WorldWideScience

Sample records for alnico alloys

  1. Numerical simulation on directional solidification of Al-Ni-Co alloy based on FEM

    Directory of Open Access Journals (Sweden)

    Yang Zhili

    2010-02-01

    Full Text Available The ratio, of the temperature gradient at the solidification front to the solidification rate of solid-liquid interface, plays a large part in columnar grain growth. The transient temperature fields of directional solidification of Al-Ni-Co alloy were studied by employing a finite element method. The temperature gradient at the solidification front and the solidification rate were analyzed for molten steels pouring at different temperatures. The results show that with different initial pouring temperatures, the individual ratio of the temperature gradient at solidification front to the solidification rate soars up in the initial stage of solidification, then varies within 2,000-6,000 ℃·s·cm-2, and finally goes down rapidly and even tend to be closed to each other when the solidification thickness reaches 5-6 cm. The simulation result is consistent with the practical production which can provide an available reference for process optimization of directional solidified Al-Ni-Co alloy.

  2. On the evolution of Cu-Ni-rich bridges of Alnico alloys with tempering

    Science.gov (United States)

    Fan, M.; Liu, Y.; Jha, Rajesh; Dulikravich, George S.; Schwartz, J.; Koch, C. C.

    2016-12-01

    Tempering is a critical step in Alnico alloy processing, yet the effects of tempering on microstructure have not been well studied. Here we report these effects, and in particular the effects on the Cu-Ni bridges. Energy-dispersive X-ray spectroscopy (EDS) maps and line scans show that tempering changes the elemental distribution in the Cu-Ni bridges, but not the morphology and distribution of Cu-bridges. The Cu concentration in the Cu-Ni bridges increases after tempering while other element concentrations decrease, especially Ni and Al. Furthermore, tempering sharpens the Cu bridge boundaries. These effects are primarily related to the large 2C44/(C11-C12) ratio for Cu, largest of all elements in Alnico. In addition, the Ni-Cu loops around the α1 phases become inconspicuous with tempering. The diffusion of Fe and Co to the α1 phase during tempering, which increases the difference of saturation magnetization between the α1 and α2 phases, is observed by EDS. In summary, α1, α2 and Cu-bridges are concentrated with their major elements during tempering which improves the magnetic properties. The formation of these features formed through elemental diffusion is discussed via energy theories.

  3. A Study on Alnico Permanent Magnet Powders Prepared by Atomization

    Institute of Scientific and Technical Information of China (English)

    Changbin SONG; Bocksoo HAN; Ying LI

    2004-01-01

    Alnico powders were prepared by gas atomization process. Composition of the Alnico powders was Fe37.1 Al8.2 Ni17.6-Co26.6 Cu3.3 Ti7.2 (wt pct) which was the same as that of commercially available Alnico magnets. Average particle size of the powders was 119μm. Effects of heat treatment in magnetic field on magnetic properties of the powders were investigated. The optimum process of heat treatment was found as follows, heated at 870℃ for 1 min first, then cooled down to 700℃ at cooling rate 0.3℃/s in magnetic field, and finally aged isothermally for 4 h.Magnetic properties of the Alnico powders were measured and the results were that intrinsic coercivity iHc was 1.0kOe and remanence Mr was 36.5 emu/g.

  4. Pulsed laser deposition and characterization of Alnico5 magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Butt, M.Z., E-mail: mzbutt49@yahoo.com [Department of Physics, GC University, Lahore 54000 (Pakistan); Ali, Dilawar [Department of Physics, GC University, Lahore 54000 (Pakistan); Ahmad, Fayyaz [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Magnetophotonics Research Laboratory, Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-09-01

    Alnico5 films were deposited by pulsed laser deposition on glass substrate at room temperature under a vacuum ∼10{sup −3} Torr in the absence and in the presence of 500 Oe external transverse magnetic field applied on the plasma plume during film deposition. For this purpose, Nd:YAG laser was employed to ablate the Alnico5 target. The ablated material was deposited on glass substrate placed at a distance of 2 cm from the target. The structural and magnetic properties of the film were analyzed by X-ray diffraction, atomic force microscope, and vibrating sample magnetometer. X-ray diffraction patterns showed that the Alnico5 films were amorphous in nature. Atomic force microscopy revealed that the Alnico5 film deposited in absence of external magnetic field has larger root-mean-square roughness value (60.2 nm) than the magnetically deposited film (42.9 nm). Vibrating sample magnetometer measurements showed that the in-plane saturation magnetization of Alnico5 film deposited in the presence of external magnetic field increases by 32% as compared to that for the film deposited in the absence of external magnetic field. However, the out-of-plane saturation magnetization was almost independent of the external magnetic field. In magnetically deposited film, there is in-plane anisotropy parallel to the applied external magnetic field.

  5. Synthesis of AlNiCo core/shell nanopowders

    Science.gov (United States)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  6. Processing of alnico permanent magnets by advanced directional solidification methods

    Science.gov (United States)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition

  7. (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements

    Science.gov (United States)

    2016-02-02

    below. Scanning electron microscope (SEM) images in Fig.8 show the clear difference in morphology and white phase between center and outer areas...available AlNiCo alloys. Pattern recognition statistical algorithms were also used to elucidate relationships among different alloying elements and each...methods. Various statistical tools and pattern recognition techniques were used to determine patterns and correlations within the created dataset

  8. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  9. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.

    Science.gov (United States)

    Balamurugan, B; Das, B; Zhang, W Y; Skomski, R; Sellmyer, D J

    2014-02-12

    The structural and magnetic properties of nanostructured Co-rich transition-metal alloys, Co(100-x)TMx (TM = Hf, Zr and 10 ≤ x ≤ 18), were investigated. The alloys were prepared under non-equilibrium conditions using cluster-deposition and/or melt-spinning methods. The high-anisotropy HfCo7 and Zr2Co11 structures were formed for a rather broad composition region as compared to the equilibrium bulk phase diagrams, and exhibit high Curie temperatures of above 750 K. The composition, crystal structure, particle size, and easy-axis distribution were precisely controlled to achieve a substantial coercivity and magnetization in the nanostructured alloys. This translates into high energy products in the range of about 4.3-12.6 MGOe, which are comparable to those of alnico.

  10. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Science.gov (United States)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe80-xCrxCo20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe55Cr25Co20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5.

  11. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  12. 低成本Cu-Zn-Al-X弹性材料的研究进展%Research and Development of Low Cost Cu-Zn-Al-X Elastic Alloy

    Institute of Scientific and Technical Information of China (English)

    李杰; 王永如; 戴姣燕; 肖来荣; 李周; 宗亚平

    2012-01-01

    The component, properties, characteristics of processing technique and strengthening mechanism of Cu-Zn-Al-X elastic alloys, as well as the effect of elements (such as Al,Ni,Co) on properties of the alloy, are expounded in detail. Meanwhile, the development and research progress in the field of Cu-Zn-Al-X copper base elastic alloy at home and abroad are introduced. Tendence of Cu-Zn- Al-Co and Cu-Zn-Al-Ni alloy substitute phosphor bronze gradually in future and optimized design of components, development of advanced technology and so on are pointed out.%详细地阐述了各元素(Al、Ni、Co等)对Cu-Zn-Al-X系列材料的作用以及该系列材料的成分类型、性能、制备工艺特点和强化机理.同时,介绍了国内外在该系铜基弹性合金材料方面的研究进展.指出在未来的发展中Cu-Zn-Al-Co与Cu-Zn-Al-Ni系列具有逐渐部分替代锡磷青铜的趋势,成分优化设计、新工艺开发等将会成为重点研究对象.

  13. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  14. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  15. Predicting Pathways for Synthesis of Ferromagnetic τ Phase in Binary Heusler Alloy Al-55 pct Mn Through Understanding of the Kinetics of ɛ-τ Transformation

    Science.gov (United States)

    Palanisamy, Dhanalakshmi; Singh, Shailesh; Srivastava, Chandan; Madras, Giridhar; Chattopadhyay, Kamanio

    2016-09-01

    This paper outlines the detailed procedure for the synthesis of pure ferromagnetic τ phase in binary Heusler Al-55 pct Mn alloy in bulk form through casting route without any addition of stabilizers. To obtain the processing domain for the formation of the τ phase from high-temperature ɛ phase, isothermal transformation experiments were carried out. The structure and microstructure were characterized by X-ray diffraction and electron microscopy studies. The τ phase start times were obtained through magnetic measurements. In order to tune the casting conditions for the formation of this phase, thermal modeling was carried out to predict the heat extraction rates for copper molds of different diameters (2 to 12 mm) containing hot solids during casting process. This enabled us to estimate the diameter of the mold to be used for obtaining τ phase directly during casting. It was concluded through experimental verification that 10-mm-diameter casting in copper mold is suitable to obtain complete τ phase. A saturation magnetization of 116 emu/g at 10 K was measured for such samples. The Curie point for the τ phase was found to be 668 K (395 °C). Additionally, the cast rod exhibits a compressive strength of 1170 MPa which is higher than those of both ferrites and AlNiCo magnets.

  16. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, Bill [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Constantinides, Steve [Arnold Magnetic Technologies, Rochester, NY (United States)

    2016-05-05

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  17. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  18. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  19. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  20. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  1. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  2. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  3. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  4. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  5. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  6. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  7. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  8. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  9. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  10. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  11. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  12. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  13. Strength of Hard Alloys,

    Science.gov (United States)

    Partial replacement of titanium carbide by tantalum carbide in three-phase WC-TiC-Co alloys tends to have a favorable effect on mechanical properties such as fatigue strength under bending and impact durability.

  14. Alloy Selection System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  15. First Everlasting Alloy

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    There′s new alloy that apparently just won′t give up. When a pin was scraped along it the equivalent of one million times, the alloy-made of zirconium, palladium, and ruthenium—displayed no net loss of surface material. When astonished researchers at the National Institute of Standards and Technology(NIST) persevered with a five-million-cycle wear test, they got the same result.

  16. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  17. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  18. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  19. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  20. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  1. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  2. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  3. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  4. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  5. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  6. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  7. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  8. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  9. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  10. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  11. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei;

    2003-01-01

    and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory...

  12. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  13. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  14. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  15. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Materials data handbook, Inconel alloy 718

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  17. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  18. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  19. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  20. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  1. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  2. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  3. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  5. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  6. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  7. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  8. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  9. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  10. Wedlable nickel aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  11. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  12. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  13. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  14. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  15. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...

  16. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  17. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  18. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  19. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  20. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  1. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  2. Metallic alloy stability studies

    Science.gov (United States)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  3. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  4. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  6. Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of various Mg-Sr master alloys (conventional as-cast, rapidly-solidified, rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated. The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different. The rolled Mg-Sr master alloy is found to have relatively higher refinement efficiency than the conventional as-cast, solutionized and rapidly-solidified Mg-Sr master alloys. After being treated with the rolled Mg-Sr master alloy, the ZK60 alloy obtains the minimum average grain size of 33 μm. The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.

  7. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  8. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  9. Shape memory alloy flexures

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Yves; Clavel, Reymond

    2003-07-25

    Flexures are used in precision engineering where highly accurate, wear-free, smooth and repeatable motion is desired. Flexures are based on deformation of material to achieve a motion between elastically joined parts. They are used in a variety of precision mechanisms such as high-resolution balances or high accuracy optical positioning stages. Shape memory alloys (SMA) are an attractive option in designing flexures. Superelastic flexures can withstand larger deformations for the same weight as a conventional flexure. In addition, the damping properties of SMA, controllable through the phase transformation, offer new design opportunities for adaptive compliant mechanisms. The martensitic phase transformation can also be used to shift the natural frequency of flexures adding useful functionalities such as vibration rejection. This paper presents design principles of SMA flexures based on non-linear beam theory. Results show a good agreement between measured and predicted data. In addition, experimental results on phase transformation effects on damping behavior are also presented. Both, natural-frequency shift and increased damping were observed in bulk-micro machined flexures using the R-phase transformation. These results demonstrate the feasibility of natural-frequency-tunable flexures.

  10. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  11. Oxidation of low cobalt alloys

    Science.gov (United States)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  12. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  13. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  14. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  15. Current research situation of titanium alloys in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Titanium and its alloys possess excellent comprehensive properties, and they are widely used in many fields. China pays great attentions to the research on new titanium alloys. This paper mainly reviews the research on new Ti alloys in China, for example, high strength and high toughness Ti alloys, burn resistant Tialloys, high temperature Ti alloys, low cost Ti alloys and so on.New basic theories on Ti alloys developed in China in recent years are also reviewed.

  16. Alloy 718 for Oilfield Applications

    Science.gov (United States)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  17. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  18. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  19. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  20. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  1. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  2. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  3. Alloy softening in binary iron solid solutions

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  4. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  5. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  6. Paracrystalline property of high-entropy alloys

    Directory of Open Access Journals (Sweden)

    Shaoqing Wang

    2013-10-01

    Full Text Available Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters g of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

  7. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  8. Applications of shape memory alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asai, M.; Suzuki, Y. [Furukawa Electric Co., Ltd., Yokohama, Kanagawa (Japan). R and D Labs.

    2000-07-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and otherfield today. (orig.)

  9. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  10. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  11. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  12. Superb nanocrystalline alloys for plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With high rigidity and antiwear performance,nanocrystalline metals and their alloys can find wide applications in surface protection.However, the existence of grain boundaries often leads to erosive micro-batteries which accelerate the process of corrosion.Therefore, it has already become a key issue for surface engineering researchers to find nano materials with higher lubricating, anticorrosion and antiwear capacities.

  13. Microstructure and thermal stability of mechanically alloyed Al3Ti/Al alloy

    Institute of Scientific and Technical Information of China (English)

    林建国; 魏浩岩; 黄正

    2001-01-01

    The microstructure stability of Al3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstructure (the grain size is about 0.5  μm). After cycling loaded followed by heat exposure at 350  ℃ for 24  h, no microstructure coarsening of the alloy occurred, which means that the Al3Ti/Al alloy behaves good microstructure stability at high temperature. The compression yield strength of the alloy reaches up to 247  MPa at 350  ℃.

  14. PERSPECTIVES OF MOLIBDENUM CONTAINING MATERIALS APPLICATION FOR ALLOYING OF IRONCARBON ALLOYS DURING MANUFACTURING OF CRITICAL CASTINGS

    Directory of Open Access Journals (Sweden)

    A. G. Slutsky

    2015-01-01

    Full Text Available Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to manufacture motor’s sleeves. For alloying purposes such traditional elements as Cr, Ni, Cu, and V are applied. But it is interesting to use molybdenum for cast iron alloying. It is known that alloying of alloys allows considerable increasing of consumption properties of castings. But in spite of advantages of alloys alloying the increase of molybdenum containing iron-carbon alloys production is restricted by economical reasons – high cost of alloying additions. Expenditures on alloying additions can be reduced by the application cheap secondary alloys in the charge. So, the present paper is devoted to investigation of alloying peculiarities during the treatment of ferrous alloys with molybdenum applying different initial materials.

  15. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  16. Alloy substantially free of dendrites and method of forming the same

    Science.gov (United States)

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  17. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    Science.gov (United States)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-01-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  18. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Santella, Michael L [ORNL; Battiste, Rick [ORNL; Terry, Totemeier [Idaho National Laboratory (INL); Denis, Clark [Idaho National Laboratory (INL)

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  19. Grain refinement of AZ31 magnesium alloy by Al-Ti-C-Y master alloy

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiang; LU Binfeng; L(U) Zhengling; LIANG Wei

    2008-01-01

    Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to fine equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.

  20. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  1. First principles theory of disordered alloys and alloy phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A. [and others

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  2. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    Science.gov (United States)

    2013-11-01

    alloys are based on a rather small group of alloying elements, there are often limited differences between them in properties (strength, corrosion ...Research Laboratory (ARL). Initially, the discussions focused on ways to improve the corrosion resistance of magnesium ( Mg ) alloys to increase the...elements display little tendency to alter precipitates or otherwise adversely influence the corrosion performance of the base alloy . Based on these

  3. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  4. Wetting behavior of alternative solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  5. A lightweight shape-memory magnesium alloy.

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  6. Magnetic Characteristics of Two Metglas Alloys

    Science.gov (United States)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  7. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  8. Biocorrosion study of titanium-nickel alloys.

    Science.gov (United States)

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  9. Spark alloying of VK8 and T15K6 hard alloys

    Science.gov (United States)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  10. Kinetics and Structure of Refractory Compounds and AlloysObtained by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Refractory compounds are material with interesting properties for structural applications. However, the processing of such material is a great challenge because of their high melting temperature and limited ductility. Mechanical alloying is a novel technique of producing refractory compounds with specific properties. Kinetical and structural peculiarities of refractory compounds and alloys obtained by mechanical alloying are discussed.

  11. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    Science.gov (United States)

    2006-01-01

    effect from alloying additions of Nb, Mo, V, Cr and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the...that transition metal Nb achieves the best strengthening effect in Fe-Ga alloys. The solid solution strengthening follows a trend from larger to

  12. Aspects of precipitation in alloy Inconel 718

    OpenAIRE

    Azadian, Saied

    2004-01-01

    A study was made of the microstructure of the Ni-base alloy Inconel 718 with emphasis on the precipitation and stability of intermetallic phases as affected by heat treatments. In addition the effect of the precipitation on selected mechanical properties namely hardness, creep notch sensitivity and hot ductlity were investigated. The materials studied were a spray-formed version and three wrought versions of the alloy. The spray-formed version of the alloy was of interest since it exhibited a...

  13. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  14. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  15. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  16. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  17. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  18. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  19. The Fatigue of Powder Metallurgy Alloys.

