limbs of animals are restrained using a loose-fitted plaster cast such that the forelimbs of the animal remain free. The objective of the present investigation was to evaluate the changes, if any, in 5-HT synthesis, after injecting these restrained rats with the TPH activation inhibitor AGN-2979. The effect on regional 5-HT synthesis was studied using the alpha-MTrp autoradiographic method. The hypothesis was that the TPH activation inhibitor would reduce 5-HT synthesis, if TPH activation was induced by this restraint. The rats received injection of AGN-2979 (10 mg/kg, i.p.) or distilled water vehicle (1 mL/kg, i.p.) 1 h prior to tracer administration. The free- and total tryptophan concentrations were not significantly different between the treatment and control groups. The results demonstrate that 5-HT synthesis in AGN-2979 treated rats is significantly decreased (-12 to -35%) in both the raphe nuclei and their terminal areas when compared to the control rats. These findings suggest that restrained conditions, such as those used in our experimental protocol, induce TPH activation resulting in an increased 5-HT synthesis throughout the brain. The reduction in 5-HT synthesis in the AGN-2979 group is not related to a change in the plasma tryptophan. Because there was no activation in the pineal body, the structure having a different isoform of TPH, we can propose that it is only the brain TPH that becomes activated with this specific restraint.

  10. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. (United States)

    Barrett, Marilyn L; Udani, Jay K


    Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris) produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ) has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity.

  11. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris: A review of clinical studies on weight loss and glycemic control

    Directory of Open Access Journals (Sweden)

    Barrett Marilyn L


    Full Text Available Abstract Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity.

  12. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases

    NARCIS (Netherlands)

    Gruden, K.; Kuipers, A.G.J.; Guncar, G.; Slapar, N.; Strukelj, B.; Jongsma, M.A.


    Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition

  13. Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle (United States)

    Azanza, Jean-Louis; Raymond, Jacques; Robin, Jean-Michel; Cottin, Patrick; Ducastaing, André


    Ca2+-activated neutral proteinase was purified from rabbit skeletal muscle by a method involving DEAE-Sephacel chromatography, affinity chromatography on organomercurial–Sepharose and gel filtration on Sephacryl S-200 and Sephadex G-150. The SDS (sodium dodecyl sulphate)/polyacrylamide-gel-electrophoresis data show that the purified enzyme contains only one polypeptide chain of mol.wt. 73000. The purification procedure used allowed us to eliminate a contaminant containing two components of mol.wt. about 30000 each. Whole casein or α1-casein were hydrolysed with a maximum rate at 30°C, pH7.5, and with 5mm-CaCl2, but myofibrils were found to be a very susceptible substrate for this proteinase. This activity is associated with the destruction of the Z-discs, which is caused by the solubilization of the Z-line proteins. The activity of the proteinase in vitro is not limited to the removal of Z-line. SDS/polyacrylamide-gel electrophoresis on larger plates showed the ability of the proteinase to degrade myofibrils more extensively than previously supposed. This proteolysis resulted in the production of a 30000-dalton component as well as in various other higher- and lower-molecular-weight peptide fragments. Troponin T, troponin I, α-tropomyosin, some high-molecular-weight proteins (M protein, heavy chain of myosin) and three unidentified proteins are degraded. Thus the number of proteinase-sensitive regions in the myofibrils is greater than as previously reported by Dayton, Goll, Zeece, Robson & Reville [(1976) Biochemistry 15, 2150–2158]. The Ca2+-activated neutral proteinase is not a chymotrypsin- or trypsin-like enzyme, but it reacted with all the classic thiol-proteinase inhibitors for cathepsin B, papain, bromelain and ficin. Thus the proteinase was proved to have an essential thiol group. Antipain and leupeptin are also inhibitors of the Ca2+-activated neutral proteinase. ImagesFig. 1.Fig. 2.Fig. 3. PMID:534501

  14. Proteinase K improves quantitative acylation studies. (United States)

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas


    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  15. Synthesis, biological activity, and three-dimensional quantitative structure-activity relationship model for a series of benzo[c]quinolizin-3-ones, nonsteroidal inhibitors of human steroid 5alpha-reductase 1. (United States)

    Occhiato, Ernesto G; Ferrali, Alessandro; Menchi, Gloria; Guarna, Antonio; Danza, Giovanna; Comerci, Alessandra; Mancina, Rosa; Serio, Mario; Garotta, Gianni; Cavalli, Andrea; De Vivo, Marco; Recanatini, Maurizio


    New 5alpha-reductase 1 (5alphaR-1) inhibitors were designed to complete a consistent set of analogues suitable for a 3D QSAR study. These compounds were synthesized by a modification of the aza-Robinson annulation, further functionalized by Pd-catalyzed cross-coupling processes, and were tested with human 5alphaR-1 expressed in Chinese hamster ovary 1827 cells. It turned out that the potency of the resulting inhibitors was strongly dependent on the type of substitution at the 8 position, with the IC(50) values ranging from 8.1 to 1050 nM. The construction of this homogeneous set of molecules allowed a 3D QSAR study. In particular, comparative molecular field analysis (CoMFA) was used to correlate the potency of the inhibitors with their physicochemical features. Highly accurate evaluations of the atomic point charges were carried out by means of quantum chemical calculations at the DFT/B3LYP level of theory followed by the RESP fitting procedure. It turned out that increasing the reliability of electrostatic parameters greatly affected the statistical results of the QSAR analysis. The 3D QSAR model proposed could be very useful in the further development of 5alphaR-1 inhibitors, which are suitable candidates to be evaluated as drugs in the treatment of 5alphaR-1 related diseases such as acne and alopecia in men and hirsutism in women.

  16. Assessing the likelihood of new-onset inflammatory bowel disease following tumor necrosis factor-alpha inhibitor therapy for rheumatoid arthritis and juvenile rheumatoid arthritis. (United States)

    Krishnan, Asha; Stobaugh, Derrick J; Deepak, Parakkal


    The association between inhibition of tumor necrosis factor-alpha (TNF-α) in patients with rheumatoid arthritis (RA) and juvenile rheumatoid arthritis (JRA) and the onset of inflammatory bowel disease (IBD) is unclear. We sought to evaluate this association by analyzing adverse events (AEs) reported to the Food and Drug Administration Adverse Event Reporting System (FAERS) with a standardized scoring tool for drug-induced AEs. A search of the FAERS for RA or JRA (January 2003-December 2011) reported with adalimumab, certolizumab pegol, etanercept, golimumab, or infliximab was performed. This dataset was then queried for cases indicating IBD. Full-length reports were accessed using the Freedom of Information Act and organized by age, sex, concomitant medications, co-morbidities, type of TNF-α inhibitor used, and diagnosis/treatment details. The Naranjo score was used to determine whether the drug-induced AEs were definite, probable, possible, or doubtful. There were 158 cases of IBD after TNF-α inhibitor exposure in RA or JRA patients. Use of the Naranjo score revealed that, in a majority of the cases (71.5 %), TNF-α inhibitor exposure was considered a 'possible' cause. A majority of the 'probable cases' in JRA were reported with etanercept (40 patients, 90.91 %). There were no 'definite' cases of anti-TNF-induced IBD. After applying the Naranjo scale, a weak association between new-onset IBD and TNF-α inhibitor therapy in RA patients and a moderately strong association especially with etanercept exposure in JRA patients was observed. However, causality cannot be determined due to limitations of the FAERS and the Naranjo score.

  17. Potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate: a novel inhibitor of 78 kDa glucose-regulated protein

    Directory of Open Access Journals (Sweden)

    Mhaidat NM


    Full Text Available Nizar M Mhaidat,1,2 Qosay A Al-Balas,1 Karem H Alzoubi,1 Rowan F AlEjielat2 1Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 2Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan Background: Previous studies have shown the central role of 78 kDa glucose-regulated protein (GRP78 in colorectal cancer (CRC survival and chemoresistance. In the present study, we aimed to design a GRP78 inhibitor and test its potential to inhibit CRC cells growth. Materials and methods: Computer-aided drug design was used to establish novel compounds as potential inhibitors of GRP78. Discovery Studio 3.5 software was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the protein. The cytotoxicity of the designed compounds was evaluated using the MTT assay and the propidium iodide method. The effect of the inhibitor on the expression of GRP78 was evaluated by immunoblotting. Results: Among the designed compounds, only potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate (PHOS has a potential to inhibit the growth of CRC cells. Inhibition of cellular growth was largely attributed to downregulation of GRP78 and induction of apoptotic cell death. Conclusion: These results introduce PHOS as a promising GRP78 inhibitor that could be used in future studies as a combination with chemotherapy in the treatment of CRC patients. Our ongoing studies aim to characterize PHOS safety profile as well as its mechanism of action. Keywords: UPR, apoptosis, GRP78, CRC, chemotherapy, computer-aided drug design (CADD

  18. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa


    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  19. ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection

    DEFF Research Database (Denmark)

    Pineiro, M.; Andres, M.; Iturralde, M.;


    We have isolated from calf serum a protein with an apparent M, of 120,000. The protein was detected by using antibodies against major acute-phase protein in pigs with acute inflammation. The amino acid sequence of an internal fragment revealed that this protein is the bovine counterpart of ITIH4......, the heavy chain 4 of the inter-alpha-trypsin inhibitor family. The response of this protein in the sera was determined for animals during experimental bacterial and viral infections. In the bacterial model, animals were inoculated with a mixture of Actinomyces pyogenes, Fusobacterium necrophorum....... Because of the significant induction of the protein in the animals in the mastitis and BRSV infection models, we can conclude that ITIH4 is a new positive acute-phase protein in cattle....

  20. Four rice seed cDNA clones belonging to the alpha-amylase/trypsin inhibitor gene family encode potential rice allergens. (United States)

    Alvarez, A M; Fukuhara, E; Nakase, M; Adachi, T; Aoki, N; Nakamura, R; Matsuda, T


    Four rice seed proteins encoded by cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family were overexpressed as TrpE-fusion proteins in E. coli. The expressed rice proteins were detected by SDS-PAGE as major proteins in bacterial cell lysates. Western blot analyses showed that all the recombinant proteins were immunologically reactive to rabbit polyclonal antibodies and to a mouse monoclonal antibody (25B9) specific for a previously isolated rice allergen of 16 kDa. Some truncated proteins from deletion mutants of the cDNAs retained their reactivity to the specific antibodies. These results suggest that the cDNAs encode potential rice allergens and that some epitopes of the recombinant proteins are still immunoreactive when they are expressed as their fragments.

  1. Characterization of certain proteinase isoenzymes produced by benign and virulent strains of Bacteroides nodosus. (United States)

    Green, R S


    Three proteinase isoenzymes from one benign strain of Bacteroides nodosus and five proteinase isoenzymes from each of two virulent strains of B. nodosus were purified by horizontal slab polyacrylamide gel electrophoresis. The purified isoenzymes hydrolysed casein, collagen I, collagen III, elastin, alpha-elastin, fibrinogen, gelatin, haemoglobin and alpha-keratin. The pH optima of all the isoenzymes lay between 7.25 and 9.5, the range of 8.75-9.25 being common to all. The isoenzymes were inhibited by phenylmethylsulphonyl fluoride, diphenylcarbamyl chloride, L-(1-tosylamide-2-phenyl)ethyl chloromethyl ketone, EGTA and EDTA, indicating that they were chymotrypsin-like serine proteinases that require a metal ion for stability or activity. EDTA inhibition was not reversed by addition of Ca2+ or Mg2+. Some isoenzymes were activated by Mg2+, Ca2+, Cr3+ and Se4+ and all were inhibited by Fe2+, Co2+, Cu2+, Zn2+, Cd2+ and Hg2+. Isoenzymes from benign strains had a lower temperature stability, losing all activity at 55 degrees C, whereas those from virulent strains lost all activity at 60 degrees C.

  2. Protection of hepatocytes from cytotoxic T cell mediated killing by interferon-alpha.

    Directory of Open Access Journals (Sweden)

    Christian B Willberg

    Full Text Available BACKGROUND: Cellular immunity plays a key role in determining the outcome of hepatitis C virus (HCV infection, although the majority of infections become persistent. The mechanisms behind persistence are still not clear; however, the primary site of infection, the liver, may be critical. We investigated the ability of CD8+ T-cells (CTL to recognise and kill hepatocytes under cytokine stimulation. METHODS/PRINCIPLE FINDINGS: Resting hepatocytes cell lines expressed low levels of MHC Class I, but remained susceptible to CTL cytotoxicity. IFN-alpha treatment, in vitro, markedly increased hepatocyte MHC Class I expression, however, reduced sensitivity to CTL cytotoxicity. IFN-alpha stimulated hepatocyte lines were still able to present antigen and induce IFN-gamma expression in interacting CTL. Resistance to killing was not due to the inhibition of the FASL/FAS- pathway, as stimulated hepatocytes were still susceptible to FAS-mediated apoptosis. In vitro stimulation with IFN-alpha, or the introduction of a subgenomic HCV replicon into the HepG2 line, upregulated the expression of the granzyme-B inhibitor-proteinase inhibitor 9 (PI-9. PI-9 expression was also observed in liver tissue biopsies from patients with chronic HCV infection. CONCLUSION/SIGNIFICANCE: IFN-alpha induces resistance in hepatocytes to perforin/granzyme mediate CTL killing pathways. One possible mechanism could be through the expression of the PI-9. Hindrance of CTL cytotoxicity could contribute to the chronicity of hepatic viral infections.

  3. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer

    Directory of Open Access Journals (Sweden)

    Resmi Mustarichiei


    Full Text Available Background: Based on data from the Hospital Information System (HIS in 2007, breast cancer is the top ranked diagnosed cancer in Indonesia. Estrogen receptor alpha (ERα is associated with breast cancer because it is found in high levels in cancer tissues. Curcumol, curcumenol, isocurcumenol of white tumeric rhizomes (Curcuma zedoaria (Christm. Roscoe, and β-sitosterol from seeds of pumpkin (Cucurbita pepo L. have been reported to have inhibitory activity against cancer cells. This study presents the in silico study of these compounds as inhibitors of ERα.Methods: Docking simulations are carried out in this paper to visualize molecular-level interactions between the four compounds with ERα. Docking simulations between estradiol and tamoxifen on ERα are carried out as well.Results: Docking results indicated that curcumol, curcumenol, isocurcumenol, and β-sitosterol showed inhibitory activity againts estrogen receptor alpha (ERα.  The order of potency is shown consecutively by isocurcumenol, curcumol, curcumenol, and β-sitosterol with values 0.584 M, 1.36 M, 1.61 M, and 7.35 M respectively. Curcumenol and estradiol interacts with ERα through hydrogen bonds and hydrophobic interactions, whereas curcumol, isocurcumenol, β-sitosterol and tamoxifen through hydrophobic interactions in succession. Conclusion: Natural products containing all four compounds have the potential to be used as drugs or adjuvant drugs in breast cancer therapy.Keywords: β-sitosterol, breast cancer, curcumol, curcumenol, estradiol, ERα, isocurcumenol

  4. Alpha2 macroglobulin elevation without an acute phase response in depressed adults with Down's syndrome: implications. (United States)

    Tsiouris, J A; Mehta, P D; Patti, P J; Madrid, R E; Raguthu, S; Barshatzky, M R; Cohen, I L; Sersen, E


    Studies of immune function during depression in persons without intellectual disability (ID) have revealed elevated levels of alpha2 macroglobulin (alpha2M) and an acute phase protein (APP) response. Clinical observation suggests that people with Down's syndrome (DS) may have associated genetic abnormalities in their immune systems. The APP response and alpha2M changes in depressed versus non-depressed adults with DS was the subject of the present study. The serum pan-proteinase inhibitor alpha2M, and the AP proteins c-reactive protein (CRP), alpha1 antitrypsin (alpha1AT), ceruloplasmin (Cp), beta2 Macroglobulin (beta2M), transthyretin (Trans), serum amyloid protein (SAP), and albumin (Alb) were measured in 38 adults with DS, 19 of whom were diagnosed with and 19 without depression using a sandwich enzyme-linked immunosorbent assay (ELISA). The DSM-IV criteria were used for diagnoses. Medical and neurological examinations excluded medical disorders associated with APP response. Only alpha2M and CRP were significantly different in the depressed versus non-depressed groups. The alpha2M was higher, a response similar to one observed in depressed people without ID, but the CRP was lower in the depressed group, especially in those subjects not on psychotropic medications, contrary to the expected APP response to depression. The results suggest that alpha2M elevation in depressed adults with DS is independent of the APP response. An alternative explanation for its elevation is proposed linking the core symptom of depression with the mammalian dormancy/hibernation process. Further studies are needed to confirm that alpha2M elevation is specific to depression and that it might provide a helpful marker for the diagnosis of depression in people with ID.

  5. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;


    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase...... activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication...

  6. Investigation of Serine-Proteinase-Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitor 1 (SFTI-1). (United States)

    Karna, Natalia; Łęgowska, Anna; Malicki, Stanisław; Dębowski, Dawid; Golik, Przemysław; Gitlin, Agata; Grudnik, Przemysław; Wladyka, Benedykt; Brzozowski, Krzysztof; Dubin, Grzegorz; Rolka, Krzysztof


    Serine-proteinase-catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI-1: both single peptides and two-peptide chains (C- and N-terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl-enzyme intermediate was preceded by hydrolysis of the substrate Lys-Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two-peptide-chain analogues. This conclusion was supported by high resolution crystal structures of selected analogues in complex with trypsin. We showed that the process followed a direct transpeptidation mechanism. Thus, the acyl-enzyme intermediate was formed and was immediately used for a new peptide bond formation; products associated with the hydrolysis of the acyl-enzyme were not observed. The peptide splicing was sequence- not structure-specific.

  7. Purification and Characterization of Two High-Molecular-Weight Cystine Proteinase Inhibitors (CPIs) from Silver Carp Eggs%鲢鱼卵中两种高分子半胱氨酸蛋白酶抑制因子的纯化与鉴定

    Institute of Scientific and Technical Information of China (English)

    李树红; 蒋然然; 杨娟; 刘玲; 钟海霞; 陈志光; 李美良; 李冉


    以鲢鱼卵为材料,通过匀浆、酸处理和超滤制备半胱氨酸蛋白酶抑制因子(cystine proteinase inhibitors,CPIs)粗提液,进而经Sephacryl S-100分子筛层析、Blue Sepharose 6 Fast Flow染料亲和层析、SP-Sepharose Fast Flow阳离子交换层析、ConA Sepharose 4B亲和层析,获得两种纯化的高分子CPIs,即ConA不吸附部分a-1和吸附部分的糖蛋白a-2.二者分别被纯化了102.62倍和274.28倍,酶活回收率分别为2.02%和1.42%.通过TSK G2000 SWXL凝胶过滤高效液相色谱结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳及其反相酶谱法分析,表明a-2及再次经高效液相色谱法回收的a-1在电泳图上均呈单一带,a-2为单一峰,且a-1的分子质量为139 ku,a-2的分子质量为92 ku.二者均能抑制半胱氨酸蛋白酶(木瓜蛋白酶和鲢鱼组织蛋白酶L)但不抑制丝氨酸蛋白酶(胰蛋白酶和胰凝乳蛋白酶).根据a-1和a-2的分子质量及抑制活性特征和糖蛋白特性,推测二者可能为鲢鱼卵Kininogens的不同形式.

  8. Differential effects of NF-kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL-1 beta-induced proinflammatory status of endothelial cells in vitro

    NARCIS (Netherlands)

    Kuldo, JM; Westra, J; Asgeirsdottir, SA; Kok, RJ; Oosterhuis, K; Rots, MG; Schouten, JP; Limburg, PC; Molema, G


    Differential effects of NF- kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL- 1 beta- induced proinflammatory status of endothelial cells in vitro. Am J Physiol Cell Physiol 289: C1229 - C1239, 2005. First published June 22, 2005; doi: 10.1152/ ajpcell. 00620.2004. Endot

  9. Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study. (United States)

    Mat Amin, Nakisah


    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.

  10. A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. (United States)

    Pernas, M; Sánchez-Monge, R; Gómez, L; Salcedo, G


    Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.

  11. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. (United States)

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu


    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized.

  12. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun


    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  13. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNF alpha inhibitors

    DEFF Research Database (Denmark)

    Pedersen, S.J.; Hetland, M.L.; Sørensen, Inge Juul;


    The objectives of the study were to investigate short and long-term changes and relations to treatment response of plasma interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), YKL-40, matrix metalloproteinase-3 (MMP-3), and total aggrecan in patients with spondyloarthritis (SpA) treated...... with tumor necrosis factor-alpha (TNF alpha) inhibitors and to compare with levels in healthy subjects. Biomarkers were measured in an observational cohort of 49 SpA patients (ankylosing spondylitis, n = 32, and psoriatic arthritis, n = 17) initiating TNF alpha inhibitor therapy (infliximab, n = 38......Euro parts per thousand 0.001), whereas total aggrecan was lower (662 mu g/l (223-2,219) vs. 816 (399-2,190),p a parts per thousand currency signaEuro parts per thousand 0.001). Two weeks after first treatment, all biomarker levels changed towards normal levels (p a parts per thousand currency signa...

  14. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. (United States)

    Bressollier, P; Letourneau, F; Urdaci, M; Verneuil, B


    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.

  15. Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni. (United States)

    McKerrow, J H; Pino-Heiss, S; Lindquist, R; Werb, Z


    An elastinolytic proteinase secreted by tissue-invasive larvae of Schistosoma mansoni has been purified to homogeneity. Size-exclusion chromatography and chromatofocusing were used to purify the enzyme 18-fold from crude larval secretions. The native enzyme has a molecular weight of 30,000, a pI of 8, a pH optimum of 9, and a calcium dependence of 2 mM. A second Mr 17,000 form of the enzyme was present in crude secretions and appears to be an autoproteolysis product. The enzyme is a serine proteinase that preferentially binds tetrapeptide inhibitors or substrates with an aromatic or hydrophobic residue at the P-1 site. In addition to being active against elastin, the enzyme degrades Azocoll, gelatin, laminin, fibronectin, keratin, and type IV collagen.