    Science.gov (United States)

    2014-09-26

    v1o -2- MATERIALS AND TESTS Table 1 provides a complete listing of the alloys studied in this program together with their chemical compositions ...use can minimize material waste and minimize machining costs. In addition there is the potential for the development of more fine-grained and...out under fully reversed loading conditions in the high cycle range with smooth specimens. X7090 and X7091 are P/M alloys, 7075 is an ingot alloy

  20. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    Rolling, Acta Materiala (08 2014) Zhe Wang , John H Perepezko, David Larson, David Reinhard. Mixing Behaviors in Cu/Ni and Ni/V Multilayers Induced...by Cold Rolling, Journal of Alloys and Compounds (07 2014) Zhe Wang , John H. Perepezko. Deformation-Induced Nanoscale Mixing Reactions in Cu/Ni...FTE Equivalent: Total Number: Discipline Zhe Wang 0.50 0.50 1 Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students

  1. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  2. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  3. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  4. Design, Selection and Application of High Efficient Complex Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are di scussed. The designed complex alloys containing calcium, barium, magne sium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. Th e application principles of alloys are as follows: using Si-Mn or Si-M n-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for fi nal deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.

  5. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... for substitution focussed on were increased deposition rates as well as improved corrosion and wear resistance.Some systems exhibited interesting deposition rates. Examples are 178 µm per hour of Ni-P(6), 85 µm per hour of Ni-P(15), 142 µm per hour of Ni-W(44) and 62 µm per hour of Ni-B(0.8) (weight percentages...... are written in brackets). Temperature and especially pH influenced the cathodic efficiency of the electrodeposition processes for Ni-W and Ni-P. Mass balance problems of the development alloy processes are identified.Heat treatment for one hour at approx. 350°C, 400°C and 600°C of electrodeposited Ni-B, Ni...

  6. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  7. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  8. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  9. Influence of alloy ingredients on mechanical properties of ternary boride hard alloy clad materials

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-tian; SONG Shi-xue; YANG Jun-ru; HUANG Wei-ling; HUANG Chuan-zhen; CHENG Xin; LI Zhao-qian

    2004-01-01

    Using Mo, B-Fe alloy and Fe powders as raw materials, and adding C, Cr and Ni ingredients, respectively, or C, Cr and Ni mixed powders, ternary boride hard alloy clad materials was prepared on Q235 steel substrate by means of in-situ reaction and vacuum liquid phase sintering technology. The influence of alloy ingredients on the mechanical properties of ternary boride hard alloy clad materials was investigated. The results indicate that a mixture of 0.8% C, 5% Cr and 2% Ni ingredients gives a ternary boride hard alloy clad material with optimal mechanical properties, such as high transverse rupture strength, high hardness and good wear resistance.

  10. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  11. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  12. Zirconium alloys produced by recycling zircaloy tunings

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, N.S. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Carbajal-Ramos, I.A. [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina); Ulla, M.A.; Pierini, B.T. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Gennari, F.C., E-mail: gennari@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-25

    Highlights: •Zr–Ti alloys were successfully produced by two-step procedure. •Zircaloy tunings were used as a valuable source of Zr. •Zircaloy tunings and Ti powders was milled under hydrogen to produce hydride powders. •Hydride powders were decomposed by heating at 900 °C to synthesize the Zr-based alloy. •The procedure could be extended to the production of other Zr-based alloys. -- Abstract: Zircaloy chips were recycled to successfully produce Zr–Ti alloys with bcc structure and different compositions. The procedure developed involves two steps. First, the reactive mechanical alloying (RMA) of the zircaloy tunings and Ti powders was performed to produce metal hydride powders, with a high refinement of the microstructure and a Zr–Ti homogeneous composition. Second, the metal hydride powders were thermally decomposed by heating up to 900 °C to synthesize the Zr-based alloy with a selected composition. The change in the nature of the powders from ductile to brittle during milling avoids both cold working phenomena between the metals and the use of a control agent. A minimum milling time is necessary to produce the solid solution with the selected composition. The microstructure and structure of the final alloys obtained was studied. The present procedure could be extended to the production of Zr-based alloys with the addition of other metals different from Ti.

  13. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  14. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  15. Electroplating Zn-Al Alloy Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of controlling separating anode and separating power source was used to perform orthogonal optimization for the parameters in electroplating Zn-Al alloy.The electroplating Zn-Al alloy technology was decided, in which the content of Al is about 12%-15%.

  16. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  17. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  18. STRUCTURE OF LIQUID CESIUM LEAD ALLOYS

    NARCIS (Netherlands)

    PRICE, DL; SABOUNGI, ML; DEWIJS, GA; VANDERLUGT, W

    1993-01-01

    Neutron diffraction measurements have been made on liquid Cs-Pb alloys at the Intense Pulsed Neutron Source. Equiatomic CsPb has been shown in previous work to be a Zintl alloy with well-defined Cs4Pb4 structural units, explaining the anomalously high electrical resistivity and specific heat observe

  19. Measurement of oxide adherence to PFM alloys.

    Science.gov (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W

    1984-11-01

    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  20. Progress in High-Entropy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  1. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  2. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  3. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  4. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  5. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  6. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  7. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  8. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  9. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  10. REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.Yaug; J.P.Li; J.X.Zhang; G.W.Lorimer; J.Robson

    2008-01-01

    The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study arc listed in the final section.

  11. Process Simulation and Modeling for Advanced Intermetallic Alloys.

    Science.gov (United States)

    1994-06-01

    34Microstructure-Property Correlation in TiAl-Base Alloys", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and...Gamma Titanium Aluminide Alloy", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and R.R. Boyer, The

  12. Nucleation promotion of Sn-Ag-Cu lead-free solder alloys via micro alloying

    Science.gov (United States)

    Mao, Jie

    Sn-Ag-Cu (SAC) alloy system is widely accepted as a viable Pb-free alternative to Sn-Pb alloys for microelectronics packaging applications. Compared with its Pb-containing predecessor SAC alloys tend to have coarse grain structure, which is believed to be caused by high undercooling prior to nucleation. This work explores the possibility of modifying the nucleation process and reducing the undercooling of SAC alloys via introducing minor alloying elements. The mechanisms through which effective alloying elements influenced the nucleation process of SAC alloys are investigated with microstructural and chemical analyses. Minor alloying elements (Mn and Zn) are found promoting beta-Sn nucleation and reducing the undercooling of SAC. Manganese promotes beta-Sn primary phase nucleation through the formation of MnSn2 intermetallic compound. Experimental results in this work support the claim by previous researchers that zinc promotes beta-Sn primary phase nucleation through the formation of zinc oxide. In addition to nucleation, this work also assesses the microstructural impact of minor elements on Sn-Ag-Cu based alloys. Methods have been developed to quantify and compare microstructural impacts of minor elements and efficiently study their partitioning behaviors. LA-ICPMS was introduced to SAC alloy application to efficiently study partitioning behaviors of minor elements.

  13. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  14. NiAl alloys for structural uses

    Science.gov (United States)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  15. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  16. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  17. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  18. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  19. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  20. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  1. Fabrication of high strength conductivity submicroncrystalline Cu-5 % Cr alloy by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cu-5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequanthot hydrostatic extruaion. The micrestructure, mechanical properties and electrical conductivity of the alloy were experimentally investigated, and the influence of the extrusion temperature on its microstructure and properties was made clear.Also, the strengthening mechanism of the alloy was diacussed. It was revealed that the microstructure of the alloy is veryfine, with an average grain size being about 100 ~ 120nm, and thus possesses significant fine-grain strengthening effect,leading to very high mechanical strength of 800 ~ 1 000 MPa. Meanwhile, the alloy also possesses quite good electricalconductivity and moderate tensile elongation, with the former in the range of 55% ~ 70%(IACS) and the latter about5 % respectively.

  2. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  3. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru; Baschenko, Lyudmila, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, 42, Kirov Str., Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuryi, E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, 4, Akademicheskii Av. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 30, Lenina Av. Tomsk, 634034 (Russian Federation)

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  4. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Science.gov (United States)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  5. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Science.gov (United States)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  6. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  7. Electroplated solder alloys for flip chip interconnections

    Science.gov (United States)

    Annala, P.; Kaitila, J.; Salonen, J.

    1997-01-01

    Flip chip mounting of bare dice is gaining widespread use in microelectronics packaging. The main drivers for this technology are high packaging density, improved performance at high frequency, low parasitic effects and potentially high reliability and low cost. Many companies have made significant efforts to develop a technology for bump processing, bare die testing and underfill encapsulation to gain the benefit of all potential advantages. We have focussed on low cost bumping of fully processed silicon wafers to develop a flexible scheme for various reflow requirements. The bumping process is based on galvanic plating from an alloy solution or, alternatively, from several elemental plating baths. Sputtered Mo/Cu or Cr/Cu is used as a wettable base for electroplating. Excess base metal is removed by using the bumps as an etching mask. Variation of the alloy composition or the layer structure, allows the adjustment of the bump reflow temperature for the specific requirements of the assembly. Using binary tin-lead and ternary tin-lead-bismuth alloys, reflow temperatures from 100 °C (bismuth rich alloys) to above 300 °C (lead rich alloys) can be covered. The influence of the plating current density on the final alloy composition has been established by ion beam analysis of the plated layers and a series of reflow experiments. To control the plating uniformity and the alloy composition, a new cup plating system has been built with a random flow pattern and continuous adjustment of the current density. A well-controlled reflow of the bumps has been achieved in hot glycerol up to the eutectic point of tin-lead alloys. For high temperature alloys, high molecular weight organic liquids have been used. A tensile pull strength of 20 g per bump and resistance of 5 mΩ per bump have been measured for typical eutectic tin-lead bumps of 100 μm in diameter.

  8. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  9. Corrosion behavior of magnesium and magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    I.M.Baghni; WU Yin-shun(吴荫顺); LI Jiu-qing(李久青); ZHANG Wei(张巍)

    2004-01-01

    The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.

  10. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  11. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  12. Combustion synthesis of bulk nanocrystalline iron alloys

    OpenAIRE

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on...

  13. Thermodynamics and Structure of Plutonium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  14. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  15. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  16. Electrochemical behaviour of passive zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patrito, E.M.; Torresi, R.M.; Leiva, E.P.M.; Macagno, V.A. (Universidad Nacional de Cordoba (Argentina). Inst. de Investigaciones en Fisicoquimica de Cordoba)

    1991-02-01

    The potentiodynamic oxidation of zirconium, zircaloy-2 (Zry-2) and zircaloy-4 (Zry-4) was studied in the O V{<=}V{<=}8 V potential range. Side reactions take place during the oxidation of Zry-2 and Zry-4 in phosphate electrolytes. With Zry-2, oxygen evolution occurs at high anodic potentials. The oxidation of the alloys in nitric acid shows dissolution of their minor alloying elements but no oxygen evolution at high potentials. The role played by the alloying elements in connection with the appearance of side reactions is discussed. The oxide film were characterized by impedance measurements, X-ray photoelectron spectroscopy and Auger spectroscopy. (author).

  17. Graded coatings for metallic implant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  18. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  19. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  20. Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

  1. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  2. Rapid solidification of immiscible alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Enrica; Rizzi, Paola; Baricco, Marcello E-mail: marcello.baricco@unito.it

    2003-05-01

    Immiscible alloys have been rapidly solidified for the preparation of granular materials with giant magnetoresistance properties. Au-based (Au-Co and Au-Fe) and Cu-based (Cu-Co and Cu-Fe) systems have been investigated. Single supersaturated solid solution has been obtained for Au-Fe, whereas three FCC solid solutions with different Co content have been found for Au-Co. For Cu-Co and Cu-Fe a limit of solubility in Cu has been observed. Ni additions to Cu-Fe strongly enhance solid solubility. A thermodynamic analysis has been used to describe the competition between partition-less solidification and phase separation in undercooled liquid.

  3. Simulation of nuclei morphologies for binary alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.

  4. Printability of alloys for additive manufacturing.

    Science.gov (United States)

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  5. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  6. Combustion synthesis of bulk nanocrystalline iron alloys

    Directory of Open Access Journals (Sweden)

    Licai Fu

    2016-02-01

    Full Text Available The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  7. Combustion synthesis of bulk nanocrystalline iron alloys

    Institute of Scientific and Technical Information of China (English)

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  8. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  9. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  10. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    SOUMEN SAHA; SONALIKA VAIDYA; KANDALAM V RAMANUJACHARY; SAMUEL E LOFLAND; ASHOK K GANGULI

    2016-04-01

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards HER in alkaline medium was achieved by the formation of alloys of metals with low and high binding energies. A high value of current density (228 mA cm$^2$) at an overpotential of 545 mV was obtained for CuFeNi (A1), which is significantly high as compared to the previously reported Ni$_{59}$Cu$_{41}$ alloy catalyst.

  11. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  12. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  13. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...... to account for all alloys except the Sc based. The exceptional behavior of the Sc alloys is due to a low density of states for Sc. A brief discussion is given of the effect on the mean-field results of changes in volume or c/a ratio and of critical fluctuations. Since the physical mechanisms of these ideal...

  14. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  15. High-entropy alloy: challenges and prospects

    Directory of Open Access Journals (Sweden)

    Y.F. Ye

    2016-07-01

    Full Text Available High-entropy alloys (HEAs are presently of great research interest in materials science and engineering. Unlike conventional alloys, which contain one and rarely two base elements, HEAs comprise multiple principal elements, with the possible number of HEA compositions extending considerably more than conventional alloys. With the advent of HEAs, fundamental issues that challenge the proposed theories, models, and methods for conventional alloys also emerge. Here, we provide a critical review of the recent studies aiming to address the fundamental issues related to phase formation in HEAs. In addition, novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism, and superconductivity. Due to their considerable structural and functional potential as well as richness of design, HEAs are promising candidates for new applications, which warrants further studies.

  16. Stress-corrosion cracking of titanium alloys.

    Science.gov (United States)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  17. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  18. Characteristics on Bi-Pb Based Alloys Quenched from Melt

    Institute of Scientific and Technical Information of China (English)

    Rizk Mostafa Shalaby

    2009-01-01

    Three different bismuth-lead systems namely, Wood's alloy (Bi50Pb25Sn12.5Cd12.5), Newton's alloy (Bi50Pb31.2Sn18.8) and Rose's alloy (Bi50Pb28Sn22), with one used as fusible alloys were quenched from melt by melt spinning technique. Thermal analysis, structure and mechanical properties of all alloys have been studied and analyzed. From X-ray diffraction analysis, an intermetallic compound phase, designated Pb7Bi3 is detected. The formation of an intermetallic compound phase causes a pronounced increase in the electrical resistivity. The Wood's alloy containing-cadmium exhibits mechanical properties superior to both the Newton's and Rose's alloys. The presence of cadmium in Wood's alloy decreases its melting point. Wood's alloy has better properties, which make it useful in various applications such as in protection shields for radiotherapy, locking of mechanical devices and welding at low temperature.

  19. Corrosion performance of structural alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  20. Novel Directional Solidification Processing of Hypermonotectic Alloys

    Science.gov (United States)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  1. Electrical Conductivity of Aluminium Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    凤仪; 郑海务; 朱震刚; 祖方遒

    2002-01-01

    Closed-cell aluminium alloy foams were produced using the powder metallurgical technique. The effect of porosityand cell diameter on the electrical conductivity of foams was investigated and the results were compared with anumber of models. It was found that the percolation theory can be successfully applied to describe the dependenceof the electrical conductivity of aluminium alloy foams on the relative density. The cell diameter has a negligibleeffect on the electrical conductivity of foams.

  2. Pulse reversal plating of nickel alloys

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2007-01-01

    ), internal stress and material distribution are even more important. With baths based upon nickel chloride, and nickel and cobalt chlorides, pulse reversal plating of both pure nickel and nickel-cobalt alloys has been used to fabricate tools for microinjection moulding. Pulse reversal plating of ternary soft...... magnetic alloys, comprising 45-65%Co, 15-35%Fe and 15-35%Ni, is also reported....

  3. Solid metal induced embrittlement of titanium alloys

    OpenAIRE

    Åkerfeldt, Pia

    2012-01-01

    Titanium alloys were for a time believed to be highly resistant to environmentally assisted cracking because of their ability to form a protective oxide film on the surface. Their resistance can still be considered to be high, but when cracking resistance was originally defined to ensure reliable functionality of fracture-critical components, certain conditions that promote cracking were discovered. One of the environmental assisted cracking processes relevant to titanium alloys is solid meta...

  4. Mechanocaloric effects in Shape Memory Alloys

    OpenAIRE

    Manosa, Lluis; Planes, Antoni

    2016-01-01

    Shape memory alloys are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition gives rise to giant mechanocaloric effects. In non-magnetic shape memory alloys, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of allo...

  5. Lightweight Protective Coatings For Titanium Alloys

    Science.gov (United States)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  6. Internal gettering by metal alloy clusters

    Science.gov (United States)

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  7. Microstructure and Service Properties of Copper Alloys

    OpenAIRE

    Polok-Rubiniec M.; Konieczny J.; Labisz K.; Włodarczyk-Fligier A.

    2016-01-01

    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was...

  8. Self-Organized Growth of Alloy Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Floro, J.A.; Follstaedt, D.M.; Lagally, M.G.; Liu, F.; Tersoff, J.; Venezuela, P.

    1998-10-19

    We predict theoretically and demonstrate experimentally the spontaneous formation of a superlattice during crystal growth. When a strained alloy grows by "step flow", the steps at the surface form periodic bunches. The resulting modulated strain biases the incorporation of the respective alloy components at different steps in the bunch, leading to the formation of a superlattice. X-ray diffraction and electron microscopy for SiGe grown on Si give clear evidence for such spontaneous superlattice formation.

  9. Titanium and titanium alloys fundamentals and applications

    CERN Document Server

    Peters, Manfred

    2003-01-01

    This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.