  16. 1-(5-Carboxyindol-1-yl)propan-2-ones as inhibitors of human cytosolic phospholipase A2alpha: synthesis and properties of bioisosteric benzimidazole, benzotriazole and indazole analogues. (United States)

    Bovens, Stefanie; Kaptur, Martina; Elfringhoff, Alwine Schulze; Lehr, Matthias


    The indole ring systems of the cytosolic phospholipase A(2)alpha (cPLA(2)alpha) inhibitor 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (2) and the isomeric 6-carboxylic acid (3) were replaced by benzimidazole, benzotriazole and indazole scaffolds, respectively. The effect of the structural variations on cPLA(2)alpha inhibitory potency, metabolic stability and solubility was studied. The lead 2 and the indazole-5-carboxylic acid 28 were the metabolically most stable compounds in an assay with rat liver microsomes, while the benzimidazole-5-carboxylic acid derivative 13 possessed the best water solubility (22 microg/mL at pH 7.4). The indazole-5-carboxylic acid 28 revealed the highest cPLA(2)alpha inhibitory potency of the compounds in this series. With an IC(50)-value of 0.005 microM it was about sevenfold more active than the lead 2.

  17. Multiple proteinases from two Microsporum species. (United States)

    Simpanya, M F; Baxter, M


    Enzyme expression of 67 isolates of two Microsporum species, M. canis and M. cookei, were compared in both shake and stationary cultures using substrate copolymerized SDS-PAGE. Most M. canis isolates expressed more proteolytic bands in shake culture, while M. cookei isolates expressed more in stationary culture. M. canis isolates expressed up to six proteinases of different relative mobilities (122, 64, 62, 45, 31 and 25 kDa). M. cookei expressed up to seven proteinases in stationary culture (67, 66, 64, 62, 45, 42 and 39 kDa). Those of 67 and 66 kDa were not expressed in shake culture. The proteinases expressed by M. cookei were similar to those expressed by M. canis except for 122 and 25 kDa. With the exception of isolates from non-infected cats, 25 kDa was also commonly expressed by isolates from infected hosts in the shake culture treatment. The differences in enzyme expression obtained may reflect differences in the contrasting ecological roles of the two species.

  18. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH genes in multiple human solid tumors: A systematic expression analysis

    Directory of Open Access Journals (Sweden)

    Werbowetski-Ogilvie Tamra


    Full Text Available Abstract Background The inter-alpha-trypsin inhibitors (ITI are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5, contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. Methods We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas using cDNA dot blot analysis (Cancer Profiling Array, CPA, semiquantitative RT-PCR and immunohistochemistry. Results We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA could be confirmed by real-time PCR in an additional set of breast cancers (n = 36. Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p Conclusion Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.

  19. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors. (United States)

    Shelby, Shameka J; Feathers, Kecia L; Ganios, Anna M; Jia, Lin; Miller, Jason M; Thompson, Debra A


    Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation.

  20. Metabolism studies of a small-molecule tumor necrosis factor-alpha (TNF-α) inhibitor, UTL-5b (GBL-5b). (United States)

    Shaw, Jiajiu; Shay, Brian; Jiang, Jack; Valeriote, Frederick; Chen, Ben


    UTL-5b is an anti-inflammatory and anti-arthritic small-molecule tumor necrosis factor-alpha inhibitor and a structural analogue of the anti-arthritic drug, leflunomide. Leflunomide is known to be metabolized to teriflunomide, but the metabolites of UTL-5b have not been reported. The objective of this study was to investigate whether UTL-5b has a similar metabolic behavior as leflunomide. Preliminary studies showed that when exposed to microsomes in vitro with or without NADPH, UTL-5b disappeared within 30 min. To further investigate the microsomal metabolism, liquid chromatography-ultraviolet (LC-UV) and LC/tandem mass spectrometry (LC-MS/MS) were employed to, respectively, monitor the microsomal metabolites and identify the structure of the metabolites using LC-full scan MS and LC combined with multiple-ion monitoring MS. Fragmentation determination was analyzed by two types of scans: product ion scans and precursor ion scan. The in vitro microsomal treatment of UTL-5b resulted in two major metabolites: 5-methylisoxazole-3-carboxylic acid and 2-chloroaniline. Thus, the in vitro metabolic behavior of UTL-5b appears to be different from that of leflunomide in that the isoxazole ring is cleaved.

  1. Tamarindus indica extract alters release of alpha enolase, apolipoprotein A-I, transthyretin and Rab GDP dissociation inhibitor beta from HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Ursula Rho Wan Chong

    Full Text Available BACKGROUND: The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. METHODOLOGY/PRINCIPAL FINDINGS: When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125. Five of the spots were subsequently identified as alpha enolase (ENO1, transthyretin (TTR, apolipoprotein A-I (ApoA-I; two isoforms, and rab GDP dissociation inhibitor beta (GDI-2. A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. CONCLUSION/SIGNIFICANCE: The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol.

  2. Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production.

    Directory of Open Access Journals (Sweden)

    Eric Toussirot

    Full Text Available OBJECTIVE: Acetylation or deacetylation of histone proteins may modulate cytokine gene transcription such as TNF alpha (TNF. We evaluated the balance between histone deacetytlase (HDAC and histone acetyltransferase (HAT in patients with rheumatoid arthritis (RA or ankylosing spondylitis (AS compared to healthy controls (HC and determined the influence of HDAC inhibitors (trichostatin A -TSA- or Sirtinol -Sirt- on these enzymatic activities and on the PBMC production of TNF. METHODS: 52 patients with RA, 21 with AS and 38 HC were evaluated. HAT and HDAC activities were measured on nuclear extracts from PBMC using colorimetric assays. Enzymatic activities were determined prior to and after ex vivo treatment of PBMC by TSA or Sirt. TNF levels were evaluated in PBMC culture supernatants in the absence or presence of TSA or Sirt. RESULTS: HAT and HDAC activities were significantly reduced in AS, while these activities reached similar levels in RA and HC. Ex vivo treatment of PBMC by HDACi tended to decrease HDAC expression in HC, but Sirt significantly reduced HAT in RA. TNF production by PBMC was significantly down-regulated by Sirt in HC and AS patients. CONCLUSION: HAT and HDAC were disturbed in AS while no major changes were found in RA. HDACi may modulate HDAC and HAT PBMC expression, especially Sirt in RA. Sirtinol was able to down regulate TNF production by PBMC in HC and AS. An imbalance between HAT and HDAC activities might provide the rationale for the development of HDACi in the therapeutic approach to inflammatory rheumatic diseases.

  3. Alpha-glucosidase inhibitor, acarbose, improves glycamic control and reduces body weight in type 2 diabetes: Findings on indian patients from the pooled data analysis

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra


    Full Text Available Alpha-glucosidase inhibitors are widely used especially in Asian countries as a treatment option for type 2 diabetes patients with high postprandial glycemia (PPG. The higher carbohydrate in the Indian diets lead to greater prandial glycemic excursion, increased glucosidase, and incretin activity in the gut and may need special therapeutic strategies to tackle these glucose peaks. This is the subgroup analysis of Indian subjects who participated in the GlucoVIP study that investigated the effectiveness and tolerability of acarbose as add-on or monotherapy in a range of patients with type 2 diabetes mellitus. A total of 1996 Indian patients were included in the effectiveness analysis. After 12.5 weeks (mean, the mean change in 2-hour PPG from baseline was −74.4 mg/dl, mean HbA1c decreased by -1.0%, and mean fasting blood glucose decreased by -37.9 mg/dl. The efficacy of acarbose was rated "very good" or "good" in 91.1% of patients, and tolerability as "very good" or "good" in 88.0% of patients. The results of this observational study suggest that acarbose was effective and well tolerated in the Indian patients with T2DM.

  4. Prevalence of the serpin peptidase inhibitor (alpha-1-antitrypsin PI*S and PI*Z alleles in Brazilian children with liver disease

    Directory of Open Access Journals (Sweden)

    Guilherme Baldo


    Full Text Available Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin, member 1 (SERPINA1 deficiency is one of the main genetic causes related to liver disease in children. In SERPINA1 deficiency the most frequent SERPINA1 alleles found are the PI*S and PI*Z alleles. We used the polymerase chain reaction and the amplification created restriction site (ACRS technique to investigate the prevalence of the PI*S and PI*Z alleles in a group of Brazilian children (n = 200 with liver disease and established the general frequency of the PI*S allele in our population. We found a significant association of the PI*Z allele and liver disease, but no such relationship was found for the PI*S allele. Our results show that SERPINA1 deficiency due to the PI*Z allele, even when heterozygous, is a frequent cause of liver disease in our group of Brazilian children but that the PI*S allele does not confer an increased risk of hepatic disorders in our group of Brazilian children.

  5. Serum Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4) in Children with Chronic Hepatitis C: Relation to Liver Fibrosis and Viremia. (United States)

    Sira, Mostafa M; Behairy, Behairy E; Abd-Elaziz, Azza M; Abd Elnaby, Sameh A; Eltahan, Ehab E


    Liver fibrosis and viremia are determinant factors for the treatment policy and its outcome in chronic hepatitis C virus (HCV) infection. We aimed to investigate serum level of inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and its relation to liver fibrosis and viremia in children with chronic HCV. ITIH4 was measured by ELISA in 33 treatment-naive children with proved chronic HCV and compared according to different clinical, laboratory and histopathological parameters. Liver histopathological changes were assessed using Ishak score and compared with aspartate transaminase-to-platelet ratio (APRI) and FIB-4 indices as simple noninvasive markers of fibrosis. ITIH4 was measured in a group of 30 age- and sex-matched healthy controls. ITIH4 was significantly higher in patients than in controls (54.2 ± 30.78 pg/mL versus 37.21 ± 5.39 pg/mL; P = 0.021). ITIH4, but not APRI or FIB-4, had a significant direct correlation with fibrosis stage (P = 0.015, 0.961, and 0.389, resp.), whereas, the negative correlation of ITIH4 with HCV viremia was of marginal significance (P = 0.071). In conclusion, ITIH4 significantly correlated with higher stages of fibrosis indicating a possible relation to liver fibrogenesis. The trend of higher ITIH4 with lower viremia points out a potential antiviral properties and further studies in this regard are worthwhile.

  6. Serum Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4 in Children with Chronic Hepatitis C: Relation to Liver Fibrosis and Viremia

    Directory of Open Access Journals (Sweden)

    Mostafa M. Sira


    Full Text Available Liver fibrosis and viremia are determinant factors for the treatment policy and its outcome in chronic hepatitis C virus (HCV infection. We aimed to investigate serum level of inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4 and its relation to liver fibrosis and viremia in children with chronic HCV. ITIH4 was measured by ELISA in 33 treatment-naive children with proved chronic HCV and compared according to different clinical, laboratory and histopathological parameters. Liver histopathological changes were assessed using Ishak score and compared with aspartate transaminase-to-platelet ratio (APRI and FIB-4 indices as simple noninvasive markers of fibrosis. ITIH4 was measured in a group of 30 age- and sex-matched healthy controls. ITIH4 was significantly higher in patients than in controls (54.2±30.78 pg/mL versus 37.21±5.39 pg/mL; P=0.021. ITIH4, but not APRI or FIB-4, had a significant direct correlation with fibrosis stage (P=0.015, 0.961, and 0.389, resp., whereas, the negative correlation of ITIH4 with HCV viremia was of marginal significance (P=0.071. In conclusion, ITIH4 significantly correlated with higher stages of fibrosis indicating a possible relation to liver fibrogenesis. The trend of higher ITIH4 with lower viremia points out a potential antiviral properties and further studies in this regard are worthwhile.

  7. Cloning and tissue expression of cysteine proteinase inhibitor (CPI) gene family inNicotiana tabacum L%烟草半胱氨酸蛋白酶抑制剂(CPI)基因家族的克隆及组织表达谱分析

    Institute of Scientific and Technical Information of China (English)

    林世锋; 元野; 任学良; 邹颉; 黎瑞源; 郭玉双; 赵杰宏; 王仁刚


    运用生物信息学方法,结合RT-PCR和SMART RACE技术从烟草(Nicotiana tabacum)中克隆了4个CPI基因的全长cDNA序列,分别命名为NtCPI1、NtCPI2、NtCPI3和NtCPI4, GenBank登陆号分别为KF057988、KF057989、KF057990和KF057991。基因序列分析表明4个基因分别编码98、98、120和123个氨基酸残基的蛋白质,都具有CPI反应位点的保守基序GG、QXVXQ和A/PW,同时具有植物CPI所特有的LARFAV基序,其中NtCPI3和NtCPI4的N端还包含一段27个氨基酸残基组成的信号肽。实时荧光定量PCR试验表明,4个基因的组织表达谱很广,在根、茎、叶和芽组织中都有表达。研究结果为进一步研究半胱氨酸蛋白酶抑制剂在植物中的生理功能奠定了基础。%Full-length cDNAs of fourCPI genes includingNtCPI1、NtCPI2、NtCPI3andNtCPI4were cloned fromNicotiana tabacum L. cv. K326 using RT-PCR and SMART RACE technique. Their sequences were deposited in GenBank with accession number KF057988, KF057989, KF057990 and KF057991. Sequence analysis showed that these four genes were predicted products of 98, 98, 120 and 123 amino acid residues, respectively. In addition to the typical inhibitory motifs, i.e. central signature motif QXVXG, a GG doublet in terminal region, and A/PW residues in C-terminal part. These deduced amino acid sequences contained PhyCys-specific LARFAV-like motif in the N-terminal region, of which a N-terminal signal peptide of 27 residues was found in both NtCPI3 and NtCPI4. Meanwhile, transcripts of these four genes were found in roots, stems, leaves and buds by real-time quantitative PCR, which indicated that they were broadly expressed in tobacco. This study laid foundation for further exploring physiological functions of these cysteine proteinase inhibitor genes in plants.

  8. Nucleotide sequence of a cDNA clone encoding a major allergenic protein in rice seeds. Homology of the deduced amino acid sequence with members of alpha-amylase/trypsin inhibitor family. (United States)

    Izumi, H; Adachi, T; Fujii, N; Matsuda, T; Nakamura, R; Tanaka, K; Urisu, A; Kurosawa, Y


    A cDNA clone of rice major allergenic protein (RAP) was isolated from a cDNA library of maturing rice seeds. The cDNA had an open reading frame (486 nucleotides) which coded a 162 amino acid residue polypeptide comprising a 27-residue signal peptide and a 135-residue mature protein of M(r) 14,764. The deduced amino acid sequence of RAP showed a considerable similarity to barley trypsin inhibitor [1983, J. Biol. Chem. 258, 7998-8003] and wheat alpha-amylase inhibitor [1981, Phytochemistry 20, 1781-1784].

  9. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I. (United States)

    Kristjánsson, M M; Magnússon, O T; Gudmundsson, H M; Alfredsson, G A; Matsuzawa, H


    An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2

  10. Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation

    Directory of Open Access Journals (Sweden)

    Meng Guoliang


    Full Text Available Abstract Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1 and uterus (ISP1 and ISP2. These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.

  11. alpha-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes. (United States)

    Burtin, D; Martin-Tanguy, J; Tepfer, D


    alpha-dl-Difluoromethylarginine (DFMA) and alpha-dl-difluoromethylornithine (DFMO), specific irreversible inhibitors of putrescine biosynthesis were applied to Nicotiana tabacum var. Xanthi nc during floral induction. DFMO, but not DFMA, induced a phenotype in tobacco that resembles the transformed phenotype attributed to the root-inducing, left-hand, transferred DNA of Agrobacterium rhizogenes, including wrinkled leaves, shortened internodes, reduced apical dominance, and retarded flowering. Similar treatment of transformed plants (T phenotype) accentuated their phenotypic abnormalities. Cyclohexylammonium and methylglyoxal bis (guanylhydrazone), inhibitors of spermidine and spermine biosynthesis, produced reproductive abnormalities, but did not clearly mimic the transformed phenotype. This work strengthens the previously reported correlation between the degree of expression of the transformed phenotype due to the root-inducing, left-hand, transferred DNA and inhibition of polyamine accumulation, strongly suggesting that genes carried by the root-inducing, transferred DNA may act through interference with polyamine production via the ornithine pathway.

  12. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.


    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  13. Depeptidization efforts on P[subscript 3]-P[prime subscript 2] [alpha]-ketoamide inhibitors of HCV NS3-4A serine protease: Effect on HCV replicon activity

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, Stephane L.; Ruan, Sumei; Liu, Rong; Agrawal, Sony; Pichardo, John; Prongay, Andrew; Baroudy, Bahige; Saksena, Anil K.; Girijavallabhan, Viyyoor; Njoroge, F. George (SPRI)


    Depeptidization efforts of the P{sub 3}-P{sub 2} region of P{sub 3} capped {alpha}-ketoamide inhibitor of HCV NS3 serine protease 1 are reported. We clearly established that N-methylation of the P{sub 2} nitrogen and modification of the P{prime}{sub 2} carboxylic acid terminus were essential for activity in the replicon assay.

  14. The embryo's cystatin C and F expression functions as a protective mechanism against the maternal proteinase cathepsin S in mice. (United States)

    Baston-Buest, D M; Schanz, A; Buest, S; Fischer, J C; Kruessel, J S; Hess, A P


    A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal-maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal-maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3(+) cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.

  15. Crystal structure of 2A proteinase from hand, foot and mouth disease virus. (United States)

    Mu, Zhixia; Wang, Bei; Zhang, Xiaoyu; Gao, Xiaopan; Qin, Bo; Zhao, Zhendong; Cui, Sheng


    EV71 is responsible for several epidemics worldwide; however, the effective antiviral drug is unavailable to date. The 2A proteinase (2A(pro)) of EV71 presents a promising drug target due to its multiple roles in virus replication, inhibition of host protein synthesis and evasion of innate immunity. We determined the crystal structure of EV71 2A(pro) at 1.85Å resolution, revealing that the proteinase maintains a chymotrypsin-like fold. The active site is composed of the catalytic triads C110A, H21 and D39 with the geometry similar to that in other picornaviral 2A(pro), 3C(pro) and serine proteinases. The cI-to-eI2 loop at the N-terminal domain of EV71 2A(pro) adopts a highly stable conformation and contributes to the hydrophilic surface property, which are strikingly different in HRV2 2A(pro) but are similar in CVB4 2A(pro). We identified a hydrophobic motif "LLWL" followed by an acidic motif "DEE" at the C-terminus of EV71 2A(pro). The "LLWL" motif is folded into the β-turn structure that is essential for the positioning of the acidic motif. Our structural and mutagenesis study demonstrated that both the negative charging and the correct positioning of the C-terminus are essential for EV71 replication. Deletion of the "LLWL" motif abrogated the proteolytic activity, indicating that the motif is critical for maintaining the active proteinase conformation. Our findings provide the structural and functional insights into EV71 2A(pro) and establish a framework for structure-based inhibitor design.

  16. Proteinase 3 carries small unusual carbohydrates and associates with αlpha-defensins

    DEFF Research Database (Denmark)

    Zoega, Morten; Ravnsborg, Tina; Højrup, Peter;


    The neutrophil granulocyte is an important first line of defense against intruding pathogens and it contains a range of granules armed with antibacterial peptides and proteins. Proteinase 3 (PR3) is one among several serine proteases of the azurophilic granules in neutrophil granulocytes. Here, we...... characterize the glycosylation of PR3 and its association with antimicrobial human neutrophil peptides (HNPs, α-defensins) and the effect of these on the mechanism of inhibition of the major plasma inhibitor of PR3, α1-antitrypsin. The glycosylation of purified, mature PR3 showed some heterogeneity...

  17. Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K. (United States)

    Kore, Anilkumar R; Shanmugasundaram, Muthian


    The synthesis and proteolytic inhibitor function of new modified pentapeptide MeOSuc-AAAPF-CH(2)Cl 6 is described. The efficacy of 6 in inhibiting the proteolytic activity of proteinase K at a concentration of 0.10 mM allows a signal to be obtained for an exogenous target ('Xeno RNA') at 29 PCR cycles (i.e., Ct=29), whereas the control MeOSuc-AAAPV-CH₂Cl 1 requires a 7.5-fold higher concentration (0.75 mM) to produce the same Ct.


    NARCIS (Netherlands)

    Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard


    The production of enzymatically active proteinase by lactococci requires the joint presence of a proteinase gene, prtP, and a gene encoding a maturation protein, prtM. A 32-kDa protein produced by Escherichia coli upon expression of the prtM gene under the direction of the T7 RNA polymerase promoter

  19. Correlation between Circulating Levels of Pro-Inflammatory Cytokines TNF-alpha and Vascular Calcification Inhibitor Matrix Gla Protein in Obese Men

    Directory of Open Access Journals (Sweden)

    Trilis Yulianti


    Full Text Available BACKGROUND: Adult obesity is rapidly increasing in the world including Indonesia. Tumor necrosis factor α (TNF-α was chronically elevated in obese adipose tissue. TNF-α, a pleiotropic cytokine and also a regulator of bone formation, may might represent an important link between obesity and vascular calcification. Elegant genetic studies in mice and human have highlighted the important roles for Matrix Gla Protein (MGP as an inhibitor of vascular calcification. The aim of this study was to examine the correlation between circulating levels of pro-inflammatory cytokines TNF-α and vascular calcification inhibitor MGP in obese men. METHODS: This was an observational cross-sectional study including 40 central obese men (waist circumference ≥90 cm aged 31-60 years old. Serum MGP and serum TNF-α concentrations were quantified by ELISA principle. Fasting plasma glucose was assessed using hexokinase methods, triglyceride by GPO-PAP methods, and creatinine by Jaffe methods. All assays were performed according to the manufacture instruction. Statistical analysis was performed with SPSS for windows ver 16. Univariate analysis were performed to analyze mean, maximum, minimum value and SD. Pearson correlation statistic were performed to determine the correlation between variables. Significance value were define as alpha level=0.05 based on two-tailed tests. RESULTS: The cross-sectional study (n=40 showed that the advancing age was correlated with plasma TNF-α concentration (r = 0.348; p = 0.028. The mean concentration of TNF-α and MGP were 8.323 and 8.368, respectively. We found a significant negative correlation between TNF-α with MGP (r=-0.425; p=0.006 and a significant correlation between TNF-α and triglyceride (r=0.375; p=0.017. CONCLUSIONS: Circulating level of TNF-α was inversely correlated with MGP concentration in obese men. This finding suggested that high level TNF-α leads to low MGP concentration obese men, hence, limits inhibitory

  20. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;


    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication...... of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles...