  10. Point-charge electrostatics in disordered alloys

    CERN Document Server

    Wolverton, C; Froyen, S; Wei, S H; Zunger, Alex

    1996-01-01

    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either $A$ or $B$ atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. Howe...

  11. Initial cytotoxicity of novel titanium alloys.

    Science.gov (United States)

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  12. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  13. Biocorrosion study of titanium-cobalt alloys.

    Science.gov (United States)

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  14. Hydrogen storage systems from waste Mg alloys

    Science.gov (United States)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  15. An Analysis of Selected Properties of ZA Alloys

    Science.gov (United States)

    Gervais, E.; Barnhurst, R. J.; Loong, C. A.

    1985-11-01

    Zinc-aluminum (ZA) alloys are a relatively new family of zinc foundry alloys having superior melting and casting characteristics and attractive mechanical properties. The ZA-8 and ZA-12 alloys are moderate to high strength materials while ZA-27 is a high-strength alloy. All can be sand cast, permanent molded and pressure die cast. An extensive characterization program is being implemented to develop appropriate and reliable engineering data for designers. Property development in all aspects of ZA metallurgy is welladvanced. The data available on selected physical and mechanical properties of ZA alloys is compared here with the properties of traditional casting alloys.

  16. Study of fatigue behaviour of 7475 aluminium alloy

    Indian Academy of Sciences (India)

    B B Verma; J D Atkinson; M Kumar

    2001-04-01

    Fatigue properties of a thermomechanically treated 7475 aluminium alloy have been studied in the present investigation. The alloy exhibited superior fatigue life compared to conventional structural aluminium alloys and comparable stage II crack growth rate. It was also noticed that the fatigue crack initiated from a surface grain and the crack extension was dominated by ductile striations. Analysis also revealed that this alloy possessed fracture toughness and tensile properties superior to that noticed with other structural aluminium alloys. Therefore the use of this alloy can safely reduce the overall weight of the aircraft.

  17. Comparison of the Oxidation Rates of Some New Copper Alloys

    Science.gov (United States)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  18. Nondestructive Evaluation of Ni-Ti Shape Memory Alloy

    Science.gov (United States)

    Meir, S.; Gordon, S.; Karsh, M.; Wiezman, A.; Ayers, R.; Olson, D. L.

    2011-06-01

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  19. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    Science.gov (United States)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2017-03-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.

  20. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...... additive. This method makes it possible to deposit nickel, cobalt, nickel or cobalt platings without internal stresses....

  1. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kiran, U., E-mail: uravikiran@gmail.com [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Panchal, A.; Sankaranarayana, M. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Nageswara Rao, G.V.S. [National Institute of Technology, Warangal 506004 (India); Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India)

    2015-07-29

    Liquid phase sintering, heat treatment and swaging studies on three tungsten heavy alloys, 93W–4.9Ni–2.1Fe (wt%), 93W–4.2Ni–1.2Fe–1.6Co (wt%) and 93W–4.9Ni–1.9Fe–0.2Re (wt%) were carried out in detail with respect to microstructure, tensile and impact properties. All the alloys were sintered and swaged to 40% deformation. The results indicate that Re addition reduces the grain size of the alloy compared to W–Ni–Fe and W-Ni-Fe-Co alloys. W–Ni–Fe–Re alloy shows superior tensile properties in heat treated condition as compared to W–Ni–Fe and W–Ni–Fe–Co alloys. SEM study of fractured specimens clearly indicates that the failure in case of W–Ni–Fe–Re was due to transgranular cleavage of tungsten grains and W–W de-cohesion. W–Ni–Fe and W–Ni–Fe–Co alloys also failed by mixed mode failure. However, in these cases, ductile dimples corresponding the failure of the matrix phase was rarely seen. Thermo-mechanical processing resulted in significant changes in mechanical properties. While W–Ni–Fe–Re alloy showed the highest tensile strength (1380 MPa), W–Ni–Fe–Co exhibited the highest elongation (12%) to failure. A detailed analysis involving microstructure, mechanical properties and failure behavior was undertaken in order to understand the property trends.

  2. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  3. Corrosion Behavior of Au, Hastelloy C-276 Alloy and Monel 400 Alloy in Molten Lithium Fluoride

    Institute of Scientific and Technical Information of China (English)

    WANG; Chang-shui; GUO; Jun-kang

    2013-01-01

    For searching better corrosion-resistant material in high temperature,we investigated the corrosion behavior of Au,Haynes C-276 alloy and Monel 400 alloy in molten lithium fluoride at 950℃.The corrosion products and fine structures of the corroded specimens were characterized by inductively coupled plasma mass spectrometry(ICP-MS),scanning electron microscope(SEM),energy dispersive

  4. Effect of alloy elements on the anti-corrosion properties of low alloy steel

    Indian Academy of Sciences (India)

    Baorong Hou; Yantao Li; Yanxu Li; Jinglei Zhang

    2000-06-01

    Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

  5. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  6. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  7. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  8. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys

    Science.gov (United States)

    1975-01-01

    alloys--erawy--Molybdeum--M.1ybdmm alloys--Neodymium-- Nickel--Nickel alloys-Niobum-Niobium alloys--Palladiua--Palladum alloys- Platin-- Platium alloys...98 220 Palladium-Silver Pd-Ag................962 221* Platiu-Rhodium Pt-Rh..................987 222 Platium -Rutbentum Pt-Ru

  9. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  10. PRODUCTION OF FeAl NANOSTRUCTURED ALLOY BY MECHANICAL ALLOYING AND ITS MICROSTRUCTURAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Roberto. A. Rodríguez-Díaz

    2013-12-01

    Full Text Available In this work, a Fe40Al alloy was produced by the mechanical alloying technique, from a mixture of elemental powders constituted by Fe and Al, using different milling times. The evolution of size and morphology of powders depending on the milling time was characterized by scanning electron microscopy. The X-Ray Diffraction technique was utilized in order to characterize the crystalline structure evolution depending on the milling time. The Fe40Al alloy with a body centered cubic crystal structure was formed at 20 h of milling time. Besides, this alloy acquired a disordered crystal structure with a Nano metric grain size. The Nano metric grain size of disordered Fe40Al alloy was decreased at the same time as the milling time transcurred, while its lattice parameter was increased.

  11. Minor alloying behavior in bulk metallic glasses and high-entropy alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of minor alloying on several bulk metallic glasses and high-entropy al-loys was studied. It was found that minor Nb addition can optimize the interface structure between the W fiber and the Zr-based bulk metallic glass in the compos-ites,and improve the mechanical properties. Minor Y addition can destabilize the crystalline phases by inducing lattice distortion as a result to improve the glass-forming ability,and the lattice distortion energy is closely related to the effi-ciency of space filling of the competing crystalline phases. A long-period ordered structure can precipitate in the Mg-based bulk metallic glass by yttrium alloying. For the high-entropy alloys,solid solution can be formed by alloying,and its me-chanical properties can be comparable to most of the bulk metallic glasses.

  12. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  13. Plasma surface alloying of titanium alloy for enhancing burn-resistant property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; ZHANG Gao-hui; HE Zhi-yong; YAO Zheng-jun

    2006-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, burn-resistant alloying layers were made on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si titanium alloys by using double glow plasma surface alloying technology (DG Technology). Two typical burn-resistant layers Ti-Cr and Ti-Mo were made by DG plasma chromizing and DG plasma molybdenizing, respectively. Burn-resistant properties were tested by layer ignition method using 2 kW laser machine. Ignition experiments result reveals that the ignition temperature of alloyed layer with Mo and Cr concentration above 10% is about 200℃ higher than ignition temperature of Ti-6Al-4V substrate.

  14. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    Science.gov (United States)

    Gromov, Victor E.; Budovskikh, Evgeniy A.; Ivanov, Yurii F.; Bashchenko, Lyudmila P.; Wang, Xinli; Kobzareva, Tatyana Yu.; Semin, Alexander P.

    2015-10-01

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  15. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor E., E-mail: gromov@physics.sibsiu.ru; Budovskikh, Evgeniy A., E-mail: budovskikh-ea@physics.sibsiu.ru; Bashchenko, Lyudmila P., E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana Yu., E-mail: gromov@physics.sibsiu.ru; Semin, Alexander P., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yurii F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Wang, Xinli, E-mail: wangxl520@hotmail.com [Northeastern University, Liaoning, Shenyang 110819 China (China)

    2015-10-27

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  16. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  17. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  18. Cleanliness of Alloying Structural Steel

    Institute of Scientific and Technical Information of China (English)

    YU Hui-xiang; WANG Xin-hua; ZHANG Jing; LI Hai-bo; WANG Wan-jun

    2011-01-01

    Alloying structural steel used for mechanical structures has a high requirement for cleanliness because its failures are greatly affected by non-metallic inclusions and total oxygen content in steel.It has been reported by some steelmaking plants to have some problems in controlling total oxygen content and inclusions during alloying structural steel production.For this purpose,cleanliness control in 0.2C-0.3Si-0.6Mn-1Cr-0.2Mo steel was investigated.Firstly,low melting temperature zone(≤1873 K) of CaO-Al2O3-MgO system and formation condition of low melting temperature inclusions were investigated through thermodynamic equilibrium calculation.On this basis,industrial tests were carried out.Through sampling at different stages,transformation of oxide inclusions and change of total oxygen content in steel were studied.The results show that:in order to form CaO-Al2O3-MgO system inclusions with low melting temperature,mass percent of Al2O3,MgO and CaO in inclusions should be controlled from 37.6% to 70.8%,0 to 17.4% and 25.5% to 60.6%;For the condition of 1873 K and 0.05%(mass percent) dissolved aluminum in steel,the activities of dissolved oxygen,magnesium and calcium should be controlled as 0.298×10-4-2×10-4,0.1×10-5-40×10-5 and 0.8×10-8-180×10-8 respectively.With secondary refining proceeding,average total oxygen content and inclusion amount decrease,the type of most inclusions changes from Al2O3 after tapping to Al2O3-MgO after top slag is formed during ladle furnace refining and finally to CaO-Al2O3-MgO after RH treatment.In the final products,average total oxygen content was 12.7×10-6 and most inclusions were in spherical shape with size less than 5 μm.

  19. Diffusion Barrier Coating System and Oxidation Behavior of Coated Alloys

    Institute of Scientific and Technical Information of China (English)

    T.NARITA

    2009-01-01

    @@ 1 Introduction Research into the formation of Re-based alloys is in progress in our laboratory to provide a diffusion barrier layer between heat-resistant alloys and Al reservoir layers, which assist in the formation and maintenance a protective Al2O3 scale for long periods. Coatings with a two-layered structure comprised of inner Re-based alloy layer and outer β-NiAl layer with or without Pt addition were successfully formed on various heat resistant alloys such as Ni-based singlecrystal superalloys, Ni-based heat resistant alloys, NiMo based alloy, Ni-Cr based alloy, and Fe-based alloys. The duplex layer coating proposed is generally termed a diffusion barrier coating system; DBC system.

  20. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  1. Investigation of the formability of aluminium alloys at elevated temperatures

    Science.gov (United States)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  2. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  3. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  4. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  5. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  6. The Origin of the Name "Onion's Fusible Alloy"

    Science.gov (United States)

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the history of fusible alloys, including Newton's metal, D'Arcet's metal, Rose's metal, Onion's fusible alloy, and Wood's metal. (Contains 1 table and 1 figure.)

  7. Assessment of Al-Li Alloys for Cryotanks

    Science.gov (United States)

    Babel, Henry W.; Bozich, William; Farahmand, Bob; DeJesus, Ron; Sankaran, K. K.; Schwab, Dave; Tarkanian, Mike; Funk, Joan G. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on steps undertaken to determine the suitability of Aluminum and Lithium alloys in cryogenic tank construction. Major characteristics are offered for several different candidate alloys including reliability, weldability, flammability, and required thicknesses.

  8. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  9. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  10. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    Science.gov (United States)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  11. Surface Features of Nanocrystalline Alloys

    Directory of Open Access Journals (Sweden)

    Marcel Miglierini

    2015-12-01

    Full Text Available Nanocrystalline alloys are prepared by controlled annealing of metallic glass precursors. The latter are obtained by rapid quenching of a melt on a rotating wheel. This process leads to structural deviation of the produced ribbons’ surfaces. Structural features of as-quenched and thermally annealed 57Fe81Mo8Cu1B10 ribbons were studied employing Conversion Electron Mössbauer Spectrometry (CEMS and Conversion X-ray Mössbauer Spectrometry (CXMS. Enrichment of the alloy’s composition in 57Fe helped in identification of surface crystallites that were formed even during the production process. Magnetite and bcc-Fe were found at the wheel side of the as-quenched ribbons whereas only bcc-Fe nanocrystals were uncovered at the opposite air side. Accelerated formation of bcc-Fe was observed in this side of the ribbons after annealing. The relative content of magnetite at the wheel side was almost stable in near surface areas (CEMS and in more deep subsurface regions (CXMS. It vanished completely after annealing at 550 °C. No magnetite was observed at the air side of the ribbons regardless the annealing temperature and/or depth of the scanned regions.

  12. [Study on biocompatibility of titanium alloys].

    Science.gov (United States)

    Kodama, T

    1989-06-01

    The biocompatibility of two different titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2, 5Fe, and pure titanium were evaluated. The results were as follows: 1) Titanium alloys were implanted into the dorsal subcutaneous tissues of the Hartley guinea-pig for 12 weeks, immersed in calf serum or in Ringer's solution for 8 weeks. The surface changes of the titanium alloys were observed by SEM and the chemical composition was analyzed by XMA. No evident surface changes were found. 2) Three hundred mg, 200 mg and 100 mg of the powders of the tested materials were immersed in 2ml of Eagle's MEM, incubated for 1-7 days, 8-21 days and 22-70 days at 37 C degrees. The amount of metallic elements dissolved in the solutions was measured by ICP and AAS. The detected corrosion rates of V and Al contained in the solution, in which Ti-6Al-4V ELI 100 mg was immersed for 1-7 days, were 194.3 +/- 17.6 and 73.0 +/- 28, 1 pg/mg alloy/day, respectively. V was released more than Al. The amount of Ti was below the detectable limit. The solution Ti-5Al-2.5 Fe 100 mg immersed for 1-7 days contained 31.9 +/- 34.4 pg/mg alloy/day Fe and 25.7 +/- 6.3 pg/mg alloy/day Al. Only in the solution 300 mg immersed for 1-7 days was Ti detected at 1.4 pg/mg alloy/day. 3) By the bacterial mutation assay of Salmonella typhimurium TA 98, Salmonella typhimurium TA 100 and Escherichia coli WP2 uvrA, the solutions, in which the tested materials were immersed, were not found to be mutagenic. 4) By the UDS assay, the grain counts on autoradiography with the solutions, in which the tested materials were immersed, were not greater than the negative control. The results suggest an excellent corrosion resistance of the titanium alloys. Mutagenicity was negative by these mutation assays, indicating that the tested alloys and pure titanium are safe for humans and animals.

  13. Technique of Aluminum Alloy Composite by Inversion Casting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the temperature of liquid aluminum alloy, the dipping time in liquid alloy and the thickness of base strips on the solidified layer was studied during the process of producing aluminum alloy composite strips used in automobile radiator with inversion casting. It is concluded that there is welding as well as diffusion of alloying elements between the base strip and the coating. Experiments proved that the interface has a good bonding.

  14. Effects of chemical composition on the corrosion of dental alloys

    OpenAIRE

    GALO, Rodrigo; RIBEIRO, Ricardo Faria; RODRIGUES, Renata Cristina Silveira; Rocha, Luís Augusto; Mattos,Maria da Glória Chiarello de

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the g...

  15. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  16. The Progress on Laser Surface Modification Techniques of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng; PAN Lin; Al Ding-fei; TAO Xi-qi; XIA Chun-huai; SONG Yan

    2004-01-01

    Titanium alloy is widely used in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, corrosion resistance, and fatigue resistance etc. As titanium alloy is higher friction coefficients, weak wear resistance, bad high temperature oxidation resistance and lower biocompatibility, its applications are restricted. Using laser surface modification techniques can significantly improve the surface properties of titanium alloy. a review is given for progress on laser surface modification techniques of titanium alloy in this paper.

  17. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  18. Effect of Microstructure on the Performance of Corrosion Resistant Alloys

    OpenAIRE

    Kishan Roodbari, Marzieh

    2015-01-01

    Corrosion by pitting in aluminum alloys is a very complex process that can be affected by various factors such as chemical composition and microstructure of the alloys. The electrochemistry and distribution of second phases populating the alloy are the main factors that significantly influence the corrosion of aluminum alloys. The purpose of the present work is to contribute to a deeper understanding of how the chemical composition and microstructure affect the ability of an al...

  19. POTENTIAL USE OF MAGNESIUM ALLOYS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Kudret KANDEMİR

    2003-01-01

    Full Text Available Recently, there is a high interest in using lightweight materials for automotive applications where weight reduction and improvement in comfort are needed. Magnesium alloys with excellent specific strength and stiffness properties can be comparable with steel and aluminum alloys for applications in the automotive industry. For this reason, the properties of magnesium alloys are in the focus of research. This study aims at reviewing and evaluating the prospects of magnesium alloys use and applications in the automotive industry.

  20. DEVELOPMENT AND RESEARCH OF THE ECONOMIC ALLOY PARAMAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2016-01-01

    Full Text Available The alloys of Fe-Cr-Ni-C system for the purpose of development the economic alloy paramagnetic (not magnetic steels are investigated. A series of alloys are melted for this purpose, deformation is carried out and a structural state was studied.The area for the selection of the chemical composition of the economic alloy steels with stable paramagnetic properties is defined.