  1. Raman micro-spectroscopic investigation of the interaction of cultured HCT116 colon cancer cells with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (United States)

    Akyuz, S.; Ozel, A. E.; Balci, K.; Akyuz, T.; Coker, A.; Arisan, E. D.; Palavan-Unsal, N.; Ozalpan, A.


    The interaction of cultured colon cancer cells with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, has been investigated, using Raman micro-spectroscopy, in order to investigate DFMO induced effects. Raman spectra of the cultured HCT116 colon cancer cells treated with DFMO at different concentrations (0, 1, 2.5, 5, and 7.5 mM) were recorded in the range 550-2300 cm -1. It has been shown that second derivative profile of the raw Raman spectrum of the colon cancer cells (i.e., the original experimental spectrum without any computational corrections) discriminates the weak but sharp bands from the strong, broad fluorescence background, and gives information about the position of the peaks and their band widths. The relative integrated intensities of the 781 cm -1 and 788 cm -1 DNA/RNA marker bands to that of 1451 cm -1 band are found to decrease by addition of DFMO. Up to 65% reduction in the magnitude of the 1003 cm -1 band, the characteristic phenylalanine ring breathing mode, in comparison to that of 1451 band, is observed. The results indicate DFMO induced apoptosis. On the other hand the intensity ratio of the tyrosine Fermi doubled around 830 cm -1 and 850 cm -1, which is a marker of hydrogen-bonding state of phenolic OH, is changed. The addition of DFMO may alter the tyrosine environment in cells, and parts of tyrosine residues are exposed. We also observed some modifications in amide I band, pointing out the alterations of the secondary structure of cell proteins by the presence of DFMO.

  2. Effects of age, experience and inter-alpha inhibitor proteins on working memory and neuronal plasticity after neonatal hypoxia-ischemia. (United States)

    Gaudet, Cynthia M; Lim, Yow-Pin; Stonestreet, Barbara S; Threlkeld, Steven W


    Neonatal cerebral hypoxia-ischemia (HI) commonly results in cognitive and sensory impairments. Early behavioral experience has been suggested to improve cognitive and sensory outcomes in children and animal models with perinatal neuropathology. In parallel, we previously showed that treatment with immunomodulator Inter-alpha Inhibitor Proteins (IAIPs) improves cellular and behavioral outcomes in neonatal HI injured rats. The purpose of the current study was to evaluate the influences of early experience and typical maturation in combination with IAIPs treatment on spatial working and reference memory after neonatal HI injury. A second aim was to determine the effects of these variables on hippocampal CA1 neuronal morphology. Subjects were divided into two groups that differed with respect to the time when exposed to eight arm radial water maze testing: Group one was tested as juveniles (early experience, Postnatal day (P) 36-61) and adults (P88-113), and Group two was tested in adulthood only (P88-113; without early experience). Three treatment conditions were included in each experience group (HI+Vehicle, HI+IAIPs, and Sham subjects). Incorrect arm entries (errors) were compared between treatment and experience groups across three error types (reference memory (RM), working memory incorrect (WMI), working memory correct (WMC)). Early experience led to improved working memory performance regardless of treatment. Combining IAIPs intervention with early experience provided a long-term behavioral advantage on the WMI component of the task in HI animals. Anatomically, early experience led to a decrease in the average number of basal dendrites per CA1 pyramidal neuron for IAIP treated subjects and a significant reduction in basal dendritic length in control subjects, highlighting the importance of pruning in typical early life learning. Our results support the hypothesis that early behavioral experience combined with IAIPs improve outcome on a relativity demanding

  3. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. (United States)

    Mena, M; Sanchez-Monge, R; Gomez, L; Salcedo, G; Carbonero, P


    A 14.5 kDa barley endosperm protein that is a major allergen in baker's asthma disease, as previously shown by both in vitro (IgE binding) and in vivo tests, has been identified as a glycosylated monomeric member of the multigene family of inhibitors of alpha-amylase/trypsin from cereals. A cDNA encoding this allergen (renamed BMAI-1) has been isolated and characterized. The deduced sequence for the mature protein, which is 132 residues long, is identical in its N-terminal end to the 20 amino acid partial sequence previously determined from the purified allergen, and fully confirms that it is a member of the multigene family of cereal inhibitors. Southern-blot analysis of wheat/barley addition lines using the insert in the BMAI-1 cDNA clone as a probe, has led to the location of the allergen gene (Iam1) in barley chromosome 2, while another related member of this protein family, the barley dimeric alpha-amylase inhibitor BDAI-1 gene (Iad1) has been located in chromosome 6. Iam1 is the first member of this inhibitor family in cereals to be assigned to chromosome group 2, thus extending the dispersion of genes in the family to five out of the seven homology groups of chromosomes in wheat and barley (chromosomes 2, 3, 4, 6 and 7).

  4. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.


    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequentl

  5. CD6 and syntaxin binding protein 6 variants and response to tumor necrosis factor alpha inhibitors in Danish patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Krintel, Sophine B; Essioux, Laurent; Wool, Assaf;


    TNFα inhibitor therapy has greatly improved the treatment of patients with rheumatoid arthritis, however at least 30% do not respond. We aimed to investigate insertions and deletions (INDELS) associated with response to TNFα inhibitors in patients with rheumatoid arthritis (RA)....

  6. Proteinases as virulence factors in Leishmania spp. infection in mammals

    Directory of Open Access Journals (Sweden)

    Silva-Almeida Mariana


    Full Text Available Abstract Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients’ biological samples and from assays with animal models confirm the involvement of an array of the parasite’s components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.

  7. Discovery and Optimization of Piperidyl-1,2,3-Triazole Ureas as Potent, Selective, and In Vivo-Active Inhibitors of Alpha/Beta-Hydrolase Domain Containing 6 (ABHD6) (United States)

    Hsu, Ku-Lung; Tsuboi, Katsunori; Chang, Jae Won; Whitby, Landon R.; Speers, Anna E.; Pugh, Holly; Cravatt, Benjamin F.


    Alpha/beta-hydrolase domain containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) to regulate certain forms of cannabinoid receptor-dependent signaling in the nervous system. The full spectrum of ABHD6 metabolic activities and functions is currently unknown and would benefit from selective, in vivo-active inhibitors. Here, we report the development and characterization of an advanced series of irreversible (2-substituted)-piperidyl-1,2,3-triazole urea inhibitors of ABHD6, including compounds KT182 and KT203, which show exceptional potency and selectivity in cells (< 5 nM) and, at equivalent doses in mice (1 mg kg-1), served as systemic and peripherally-restricted ABHD6 inhibitors, respectively. We also describe an orally-bioavailable ABHD6 inhibitor KT185 that displays excellent selectivity against other brain and liver serine hydrolases in vivo. We thus describe several chemical probes for biological studies of ABHD6, including brain-penetrant and peripherally-restricted inhibitors that should prove of value for interrogating ABHD6 function in animal models. PMID:24152295

  8. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J


    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  9. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis

    DEFF Research Database (Denmark)

    Clemmensen, Stine N; Jacobsen, Lars C; Rørvig, Sara;


    . Neutrophils from patients with A1AT-deficiency carrying the (PI)ZZ mutation in the A1AT gene appeared structurally and functionally normal, but A1AT produced in leukocytes of these patients lacked the ability to bind proteases efficiently. We conclude that A1AT generation and release from neutrophils add......Alpha-1-antitrypsin (A1AT) is an important inhibitor of neutrophil proteases including elastase, cathepsin G, and proteinase 3. Transcription profiling data suggest that A1AT is expressed by human neutrophil granulocytes during all developmental stages. A1AT has hitherto only been found associated......1AT is produced at all stages of myeloid maturation in the bone marrow. The production increases as neutrophils enter circulation and increases further upon migration to tissues as observed in skin windows and when blood neutrophils are incubated with granulocyte colony-stimulating factor...

  10. Inter-alpha-trypsin inhibitor heavy chain 4: a novel biomarker for environmental exposure to particulate air pollution in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Lee KY


    Full Text Available Kang-Yun Lee,1–3 Po-Hao Feng,1,2 Shu-Chuan Ho,4 Kai-Jen Chuang,5,6 Tzu-Tao Chen,2,3 Chien-Ling Su,2,4 Wen-Te Liu,2,4 Hsiao-Chi Chuang2,4 1Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 2Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 3Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 4School of Respiratory Therapy, College of Medicine, Taipei Medical University, 5Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 6School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan Abstract: Chronic obstructive pulmonary disease (COPD is a chronic inflammatory disease that is correlated with environmental stress. Particulate matter ≤10 µm (PM10 is considered to be a risk factor for COPD development; however, the effects of PM10 on the protein levels in COPD remain unclear. Fifty subjects with COPD and 15 healthy controls were recruited. Gene ontology analysis of differentially expressed proteins identified immune system process and binding as the most important biological process and molecular function, respectively, in the responses of PM10-exposed patients with COPD. Biomarkers for PM10 in COPD were identified and compared with the same in healthy controls and included proteoglycan 4 (PRG4, inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4, and apolipoprotein F (APOF. PRG4 and ITIH4 were associated with a past 3-year PM10 exposure level. The receiver operating characteristic curve analysis showed that ITIH4 is a sensitive and specific biomarker for PM10 exposure (area under the curve [AUC] =0.690, P=0.015 compared with PRG4 (AUC =0.636, P=0.083, APOF (AUC =0.523, P=0.766, 8-isoprostane (AUC =0.563, P=0.405, and C-reactive protein (CRP; AUC =0.634, P=0.086. ITIH4 levels were correlated with CRP (r=0

  11. Novel prediction method of beer foam stability using protein Z, barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin. (United States)

    Iimure, Takashi; Takoi, Kiyoshi; Kaneko, Takafumi; Kihara, Makoto; Hayashi, Katsuhiro; Ito, Kazutoshi; Sato, Kazuhiro; Takeda, Kazuyoshi


    Foam stability is an important quality trait of beer. Our previous results of two-dimensional gel electrophoresis (2DE) analyses of beer proteins implied a relationship between barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and beer foam stability as judged by the NIBEM-T analyzer. To develop a novel prediction method of beer foam stability under different conditions of barley cultivar and malt modification, multiple linear regression analysis was applied. The spot intensities of major beer proteins on 2DE gel were quantified and used as explanatory variables. The foam stabilities of 25 beer samples each brewed from malt with different malt modification in one of the three cultivars (cultivars A, B, and C) were explained by the spot intensities of BDAI-1 at the 5% significance level ( r = 0.421). Furthermore, two other major protein spots (b0 and b5) were observed on the 2DE gels of Japanese commercial beer samples with different foam stability. Then, multiple regression for foam stability was calculated using these three spot intensities as explanatory variables. As a result, 72.1% of the beer foam stability in 25 beer samples was explained by a novel multiple regression equation calculated using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. To verify the validity of the multiple regression equation and the explanatory variables, the beer foam stability in practical beer samples was analyzed. As a result, 81.5% of the beer foam stability in 10 Japanese commercial beer samples was also explained by using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. Mass spectrometry analyses followed by database searches revealed that protein spots b0 and b5 were identified as protein Z originated from barley and thioredoxin originated from yeast, respectively. These results confirm that BDAI-1 and protein Z are foam-positive factors and identify yeast thioredoxin as a possible novel foam

  12. [Inactivation of T4 phage in water environment using proteinase]. (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang


    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  13. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, K; Tidemand, L D; Winther, Jakob R.;


    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain....

  14. Purification of human leucocyte DNA: proteinase K is not necessary. (United States)

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A


    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  15. Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin

    DEFF Research Database (Denmark)

    Hansen, L; Fjordvang, H; Rasmussen, S K


    be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand...... conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number...

  16. The effect of calciums on molecular motions of proteinase K. (United States)

    Liu, Shu-Qun; Tao, Yan; Meng, Zhao-Hui; Fu, Yun-Xin; Zhang, Ke-Qin


    The native serine protease proteinase K binds two calcium cations. It has been reported that Ca(2+) removal decreased the enzyme's thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca(2+)-bound and Ca(2+)-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca(2+) sites. Although Ca(2+) removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca(2+), the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca(2+) removal, but also complement the experimentally determined structural and biochemical data.

  17. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway. (United States)

    Gholizadeh, A


    Cysteine proteinases and their inhibitors 'cystatins' play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physicochemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (R T-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

  18. Intracellular Localization and Trafficking of Serine Proteinase AhSub and Cysteine Proteinase AhCP of Acanthamoeba healyi


    Moon, E.-K.; Lee, S.-T.; Chung, D.-I.; Kong, H.-H.


    Proteinases have been proposed to play important roles in pathogenesis and various biologic actions in Acanthamoeba. Although genetic characteristics of several proteases of Acanthamoeba have been reported, the intracellular localization and trafficking of these enzymes has yet to be studied. In the present study, we analyzed the intracellular localization and trafficking of two proteinases, AhSub and AhCP, of Acanthamoeba healyi by transient transfection. Full-length AhSub-enhanced green flu...

  19. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus microplus involved in the generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Craik Charles S


    Full Text Available Abstract Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins. A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

  20. [Purification and properties of serine proteinases from European catfish Silurus glanis L. pancreas]. (United States)

    Ulitina, N N; Khabliuk, V V; Proskuriakov, M T


    Three trypsin isoforms (designated as T1, T2, and T3), three chymotrypsin isoforms (Kh1, Kh2, and Kh3), and two elastase isoforms (E1 and E2) were isolated from the pancreas of European catfish Silurus glanis L. by salting out with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion exchange chromatography on DEAE cellulose. Isoelectric points of the enzymes, determined by isoelectric focusing, amounted to 4.42 for T1, 5.64 for T2, 6.90 for T3, 4.93 for Khl, 5.23 for Kh2, 6.18 for Kh3, 6.17 for E1, and 8.48 for E2. Molecular weights of proteinases within each group were close and amounted to 30100 Da for trypsins, 39800 Da for chymotrypsins, and 24000 Da for elastases. The enzymes isolated displayed maximal activities at alkaline pH values. Inhibitor analysis demonstrated that all the proteinases isolated from European catfish pancreas belonged to the serine type.

  1. Alpha-1-antitrypsin deficiency: An overview of recent advances

    Directory of Open Access Journals (Sweden)

    El Hazmi Mohsen


    Full Text Available Alpha 1-antitrypsin (αl AT, a serpine, is one of the most important proteinase inhibitor in the serum and plays an essential role in protection of the lung tissues against the proteolytic attach of elastase. The gene for a1AT is located on chromosome 14 q 32 and is highly susceptible to mutations. A large number of variants of α 1 AT are known and some including PiZ and PiS result in a1AT deficiency. In patients with PiZ, the most severe and common α1AT deficient variant, the α1AT protein accumulates in the liver and results in severe hepatic diseases. Other clinical consequences of α1AT deficiency include emphysema in majority of the patients. This state is further aggravated in patients who smoke. Several treatment strategies have been suggested, including replacement therapy by purified α1AT or recombinant α1AT given intravenously or as aerosol. Synthetic peptides. lung transplantation and volume reduction surgery are under investigation and evaluation. This paper updates the information on α1 AT and its deficiency state.

  2. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena


    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  3. Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins. (United States)

    Phiri, A M; De Pomerai, D; Buttle, D J; Behnke, J M B


    Plant cysteine proteinases (CPs) from papaya (Carica papaya) are capable of killing parasitic nematode worms in vitro and have been shown to possess anthelmintic effects in vivo. The acute damage reported in gastrointestinal parasites has not been found in free-living nematodes such as Caenorhabditis elegans nor among the free-living stages of parasitic nematodes. This apparent difference in susceptibility might be the result of active production of cysteine proteinase inhibitors (such as cystatins) by the free-living stages or species. To test this possibility, a supernatant extract of refined papaya latex (PLS) with known active enzyme content was used. The effect on wild-type (Bristol N2) and cystatin null mutant (cpi-1(-/-) and cpi-2(-/-)) C. elegans was concentration-, temperature- and time-dependent. Cysteine proteinases digested the worm cuticle leading to release of internal structures and consequent death. Both cystatin null mutant strains were highly susceptible to PLS attack irrespective of the temperature and concentration of exposure, whereas wild-type N2 worms were generally resistant but far more susceptible to attack at low temperatures. PLS was able to induce elevated cpi-1 and cpi-2 cystatin expression. We conclude that wild-type C. elegans deploy cystatins CPI-1 and CPI-2 to resist CP attack. The results suggest that the cpi-1 or cpi-2 null mutants (or a double mutant combination of the two) could provide a cheap and effective rapid throughput C. elegans-based assay for screening plant CP extracts for anthelmintic activity.

  4. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and alpha-1 anti-trypsin deficiency.

    LENUS (Irish Health Repository)

    Greene, Catherine M


    The serine proteinase inhibitor alpha-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.

  5. In vitro digestibility of globulins from sapucaia (Lecythis pisonis Camb. nuts by mammalian digestive proteinases Digestibilidade in vitro de globulinas das amêndoas de sapucaia (Lecythis pisonis Camb. por proteinases digestivas de mamíferos

    Directory of Open Access Journals (Sweden)

    Sandra Maria Silveira Denadai


    Full Text Available Sapucaia (Lecythis pisonis Camb. raw nuts collected from Brazil were analyzed to determine the proximate composition, amino acid profile of protein fractions, in vitro protein digestibility and antinutritional factors in order to evaluate their potential as a protein alimentary complement. The nuts contained adequate amounts of essential amino acids, fatty acids and minerals. In the present study, no hemagglutinating or inhibitory activities were observed in any of the samples investigated, indicating low or non-detectable levels of proteinase inhibitors or lectins in the samples. In vitro digestibility of in natura and heated nut globulins by mammalian digestive proteinases was carried out using trypsin + chymotrypsin + peptidase, with resulting mean values of approximately 70.30 and 71.35%, respectively. Taken together, the results suggest that sapucaia nuts may provide a new source of protein to use as a potential nutritional agent.Amêndoas cruas de Sapucaia (Lecythis pisonis Camb. colhidas no Brasil foram analisadas para se determinar a composição centesimal, o perfil de aminoácidos de suas proteínas, a digestibilidade protéica in vitro e a presença de fatores antinutricionais, para avaliar o seu potencial como complemento alimentar protéico. As amêndoas apresentaram quantidades adequadas de aminoácidos essenciais, ácidos graxos e minerais; no entanto, baixo teor de fibra foi observado. No presente estudo, a presença de lectinas ou inibidores de proteinases, quando detectada, apresentou baixos níveis. A digestibilidade in vitro de globulinas, in natura ou aquecidas, por proteinases digestivas de mamíferos foi realizada utilizando-se tripsina + quimotripsina + peptidase, obtendo-se valores aproximados de 71,5 e 73,5%, respectivamente. Estes resultados sugerem que as amêndoas de sapucaia podem ser utilizadas como complemento alimentar de proteínas, sendo um potencial agente nutricional.

  6. Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion.

    NARCIS (Netherlands)

    Vigneswaran, N.; Wu, J.; Nagaraj, N.; James, R.; Zeeuwen, P.L.J.M.; Zacharias, W.


    Cystatins are inhibitors of lysosomal cysteine proteinases. Cystatin M demonstrates more diverse tissue distribution, target specificity and biological function than other cystatins from the same family. We utilized small interference RNAs (siRNA) to silence cystatin M gene expression in a metastati

  7. Localization and accessibility of antigenic sites of the extracellular serine proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm; Kok, Jan; Haandrikman, Alfred J.; Venema, Gerhardus; Konings, Wilhelmus


    Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot ana

  8. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.; WESTRA, H


    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory HI

  9. Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. (United States)

    Sousa-Majer, Maria José de; Turner, Neil C; Hardie, Darryl C; Morton, Roger L; Lamont, Byron; Higgins, Thomas J V


    The effects of water deficit and high temperature on the production of alpha-amylase inhibitor 1 (alpha-AI-1) were studied in transgenic peas (Pisum sativum L.) that were developed to control the seed-feeding pea weevil (Bruchus pisorum L., Coleoptera: Bruchidae). Transgenic and non-transgenic plants were subjected to water-deficit and high-temperature treatments under controlled conditions in the glasshouse and growth cabinet, beginning 1 week after the first pods were formed. In the water-deficit treatments, the peas were either adequately watered (control) or water was withheld after first pod formation. The high-temperature experiments were performed in two growth cabinets, one maintained at 27/22 degrees C (control) and one at 32/27 degrees C day/night temperatures, with the vapour pressure deficit maintained at 1.3 kPa. The plants exposure to high temperatures and water deficit produced 27% and 79% fewer seeds, respectively, than the controls. In the transgenic peas the level of alpha-AI-1 as a percentage of total protein was not influenced by water stress, but was reduced on average by 36.3% (the range in two experiments was 11-50%) in the high-temperature treatment. Transgenic and non-transgenic pods of plants grown at 27/22 degrees C and 32/27 degrees C were inoculated with pea weevil eggs to evaluate whether the reduction in level of alpha-AI-1 in the transgenic pea seeds affected pea weevil development and survival. At the higher temperatures, 39% of adult pea weevil emerged, compared to 1.2% in the transgenic peas grown at the lower temperatures, indicating that high temperature reduced the protective capacity of the transgenic peas.

  10. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi. (United States)

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M


    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  11. Involvement of gibberellins in expression of a cysteine proteinase (SH-EP) in cotyledons of Vigna mungo seedlings. (United States)

    Taneyama, M; Okamoto, T; Yamane, H; Minamikawa, T


    The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.

  12. Alpha Thalassemia (United States)

    Alpha Thalassemia Physicians often mistake alpha thalassemia trait for iron deficiency anemia and incorrectly prescribe iron supplements that have no effect 1 on the anemia. αα αα Normal alpha ...