  1. Evolution of Hydrogen Storage Alloys Prepared by Special Methods

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Ximin; Jing Hai; Li Chengdong; Xu Jun

    2004-01-01

    Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.

  2. Shape-Memory-Alloy Actuator For Flight Controls

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  3. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  4. Explosive compaction of CuCr alloys

    Institute of Scientific and Technical Information of China (English)

    李金平; 罗守靖; 龚朝晖; 牛玮; 纪松

    2002-01-01

    The production of CuCr alloys utilizing explosive compaction was studied. Mixture powders of CuCr alloys placed in tubes with a dimension of d14.0mm×21.4mm can be compacted using explosive pads of 16.5mm or 22.5mm. Thicker pads of explosive make the compacts more porous. The effects of the ratio of me/mp, ratio of me/(mp+mt) and impact energy on the density of compacts were similar, they were chosen to control explosive compaction, respectively. When adequate value of the parameters me/mp, me/(mt+mp) and impact energy of unit area of tube was chosen, high density(7.858g/cm3), high hardness(HB189) and low conductance (13.6MS/m) of CuCr alloys could be made by explosive compaction. The general properties of CuCr alloys by explosive compaction are similar to those of CuCr alloys by traditional process.

  5. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  6. Complex precipitation pathways in multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, Emmanuel; Nastar, Maylise [Service de Recherches de Metallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette (France); Lae, Ludovic; Deschamps, Alexis [LTPCM/ENSEEG, UMR CNRS 5614, Domaine Universitaire, BP 75, 38402 St Martin d' Heres (France); Epicier, Thierry [Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, INSA, 69621 Villeurbanne (France); Lefebvre, Williams [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France)

    2006-07-01

    One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al - Zr - Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al - Zr - Sc alloys compared with binary Al - Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials. (authors)

  7. Effects of micro-alloying with Sc and Mn on microstructure and mechanical properties of Al-Mg based alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-ming; LUO Cheng-ping; PAN Qing-lin; YIN Zhi-ming

    2005-01-01

    An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine,spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening.

  8. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  9. STRUCTURE FORMATION OF ALLOYS ON IRON BASIS AFTER LASER ALLOYING

    Directory of Open Access Journals (Sweden)

    О. V. Diachenko

    2016-01-01

    Full Text Available The paper is devoted to investigations on influence of laser treatment regimes of gas-thermal and adhesive coatings from self-fluxing powders on iron basis and after melting with modifying plaster on their roughness and phase composition. One of mathematical planning methods that is a complete factor experiment method has been used for investigation of parameters’ influence on micro-geometry of coatings. The executed investigations have made it possible to observe a general regularity which does not depend on a type of alloying plaster: while increasing speed of laser beam relatively to treated part, beam diameter value of Ra parameter is becoming less. Decrease in height of surface irregularities in case of increasing laser beam speed is related with intensification of evaporation processes. An increase in beam diameter diminishes Ra parameter of the surface. This is due to the fact that decrease in power density occurs at high rate of beam defocusing. Overlapping coefficient does not exert a pronounced effect on Ra parameter of fused coatings. While increasing the speed of laser beam relatively to the part structure is transferred from dendrite into supersaturated one with carbide and boride precipitations. It has been established that technological parameters of laser treatment and particularly speed of laser beam influence on coating composition. While increasing the speed up to v5 = 5 × 10–3 m/s amount of chromium has become larger by 1.5-fold that resulted in increase of micro-hardness of the coating from 9.5–10.1 GPa up to 11.04–15.50 GPa.

  10. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-02-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  11. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  12. Formation and characterization of Al-Ti-Nb alloys by electron-beam surface alloying

    Science.gov (United States)

    Valkov, S.; Petrov, P.; Lazarova, R.; Bezdushnyi, R.; Dechev, D.

    2016-12-01

    The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V1 = 0.5 cm/s and V2 = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al3 fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al3 particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al3 lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a formation of surface alloys with very high hardness. Our results demonstrate maximal values of 775 HV [kg/cm2] and average hardness of 673 HV [kg/cm2].

  13. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    Science.gov (United States)

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained.

  14. Enriched alloy layer on an Al-Cu alloy studied by cyclic voltammetry

    Science.gov (United States)

    García Vergara, S. J.; Blanco Pinzon, C. E.; Skeldon, P.

    2017-01-01

    The behaviour of enriched Al-0.7at.%Cu alloy is investigated using cyclic voltammetry. Enriched alloy layers at the interface between the alloy/oxide film were developed by alkaline etching at 5mAcm-2 in 0.1M sodium hydroxide solution at 298K, with the time of etching determining the extent of enrichment. Cyclic voltammograms were recorded at a scan rate of 10mV s-1 in naturally aerated 0.1M ammonium pentaborate solution at 298K. The current overshoot of the enriched alloys was different from that for non-enriched alloy. The latter material revealed the usual single peaks, which are very similar. In contrast, the overshoot comprised two or more components for the enriched alloys. The behaviour is suggested to be associated with the atomic bonding of aluminium in copper-rich and aluminium-rich regions of the enriched alloy layer, with influence on the activation potentials for oxidation of aluminium.

  15. Laser surface alloying fabricated porous coating on NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; ZHANG Chun-hua; MAN Hau-chung; LIU Chang-sheng

    2007-01-01

    Laser surface alloying technique was applied to fabricate a metallic porous coating on a solid NiTi shape memory alloy. By laser surface alloying a 40%TiH2-60%NiTi powder mixture on the surface of NiTi alloy using optimized laser process parameters, a porous but crack-free NiTi layer can be fabricated on the NiTi substrate. The porous coating is metallurgically bonded to the substrate NiTi alloy. The pores are uniformly distributed and are interconnected with each other in the coating. An average pore size of less than 10 μm is achieved. The Ni content of the porous layer is much less than that of the original NiTi surface. The existence of the porous coating on the NiTi alloy causes a 37% reduction of the tensile strength and 55% reduction of the strain as compared with the NiTi alloy. Possible biomedical or other applications for this porous surface with good mechanical strength provided by the substrate are prospective.

  16. New development of anodizing process of magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    BAI Li-qun; LI Di

    2004-01-01

    Magnesium alloy, a kind of environment-friendly material with promising and excellent properties, is a good choice for a number of applications. The research and development of anodizing on magnesium alloys and its application situation are reviewed, and the anodizing development trend on magnesium alloys is summarized.

  17. NEW DEVELOPMENT IN DOUBLE GLOW SURFACE ALLOYING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of special alloys are produced on the surfaces of iron and steels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy,surface precipitation hardening high speed steel and surface precipitation hardening stainless steel are introduced.

  18. Method of making quasicrystal alloy powder, protective coatings and articles

    Science.gov (United States)

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  19. Microstructure and properties of modified and conventional 718 alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; SUN Wen-ru; DU Jin-hui; DONG Jian-xin; GUO Shou-ren; YANG Hong-cai; HU Zhuang-qi

    2006-01-01

    Continuing the effort to redesign IN718 alloy in order to provide microstructural and mechanical stability beyond 650 ℃, IN718 alloy was modified by increasing the Al, P and B contents, and the microstructure and mechanical properties of the modified alloy were compared with those of the conventional alloy by SEM and TEM. The precipitation of the grain boundaries of the two alloys is different. The Cr-rich phase, Laves phase and α-Cr phase are easily observed in the modified alloy. The γ″ and γ′ phases in the modified alloy are precipitated in a "compact form". The tensile strengths of the modified alloy at room temperature and 680 ℃ are obviously higher than those of the conventional one. The impact energy of the modified alloy is only about half of that of the conventional alloy. Ageing at 680 ℃ up to 1 000 h lowers the tensile properties and impact energy of both the conventional and modified 718 alloys, except increasing the ductility at 680 ℃. It is concluded that the modified alloy is more stable than the conventional one.

  20. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  1. Influence of finishing on the electrochemical properties of dental alloys.

    Science.gov (United States)

    Kaneko, T; Hattori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2000-05-01

    Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.

  2. Film induced intergranular cracking of binary noble alloys

    Energy Technology Data Exchange (ETDEWEB)

    Friedersdorf, F. [Bureau of Mines, Albany, OR (United States); Sieradzki, K. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Dealloying of a binary noble alloy produces a porous layer rich in the more noble element. Application of a tensile load may initiate a brittle intergranular crack in the dealloyed layer that advances into the unattached material. The relationships between the dealloying potential, dealloyed layer thickness and alloy susceptibility to film induced intergranular cracking have been studied. Ag-Au alloys were studied.

  3. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  4. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  5. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  6. Progress of Palladium Alloy Membranes in Hydrogen Energy

    Institute of Scientific and Technical Information of China (English)

    MA Guang; LI Jin; LI Yin'e; SUN Xiaoliang; CAO Qigao; JIA Zhihua

    2012-01-01

    Palladium and palladium alloy membranes have attracted wide attention in hydrogen permeation areas for their excellent permeability,perm-selectivity and thermal stability.This paper review the principle of hydrogen permeation,type of alloys and the fabrication methods.At last,the progress and achievements on palladium alloy membranes by Northwest Institute for Non-Ferrous Metal Research are emphasized.

  7. Foaming behaviour of Al-Si-Cu-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. [Kongju National University (Korea). Dept. of Mechanical Engineering; Cho, S.S. [Chungnam National University, Daejeon (Korea). School of Materials Engineering; Lee, H.J. [Hanbat National University, Daejeon (Korea). Dept. of Building Service Engineering

    2004-12-15

    The powder metallurgical route was utilised to obtain the Al-5Si-4Cu-4Mg (alloy 544) and Al-3Si-2Cu-2Mg (alloy 322) foams. Various steps such as centrifugal atomisation, mixing alloy powder and foaming agent (1 wt-%TiH{sub 2}), cold compaction of mixture, hot extrusion and foaming in a preheated furnace were performed. Foaming behaviour of the alloys was investigated by digital microscopy, image analysis, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) mapping in this study. It was found that alloy 544 takes a shorter period of time to initiate pore nucleation than alloy 322. Alloy 544 had a higher pore growth rate than alloy 322 at the same pre-set furnace temperature. In both alloys, crack-like pore nucleation occurred between aluminium alloy powders elongated in a direction parallel to the extrusion direction. Both alloys showed the same foaming sequence of crack-like pore nucleation, spherical pore growth, coalescence of neighbouring pores and collapse of pores adjacent to the free surface of specimen. The time required to start pore nucleation decreased with the increase of foaming temperature. The cell walls of both alloys consisted of {alpha}-Al phase and eutectic phase. (author)

  8. Residual stress state in titanium alloy remelted using GTAW method

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2009-04-01

    Full Text Available Test materials comprised two-phase titanium alloy Ti6Al4V (Grade5. The surface of the tested alloy was remelted by means of TIG welding method using variable current-voltage parameters. The investigations aimed to determine surface geometry and residual stresses in the remelted surface layer in the investigated alloy.

  9. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  10. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav (Setauket, NY); Mo, Yibo (Naperville, IL); Vukmirovic, Miomir (Port Jefferson Station, NY); Zhang, Junliang (Rochester, NY)

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  11. Magnesium alloy AZ63A reinforcement by alloying with gallium and using high-disperse ZrO2 particles

    Directory of Open Access Journals (Sweden)

    J. Khokhlova

    2016-12-01

    Full Text Available The aim of this work was to obtain an experimental magnesium alloy by remelting standard AZ63A alloy with addition of gallium ligatures and ZrO2 particles. This allowed reinforcement of alloy and increase its hardness and Young's modulus. The chemical analysis of this alloy shows two types of structures which are evenly distributed in volume. Thus we can conclude that reinforcing effect is the result of formation of intermetallic phase Mg5-Ga2.

  12. Non-alloyed Ni3Al based alloys – preparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  13. XAFS Study on Solid State Amorphization of Alloys by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Structural evolution of alloys by ball-milling during solid stateamorphization were studied by means of XAFS technique. The first one is amorphization process of Fe and B powder mixtures by mechanical alloying (MA), and the second one is amorphization process of ordered B2 CoZr intermetallic compound by mechanical milling (MM). The mixing process of Fe and B and disintegration process of ordered B2 CoZr intermetallic compound crystal were observed clearly in atomic level by XAFS method. The micro-mechanism of amorphization process of alloy by ball-milling was discussed.

  14. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  15. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  16. General aspects of surface alloy formation

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Engstfeld, Albert K.; Roetter, Ralf T.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Berko, Andras

    2010-07-01

    Surface confined alloys are excellent model systems for studies of structure-property relationships of bimetallic surfaces. They are formed by deposition of a guest metal B onto a substrate A, followed by annealing to a temperature, where place exchange between adatoms and atoms from the underlying surface layer becomes possible and diffusion into the bulk is sufficiently slow. We exemplarily confirmed by scanning tunneling microscopy and Auger electron spectroscopy for PtRu/Ru(0001), PdRu/Ru(0001), AuPt/Pt(111), AgPt/Pt(111), and AgPd/Pd(111), surface alloys are obtained for systems where metal B has a negative surface segregation energy within metal A. By exchanging A and B, however, AB surface alloys are most likely overgrown by metal B, which we demonstrate for RuPt/Pt(111) in comparison to PtRu/Ru(0001).

  17. Microstructure and Service Properties of Copper Alloys

    Directory of Open Access Journals (Sweden)

    Polok-Rubiniec M.

    2016-09-01

    Full Text Available This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.

  18. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  19. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  20. Electrochemical formation of holmium-cobalt alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical formation processes of holmium-cobalt alloys on cobalt cathode in molten HoC13-KC1 wereinvestigated by cyclic voltammetry and open current potential-time curve after potentiostatic electrolysis. The structure ofHo-Co alloys' films deposited on cobalt electrode by potentiostatic electrolysis was characterized by X-ray diffraction. Thestandard Gibbs free energies of formation for the intermetallic compounds of Ho and Co were determined. The diffusioncoefficient and diffusion activation energy of Ho atom in the alloy phase were calculated to be 10-10-10-11 cm2/s and 96.0kJ/mol, respectively, from the current-time curve at potential step.

  1. High temperature alloys: their exploitable potential

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Merz, M.; Nihoul, J.; Ward, J. (eds.) (Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center; NET-TEAM, Garching (DE))

    1987-01-01

    This book is the proceedings of a conference dealing with fundamental and technical aspects of the applications of high temperature alloys. It is split into five sections which cover the opening session of the conference and four further sessions covering: the theoretical and practical limits for HT alloys; the potential for development in alloys and processing; engineering considerations; the future outlook. The different sessions each included a number of invited papers followed by a series of posters and were concluded by a presentation of a 'synthesis' by a session rapporteur and general discussion. This structure is retained in the proceedings, including the discussion points in those cases where the authors have provided written answers to the questions raised. This book will be of interest to metallurgists, materials scientists, physicists and research workers in high temperature materials.

  2. Aluminum-lithium alloy development for thixoforming

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, R.; Friedrich, B. [IME Process Metallurgy and Metal Recycling, RWTH Aachen Univ. (Germany); Puettgen, W.; Bleck, W. [IEHK Inst. for Ferrous Metallurgy, RWTH Aachen Univ. (Germany); Balitchev, E.; Hallstedt, B.; Schneider, J.M. [MCh Materials Chemistry, RWTH Aachen Univ. (Germany); Bramann, H.; Buehrig-Polaczek, A. [GI Foundry Inst., RWTH Aachen Univ. (Germany); Uggowitzer, P.J. [ETH Zuerich, Metal Physics and Technology (Germany)

    2004-12-01

    This paper presents a scientific contribution to the development of lightweight/high-performance Al-Li alloys suitable for semi-solid processing. Thermodynamic calculations identified the most promising compositions with focus on the solidus-liquidus interval, fraction of solid-versus-temperature and phase reactions. The synthesis of Al-Li precursor billets was performed by overpressure induction melting in controlled atmosphere. DTA and microstructure investigations on Al-Li specimens were carried out as well as thixocasting trials of demonstrator components. New rheocasting of Al-Li alloys was investigated to identify the potential of this alternative precursor material route. It is shown that specifically developed Al-Li alloys offer great potential for semi-solid manufacturing. (orig.)

  3. Microstructure and Slip Character in Titanium Alloys

    Directory of Open Access Journals (Sweden)

    D. Banerjee

    1986-04-01

    Full Text Available Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha and body centred cubic (bita phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist, their relative crystallographic orientations, size, shape and volume fraction, control the nature of slip. For a given composition, structure may be manipulated through appropriate thermomechanical treatment to obtain the desired deformation behaviour and therefore fracture mode.

  4. Fatigue - corrosion of endoprosthesis titanium alloys.

    Science.gov (United States)

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  5. Joining Techniques for Ferritic ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  6. Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Esparza, C.D.; Baldenebro-López, F.J.; Santillán-Rodríguez, C.R.; Estrada-Guel, I.; Matutes-Aquino, J.A.; Herrera-Ramírez, J.M., E-mail: martin.herrera@cimav.edu.mx; Martínez-Sánchez, R.

    2014-12-05

    Highlights: • Equiatomic NiCoAlFe powder alloys were synthesized by mechanical alloying. • The nanocrystalline alloys were characterized after milled and annealed conditions. • In alloyed and annealed powders, only BCC and FCC structure phases were observed. • Magnetic properties are strongly affected by the phases formed after annealing. - Abstract: Equiatomic NiCoAlFe powder alloys were synthesized by mechanical alloying. The microstructural evolution of the mechanically alloyed powders at different times was followed with X-ray diffraction and scanning electron microscopy. The as-mechanically alloyed powders were subjected to a rapid annealing treatment at 1273 K and 1473 K during 3 min in vacuum. X-ray diffraction studies show the structure of both, the as-mechanically alloyed and annealed powders, consisted in a mixture of nanocrystalline simple phases (FCC + BCC). Crystallite size, after annealing, still remained in nanoscale. Coercivity increased due to the decrease in crystallite size and because of the defects caused by mechanical alloying in the as-mechanically alloyed samples; then coercivity decreased due to the phenomenon of random magnetic anisotropy and tended to stabilize with longer alloying times. A similar behavior was observed in annealed samples at 1273 K. However, random magnetic anisotropy was not observed after annealing at 1473 K because crystals with larger sizes were produced, and a steady increase in coercivity was observed.