  13. Human sputum cathepsin B degrades proteoglycan, is inhibited by alpha 2-macroglobulin and is modulated by neutrophil elastase cleavage of cathepsin B precursor and cystatin C. (United States)

    Buttle, D J; Abrahamson, M; Burnett, D; Mort, J S; Barrett, A J; Dando, P M; Hill, S L


    The high-Mr alkali-stable form of cathepsin B was purified from purulent human sputum. It was shown to solubilize proteoglycan monomer entrapped in polyacrylamide at a rate comparable with that of human lysosomal cathepsin B. Like the enzyme from lysosomes, sputum cathepsin B was bound by human alpha 2-macroglobulin, which inhibited its action on proteoglycan. Cystatin C in purulent sputum was shown to be the N-terminally truncated form generated by neutrophil elastase cleavage, and sputum cathepsin B was only weakly inhibited by recombinant cystatin C that had been cleaved by neutrophil elastase in vitro. Addition of neutrophil elastase to mucoid sputum led to a 5-fold increase in cathepsin B activity concomitant with a lowering in Mr of the cysteine proteinase from 40,000 to 37,000, i.e. the size of the active enzyme purified from purulent sputum. It is concluded that the high-Mr form of cathepsin B present in purulent sputum is a functional proteinase, unlike similar forms of the enzyme secreted by mammary gland in organ culture. The activity of cathepsin B in sputum is modulated by neutrophil elastase, by a combination of inhibitor inactivation and zymogen activation. Images Fig. 3. Fig. 4. Fig. 5. PMID:1710889

  14. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Mikkelsen, Jens D; Hansen, Henrik H


    Tesofensine is a novel monoamine reuptake inhibitor that inhibits both norepinephrine, 5-HT, and dopamine (DA) reuptake function. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong effect in obesity management...... antagonist), or ritanserin (0.03 mg/kg, 5-HT(2A/C) receptor antagonist). Hence, the mechanism underlying the suppression of feeding by tesofensine in the obese rat is dependent on the drug's ability to indirectly stimulate alpha(1) adrenoceptor and DA D(1) receptor function....... is not clarified. Using a rat model of diet-induced obesity (DIO), we characterized the pharmacological mechanisms underlying the appetite suppressive effect of tesofensine. DIO rats treated with tesofensine (2.0 mg/kg, s.c.) for 16 days showed significantly lower body weights than vehicle-treated DIO rats, being...

  15. Structure- and ligand-based drug design of novel p38-alpha MAPK inhibitors in the fight against the Alzheimer's disease. (United States)

    Pinsetta, Flávio Roberto; Taft, Carlton Anthony; de Paula da Silva, Carlos Henrique Tomich


    Alzheimer's disease (AD) is characterized microscopically by the presence of amyloid plaques, which are accumulations of beta-amyloid protein inter-neurons, and neurofibrillary tangles formed predominantly by highly phosphorylated forms of the microtubule-associated protein, tau, which form tangled masses that consume neuronal cell body, possibly leading to neuronal dysfunction and ultimately death. p38α mitogen-activated protein kinase (MAPK) has been implicated in both events associated with AD, tau phosphorylation and inflammation. p38α MAPK pathway is activated by a dual phosphorylation at Thr180 and Tyr182 residues. Drug design of p38α MAPK inhibitors is mainly focused on small molecules that compete for Adenosine triphosphate in the catalytic site. Here, we used different approaches of structure- and ligand-based drug design and medicinal chemistry strategies based on a selected p38α MAPK structure deposited in the Protein Data Bank in complex with inhibitor, as well as others reported in literature. As a result of the virtual screening experiments performed here, as well as molecular dynamics, molecular interaction fields studies, shape and electrostatic similarities, activity and toxicity predictions, and pharmacokinetic and physicochemical properties, we have selected 13 compounds that meet the criteria of low or no toxicity potential, good pharmacotherapeutic profile, predicted activities, and calculated values ​​comparable with those obtained for the reference compounds, while maintaining the main interactions observed for the most potent inhibitors.

  16. The aspartic proteinase family of three Phytophthora species

    NARCIS (Netherlands)

    Kay, J.; Meijer, H.J.G.; Have, ten A.; Kan, van J.A.L.


    Background - Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to

  17. Development of a novel high-throughput screen and identification of small-molecule inhibitors of the Gα-RGS17 protein-protein interaction using AlphaScreen. (United States)

    Mackie, Duncan I; Roman, David L


    In this study, the authors used AlphaScreen technology to develop a high-throughput screening method for interrogating small-molecule libraries for inhibitors of the Gα(o)-RGS17 interaction. RGS17 is implicated in the growth, proliferation, metastasis, and the migration of prostate and lung cancers. RGS17 is upregulated in lung and prostate tumors up to a 13-fold increase over patient-matched normal tissues. Studies show RGS17 knockdown inhibits colony formation and decreases tumorigenesis in nude mice. The screen in this study uses a measurement of the Gα(o)-RGS17 protein-protein interaction, with an excellent Z score exceeding 0.73, a signal-to-noise ratio >70, and a screening time of 1100 compounds per hour. The authors screened the NCI Diversity Set II and determined 35 initial hits, of which 16 were confirmed after screening against controls. The 16 compounds exhibited IC(50) 50% when compared to a biotinylated glutathione-S-transferase control. This report describes the first high-throughput screen for RGS17 inhibitors, as well as a novel paradigm adaptable to many other RGS proteins, which are emerging as attractive drug targets for modulating G-protein-coupled receptor signaling.

  18. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism. (United States)

    Egelund, R; Petersen, T E; Andreasen, P A


    The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.

  19. Changes in Na+, K+-ATPase activity and alpha 3 subunit expression in CNS after administration of Na+, K+-ATPase inhibitors. (United States)

    Bersier, María Geraldina; Peña, Clara; Arnaiz, Georgina Rodríguez de Lores


    The expression of Na(+), K(+)-ATPase α3 subunit and synaptosomal membrane Na(+), K(+)-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na(+), K(+)-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris-HCl, respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed and crude and synaptosomal membrane fractions were isolated. Western blot analysis showed that Na(+), K(+)-ATPase α3 subunit expression increased roughly 40% after administration of 10 or 100 nmoles ouabain in cerebral cortex but remained unaltered in hippocampus. After administration of 10 μl endobain E (1 μl = 28 mg tissue) Na(+), K(+)-ATPase α3 subunit enhanced 130% in cerebral cortex and 103% in hippocampus. The activity of Na(+), K(+)-ATPase in cortical synaptosomal membranes diminished or increased after administration of ouabain or endobain E, respectively. It is concluded that Na(+), K(+)-ATPase inhibitors modify differentially the expression of Na(+), K(+)-ATPase α3 subunit and enzyme activity, most likely involving compensatory mechanisms.

  20. Synthesis and biological evaluation of beta-chloro vinyl chalcones as inhibitors of TNF-alpha and IL-6 with antimicrobial activity. (United States)

    Bandgar, Babasaheb P; Patil, Sachin A; Korbad, Balaji L; Nile, Shivraj H; Khobragade, Chandrahase N


    A series of beta-chloro vinyl chalcones have been synthesized by Claisen-Schmidt condensation. beta-chloro vinyl aldehyde has been synthesized by the Vilsmayer-Hack formylation reaction. The structures of the newly synthesized compounds were confirmed by 1H NMR, IR and Mass spectral analysis. All the compounds were evaluated for their anti-inflammatory activity (against TNF-alpha and IL-6) and antimicrobial (antibacterial and antifungal) activity. Compounds 5a, 5d, 5e, 5g and 5i exhibited promising activity against IL-6 with 58-83% inhibition at 10 microM concentration. None of the compound was found to be cytotoxic in CCK-8 cells at 10 microM concentration. Whereas compounds 5b, 5d, 5e and 5i showed very good antibacterial activity and compounds 5a, 5b, 5e and 5i showed good antifungal activity.

  1. [Guidelines in RA treatment: concepts on safety and recommendations using anti-TNF-alpha inhibitors. Grupo de Estudio de Nuevas Terapias de Enfermedades reumáticas (GENTE)]. (United States)

    Díaz-Jouanen, Efraín; Abud-Mendoza, Carlos; Garza-Elizondo, Mario Alberto; Medrano-Ramírez, Gabriel; Burgos-Vargas, Rubén; Orozco-Alcalá, José Javier; Pacheco-Tena, César Francisco; Pineda, Carlos; Pozos-Espíndola, Juan Carlos; Ramos-Niembro, Francisco; Robles-San-Román, Manuel; Santana-Sahagún, Jesús Ernesto


    Recommendations for the use of Disease-Modifying Antirheumatic Drugs (DMARD) with both conventional and biological agents in Rheumatoid Arthritis (RA) must be based on their safety profile, adverse effects, risks, and advantages. With the purpose of presenting the most updated information about the safety of tumor necrosis factor alpha (TNFalpha) antagonists, in this article we summarize the literature published during the last three years about this sort of biological agents in specific clinical situations, such as risk of developing infections, cancer, cardiovascular diseases, and autoimmunity; as well as their administration to patients who will undergo surgical procedures, pregnant and/or breast-feeding women, and patients who need immunizations. Likewise, in this analysis we offer specific recommendations, based on evidence, for the best anti-TNF-alfa management.

  2. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa


    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  3. Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall. (United States)

    Zhou, Da-Yong; Chang, Xian-Na; Bao, Sha-Sha; Song, Liang; Zhu, Bei-Wei; Dong, Xiu-Ping; Zong, Yuan; Li, Dong-Mei; Zhang, Mao-Mao; Liu, Yu-Xin; Murata, Yoshiyuki


    A cathepsin L-like proteinase (CLP) with molecular weight of 30.9 kDa from the gut of sea cucumber (Stichopus japonicas, S. japonicus) was isolated and purified to homogeneity by several chromatographic procedures. The enzyme exhibited optimum activity at pH 5.0-5.5 and 50 °C, and showed thermostability up to 40 °C. The enzyme activity was completely inhibited by Zn(2+), strongly inhibited by Fe(2+) and Cu(2+), drastically reduced by cysteine proteinase inhibitors, but slightly enhanced by thiol-activating agents. The enzyme efficiently hydrolysed the specific substrate of cathepsin L, but hardly hydrolysed the specific substrates for cathepsin B, cathepsin H and cathepsin K. Immunohistochemical studies indicated that the CLP was more abundant in the epidermis rather than in the dermis of S. japonicus body wall. The distribution of CLP showed positive correlation with autolysis rate. Therefore, the relationship between CLP and autolysis deserved further study.

  4. Separation and quantitation of the polyamine biosynthesis inhibitor D,L-alpha-difluoromethylarginine and other guanidine-containing compounds by high-performance liquid chromatography. (United States)

    Hunter, K J; Fairlamb, A H


    The arginine decarboxylase inhibitor difluoromethylarginine (DFMA) is an important tool in the study of polyamine metabolism, particularly with respect to the human pathogen Trypanosoma cruzi. This paper demonstrates a unique method for the detection and quantitation of intracellular DFMA using the fluorogenic agent 9,10-phenanthrenequinone. After separation of cell extracts by HPLC, DFMA can be accurately and reproducibly quantified with a lower sensitivity limit of 0.1 nmol by this simple fluorometric method. This assay can also be used to detect other guanidine-containing compounds such as arginine, agmatine, creatinine, and hirudonine, but not substituted guanidines such as aminoguanidine and creatine, or the structurally related amidines such as benzamidine and pentamidine.