  7. Characterization for Fusion Candidate Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    T. Muroga; T. Nagasaka; J. M. Chen; Z. Y. Xu; Q. Y. Huang; y. C. Wu

    2004-01-01

    This paper summarizes recent achievements in the characterization of candidate vanadium alloys obtained for fusion in the framework of the Japan-China Core University Program.National Institute for Fusion Science (NIFS) has a program of fabricating high-purity V-4Cr4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various research groups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricated a new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogen embrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that the NIFS-HEAT maintained the ductility to relatively high hydrogen levels.The comparison of the data with those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should be responsible for the increased resistance to hydrogen embrittlement.Based on the chemical analysis data of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of Plasma Physics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The results showed that the low level of Co dominates the activity up to 50 years followed by a domination of Nb or Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of which are thought to have been introduced via cross-contamination into the alloys from the molds used should be crucial for reducing further the activation.

  8. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  9. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  10. Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys

    Science.gov (United States)

    Kevorkijan, Varužan

    2013-08-01

    Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the

  11. Nodular Corrosion Characteristics of Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gil; Jeong, Y. H.; Park, S. Y.; Lee, D. J

    2003-01-15

    This study was reported the effect of the nodular corrosion on the nuclear reactor environmental along with metallurgical influence, also suggested experimental scheme related to evaluate nodular corrosion characteristics of Zr-1 Nb alloy. Remedial strategies against the nodular corrosion should firstly develop plan to assess the effect of the water quality condition (Oxygen, Hydrogen) as well as the boiling on the nodular corrosion, secondarily establish plan to control heat treatment process to keep a good resistance on nodular corrosion in Zr-1Nb alloy as former western reactor did.

  12. Electromagnetic Characterization Of Metallic Sensory Alloy

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  13. Exchange bias effect in alloys and compounds.

    Science.gov (United States)

    Giri, S; Patra, M; Majumdar, S

    2011-02-23

    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance.

  14. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)

    1992-12-31

    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  15. Precipitation Hardenable High Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  16. Mechanism of Nickel-Aluminium Alloy Electroplating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of operating conditions on the aluminium content of Ni-Al alloy deposit and the catalytic function of NaF on electrodeposition in the nonaqueous solution containing aluminium are investigated.The results indicate that the plated aluminuim content will be increased with the rise of current density in a given range.When the current density is 2.5A/dm2,nickle-aluminium alloy containing 13.1 wt% aluminium will be deposited.The plated aluminium content will be increased by 2wt% as 0.1mol/L NaF is added to the bath.

  17. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  18. The irradiation effects on zirconium alloys

    Science.gov (United States)

    Negut, Gh.; Ancuta, M.; Radu, V.; Ionescu, S.; Stefan, V.; Uta, O.; Prisecaru, I.; Danila, N.

    2007-05-01

    Pressure tube samples were irradiated under helium atmosphere in the TRIGA Steady State Research and Material Test Reactor of the Romanian Institute for Nuclear Research (INR). These samples are made of the Zr-2.5%Nb alloy used as structural material for the CANDU Romanian power reactors. After irradiation, mechanical tests were performed in the Post Irradiation Examination Laboratory (PIEL) to study the influence of irradiation on zirconium alloys mechanical behaviour. The tensile test results were used for structural integrity assessment. Results of the tests are presented. The paper presents, also, pressure tube structural integrity assessment.

  19. Methods for Electrodepositing Composition-Modulated Alloys

    DEFF Research Database (Denmark)

    Leisner, Peter; Nielsen, Christian Bergenstof; Tang, Peter Torben;

    1996-01-01

    Materials exhibiting unique mechanical, physical and chemical properties can be obtained by combining thin layers of different metals or alloys forming a multilayered structure. Two general techniques exist for electrodepositing composition-modulated alloy (CMA) materials; dual-bath and single......-bath plating. For both techniques a number of variations exist. The most suitable technique and variation for the manufacture of a certain CMA material is highly dependent on the metals included in the given CMA system and on the dimensions of the multilayered structure. In this paper, the main principles...

  20. Rapidly solidified titanium alloys by melt overflow

    Science.gov (United States)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  1. Mechanoelectrochemical behavior and plasticity of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, A.; Gutman, E.M.; Abramov, E.; Aghion, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Materials Engineering

    1998-12-31

    The mechanical properties and mechanoelectrochemical effect (the effect of mechanical deformation on the surface electrochemical reactions) were investigated for some Mg-based alloys supposing that aluminum alloying influences them. A simple method of testing mechanoelectrochemical behavior of metals was developed. Potentiostatic polarization measurements on stressed electrode were carried out in chloride electrolyte. The correlation between the mechanoelectrochemical behavior and strain hardening stages is observed during plastic deformation. Maximum mechanoelectrochemical effect is achieved under intense strain hardening in the initial portion of this stage. The experimental observations are explained theoretically. (orig.) 9 refs.

  2. The recasting effects on the high gold dental alloy properties

    Directory of Open Access Journals (Sweden)

    Maksimović V.M.

    2015-01-01

    Full Text Available Noble dental alloys are often reused in dental practice by recasting. The aim of this study was to determine if repeated casting of high gold dental alloys has a detrimental effect on alloy microstructure, type of porosity, structure and microhardness. Results showed that recasting procedure had a strong effect on the change of alloy porosity type. It was also found that alloy microhardness increased with the increase of the number of recasting cycles. At the same time the grain growth and changes of the solid solution phases in the microstructure were observed. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  3. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy selection...

  4. Magnetic properties of nanostructural γ-Ni-28Fe alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Yin; QIN Xiao-ying; QIU Tai

    2006-01-01

    Nanostructural γ-Ni-28Fe alloy (nano γ-Ni-28Fe) was successfully prepared by mechanochemical alloying(MCA). The relationship between the microstructure and the synthesis conditions was investigated by using XRD, TEM, SEM as well as BET analyzer. The results show that nano γ-Ni-28Fe alloy is composed ora gamma phase (FCC structure). Its grain size is about 20 nm at reduction temperature below 600 ℃. The magnetic measurements indicate that the saturation magnetization ofnano γ-Ni-28Fe alloy to its decrease of the grain size and chemical composition in nano γ-Ni-28Fe alloy.

  5. [Corrosion resistance and bond strength of dental alloys].

    Science.gov (United States)

    Schwickerath, H

    1990-07-01

    Investigated Ni-alloys, which showed extensive solubility of Ni particles in corrosion bathes due to DIN 13927, also revealed pronounced lost of bond strength to ceramic veneers when immersed into corrosion bathes of equal constitution. Noble metal alloys with a gold concentration more than 50 percent, however, showed no such large lost of bond strength. Pd alloys showed a lost of bond strength which increased with their Ga concentration. Co alloys revealed a behavior similar to the Ni alloys but with no obvious correlation between solubility and lost of bond strength.

  6. Indentation toughness of Mo5Si3-based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The indentation toughness of Mo5Si3 -based phases was studied with regard to different alloying elements, amount of alloying addition as well as the presence of secondary phases. Cr, Ti, Nb, Ni and Co were added as alloying elements. The results show that the indentation fracture toughness of Mo5Si3 increases with the alloying additions, from 2.4 Mpa *m1/2 for mon olithic to just over 3 Mpa*m1/2 for highly alloyed Mo5Si3. Small volume fractions of brittle secondary phases may have a positive impact on the inde ntation toughness; while larger fractions seems to lower the toughness.

  7. Fatigue crack growth behaviour of Al-Li alloys

    Science.gov (United States)

    Saravanakumar, R.; Ramakrishna, K. S.; Kanna, B. Avinash

    2013-06-01

    Al-Li alloys are being used in aircraft structures due to its low density and inherent mechanical properties. Fatigue Crack Growth (FCG) resistance is usually high compared to conventional Al-alloys attributed to increased modulus and crack closure. Extensive investigations concern about the FCG resistance and crack closure in Al-Li alloys. The present work reviews the FCG resistance in Al-Li alloys and the mechanisms associated with it. The alloy 8090 is taken for the consideration and sometimes compared with 2024.

  8. Processing of carbon containing gamma titanium aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.H.; Froebel, U.; Oehring, M.; Appel, F. [Inst. for Materials Research, GKSS Research Centre, Geesthacht (Germany)

    2003-07-01

    Gamma-based titanium aluminide alloys have received much attention over the last decade with the intention of being used in turbine applications. In the as-cast state these alloys are relatively brittle when compared with conventional materials. In order to meet property requirements, optimisation of both alloy composition and microstructure are necessary. Alloys based on Ti-45Al-(5-10)Nb (at.%) with carbon additions seems capable of meeting many of the properties necessary for application. This paper addresses the reasons behind the choice of this alloy composition and discusses a relevant processing route. (orig.)

  9. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  10. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Science.gov (United States)

    Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  11. Corrosion behavior of friction stir welded AZ31B Mg alloy - Al6063 alloy joint

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2016-12-01

    Full Text Available In the present work, AZ31B Mg alloy and Al6063 alloy-rolled sheets were successfully joined by friction stir welding. Microstructural studies revealed a sound joint with good mechanical mixing of both the alloys at the nugget zone. Corrosion performance of the joint was assessed by immersing in 3.5% NaCl solution for different intervals of time and the corrosion rate was calculated. The joint has undergone severe corrosion attack compared with both the base materials (AZ31B and Al6063 alloys. The predominant corrosion mechanism behind the high corrosion rate of the joint was found to be high galvanic corrosion. From the results, it can be suggested that the severe corrosion of dissimilar Mg–Al joints must be considered as a valid input while designing structures intended to work in corroding environment.

  12. INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2013-08-01

    Full Text Available Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test were performed at room temperature at a strain rate of 1.7 × 10−3 s−1 for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

  13. Synthesis of Al/Al sub 3 Ti two-phase alloys by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, S.; Chen, S.R.; Schwarz, R.B.

    1991-01-01

    We have mechanically alloyed mixtures of elemental powders to prepare fine-grain two-phase A1/A1{sub 3}Ti powders at the compositions A1-20at% Ti and Al-10at% Ti. Hexane was used to prevent agglomeration of the powder during MA. Carbon from the decomposition of the hexane was incorporated in the powder. It reacted with Ti to form a fine dispersion of carbides in the final hot-pressed compact. We consolidated the mechanically alloyed powders by hot-pressing. Yield strength and ductility were measured in compression. At 25{degree}C, the compressive yield strengths were 1.25 and 0.6 GPa for the A1-20at% Ti and Al-10at% Ti alloys, respectively. The ductility of the A1-10at% Ti alloy exceeded 20% for 25 < T < 500{degree}C. 25 refs., 6 figs.

  14. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  15. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  16. Structure and phase transformations in Fe-Ni-Mn alloys nanostructured by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pustov, L.Yu., E-mail: pustov@mail.r [Moscow State Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Tcherdyntsev, V.V.; Abdulhalikov, Sh.M.; Kaloshkin, S.D.; Shelekhov, E.V. [Moscow State Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Estrin, E.I. [Central Research Inst. of Ferrous Metallurgy, 2nd Baumanskaya st, 9/23, Moscow 107005 (Russian Federation); Baldokhin, Yu.V. [Institute of Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, Moscow 117334 (Russian Federation)

    2009-08-26

    Ternary Fe{sub 86}Ni{sub x}Mn{sub 14-x} alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Moessbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc alpha-Fe and fcc gamma-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.

  17. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  18. Dispersoid reinforced alloy powder and method of making

    Science.gov (United States)

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  19. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  20. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  1. High strength beta titanium alloys: New design approach

    Energy Technology Data Exchange (ETDEWEB)

    Okulov, I.V., E-mail: okulovilya@yandex.ru [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Wendrock, H. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Volegov, A.S. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Attar, H. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027 (Australia); Kühn, U. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Skrotzki, W. [TU Dresden, Institut für Strukturphysik, D-01062 Dresden (Germany); Eckert, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2015-03-25

    A novel approach for development of high strength and ductile beta titanium alloys was proposed and successfully applied. The microstructure of the designed alloys is fully composed of a bcc β-Ti phase exhibiting dendritic morphology. The new Ti{sub 68.8}Nb{sub 13.6}Cr{sub 5.1}Co{sub 6}Al{sub 6.5} (at%) alloy (BETA{sup tough} alloy) exhibits a maximum tensile strength of 1290±50 MPa along with 21±3% of fracture strain. The specific energy absorption value upon mechanical deformation of the BETA{sup tough} alloy exceeds that of Ti-based metallic glass composites and commercial high strength Ti-based alloys. The deformation behavior of the new alloys was correlated with their microstructure by means of in-situ studies of the microstructure evolution upon tensile loading in a scanning electron microscope.

  2. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [Univ. of Virginia, Charlottesville, VA (United States); Deevi, S.C. [Philip Morris U.S.A., Richmond, VA (United States); Shih, H.R. [Jackson State Univ., MS (United States)

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  3. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  4. In vitro and in vivo studies on biodegradable magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Lida Hou; Zhen Li; Yu Pan; Li Du; Xinlin Li; Yufeng Zheng; Li Li

    2014-01-01

    The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™) were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7%for the as-cast alloy to 2.9%for the as-extruded one, both below 5%. BioDe MSM™alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  5. Development of Zr alloys - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Choi, Guk Sun; Lee, Chul Kyung; Jang, Dae Kyu; Seo, Chang Yeol; Sim, Kun Joo; Lee, Jae Cheon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-07-01

    The manufacture of Zr-Nb alloy ingot by EB melting process is carried out to meet the chemical composition and mechanical and property specifications and to ensure that the ingots are free of unacceptable defects through this study. It was established that Zr-Nb alloy was made by EB melting technique including the control of adding elements, melting power and melting and cast device. 28 refs., 13 tabs., 26 figs., 23 ills. (author)

  6. Development of Strip Casting Technology in Rare Earth Permanent Magnet Alloys and Hydrogen Storage Alloys in China

    Institute of Scientific and Technical Information of China (English)

    Han Weiping; Guo Binglin; Yu Xiaojun; Zhu Jinghan; Cheng Xinghua

    2007-01-01

    The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.

  7. The open-circuit ennoblement of alloy C-22 and other Ni-Cr-Mo alloys

    Science.gov (United States)

    Lloydis, A. C.; Noël, J. J.; Shoesmith, D. W.; McIntyre, N. S.

    2005-01-01

    The open-circuit corrosion and anodic oxidation behavior of the C-series of Ni-Cr-Mo alloys (C-4, C-276, C-2000, and C-22) and alloy 625 have been studied at 25°C and 75°C in 1.0 mol·L-1 NaCl+1.0 mol·L-1 H2SO4. A combination of open-circuit potential, potentiostatic polarization, and electrochemical impedance spectroscopy were employed in the study. The composition of the films formed was determined by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Passive oxide film resistances increase and defect oxide film concentrations decrease as films thicken and chromium and molybdenum segregate to the alloy/oxide and oxide/solution interfaces, respectively. The high-chromium alloys exhibit higher film resistances and lower film defect concentrations consistent with the more positive potentials observed on these alloys. The results show that the observed ennoblement in corrosion potentials with time is coupled to the Cr/Mo segregation process and the suppression of defect injection at the alloy/oxide interface. By all measures, C-22 exhibited the best passive properties.

  8. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  9. Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy for the improvement of bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China); Wang, A.H., E-mail: ahwang@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Z.; Zheng, R.R. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xia, H.B.; Wang, Y.N. [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China)

    2014-06-01

    Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy is carried out by a pulsed Nd:YAG laser. The corresponding microstructure, phase structure, microhardness profiles, corrosion properties and bioactivity of the laser-alloyed coatings are investigated to optimize the atomic ratio of Ti–Si. The laser alloyed Ti–Si compound coatings are free of cracks, and primarily present block-like crystals, lath-like crystals and dendrite crystals. The phase structures of both laser-alloyed Ti + Si and 5Ti + 3Si coatings are mainly consisted of α-Ti and Ti{sub 5}Si{sub 3}, while the laser-alloyed Si coating is mainly consisted of TiSi{sub 2} and Ti{sub 5}Si{sub 3}. Microhardness test indicates that the laser-alloyed Si coating has the highest microhardness. Also, corrosion resistance measurement reveals that the corrosion resistance of the laser-alloyed Si coating is much better than that of the Ti–6Al–4V alloy. Evaluation of bioactivity shows that cell growth on the laser-alloyed Si coating with high volume fraction of Ti–Si compounds is faster than that of the Ti–6Al–4V alloy.

  10. Hydrogenation properties of Mg-Al alloys

    DEFF Research Database (Denmark)

    Andreasen, Anders

    2008-01-01

    to disproportionation with the formation of magnesium hydride and metallic aluminum as the final product. Experimental evidence renders this process reversible. It is observed that the enthalpy of hydride formation of magnesium is lowered upon alloying with Al due to a slightly endothermic disproportionation reaction...

  11. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) so...

  12. NANOMETER SUPERSTRUCTURE IN LIQUID ALKALI THALLIUM ALLOYS

    NARCIS (Netherlands)

    XU, R; VERKERK, P; HOWELLS, WS; DEWIJS, GA; VANDERHORST, F; VANDERLUGT, W

    1993-01-01

    Structure factors obtained from neutron diffraction measurements on liquid K-Tl and Cs-Tl alloys exhibit large prepeaks at approximately 0.77 angstrom-1 and 0.70 angstrom-1, respectively. It is concluded that the liquid contains large units of thallium atoms, possibly bearing some resemblance to tho

  13. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-04-01

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and Harrison interatomic potential is used to calculate the atomic force constants, the dynamical matrix and the impurity-induced forces. We have thoroughly investigated the atomic displacements using impurities from 3d, 4d and 5d series in the same host metal and the same impurity in different hosts. We have observed a systematic pattern in the atomic displacements for Cr-, Fe-, Nb-, Mo-, Ta- and W-based dilute alloys. The atomic displacements are found to increase with increase in the number of d electrons for all alloys considered except for V dilute alloys. The 3d impurities are found to be more easily dissolved in the 3d host metals than 4d or 5d TMs whereas 4d and 5d impurities show more solubility in 4d and 5d TMs. In general, the relaxation energy calculation suggests that impurities may be easily solvable in 5d TM hosts when compared to 3d or 4d TMs.

  14. Materials data handbook on Inconel Alloy 718

    Science.gov (United States)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures. This is supplemented with useful information in such areas as material procurement, metallurgy of alloy, corrosion, environmental effect, fabrication, and joining techniques. Design data are presented, as available.

  15. Nickel-titanium alloys: a systematic review

    Directory of Open Access Journals (Sweden)

    Marcelo do Amaral Ferreira

    2012-06-01

    Full Text Available OBJECTIVE: A systematic review on nickel-titanium wires was performed. The strategy was focused on Entrez-PubMed-OLDMEDLINE, Scopus and BioMed Central from 1963 to 2008. METHODS: Papers in English and French describing the behavior of these wires and laboratorial methods to identify crystalline transformation were considered. A total of 29 papers were selected. RESULTS: Nickel-titanium wires show exceptional features in terms of elasticity and shape memory effects. However, clinical applications request a deeper knowledge of these properties in order to allow the professional to use them in a rational manner. In addition, the necessary information regarding each alloy often does not correspond to the information given by the manufacturer. Many alloys called "superelastic" do not present this effect; they just behave as less stiff alloys, with a larger springback if compared to the stainless steel wires. CONCLUSIONS: Laboratory tests are the only means to observe the real behavior of these materials, including temperature transition range (TTR and applied tensions. However, it is also possible to determine in which TTR these alloys change the crystalline structure.

  16. Electrodeposition of amorphous gold alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru; Senda, Kazutaka [Central Research Laboratory, Kanto Chemical Co., Inc., Saitama 340-0003 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Musha, Yuta [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Sasano, Junji [Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Okinaka, Yutaka [Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Osaka, Tetsuya [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)], E-mail: osakatet@waseda.jp

    2007-11-20

    The process for electroplating amorphous gold-nickel-tungsten alloy that we developed previously based on the addition of a gold salt to a known amorphous Ni-W electroplating solution was investigated further using the X-ray diffraction (XRD) method for the purpose of quickly surveying the effects of various experimental variables on the microstructure of the alloy. In this system the gold concentration in the plating bath was found to be critical; i.e., when it is either very low or very high, the deposit becomes crystalline to XRD. The deposit composition varies linearly with the mole ratio of Au to Ni in solution, and the alloy deposit is amorphous to XRD when the atomic ratio of Au/Ni in the deposit is between 0.5 and 1.5. At suitable concentrations of the metal ions, the deposit contains essentially no tungsten. By extending the work on the Au-Ni-W system, an amorphous Au-Co alloy plating process was also developed.

  17. Reduction in Defect Content of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  18. Amorphous Alloy and Magnetic Stabilization Bed

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Sponsored by NSFC,a research team led by Prof.Enze Min (CAS Member) from Research Institute of Petroleum Processing,through 20 years' effort,settled the puzzled grave issue that amorphous alloy material has small specific surface area and low thermal stability.

  19. Mechanocaloric effects in shape memory alloys.

    Science.gov (United States)

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  20. Zirconium modified nickel-copper alloy

    Science.gov (United States)

    Whittenberger, J. D. (Inventor)

    1977-01-01

    An improved material for use in a catalytic reactor which reduces nitrogen oxide from internal combustion engines is in the form of a zirconium-modified, precipitation-strengthened nickel-copper alloy. This material has a nominal composition of Ni-30 Cu-0.2 Zr and is characterized by improved high temperature mechanical properties.

  1. Aluminized alloy boosts turbine blade life

    Science.gov (United States)

    Gedwill, M. A.; Grisaffe, S. J.

    1974-01-01

    Description of an aluminized alloy coating technique that involves first the application of a ductile, oxidation-resistant overlay, such as NiCrAl, which is then partially aluminized. The duplex protective system has performance advantages over conventional aluminide coatings in that it provides higher-temperature hot corrosion resistance over a longer service life.

  2. Shape-Memory-Alloy Release Mechanism

    Science.gov (United States)

    Mckinnis, Darin

    1993-01-01

    Release-nut mechanism activated by electric current applied to shape-memory alloy. Separates attached objects quickly by remote control. Does not create hazard or cause damage. Shape-memory release-nut mechanism unaffected by moisture or vacuum. Requires sustained current lasting 5 seconds or longer, and insensitive to electromagnetic interference. Mechanism can be reused.

  3. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  4. Iron/Phosphorus Alloys for Continuous Casting

    Science.gov (United States)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  5. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  6. Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, M.; Arrabal, R.; Pardo, A.; Paucar, A.; Merino, M. C.; Matykina, E.; Mingo, B.; Garces, G.

    2014-04-01

    Electrochemical and gravimetric measurements were used to examine the effects of neodymium and gadolinium additions on the galvanic corrosion behaviour of AM50 and AZ91D magnesium alloys coupled to A 570 Gr 36 carbon steel and AA2011-AA6082 aluminium alloys. Rare earth modified alloys showed Al{sub 2}Nd/Al{sub 2}Gd and Al-Mn-Nd/Al-Mn-Gd intermetallics, reduced area fraction of {beta}-Mg{sub 1}7Al{sub 1}2 phase and increased corrosion resistance due to increased surface passivity and suppression of micro-galvanic couples. Neodymium and gadolinium additions improved the galvanic corrosion resistance of AM50 alloy, but were less effective in case of the AZ91D alloy. The AA6082 alloy was the most compatible material and the AA2011 alloy was the least compatible. (Author)

  7. Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM vs. Its Counterpart Gravity Cast Alloy

    Directory of Open Access Journals (Sweden)

    Avi Leon

    2016-06-01

    Full Text Available The attractiveness of additive manufacturing (AM relates to the ability of this technology to rapidly produce very complex components at affordable costs. However, the properties and corrosion behavior, in particular, of products produced by AM technology should at least match the properties obtained by conventional technologies. The present study aims at evaluating the corrosion behavior and corrosion fatigue endurance of AlSi10Mg alloy produced by selective laser melting (SLM in comparison with its conventional counterpart, gravity cast alloy. The results obtained indicate that the corrosion resistance of the printed and cast alloys was relatively similar, with a minor advantage to the printed alloy. The corrosion fatigue endurance of the printed alloy was relatively improved compared to the cast alloy. This was mainly attributed to the significant differences between the microstructure and defect characteristics of those two alloys.

  8. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  9. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  10. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    NARCIS (Netherlands)

    Zhu, G.

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upp

  11. Environmentally Assisted Cracking of Nickel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2004-02-06

    Environmentally Assisted Cracking (EAC) is a general term that includes phenomena such as stress corrosion cracking (SCC), hydrogen embrittlement (HE), sulfide stress cracking (SSC), liquid metal embrittlement (LME), etc. EAC refers to a phenomenon by which a normally ductile metal looses its toughness (e.g. elongation to rupture) when it is subjected to mechanical stresses in presence of a specific corroding environment. For EAC to occur, three affecting factors must be present simultaneously. These include: (1) Mechanical tensile stresses, (2) A susceptible metal microstructure and (3) A specific aggressive environment. If any of these three factors is removed, EAC will not occur. That is, to mitigate the occurrence of EAC, engineers may for example eliminate residual stresses in a component or limit its application to certain chemicals (environment). The term environment not only includes chemical composition of the solution in contact with the component but also other variables such as temperature and applied potential. Nickel alloys are in general more resistant than stainless steels to EAC. For example, austenitic stainless steels (such as S30400) suffer SCC in presence of hot aqueous solutions containing chloride ions. Since chloride ions are ubiquitous in most industrial applications, the use of stressed stainless steels parts is seriously limited. On the other hand, nickel alloys (such as N10276) are practically immune to SCC in presence of hot chloride solutions and therefore an excellent alternative to replace the troubled stainless steels. Nonetheless, nickel alloys are not immune to other types of EAC. There are several environments (such as hot caustic and hot hydrofluoric acid) that may produce embrittlement in nickel alloys (Crum et al, 2000) (Table 1). The conditions where nickel alloys suffer EAC are highly specific and therefore avoidable by the proper design of the industrial components.

  12. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  13. Relationships between the precipitation of α2 ordered phase and alloying elements/electron concentration in α+α2 titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Yu Zhang; Li Li; Chunli Wang; Qingjiang Wang; Yuyin Liu

    2005-01-01

    Some experimental α+α2 alloys were prepared by the addition of tin or aluminum elements into Ti-55 alloy. These alloys were designed with varied electron concentration values and named as Sn-rich alloys and Al-rich alloys, respectively. The precipitation and growth of α2 ordered phase in the tested alloys under various heat treatment conditions were investigated. Some comparisons among the experimental results were performed and discussed in detail. Stronger precipitation and growth of α2 ordered phase were caused in Al-rich alloys but relatively weak change in Sn-rich alloys with increasing the electron concentration. The precipitation of α2 ordered phase in Al-rich alloys is stronger than that in Sn-rich alloys when the electron concentration value is the same for the two alloys.

  14. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  15. Approximate Design of Alloy Composition of Cathode Target

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Yu ZHANG; Li LI; Guoqiang LIN; Chuang DONG

    2006-01-01

    An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.

  16. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys.

    Science.gov (United States)

    Liang, Chenghao; Huang, Naibao

    2007-10-01

    Biomedical TiNi shape memory alloy and Co-based alloys were ion implanted, and corrosion resistance and hemocompatibility of these had been investigated with electrochemical method, dynamic clotting time, and hemolysis rate tests. The results indicated that the electrochemical stability and anodic polarization behavior of the materials were improved significantly after ion implantation. When TiNi, Co-based alloys were implanted Mo + C and Ti + C, respectively, the corrosion potentials were enhanced more than 200 mV, passive current densities decreased, and passive ranges were broadened. Dynamic clotting time of the ion implanted substances was prolonged and hemolysis rate decreased. All the results pointed out that corrosion resistance and hemocompatibility of the alloys were improved by ion implantation, and effects of dual implantation was better than that of C single implantation. X-ray diffraction analysis of the alloys after dual implantation revealed that TiC, Mo(2)C, Mo(9)Ti(4), and Mo appeared on the surface of TiNi alloy, and CoC(x), Co(3)Ti, TiC, and TiO on the surface of Co-based alloys. These phases dispersing on the alloy surface formed amorphous film, prevented dissolving of alloy elements and improved the corrosion resistance and hemocompatibility of the alloys.

  17. Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Frank; T.P. O' Holleran; P.A. Hahn

    2011-09-01

    This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

  18. Oxidation Behavior of Binary Niobium Alloys

    Science.gov (United States)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale

  19. Solid State Joining of Dissimilar Titanium Alloys

    Science.gov (United States)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  20. Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium alloy

    CERN Document Server

    International Organization for Standardization. Geneva

    1996-01-01

    Specifies the characteristics of, and corresponding test methods for, the wrought titanium alloy known as titanium 6-aluminium 4-vanadium alloy (Ti 6-Al 4-V alloy) for use in the manufacture of surgical implants.

  1. Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shyni, P.C.; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2015-11-05

    We report the structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} (x = 10, 15, y = 0–20) alloy powders prepared by mechanical alloying process in a planetary ball mill. All the as-milled powders exhibit non-equilibrium α-Fe(Co,Si) solid solution with average crystallite size of 7–11 nm. The lattice constant increases initially up to 10 at.% Co and then decreases with further increase in Co content due to delay in dissolution of Co into Fe lattice by the introduction of more Si. The variations of structural parameters such as average crystallite size, dislocation density and fraction of grain boundary as a function of Co content show good correlations among them. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity due to atomic ordering which induce additional magnetic anisotropy. Thermomagnetization studies reveal that Curie temperature (T{sub C}) increases at a rate of 4 K per at.% Co for Co content up to 10 at.% and the rate of increase in T{sub C} reduces to 1.4 K per at.% Co for higher Co addition. The variation of structural and magnetic parameters reveals a strong dependence on the composition of Fe–Co–Si alloy. The observed results show the improvement in soft magnetic properties of nanocrystalline Fe–Co–Si alloy powders by proper substitution of Co and Si for Fe. - Graphical abstract: Structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powders prepared by mechanical alloying process in a planetary ball mill are reported. The non-equilibrium solid solution with nanosized crystallites could be obtained for all the alloy powders. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity. The Curie temperature also increases with increasing Co content. The observed results show the improvement in soft magnetic

  2. Microstructure and superelasticity of porous NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    李丙运; 戎利建; 李依依

    1999-01-01

    The microstructure, porosity, phase composition and superelasticity (SE) in porous NiTi alloys produced by elemental powder sintering are examined by SEM, image analysis and XRD. It is found that it is feasible to produce porous NiTi alloy by elemental powder sintering, and the porosity of sintered porous NiTi alloy is in the range of 36.0 %-41.5 %. The pores are interconnected and the microstructure is sponge-like. Meanwhile, porous NiTi alloy has good SE. XRD patterns show that there is no pure Ni in alloy sintered at 1223 K-9 h. Compared with the biomedical criteria for choice of implanting materials, porous NiTi alloy is satisfying to a great degree.

  3. Composition Range of Amorphous Mg-Ni-Y Alloys

    Institute of Scientific and Technical Information of China (English)

    陈红梅; 钟夏平; 欧阳义芳

    2003-01-01

    Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg-Ni-Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.

  4. Formation of Au/Pd Alloy Nanoparticles on TMV

    Directory of Open Access Journals (Sweden)

    Jung-Sun Lim

    2010-01-01

    Full Text Available A gold-palladium (AuPd solid solution alloy was successfully deposited on the genetically engineered tobacco mosaic virus (TMV1Cys by the biosorption of Au(III and Pd(II precursors and the reduction of the Au(III and Pd(II to their respective metals or metal alloy. The resulting morphologies of alloy nanoparticles deposited on the TMV1Cys were observed with transmission electron microscopy (TEM, and the AuPd alloy formation was supported with surface plasmon resonance (SPR and selected area electron diffraction (SAED. In addition, selected alloy nanoparticles on the TMV1Cys were analyzed further with electron energy loss spectroscopy (EELS to confirm the presence of gold and palladium. Our result implies that biotemplated metal mineralization is a potentially useful methodology to prepare alloy nanoparticles.

  5. Precision forging technologies for magnesium alloy bracket and wheel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fundamental investigations on precision forging technology of magnesium alloys were studied. As-cast billet prestraining and a new concept of hollow billet were proposed in order to reduce the maximum forming load. A scheme of isothermal forming and the use of combined female dies were adopted, which can improve the die filling capacity and ensure the manufacture of high quality forgings. By means of the developed technique, AZ80 alloy wheel and AZ31 alloy bracket were produced successfully at suitable process parameters and applied in the automotive industries. The results show that the hot compression of AZ80 magnesium alloy has the peak flow stresses of pre-strained alloy with finer grain, which are lower by 20% than those of as-cast alloy under the same deformation conditions. The forming load is related to contact area and average positive stress on interface during forging process.

  6. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  7. Intermetallic alloy welding wires and method for fabricating the same

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  8. Ferromagnetism of Fe86Mn14-yCuy alloys

    Science.gov (United States)

    França, F.; Paduani, C.; Krause, J. C.; Ardisson, J. D.; Yoshida, M. I.; Schaf, J.

    2007-01-01

    The magnetic properties of disordered Fe86Mn14-yCuy alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below TC at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys.

  9. Predictions of titanium alloy properties using thermodynamic modeling tools

    Science.gov (United States)

    Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.

    2005-12-01

    Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.

  10. Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress

    Science.gov (United States)

    Zhao, D.; Ebel, T.; Yan, M.; Qian, M.

    2015-08-01

    Owing to their relatively low Young's modulus, high strength, good resistance to corrosion, and excellent biocompatibility, β-titanium (Ti) alloys have shown great potential for biomedical applications. In β-Ti alloys, carbon can exist in the form of titanium carbide (TiC x ) as well as interstitial atoms. The Ti-C binary phase diagram predicts a carbon solubility value of 0.08 wt.% in β-Ti, which has been used as the carbon limit for a variety of β-Ti alloys. However, noticeable grain boundary TiC x particles have been observed in β-Ti alloys containing impurity levels of carbon well below the predicted 0.08 wt.%. This review focuses its attention on trace carbon (≤0.08 wt.%) in biomedical β-Ti alloys containing niobium (Nb) and molybdenum (Mo), and it discusses the nature and precipitation mechanism of the TiC x particles in these alloys.

  11. Rapidly solidified Mg-Al-Zn-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.F.; Das, S.K.; Raybould, D.

    1987-01-01

    Among the light metal alloys, magnesium is the lightest structural material except for beryllium, and yet magnesium alloys have not seen extensive use because of their poor strength and corrosion resistance. Rapid solidification technology offers a possible solution to these problems. A number of Mg-Al-Zn alloys containing rare earth (RE) elements (e.g. Ce, Pr, Y, and Nd) have been investigated using rapid solidification processing for possible structural applications. The processing consists of planar flow or jet casting into ribbons, pulverization of ribbon to powder, and consolidation of powder into bulk shapes. The mechanical properties of some of these alloys show attractive combinations of strength, ductility and corrosion resistance. The microstructures of these alloys are correlated with their mechanical properties. The rapidly solidified Mg-Al-Zn-RE alloys show great potential for applications in automotive and aerospace industries. 7 references.