  5. Safety and efficacy of alpha-1-antitrypsin augmentation therapy in the treatment of patients with alpha-1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Irina Petrache


    Full Text Available Irina Petrache1, Joud Hajjar1, Michael Campos21Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; 2Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Florida, USA Abstract: Alpha-1-antitrypsin deficiency (AATD, also known as alpha1-proteinase inhibitor deficiency, is an autosomal co-dominant condition. The genotypes associated with AATD include null, deficient, and dysfunctional alpha-1-antitrypsin (A1AT variants, which result in low levels of circulating functional A1AT, unbalanced protease activity, and an increased risk of developing lung emphysema, the leading cause of morbidity in these patients. Furthermore, the most common abnormal genotype, Pi*ZZ may also cause trapping of abnormally folded protein polymers in hepatocytes causing liver dysfunction. A major focus of therapy for patients with lung disease due to AATD is to correct the A1AT deficiency state by augmenting serum levels with intravenous infusions of human plasma-derived A1AT. This strategy has been associated with effective elevations of A1AT levels and function in serum and lung epithelial fluid and observational studies suggest that it may lead to attenuation in lung function decline, particularly in patients with moderate impairment of lung function. In addition, an observational study suggests that augmentation therapy is associated with a reduction of mortality in subjects with AATD and moderate to severe lung impairment. More recent randomized placebo-controlled studies utilizing computer scan densitometry suggest that this therapy attenuates lung tissue loss. Augmentation therapy has a relative paucity of side effects, but it is highly expensive. Therefore, this therapy is recommended for patients with AATD who have a high-risk A1AT genotype with plasma A1AT below protective levels (11 µM and evidence of obstructive lung disease. In this article, we

  6. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species. (United States)

    Arnórsdottir, Jóhanna; Smáradóttir, Rúna B; Magnússon, Olafur Th; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Kristjánsson, Magnús M


    The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.

  7. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa


    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  8. PGF2alpha induced differential expression of genes involved in turnover of extracellular matrix in rat decidual cells

    Directory of Open Access Journals (Sweden)

    Callegari Eduardo A


    Full Text Available Abstract In the rat, the decidual tissue is an important component for maternal recognition of pregnancy. Decidualization can be induced by either the implantation of the blastocyst or by artificial stimuli. The process of decidua formation or decidualization, is characterized by growth and differentiation of endometrial stromal cells. Prostaglandin F2alpha (PGF2α has been shown to be involved in inhibition of implantation, alteration of embryo development, induction of luteal regression, and the mediation of pregnancy loss induced by microorganism infections. In order to establish a direct role for PGF2α in decidual function, we have evaluated its effects on the expression of an extensive array of genes using primary decidual cell culture. Upon treatment with PGF2α sixty genes were significantly down-regulated whereas only six genes were up-regulated (from a total of 1176 genes studied. Interestingly, the majority of the genes inhibited by PGF2α are either directly or indirectly involved in the turnover of the extracellular matrix (ECM. Genes such as gelatinase A (MMP2, cathepsin L, tissue inhibitor metalloproteinases 2 (TIMP2 and 3 (TIMP3, plasminogen activator inhibitor1 (PAI1, tissue type plasminogen activator (tPA, urokinase plasminogen activator (tPA, endothelin 1, calponin, carboxypeptidase D and calponin acidic were down regulated. The opposite effect was observed for prostromelysin 53 kDa (proMMP3, plasma proteinase I alpha and alpha 1 antiproteinase, all of which were significantly up-regulated by PGF2α. The results strongly suggest that the abortificient role of elevated levels of PGF2α after implantation is due, in large part, to inhibition of genes involved in the normal turnover of the extracellular matrix necessary for decidual formation.

  9. KAPASITAS ANTIOKSIDAN DAN INHIBITOR ALFA GLUKOSIDASE EKSTRAK UMBI BAWANG DAYAK [Antioxidant and Alpha-Glucosidase Inhibitory Properties of Bawang Dayak Bulb Extracts

    Directory of Open Access Journals (Sweden)

    Andi Early Febrinda*


    Full Text Available Bawang dayak (Eleutherine palmifolia is an indigenous plant in Borneo traditionally used by Dayak tribes to treat any kind of degenerative deseases including diabetes mellitus. The purpose of this research was to measure antioxidant and antidiabetic capacities of water and ethanolic extracts of bawang dayak bulb. Parameters evaluated in this research were phytochemical screening, total phenolics, flavonoid content, DPPH free-radical scavenging activity, and alpha glucosidase inhibiting (AGI activity. The result showed that the total phenolics and flavonoid content in bawang dayak ethanolic extract (217.71 mg GAE/g and 65.35 mg QE/g were higher than that of the water extract (139.93 mg GAE/g and 16.95 mg QE/g. The ethanolic extract also had higher antioxidant and AGI activities (IC50 112 and 241 ppm than that of the water extract (IC50 526 and 505 ppm. In addition, the IC50 values for AGI in bawang dayak ethanolic extract was lower than acarbose which is known as a commercial antidiabetic agent.

  10. Alpha-Amylase Inhibitors in Galla Chinensis%五倍子中α-淀粉酶抑制因子的研究

    Institute of Scientific and Technical Information of China (English)

    宋彦显; 闵玉涛; 徐凤才; 马庆一


    采用甲醇粗提、索氏抽提及pH值梯度提取和聚酰胺柱层析等分离纯化法及酶反应动力学跟踪的方法对五倍子中的α-淀粉酶抑制因子进行系统研究。结果表明:乙醚、乙酸乙酯、丙酮-水(体积比1:1)、甲醇、石油醚组分和甲醇粗提物对α-淀粉酶的抑制率依次为:91.04%、90.38%、80.09%、66.48%、34.14%和23.96%。其中石油醚组分中的α-淀粉酶抑制因子是月桂酸、肉豆蔻酸和棕榈酸,其抑制率分别为34.34%、31.71%和31.01%,而乙醚组分中的抑制因子是鞣酸及没食子酸,其抑制率分别为66.7%和21.3%。丙酮-水组分中的抑制因子较为复杂,经初步纯化和气质联用得知其为脂肪醇类并部分甲酯化。%In order to separate the inhibitory factors of α-amylase in Galla Chinensis,crude methanol extract of Galla Chinensis was fractionated by sequential Soxhlet extraction with petroleum ether,ethyl ether,ethyl acetate and methanol.Meanwhile,the residue left after methanol extraction was extracted with acetone-water(1:1,V/V) and the extract obtained was further separated by pH gradient extraction,polyamide column chromatography and Seaphadex LH-20,respectively.The inhibitory activity of all samples against α-amylase was determined.The results showed that the inhibitory rates of ethyl ether fraction,ethyl acetate fraction,acetone-water extract,methanol faction(obtained from secondary extraction by Soxhlet method),petroleum ether fraction and crude methanol extract were 91.04%,90.38%,80.09%,66.48%,34.14% and 23.96%,respectively.The α-amylase inhibitors in petroleum ether fraction were lauric acid,myristic acid and palmitic acid with corresponding inhibitory rates of 34.34%,31.71% and 31.01%,respectively.Tannic acid and gallic acid were the α-amylase inhibitors in ethyl ether fraction,with corresponding inhibitory rates of 66.7% and 21.3%,respectively.The α-amylase inhibitor composition in acetone-water extract was

  11. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Hua XIE; Yi-ling FU


    Aim: To investigate the effects of the agonists of proteinase activated receptor (PAR)-2,and histamine on degranulation of human mast cells. Methods: Human mast cells were enzymatically dispersed from tonsil and skin tissues. The dis persed cells were then cultured with various stimuli, and tryptase and histamine levels in cell supernatants collected from challenge tubes were measured. Results:PAR-2 agonist peptide SLIGKV provoked a dose-dependent release of histamine from skin mast cells. It also induced tryptase release from tonsil mast cells, tcLIGRLO appeared less potent than SLIGKV in induction of release of histamine and tryptase. Trypsin was able to induce a "bell" shape increase in tryptase release from tonsil mast cells. It was also able to induce a dose-dependent release of histamine from both tonsil and skin mast cells. The actions of trypsin on mast cells were inhibited by soy bean trypsin inhibitor (SBTI) or α1-antitrypsin (α1-AT).Time course study revealed that both stimulated tryptase or histamine release initiated within 10 s and reached their peak release between 4 and 6 min. Pretreatment of cells with metabolic inhibitors or pertussis toxin reduced the ability of mast cells to release tryptase or histamine. Conclusion: It was demonstrated that the in vitro tryptase release properties of human tonsil and skin mast cells suggested a novel type of mast cell heterogeneity. The activation of mast cells by PAR-2 agonists indicated a self-amplification mechanism of mast cell degranulation.

  12. The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Erskine, Peter T. [University of Southampton, England; Cooper, Jon [University of Southampton, England


    Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

  13. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells. (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa


    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.


    Directory of Open Access Journals (Sweden)

    R. G. Mukhina


    Full Text Available Objective: to describe a case of the total development of alopecia in a female patient with psoriatic arthritis during treatment with a tumor necrosis factor-αlpha (TNF-α inhibitor. Materials and methods. Patient I., aged 36 years has been followed up at the Kazan’ Center of Rheumatic Diseases and Osteoporosis since 1998. At approximately the same time, the patient noted the appearance of skin eruptions behind the ears, on the skin of the scalp. She was examined by a dermatologist who diagnosed psoriasis. In 2005, she was admitted to Kazan’ Rheumatology Center, City Clinical Hospital Seven, for the development of obvious synovitis of the knee joint and for the inefficiency of therapy with nonsteroidal anti-inflammatory drugs and diagnosed with psoriatic arthritis. During the prescribed therapy with methotrexate 10 mg/week, evident menstrual irregularities were observed in the patient who stopped using the drug herself. The second pregnancy occurred in 2008. Articular syndrome progression and eruptive psoriasis were recorded in the lactation period. After lactation cessation in 2009, she was hospitalized again. Her examination revealed high laboratory activity (erythrocyte sedimentation rate, as high as 40 mm/hr; magnetic resonance imaging of the knee joints showed the signs of bilateral synovitis; lumbar spine radiography exhibited grade II sacroiliitis. Leflunomide 20 mg/day was recommended as a basic drug. In 2012, the patient used leflunomide, her condition worsened; joint pain progressed; new joints were involved into the process, and cutaneous manifestations were aggravated. To verify a diagnosis and to choose therapy, the patient was referred to a consultation at the Moscow Research Institute of Rheumatology. Results. In connection with the high activity of the disease and with no response to the performed therapy, it was recommended to initiate therapy with biologics, such as infliximab, the drug of choice. Seven infliximab

  15. Proteinases of Streptomyces fradiae. I. Preliminary characterization and purification. (United States)

    Galas, E; Kaluzewska, T


    A keratinolytic strain of S. fradiae has been shown to synthesize a complex of extracellular proteinases degrading native keratin proteins, elastin and collagen as well as some globular proteins. These enzymes are characterized by basic optimal pH and are inactivated by pheynlmethylsulfonyl fluoride (PMSF). Using preparative polyacrylamide gel electrophoresis, ion-exchange chromatography and affinity chromatography, 6 fractions of active protein of diversified proteolytic activity have been distinguished in the preparation studied.