  12. Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Park, Hansoo; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Jang, Jong Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-07-15

    NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni{sub 59}Cu{sub 41} had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

  13. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying.......The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...

  14. Estimation of thermal expansion properties of quasicrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    齐育红; 张占平; 黑祖昆

    2004-01-01

    By investigating the thermal expansion properties of three quasicrystalline alloys Al65 Cu20 Cr15 quenched,Al65Cu20Cr15 cast and Al65Cu20Fe15 cast particles reinforced Al matrix composites from 25 ℃ to 500 ℃, the thermal expansion coefficients of three quasicrystalline alloys were theoretically estimated. The results show that the thermal expansion coefficients of the composites are much lower than that of pure Al, and the thermal expansion coefficients of the composites reinforced by Al-Cu-Cr quasicrystalline particles are lower than those of the composites reinforced by Al-Cu-Fe quasicrystalline particles. According to estimating, quasicrystalline alloys have negative thermal expansion coefficients, and the thermal expansion coefficients of Al-Cu-Cr quasicrystalline alloys are lower than those of Al-Cu-Fe quasicrystalline alloys. In the alloys, the more the qusicrystalline content, the lower the thermal expansion coefficient.

  15. Bulk Glassy Alloys: Historical Development and Current Research

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2015-06-01

    Full Text Available This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

  16. Production of FR Tubing from Advanced ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  17. Research activities of biomedical magnesium alloys in China

    Science.gov (United States)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  18. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  19. NEW METHOD OF PRODUCTION OF ALUNINUM SILICON ALLOYS

    Directory of Open Access Journals (Sweden)

    V. K. Afanasiev

    2015-01-01

    Full Text Available A new approach to the preparation of aluminum-silicon alloys, based on the concept of the leading role of hydrogen in determining the structure and properties of alloys consists in using as charge materials of silicon dioxide (silica and hydrogen instead of crystalline silicon was described. Practical ways to implement the new method were proposed on the example of industrial alloys prepared on charge synthetic alloy. It is shown that the application of the proposed method allows to improve the mechanical properties and reduce the coefficient of thermal expansion alloys, Al-Si. The effect of heat treatment on mechanical properties, density and thermal expansion of synthetic alloys was researched.

  20. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  1. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  2. Debye temperature of nanocrystalline Fe–Cr alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, S.M., E-mail: Stanislaw.Dubiel@fis.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Krakow (Poland); Costa, B.F.O. [CFisUC, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal); Cieslak, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Krakow (Poland); Batista, A.C. [CFisUC, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2015-11-15

    A series on nanocrystalline Fe{sub 100−x}Cr{sub x} alloys prepared by mechanical alloying was investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM) and Mössbauer spectroscopy (MS) techniques. XRD was used to structurally characterize the samples whereas MS permitted phase analysis as well as determination of the Debye temperature, θ{sub D}. Concerning the latter, an enhancement relative to bulk θ{sub D}-values was revealed in the range of ∼40 ≤ x ≤∼50. In a sample of Fe{sub 55.5}Cr{sub 44.5} two phases were detected viz. (1) crystalline and magnetic with θ{sub D} = 572 (56) K and (2) amorphous and paramagnetic with θ{sub D} = 405 (26) K. - Highlights: • Nanocrystalline Fe–Cr alloys obtained by mechanical alloying. • Determination of the Debye temperature by Mössbauer spectroscopy. • Observation of enhancement of the Debye temperature for quasi equiatomic alloys.

  3. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  4. Theoretical Studies of Deep Impurity Levels in Ternary Semiconductor Alloys.

    Science.gov (United States)

    2014-09-26

    phase diagram for that process. C. "Central-cell scattering effects on mobLility . We have shown that the central-cell potential of a defect can have a...Cr e We have predicted the major chemical trends with alloy composition x for . the deep levels in these technologically important alloys [119]. ,J...IV-VI semiconductors- We have developed a theory of the defect levels in these technologically important alloys. We have proposed that the defects In

  5. Microstructure and kinetics of hot deformation WE43 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Jiacheng; WANG Qiang; WANG Yong; LI Wei; NIU Wenjuan

    2008-01-01

    The effect of compression on the rnicrostructures and flow behavior of WE43 magnesium alloy was investigated in this article.The relationship between flow stress and strain rate was discussed.According to the empirical formula ε = Aσn exp(-Q/RT),the value of heat activation of WFA3 magnesium alloys is 297.15 kJ/mol.A mechanism of deformation softening of WEA3 alloy in testing hot deformation was identified to be dynamic recrystallization.

  6. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  7. Hydrogen solubility in rare earth based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Hirohisa [Tokai Univ., Kanagawa (Japan). School of Engineering; Kuji, Toshiro [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan)

    1999-09-01

    This paper reviews significant results of recent studies on the hydrogen storage properties of rare earth based AB{sub 5} (A: rare earth element, B: transition element) alloys The hydrogen solubility and the hydride formation, typically appeared in pressure-composition isotherms (PCT), are strongly dependent upon alloy composition, structure, morphology and even alloy particle size. Typical experimental results are shown to describe how these factors affect the hydrogen solubility and storage properties.

  8. Effect of Carbon on DA718 Alloy with P Addition

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shouren GUO; Dezhong LU; Wenru SUN; Yan XU; Zhuangqi HU

    2003-01-01

    Lower content of carbon can further improve the stress rupture life of p-modified DA 718 alloy up to more than 270%.Meanwhile, the ductility of the alloy decreased a little. More boron atoms dissociate due to decreasing carbon content and interact with phosphorus which brings the longer stress rupture life of the alloy. Less carbon may induce more phosphorus segregating in the grain boundary and result in brittleness.

  9. Metals and alloys in the function of biomaterials

    Directory of Open Access Journals (Sweden)

    Dejan I. Tanikić

    2012-04-01

    Full Text Available Biomaterials are natural or synthetic materials, used for guidance, maintaining or replacing the function of the human body's live tissues. Metal biomaterials are mainly used for replacing broken or damaged hard tissues such as bones, because of their high strength, toughness and corrosion resistance. The most frequently used metals are stainless steels, cobalt based alloys as well as titanium and its alloys. A review of the metals and alloys mostly used in biomedicine are presented in this paper.

  10. China’s Aluminum Alloy Cable Market has Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aluminum alloy cable is a mature product and technology that has been used for nearly fifty years in the U.S.Through six years’promotion,it has been widely recognized and accepted in the China market since 2013,which laid the foundation for the development of the aluminum alloy cable market.Aluminum alloy cable is widely applied in the fields of civil construction and industrial and mining enterprises,especially in real estate,steel and metallurgy.

  11. Microstructural Investigations of Rapidly Solidified Al-Co-Y Alloys

    OpenAIRE

    B. Avar; Gogebakan, M.; Tarakci, M.; Y. Gencer; S. Kerli

    2013-01-01

    The alloys with different compositions in the Al-rich corner of the Al-Co-Y ternary system were prepared by conventional casting and further processed by melt-spinning technique. The microstructure and the thermal behavior of the alloys were analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA). It was found that only rapidly solidified Al85Co7Y8 alloy exhibited the best glass forming ...

  12. The Strengthening of Cu-15Ni-8Sn Alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hui; WANG Ming-pu; HONG Bin

    2004-01-01

    The microstructure, property and relation between them of Cu-15Ni-8Sn alloy are studied by means of TEM and the measurement of hardness. The results show that γ ' metastable phase strengthens alloy because of its ordering structure.The ordering structure includes two types of DO22 and L12 ordering. Their strengthening for the alloy is much stronger than that of spinodal decomposition.

  13. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  14. Comparison of Metal Dusting Behavior of Several Alloys

    Institute of Scientific and Technical Information of China (English)

    HAN Guang-wei; DENG Bo; FENG Di

    2004-01-01

    Metal dusting behaviors of several alloys with different chromium contents and other elements were investigated in a given gaseous environment. The samples of the alloys were exposed at 650 ℃ for 650 h, and were periodically removed to examine coke protrusions and pits formed on the sample surfaces by SEM and determine metal wastage. The results were interpreted in terms of the compositional variations of the employed alloys.

  15. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  16. Mechanism of Burn Resistance of Alloy Ti40

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ti fire found in high performance engines promotes the development of burn resistant Ti alloys. The burn resistant mechanism of Ti40 alloy is investigated. Ti40 alloy reveals good burn resistance. Its interfacial products between burning products and the matrix are tenacious,which retard the diffusion of oxygen into the matrix. Two burn resistant mechanisms, that is, fast scatter dispersion of heat and suppression of oxygen diffusion, are proposed.

  17. INFLUENCE OF PARAMETERS OF CRYSTALLIZATION ON MODIFYING OF AN ALLOY

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2015-01-01

    Full Text Available It is shown that extent of modifying of an alloy is proportional to overcooling at its hardening, viscosity of fusion and interphase superficial energy of crystals of the leading phase. The key technological parameters of modifying of an alloy are the speed of its hardening, viscosity of fusion and extent of refinement from surface-active elements. Their adsorption on crystals of the leading phase interferes with modifying of an alloy.

  18. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    N Vidhya Sagar; K S Anand; A C Mithun; K Srinivasan

    2006-12-01

    Friction factor has been determined for CP aluminium and aluminium–zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits sticking whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier than that of CP aluminium at 773 K. As zinc content increases up to 10 wt% the friction factor decreases up to 0.02.

  19. Layered Structures in Deformed Metals and Alloys

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Layered structures characterize metals and alloys deformed to high strain. The morphology is typical lamellar or fibrous and the interlamellar spacing can span several length scales down to the nanometer dimension. The layered structures can be observed in bulk or in surface regions, which is shown...... by the way of examples of different processing routes: friction, wire drawing, shot peening, high pressure torsion and rolling. The interlamellar spacing reaches from 5-10 nanometers to about one micrometer and the analysis will cover structural evolution, strengthening parameters and strength......-structure relationships. Finally, the results will be discussed based on universal principles for the evolution of microstructure and properties during plastic deformation of metals and alloys from low to high strain....

  20. Dry face milling of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Ahmed Hassan; Zhenqiang Yao

    2004-01-01

    In machining titanium alloys, cutting tools generally wear out very rapidly because of the high cutting temperature resulted from the low thermal conductivity and density of the work material. In order to increase the tool life, it is necessary to suppress the cutting heat as much as possible by applying an abundant amount of coolant, but this will entail serious techno-environmental and biological problems. To study the performance and avoid these limitations, a PVD-coated insert was used to the dry face mill of (α +β) titanium alloys. As a result it was found that the inserts exhibit an excellent cutting performance at low cutting speeds and feed rates, and there is no significant difference in the dominant insert failure mode between the wet and dry cutting in discontinuous cutting.

  1. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam; A V Ramesh Kumar

    2000-10-01

    The corrosion behaviour of two carbon-alloyed intermetallics of composition Fe–28.1Al–2.1C and Fe–27.5Al–3.7C has been studied and compared with that of binary intermetallics. Potentiodynamic polarization studies indicated that the intermetallics exhibited active–passive behaviour in an acidic solution of pH = 1, whereas they exhibited stable passivity in a buffer solution of pH 8.4. Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was similar for both the intermetallics. The variation in corrosion rate as a function of time has been explained based on the observed potentiodynamic polarization behaviour. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides.

  2. Electrical conductivity of Cu-Li alloys

    Institute of Scientific and Technical Information of China (English)

    朱达川; 宋明昭; 陈家钊; 涂铭旌; 潘海滨

    2004-01-01

    The electrical conductivity of Cu-Li alloys was studied. And the distribution of electrons near Fermi surface was detected by synchrotron radiation instrument. The results show that the electrical conductivity of Cu-Li alloys decreases from 5. 22 × 10-9 S/m to 3. 69 × 10-9 S/m with the increase of Li content. Li can decrease the oxygen, sulfur and other impurities content in commercial Cu, but Li dissolved in Cu lattice leads to distortion of Cu lattice from 0. 005 %-0. 050 %, affects the valence band of Cu, increases the binding energy of surface electron, and decreases the electron density of Fermi surface simultaneously. So the electrical conductivity decreases gradually with the increase of Li content.

  3. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  4. Hydrogen diffusion in Al-Li alloys

    Science.gov (United States)

    Anyalebechi, P. N.

    1990-08-01

    The diffusion coefficients of hydrogen in binary Al-Li alloys containing 1,2, and 3 wt pct Li have been determined from desorption curves of samples saturated with hydrogen at 473 to 873 K. Within this temperature range, the diffusivity of hydrogen in the binary Al-Li alloys investigated has an Arrhenius-type temperature dependence and follows the equation of the general form D = DT) where D 0exp(-Q/R is the diffusion coefficient (m2/s), D 0 is the preexponential or frequency factor (m2/s), R is the gas constant (J/K mol), Q is the activation energy (J/mol), and T is absolute temperature (K). The rate of diffusion of hydrogen in aluminum decreases with increase in lithium additions. This is provisionally attributed to the stronger local binding energy between hydrogen and lithium atoms in the aluminum metal lattice.

  5. Spherical foam growth in Al alloy melt

    Institute of Scientific and Technical Information of China (English)

    SHANG; Jintang; HE; Deping

    2005-01-01

    Due to the demand of high-tech Al alloy foam with spherical pores, high strength and high energy-absorption capacity has become one of the research foci. The aim of this study is to ascertain the growth regularity of spherical foam in Al alloy melt. Three-dimensional packing model such as face-centered cubic is established to study the spherical foam growth. Theoretical results are compared with experimental ones, and the face-centered cubic model corresponds well with the experiment. It is reasonable to assume that the pores have the same radius, the total pore number keeps unchanged and spherical foam grows with face-centered cubic packing mode. This study presents a useful help to control the average pore radius and film thickness.

  6. Thermal Properties of Al-50%Si Alloys

    Institute of Scientific and Technical Information of China (English)

    Akio Nishimoto; Katsuya Akamatsu; Kazuyoshi Nakao; Kazuo Ichii

    2004-01-01

    In order to prepare a hypereutectic Al-Si alloy with low coefficients of thermal expansion (CTE), Al-50was produced by powder metallurgy (P/M) and ingot metallurgy (I/M). P/M specimen was prepared by mechanical alloying(MA) and pulsed electric-current sintering (PECS). The microstructures of specimens were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness and CTE measurements were performed. The grains in the P/M specimen were refined with increasing MA time. Primary Si and eutectic Si in the I/M specimen were remarkably refined by adding minute amounts of Sr. The CTE of P/M and I/M specimens were estimated as 7.8×10-6 and 10.7×10-6, respectively. These values were as same as a CTE of Al2O3 ceramics.

  7. Stifling of Crevice Corrosion in Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K G; Gordon, G M; Rebak, R B

    2005-06-08

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential crevice corrosion penetration is diffusion controlled.

  8. STIFLING OF CREVICE CORROSION IN ALLOY 22

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; G.M. Gordon; R.B. Rebak

    2005-07-01

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential, crevice corrosion penetration is diffusion controlled.

  9. Effective band structure of random alloys.

    Science.gov (United States)

    Popescu, Voicu; Zunger, Alex

    2010-06-11

    Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E(k(→)). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector k(→), e.g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, whereby many different local environments are allowed to coexist, and transform the eigenstates into an effective band structure (EBS) in the primitive cell using a spectral decomposition. The resulting EBS reveals the extent to which band characteristics are preserved or lost at different compositions, band indices, and k(→) points, showing in (In,Ga)N the rapid disintegration of the valence band Bloch character and in Ga(N,P) the appearance of a pinned impurity band.

  10. Novel approach of LY12 alloy brazing

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 钱乙余; 董健; 吕晓春

    2003-01-01

    The LY12 Al alloy was brazed with the adoption of the improved KF-CsF-AlF3 flux matching Ag-Al-Cu-Zn filler metal. The shear strength of brazed joint could reach 80% of that of the substrate and the tensile strength of butt brazed joint will be 70% of that of the substrate. This was the great progress against the traditional claim that Al alloy reinforced by heat treatment could not be brazed. The experimental results and theoretical analysis had proved that it was the key issue to remove the MgO oxide film below 503℃. The addition of rare earth La was the effective way to obtain better mechanical properties of the filler metal as well as brazed joints.

  11. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  12. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  13. Welding Metallurgy of Alloy HR-160

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Michael, J.R.; Newbury, B.D.

    1999-05-28

    The solidification behavior and resultant solidification cracking susceptibility of autogenous gas tungsten arc fusion welds in alloy HR-160 was investigated by Varestraint testing, differential thermal analysis, and various microstructural characterization techniques. The alloy exhibited a liquidus temperature of 1387 {deg}C and initiated solidification by a primary L - {gamma} reaction in which Ni, Si, and Ti segregated to the interdendritic liquid and Co segregated to the {gamma} dendrite cores. Chromium exhibited no preference for segregation to the solid or liquid phase during solidification. Solidification terminated at {approx} 1162 {deg}C by a eutectic-type L - [{gamma}+ (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7}] reaction. The (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7} phase is found to be analogous to the G phase which forms in the Ni-Ti-Si and Co-Ti-Si ternary systems, and similarities are found to exist between the solidification behavior of this commercial multicomponent alloy and the simple Ni-Si and Ni-Ti binary systems. Reasonable agreement is obtained between the calculated and measured volume percent of the [{gamma} +(Ni,Co){sub l6}(Ti,Cr){sub 6}Si{sub 7}] eutectic-typr constituent with the Scheil equation using experimentally determined k values for Si and Ti from electron microprobe data. The alloy exhibited a very high susceptibility to solidification cracking in the Varestraint test. This is attributed to a large solidification temperature range of 225 {deg}C and the presence of 2 to 5 vol% solute rich interdendritic liquid which preferentially wets the grain boundaries and interdendritic regions.

  14. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    scale is similar to that which has already been proposed for cobalt . The oxide ions would react with the Al203 to form aluminate ions in the Na2S04...resistance of cobalt -base and nickel-base alloys. The contract was accomplished under the technical direction of Dr. H. C. Graham of the Aerospace Research...Oxidized Specimens RESULTS AND DISCUSSION 1. INTRODUCfiON 2. SODIUM SULFATE INDUCED HOT CORROSION OF COBALT a. Introduction b. Experimental c

  15. Metalworking Techniques Unlock a Unique Alloy

    Science.gov (United States)

    2015-01-01

    Approached by West Hartford, Connecticut-based Abbot Ball Company, Glenn Research Center agreed to test an intriguing alloy called Nitinol 60 that had been largely unused for a half century. Using powdered metallurgy, the partners developed a method for manufacturing and working with the material, which Abbott Ball has now commercialized. Nitinol 60 provides a unique combination of qualities that make it an excellent material for ball bearings, among other applications.

  16. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  17. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  18. Hydrogen dominant metallic alloys: high temperature superconductors?

    Science.gov (United States)

    Ashcroft, N W

    2004-05-07

    The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a candidate for high temperature superconductivity are shown to apply with comparable weight to alloys of metallic hydrogen where hydrogen is a dominant constituent, for example, in the dense group IVa hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil cells, but at pressures considerably lower than may be necessary for hydrogen.

  19. A NEW MODEL OF SHAPE MEMORY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    朱祎国; 吕和祥; 杨大智

    2002-01-01

    A new constitutive model of shape memory alloys ( SMAs ) based on Tanaka' s martensite fraction exponential expression is produced. This new model can present recoverable shape memory strain during different phase transformation, and reflect the action of martensite reorientation. Also it can overcome the defect of Tanaka's Model when the SMAs' microstructure is fully martensite . The model is very simple and suitable for using,and the correct behavior of the model is proved by test.

  20. Scanning probe microscopy on new dental alloys

    Science.gov (United States)

    Reusch, B.; Geis-Gerstorfer, J.; Ziegler, C.

    Surface analytical methods such as scanning force microscopy (SFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to determine the surface properties of amalgam substitutes as tooth filling materials. In particular the corrosion and the passivation behavior of new gallium restorative materials were studied. To give relevant practical data, the measurements were performed with and without the alloys being stored in artificial saliva to simulate physiological oral conditions.

  1. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  2. Corrosion of Aluminum Alloys by IRFNA

    Science.gov (United States)

    1990-02-24

    and electropolishing and anodising, have been studied. aNeither had a significant long term effect on the corrosion rate of 2014 alumninium alloy in... steel spatula. (iv) The cell was assembled and raw eghed, the charge of galled Acid being determined by difference. Two additional bottom-working...The anodiuing solution was 1swt% sulphuric acid And the conditions were 25oC, 1 Mwm, 12V. The anodic oxide film waS scaled in delonised water (30

  3. Impact properties of zinc die cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P. (MPM Technologies, Inc.); Goodwin, F.E. (ILZRO)

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  4. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  5. Method for estimating the lattice thermal conductivity of metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist.

  6. Research on the diffusion bonding of superplastic magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    于彦东; 张凯锋; 蒋大鸣; 郑海荣; 王刚

    2002-01-01

    The elevated temperature tensile experiments have been carried out on the magnesium alloy and results indicate that the magnesium alloy has excellent superplastic property. Gleebe-1500 testing machine was used in the diffusion bonding experiment on the superplastic magnesium alloy. Then, the shear strength of the joints under different conditions is obtained through shear testing and the optimum processing parameters for the diffusion bonding are achieved. By metallurgical microscope and scanning electron microscope (SEM), it is revealed that the micromechanism of diffusion bonding is the slide of grain boundaries caused by the growth of grains and atom diffusion of the superplastic magnesium alloy.

  7. Low-temperature softening in body-centered cubic alloys

    Science.gov (United States)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  8. Titanium aluminide intermetallic alloys with improved wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  9. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  10. Grey interrelation analysis of alloy elements and steel corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinglei; Hou Baorong; Huang Yanliang; Guo Gongyu [Chinese Academy of Sciences, Qingdao (China). Dept. of Oceanology

    2000-07-01

    Mathematical grey interrelation analysis method was used to study the correlation of alloy elements and low steel corrosion in the splash zone. Eighteen kinds of low alloy steels were selected for 350-day experiments in a large marine corrosion environment simulating apparatus. The analysis results showed that the correlation of alloy elements and alloy corrosion rate is in the order: Mn>Si>P>V>Cu>Al>Cr>Mo. The correlation degree was 0.92, 0.89, 0.86, 0.83, 0.82, 0.82, 0.81, 0.77. (orig.)

  11. Softening phenomenon during compression test in nanograined aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S.H.; Jang, J.M.; Lee, W. [Korea Inst. of Industrial Technology, ChonAn (Korea)

    2005-07-01

    Al-Mg and Al-Mg-Cu alloys are known well to reveal superplasticity in tension at high temperatures. In this study, deformation behaviors of those alloys nanograined were investigated under compression test at room temperature. During plastic deformation softening phenomena occurred obviously in nanograined Al-1.5wt%Mg and Al-0.7wt%Mg-1.0wt%Cu alloys while slight strain hardening appeared in nanograined pure Al. These results suggest that the softening strongly depends on composition of alloys. The softening takes place over strain rate range from 10{sup -4} up to 10{sup -1}. (orig.)

  12. Novel Magnesium Alloys Developed for Biomedical Application: A Review

    Institute of Scientific and Technical Information of China (English)

    Nan Li; Yufeng Zheng

    2013-01-01

    There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications.Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency,so higher strength,and better ductility and corrosion resistance are required.Nevertheless,biomedical magnesium alloys require appropriate mechanical properties,suitable degradation rate in physiological environment,and what is most important,biosafety to human body.Rather than simply apply commercial magnesium alloys to biomedical field,new alloys should be designed from the point of view of nutriology and toxicology.This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic,cardiovascular and tissue engineering applications.Advances in new alloy design,novel structure design and surface modification are overviewed.The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.

  13. ANALYSIS OF DECREASE MACHINABILITY POSSIBLE CAUSES FOR CLAIMED ALLOY

    Directory of Open Access Journals (Sweden)

    Nataša Náprstková

    2016-09-01

    Full Text Available The Faculty of Production Technology and Management is often asked by companies with a request to solve a specific technical task. One of these tasks was the analysis of aluminum alloy worsened machinability when the rods from this alloy exhibited against assumption significantly worse (longer chips during machining. The alloy was complaint and, of course, it created economic damage. Obviously, the company was interested in the causes of this alloy behavior change that could possibly generate future complaints procedures to defend itself better, or to avoid mistakes in the production of the material. At the faculty analysis that could contribute to identifying the cause of the worsened machinability were done.

  14. [Radioactivity of phosphorus implanted TiNi alloy].

    Science.gov (United States)

    Zhao, Xingke; Cai, Wei; Zhao, Liancheng

    2003-09-01

    Exposed to neutron flow, the phosphorus implanted TiNi alloy gets radioactive. This radioactive material is used in vascular stent for prevention and cure of restenosis. Phosphorus implantation is carried out in a plasma immerged ion implantation system, and the dose of phosphorus implantation is in the range of 2-10 x 10(17) cm-2. After ion implantation, the alloy is exposed to the slow neutron flow in a nuclear reactor, the dose of the slow neutron is 1.39-5.88 x 10(19) n/cm2. The radioactivity of the TiNi alloy was measured by liquid scintillation spectrometry and radio-chromic-film dosimetry. The result shows that whether the phosphorus is implanted or not, the TiNi alloy comes to be radioactive after exposure to neutron flow. Just after neutron irradiation, the radiation dose of phosphorus implanted TiNi alloy is about one hundred times higher than that of un-phosphorus implanted TiNi alloy. The radiation difference between phosphorus and un-phosphorus implanted alloy decreases as time elapses. Within three months after neutron irradiation, the average half-decay period of phosphorus implanted TiNi alloy is about 62 days. The radiation ray penetration of phosphorus implanted TiNi alloy is deeper than that of pure 32P; this is of benefit to making radiation uniformity between stent struts and reducing radiation grads beyond the edge of stent.

  15. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  16. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  17. Corrosion behavior of nickel-containing alloys in artificial sweat.

    Science.gov (United States)

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  18. Model Checking Event-B by Encoding into Alloy

    CERN Document Server

    Matos, Paulo J

    2008-01-01

    As systems become ever more complex, verification becomes more main stream. Event-B and Alloy are two formal specification languages based on fairly different methodologies. While Event-B uses theorem provers to prove that invariants hold for a given specification, Alloy uses a SAT-based model finder. In some settings, Event-B invariants may not be proved automatically, and so the often difficult step of interactive proof is required. One solution for this problem is to validate invariants with model checking. This work studies the encoding of Event-B machines and contexts to Alloy in order to perform temporal model checking with Alloy's SAT-based engine.

  19. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  20. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  1. Plutonium microstructures. Part 2. Binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  2. Alloys For Flexible Hoses In A Corrosive Environment

    Science.gov (United States)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1992-01-01

    High-nickel alloy resists pitting corrosion. Report evaluates metal alloys for flexible hoses in corrosive environment. Tested to find alternatives to 304L stainless steel. Nineteen alloys selected for testing on basis of reputation for resistance to corrosion. Top five, in order of decreasing resistance to corrosion: Hastelloy(R) C-22, Inconel(R) 625, Hastelloy(R) C-276, Hastelloy(R) C-4, and Inco(R) alloy G-3. Of these, Hastelloy(R) C-22 found best for flexible-hose application.

  3. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    Full Text Available Shape memory alloys (SMAs have been extensively investigated because of their unique shape memory behaviour, i.e. their ability to recover their original shape they had before deformation. Shape memory effect is related to the thermoelastic martensitic transformation. Austenite to martensite phase transformation can be obtained by mechanical (loading and thermal methods (heating and cooling. Depending on thermomechanical conditions, SMAs demonstrate several thermomechanical phenomena, such as pseudoelasticity, superelasticity, shape memory effect (one-way and two-way and rubber-like behaviour. Numerous alloys show shape memory effect (NiTi-based alloys, Cu-based alloys, Fe-based alloys etc.. Nitinol (NiTi is the most popular and the most commonly used SMA due to its superior thermomechanical and thermoelectrical properties. NiTi alloys have greater shape memory strain and excellent corrosion resistance compared to Cu – based alloys. However, they are very costly. On the other hand, copper-based alloys (CuZn and CuAl based alloys are much less expensive, easier to manufacture and have a wider range of potential transformation temperatures. The characteristic transformation temperatures of martensitic transformation of CuAlNi alloys can lie between −200 and 200 °C, and these temperatures depend on Al and Ni content. Among the Cu – based SMAs, the most frequently applied are CuZnAl and CuAlNi alloys. Although CuZnAl alloys with better mechanical properties are the most popular among the Cu-based SMAs, they lack sufficient thermal stability, while CuAlNi shape memory alloys, in spite of their better thermal stability, have found only limited applications due to insufficient formability owing to the brittle γ2 precipitates. The most important disadvantage of polycrystalline CuAlNi alloys is a small reversible deformation (one-way shape memory effect: up to 4 %; two-way shape memory effect: only approximately 1.5 % due to intergranular

  4. REINFORCEMENT OF NICKEL CHROMIUM ALLOYS WITH SAPPHIRE WHISKERS.

    Science.gov (United States)

    SAPPHIRE, COMPOSITE MATERIALS, CERAMIC FIBERS , CERAMIC FIBERS , TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, HYDRIDES, ADDITIVES, CHROMIUM ALLOYS, FIBER METALLURGY, IRON COMPOUNDS, ENCAPSULATION, DENSITY, SURFACE TENSION.

  5. Tarnish behavior of palladium-indium-silver alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Hanyang University, Seoul (Korea, Republic of); Kim, S.Y.; Lee, K.H.; Shin, M.C.; Dzo, M.H. [Korea Institute Science and Technology, Seoul (Korea, Republic of)

    1998-04-01

    The purpose of this study was to give a quantitative analysis for assessing the tarnish resistance of alloys at the artificial saliva, 0.9% NaCl solution and Ringer`s solution. In light of development in low-nobility alloys, it is important that tarnish test is standardized to analyse the tarnish properties of the compositions. There are concerns with the long term chemical stability f these alloys and the resistance to tarnish. Chemical stability is a complex problem involving alloy composition, nobility, microstructure and environment.

  6. Corrosion behavior of Ti–39Nb alloy for dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Joska, Ludek [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Malek, Jaroslav [UJP Praha, Nad Kamínkou 1345, 156 10 Prague-Zbraslav (Czech Republic); Sefl, Vaclav [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic)

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus–high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti–39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. - Highlights: • Alloy Ti–39Nb shows excellent corrosion resistance in physiological solution. • Corrosion resistance of Ti–39Nb alloy is significantly higher than that of titanium in the presence of fluoride ions. • The electrochemical impedance spectroscopy indicates a porous passive layer. • Passive layer of the alloy is enriched by niobium.

  7. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020

    Indian Academy of Sciences (India)

    Santosh Kumar; T K G Namboodhiri

    2011-04-01

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile testing, and delayed failure testing of hydrogen-charged specimens of air-cooled, duplexaged, and water-quenched duplex agedmaterials. The resistance to hydrogen embrittlement of the alloy was found to be in the order of air-cooled duplex aged alloy > as-received (T6 condition) > water quenched duplex aged material.

  8. Oxidation mechanisms for alloys in single-oxidant gases

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, D.P.

    1981-03-01

    Scales formed on alloys invariably contain the alloy constituents in a ratio different from that in the alloy, owing to the differing thermodynamic tendencies of the alloy components to react with the oxidant and to differences in diffusion rates in scale and alloy phases. This complex interrelationship between transport rates and the thermodynamics of the alloy-oxidant system can be analyzed using multicomponent diffusion theory when transport-controlled growth of single or multi-layered scales occurs. In particular, the superimposition of the diffusion data on an isothermal section of the appropriate phase diagram indicates the likely morphologies of the reaction products, including the sequence of phases found in the scale, the occurrence of internal oxidation and the development of an irregular metal/scale interface. The scale morphologies on alloys are also time-dependent: there is an initial transient stage, a steady state period, and a final breakdown, the latter often related to mechanical influences such as scale adherence, spallation, thermal or mechanical stresses and void formation. Mechanical influences have a more devastating effect in alloy oxidation due to the changes in alloy surface composition during the steady state period.

  9. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  10. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  11. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    Science.gov (United States)

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  12. Comparative analysis of high temperature strength of platinum and its binary alloys with low content of alloying element

    Directory of Open Access Journals (Sweden)

    Stanković Draško S.

    2012-01-01

    Full Text Available The comparative analysis of platinum and its binary alloys (containing alloying elements up to 10 mass% mechanical properties at high temperatures has been carried out. The goal of the analysis was to investigate new application possibilities for products based on platinum and platinum alloys, and to expand the existing database of platinum metals, originating from the RTB group, Serbia. Palladium, rhodium, ruthenium, iridium and gold were used as alloying elements. In order to examine the effect of alloying elements’ low concentrations on the high-temperature platinum durability, creep rate, rupture time, tensile strength and relative elongation at high temperatures, up to 1400 °C, were determined. In addition, changes in the structure of dislocations were tracked. The summary of investigation results led to conclusion that, of all the alloying elements used, the best influence on high-temperature platinum durability has rhodium.

  13. A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yigang; Chen, Yungui; Wu, Chaoling; Tao, Mingda; Liang, Hao [School of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2007-02-10

    A V{sub 30}Ti{sub 32}Cr{sub 32}Fe{sub 6} alloy prepared from a FeV80 master alloy is reported. It has a high hydrogen absorption/desorption capacity, good activation performance and kinetics. Heat-treatment at 1673 K is an effective way to increase the capacity and flatten the plateau due to the homogenization of the compositions in the alloy and the disappearance of Laves phase after heat-treatment. The heat-treated alloy can absorb 3.76 wt.%H at 298 K. It desorbs 2.35 wt.%H at 298 K and 2.56 wt.%H at 373 K. The development of this alloy could be of great significance to the application of V-based BCC hydrogen storage alloys. (author)

  14. Effects of Alloying Element Ca on the Corrosion Behavior and Bioactivity of Anodic Films Formed on AM60 Mg Alloys

    Directory of Open Access Journals (Sweden)

    Anawati Anawati

    2016-12-01

    Full Text Available Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF. Under identical anodization conditions, the PEO film thicknesses increased with increasing Ca content in the alloys, which enhanced the corrosion resistance in NaCl solution. Thicker apatite layers grew on the PEO films of Ca-containing alloys because Ca was incorporated into the PEO film and because Ca was present in the alloys. Improvement of corrosion resistance and bioactivity of the PEO-coated AM60 by alloying with Ca may be beneficial for biodegradable implant applications.

  15. Microstructure and tensile properties of low cost titanium alloys at different cooling rate

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optica...

  16. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

    Science.gov (United States)

    Wang, Hui; Xiao, Shang-gang; Zhang, Tao

    2016-07-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100- x Ag x ( x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  17. Fabrication of nanoporous silver by de-alloying CuZrAg amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Shang-gang Xiao; Tao Zhang

    2016-01-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100-xAgx (x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free cor-rosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corro-sion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  18. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  19. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  20. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs